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ABSTRACT

ACTIVE SUPPRESSION OF PERIODIC AND TRANSIENT
VIBRATIONS OF MECHANICAL SYSTEMS
A Study of New and Existing Approaches

by Thomas M. Pratt

This thesis presents two methodologies for actively suppressing unwanted mechanical vibrations.
The first is an existing computerized algorithm that, when used in conjunction with various
measurement and actuating devices, attenuates the vibrations caused by periodic disturbance
forces. The second approach uses modern control theory to develop a truly real-time vibration
controller. Because of its almost instantaneous processing, this controller cancels both periodic
and transient vibration signals - a property which is comparatively unique in the realm of

mechanical vibration control.

To provide a baseline for comparison, a section illustrating the performance of classical feedback

control is aiso included.

Laboratory testing of the first approach reveals attenuation ranges of 1 to 2 orders of magnitude,
which is at least as effective as that predicted for classical feedback control. Computerized
simulations of the second approach suggest even better results with the added benefit of a

capability for canceling transient vibrations.
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1. Introduction

Vibration attenuation has long been an objective of the mechanical engineer, for virtually all me-
chanical devices are subject to some form of unwanted vibration. This attenuation can be ac-
complished by either of two methods: passive vibration mounting, which more or less works by
absorption of the vibration energy, or active vibration control, which attempts to cancel the un-
wanted signal via the addition of an equal and opposite signal. Historically, the passive mount
was the means chosen because the controls technology and electronic and computing resources
needed for adequate active vibration control were limited. The advent of electronic devices such
as the micro-computer and digital signal processor have greatly changed this scenario, however,
and as a result, active systems are becoming increasingly prevalent in vibration contro! (inman &

Simonis, 1987; Rogers & Fuller, 1991).

The focus of this project is the investigation of, and comparison between, two types of active con-
trol systems: those that attenuate periodic signals and those which suppress transient signals.
The specific periodic control algorithm utilized in this study functions in the following way: it first
measures the unwanted vibration, then processes the data to create the canceling signal, and
finally introduces the canceling signal back into the system. This control cycle - which will be
shown later to operate via feed-forward control techniques - then repeats indefinitely, thus
achieving permanent vibration attenuation. Clearly, this technology is a vast improvement over
passive mounting, for not only are otherwise "absorbed" vibrations actively canceled, the system
is constantly updating itself to accommodate any changes occurring over time. In fact, the only
significant limitation imposed by such a system is its inability to address signal transients, since

the algorithm does not function on a truly real-time basis. Indeed, it is the attenuation of these



(unpredictable) transients that necessitates the development of an even more adaptive, real-time

type of system, an active transient vibration control system.

In an attempt to demonstrate the strengths and weaknesses of both the aforementioned types of
systems, this project examines various aspects of each. Since numerous periodic control
algorithms have been previously developed, their inclusion in this project is primarily to provide a
baseline for the transient type control theory. Specifically, the previously-developed periodic al-
gorithm, Program AVC V3 (Westinghouse Electric Corporation, 1991), is used in a laboratory
environment to demonstrate the effectiveness of active control in general. Meanwhile, the
development and computerized simulation of a transient type controller is presented to
demonstrate the potential for applications requiring more complete vibration attenuation. Finally,
the performance of these control methods is compared with that found for uncontrolled and
classical-feedback controlled systems. This comparison is accomplished via the computerized

simulation and laboratory testing of a simple mechanical system.




. Mathematical Modeling

As with many academic endeavors, the emphasis for a given piece of work is the demonstration

of a generalized theory, rather than a full-scale, real-world application. Consequently, a relatively

simple test apparaius was utilized in this project. It is shown below in Figure 1. Referring to the

figure, it is desired to minimize the force transmitted to the foundation of the system when the up-

per mass, mq, is écted on by a disturbance force, Fy. In order to accomplish this resuit, the

vibration mount supporting the system (represented by ko & c5) must not be subjected to any

deflection or motion from above...which implies the intermediate mass, mo, must be prevented

from moving when the disturbance force is acting. This result is to be accomplished using a

controller that uses the acceleration of m4 to predict the motion of my; based on this information,

it then supplies a voltage to the shaker, mg, that creates the canceling signal desired.

ACCELEROMETER —\

CONTROLLER

Fy®
N, $ “i“w
my
1 <
L 1
m,

LRk e
T ko

FOUNDATION

ARV VAR RARRARRRARRAARN

Figure 1: Test Apparatus




This prediction of the dynamics of a given body, in this case my, is an inherent feature to any
feed-forward type of controller. (The more widely known feedback type of controller, on the other
hand, would operate in a more reactive manner, perpetually lagging the dynamic input). And, as
mentioned earlier, both the periodic and transient type controllers addressed in this project utilize
this feed-forward control. (The difference, once again, is the means by which they perform this
function.) Because of these similarities, the mathematical modeling of the system dynamics is

the same for both systems.



lll. Open Loop Characteristics

As a basis for the more complex closed-loop models, the open-loop - or free running - nature of

the test apparatus must first be understood. Applying Newton' s Second Law, the following

differential equations of motion are established:

m1y1 +C1(91 -92)+k1 (y1 —YZ)= “Fd(t)
mzy?_ ‘C1(91 “92)+C5(92—ys)+32$’2 —k1(Y1 “Y2)+ks (y2 —ys)'*'kzyz =0
msys —Cs(yz _ys)—ks(yz _yS) =Fc(t)

where Fy(t) and F(t) are treated as separate inputs to the system.

The theoretical physical constants for the system are:

m, =1.25kg Ky = 31,600% ¢, =808

m, = 1.25kg k, = 31,600 % c, =goN=%
m m

m, = 2.09kg Kk, =74,2oo-:_] c, =85S

Choosing state variables of:

X1 =Y X3 =Y2 X5 =Yg
Xy =Y, X4 =Y Xs =Ys

the following open-loop state-space representation is found:



(X

2

Y2

where:

[A]

[cl =

[A]

[c]

[x]

[6]

[P]




and:

a=k;+k, +kq

b=¢C4+C, +Cg

Using a commercial mathematical simulation software, MATRIXy, the plots on the following

pages were generated based on this state-space representation. These plots consist of:
1) Both ¥, and y, versus time for unit step inputs of both Fq and F, respectively,
as shown in Figure 2. (Initial conditions are alt zero.)
and
2) Frequency domain "Bode" plots for both accelerations as caused by each of the

input forces as presented in Figures 3 & 4.

3

.y.1 due 0 :/\/\ /-\\ e~ .
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EFigure 2: Accelerations vs. Time, Open-Loop System, Step Inputs
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Figure 3: Predicted Frequency Response, '}71/Fd & y1/Fe, Open-Loop System
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Figure 4: Predicted Frequency Response, VoIFg &VZIFC, Open-Loop System




A quick overview of the Bode plots reveals resonant frequencies of approximately 75 Hz and 150
Hz for y, and a singular resonant frequency for ¥, at approximately 75 Hz. The magnitudes of
the resonances of y, are approximately 4 dB, while the magnitude indicated for the y, resonance

is about 0 dB (or unity gain).

In addition to providing insight into the predicted frequency ranges the vibration control algorithms
should operate over, the plots discussed above can also be used to validate the accuracy of the
dynamic modeling of the system. Using a test apparatus as shown in Figure 5, below, the spring-
mass system - which was designed and constructed by San Jose State University undergraduate
mechanical engineering students - was oscillated by both the disturbance and control shakers.
The responses were then observed and recorded using the Hewlett-Packard 3562A Spectrum

Analyzer to produce the experimental Bode plots on the following pages (Figures 6-9).

DISTURBANCE SHAKER

AMPUFIER |

&

SPECTRUM
ANALYZER

]

AMPUFIER

Figure 5: Open-Loop Test Apparatus



Concerning the acceleration of mq, the graphs for both input forces show some kind of variation
in the (otherwise smooth) gain curves at about 75 Hz. This is especially clear on the plot for ¥, in
response to the control force, F (Figure 7). the plot ramps smoothly to a peak of about 6 dB,
whereupon it begins to drop appreciably. This response indicates the theoretical model is quite
accurate with respect to predicting the resonant frequency and reasonably accurate with respect
to the gain. The corresponding phase angle shows a clear change from 0 to -180° over the

range where the gain peak occurs, a phenomenon common in classical vibration theory.

Xe=15. 87 Hzx
Ya-=-2.3131 d8

FREQ RESP 10Avg OX0Dvip Hamm

o il B A[\f’“
dR /\_/ 1V
[

) H= 100
Yb=90. £§904 Dag
FRED RESP 10Av 0XOvlp Hamn

' Ph:ji \‘—\ u
| — 1N

Oag

~70.0

-180

Fxd Y Q Haz 100

Figure 6: Measured Frequency Response, §1/Fd, Open-Loop System
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Figure 7: Measured Frequency Response, ')71/Fc, Open-Loop System
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Figure 8: Measured Frequency Response, y2/Fg, Open-Loop System
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Figure 9: Measured Frequency Response, S/'ZIFC, Open-Loop System
Unfortunately, the theoretical models for y, in response to the control force show a
180° phase lag all the way up to the resonant frequency whereupon the angle departs even
further. The explanation for this error is not known, especially since the theoretical and
experimental gain comparison is so close. In contrast, however, the phase relationship for y,in
response to the disturbance force shows the computer model accurately predicting zero lag up to
the resonant frequency, which is demonstrated by the experimental data. The irony in this
comparison occurs after the resonance: the theoretical model reasonably predicts a change to -
180°, whereas the experimental test shows a continuation of the 0° lag. Further analysis of the
spring-mass system and more laboratory testing is obviously required to determine the cause of

these inaccuracies.

Due to an oversight during this portion of the testing, the analyzer was only programmed to cover

the frequency specirum up to 100 Hz. Consequently, it is impossible to determine the accuracy

of the theoretical model for y, with respect to the 150 Hz resonant frequency predicted.

12



As for the experimental plots of ¥, in response to the input forces, the results are again mixed.
The best comparison is that for the responses to the disturbance forces: both the theoretical and
experimentai plots show a resonant frequency at about 75 Hz and both show a 0° phase lag up to
the resonant frequency with a phase change to -180° thereafter. The gain is somewhat errone-

ous, however, inasmuch as the computer mode! predicted a unity gain at the resonant frequency,

while the experimental output showed 6 dB amplification. In comparison, the graphs for ¥, in re-
sponse to the control force - like those for , - appear to be significantly off with respect to phase

angles, though the gain relationships are close.

Overall, the experimental results appear to corroborate the dynamic behavior of the subject
masses predicted by the theoretical models, thus indicating reasonable accuracy of the models.
The errors encountered surely demand further investigation to determine whether they resulted

from inaccurate modeling or flaws in measurement.

13



1V. Proportional Feedback Control (for Transient Disturbance Input)

As noted earlier, the nature of both the control algorithms utilized in this project is that they oper-
ate via feed-forward characteristics. Because this type of control predicts the response to a
given input prior to its occurrence, it tends to be more responsive than classical feedback control.
For comparison purposes, however, the spring-mass system used in this project was modeled for
control via a simple - and common - feedback control system: a proportional controlier.

As shown in Figure 10, the acceleration of my is used as input to the controller. This controller
then generates the control force, Fg(t), which is varied in magnitude via the use of a proportional

gain, Kp. The control force is then, of course, applied to system to effect the desired vibration

cancellation.

RO———— s +B0 [ %
Fo—] ¥ = Cx+ Du > ¥,

Figure 10: Block Diagram, Proportional Feedback Control

where:

Fe= “prz = _Kp*4
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The state-space representation for this control loop is now:

X4 0

. -k

% m_1
1

X3 = 0

. k

X4 e
2

X5 0

Xg L d

where:

a=k1 +k2 +ks

f=24
mg mym
h= ks [ Ks
mg p m,m

0 0 0 0 1 xj 0 |

Kk c -1

-4 A 0 0 X, —

0 1 0 0 3| + | 0 | [Fa]

a bk & X4 0

0 0 0 1 Xs 0

f o] h n Xg 0
4L L

The derivation for the equations used above is included in the Appendix B. It should be noted

that in contrast to the previously presented open-loop plots, the control force, F(f), is now

generated impiicitly and is no longer an independent input {o the system. In other words, the

system is now functioning in a closed-loop manner.

15



Using MATRIX,, the following plots (Figures 11-15) were generated for various values of the
feedback gain, Kp, when the system was oscillated by the disturbance input, Fg. Inspection of
the plots reveals attenuation to about 1 order of magnitude (maximum acceleration of
approximately 0.025 g's controlled versus approximately 0.2 g's on the uncontrolled system).
Moreover, the initial large magnitude oscillations are diminished as Kp increases. This behavior
is to be expected with this, or any, negative feedback control system. On the other hand, the
appearance of lower magnitude, steady-state responses is more likely an anomaly of the
modeling software, as all real-world system responses will dampen out when subjected to
transient input. Nonetheless, it is evident that this type of control is effective - over time - in
attenuating the vibration of the subject mass (mg). As an aside, it should be noted that the
relatively unimpaired magnitude of ¥, is completely understandable since the vibration of my is

not the objective.

3 -
. 0 E M\ /‘\\\/
Y1 .3 /
ol
'
(m/s2) -3

0 05 N 15

2
t {sec)

Figure 11: Accelerations (Y4 & y2) vs. Time, Propartional Control, Kp=0

16

25 3 .35 4 45 5



. 0 E/\/\ /'\\_//-\\/
V1 / \/
~5
/
(m/s2) 4 °
1 Eofo\
Vo o E /. N
T80 VAR Y/ 20
.1 =\
20 05 A a5 2 25 3 3 4 45 5
t (sec)
Figure 12: Accelerations (V4 & y») vs. Time, Proportional Control, Kp=1
5
" 0 —'/\v_//\\ N el —
V1 / ~
-5
f
(m/s2) 7] -

>
—
>
>

/N N~

//\vvvv ===

0 .(;5 ‘ .1 ‘ 15 2 25 3 .35 ‘ 4 .45‘ -5
t (sec)
Figure 13: Accelerations (y{ & y¥2) vs. Time, Proportional Control, Kp=5

1"'7\"

5 E
e 0 E/\—-—., = e — N ——i —i .
(mis?) gt ©
03 e n " P
N N I A A AL AL AL AL
2-.03V \V/ \V/ \V/ \ / \/ \ VARV Y
"060— .;s T4 s 2 25 4 E 45 5
t (sec)

Figure 14: Accelerations (¥{ & y2) vs. Time, Proportional Control, K,=20

17




i o in
TT71

V1

(mis2?) g

Py

N\
)

é — " s N N
AN NNNANNNANNANANANN
2 ¥V VUV V VUV VIVY

-01

.'02 ~ - i A " n e
0 .05 A .15 2 25 3 35 A 45 S

t (sec)
Figure 15: Accelerations (y4 & y2) vs. Time, Proportional Control, Kp=100

18




V. Active Periodic Control

As alluded to earlier, active feed-forward control is not only an improvement over passive
mounts, but is theoretically more responsive (quicker-acting) than classical feedback systems,
such as the proportional controller discussed in the previous section. As has also been noted,
periodic feed-forward controllers, though comparatively new, are now relatively common (Lukito,
1991; Miller, 1980; Wang, 1990). Because of this, a previously-developed periodic feed-forward
controiler was used in this project. Unlike the mathematical simulations developed for al! the
other controllers presented herein, the periodic controller was actually tested on the physical

spring-mass apparatus at a Westinghouse Electric Corporation laboratory.

Referring to Figure 16, the configuration and operation of the apparatus was as follows:

DISTURBANCE SHAKER

AMPLIFIER | j

A
Fy(®
SPECTRUM Y
ANALYZER m,
e
ome n\z
R
COMPUTER (WITH > T 3 =
DIGITAL SIGNAL
PROCESSOR) F®
~ | o AVVRVIAVANANGY
D/A AMPUFIER

Figure 16: Test Apparatus, Closed-Loop System
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1. Prior to operating in a control function, the controller would first generate a known pulse
and measure the frequency domain response of the system to this pulse. Using techniques
written into the controller software, a frequency response model would then be generated to
determine the gain needed at any frequency to suppress the unwanted vibration. (This gain,

of course, varies with frequency and is theoretically a maximum at the resonant frequency.)

2. With the system's behavior known, the control function was executed by first initiating a
disturbance force, Fy(!), via the shaker mounted to mq. In the plots presented in the
following pages, this disturbance force was always sinusoidal and was generated via the

"source" capability of the Hewlett Packard 3562A Spectrum Analyzer (shown in Figure 11).

3. With the system oscillating in response to the disturbance, the acceleration of mo was
output through the use of the accelerometer mounted to it. This acceleration signal was then
fed to an Analog-to-Digital (A/D) converter with a sampling rate 128 times faster than the

frequency of the analog signal.

4. Once discretized, the acceleration signal was then processed via the Digital Signal
Processor present in the computer. This processing, as mentioned earlier, consisted of:
a) The collection of a fixed number of samples (in this case, usually about 2
seconds worth);
b) The manipulation of this information, coupled with the anticipated behavior of
the system (as determined in step (1)), to create the canceling signal;
and

c) The output of this canceling signal (in a digital format).

20



The manipulation of the signal was performed using an algorithm, AVC-V3 (Westinghouse
Electric Corporation, 1991), that converges on a solution using a mean square error
technique. This technique would then effectively generate a filter to cancel the unwanted

vibration. Though not developed herein, similar systems are discussed in References 3 and

7.

5. The output of the Digital Signal Processor was transformed back into an analog signal via
the Digital-to-Analog (D/A) converter shown in the figure. This signal was then amplified and
sent to the electro-mechanical control shaker. Oscillation of the shaker - as effected on the
mass of interest, my, via the vibration mount represented by ky and c5 - would then (ideally)

cancel the vibration caused by the disturbance force.

6. The (hopefully) attenuated vibration of mo was then remeasured continuously, thus

allowing the controller to constantly update its output to accomodate variations occurring over

time.

The sequence noted above is depicted functionally in Figure 17.

Fy®
iy
& . (t
+ F.@ | SYSTEM Y2
r(t)=0 - o o
A ot MODEL/ D/A SAHX;%R

CONTROL ALGORITHM
PG

Figure 17: Block Diagram, Active Periodic Control
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The measurement of the effectiveness of this controller was accomplished by monitoring the
magnitude of the acceleration of mo over time as well as the contro! signal (as measured at the
shaker mass). This information was then recorded by the spectrum analyzer and output to an
HP plotter. The plots on the following pages (Figures 18-25) depict both of these signals over 10
second windows. It should be noted that the ordinates on the plots are not accelerations per se,
but voltages directly proportional to accelerations. Since the focus of this analysis is the relative
reduction of the vibratipn of mass my, rather than the absolute value of its motion, effectiveness
of the controller can be accomplished by simple comparison of the voltages associated with the
uncontolled vibration versus the controlled one. Moreover, inspection of the plots quickly reveals
non-oscillatory behavior. This is because the spectrum analyzer was set up to record the peak
values of each oscillation only, which allowed for the maximization of the time window over which

signals could be recorded.

The plots on the following pages were obtained for test runs at two different disturbance signal
frequencies, 100 Hz and 125 Hz, for which the convergence coefficient, "alpha," on the controller
was varied from 0.3 to 0.95. This convergence coeffiecient theoretically correlates to the
accuracy of the controller's "mode!" of the system and its corresponding filtering. A small (0.3)
convergence coefficient requires less time to create a canceling signal, but is not quite as
accurate as a higher coefficient. The optimum value for this parameter, of course, varies with the
application of the control system. Additional analytical insight into the contro! algorithm and the

convergence coefficient can be found in References 7 and 9.
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Figure 18: Acceleration & Control Force vs. Time, fdisturb=100 Hz, alpha=0.30
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Figure 19: Acceleration & Control Force vs. Time, fdisturp=100 Hz, alpha=0.50
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Figure 20: Acceleration & Control Force vs. Time, fgisturb=100 Hz, alpha=0.80
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Figure 21: Acceleration & Control Force vs. Time, fgisturb=100 Hz, alpha=0.85
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Figure 23: Acceleration & Control Force vs. Time, fdisturb=125 Hz, alpha=0.50
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Figure 24: Acceleration & Control Force vs. Time, fgisturb=125 Hz, alpha=0.80
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Figure 25: Acceleration & Control Force vs. Time, fgisturb=125 Hz, alpha=0.95
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Analysis of the plots shows attenuation ranging from about 1 to 2 orders of magnitude. The
worst attenuation found, ironically, is on the plots at 100 Hz with the higher convergence
coefficients (0.80 & 0.85). These plots show uncontroiled magnitudes of about 85 mV and
minimum controlled values on the order of 10-12 mV, thus resufting in an attenuation of 7:1 to
8.5:1 (-17 to -19 dB). This compares roughly equally with the (theoretical) suppresion of the

vibration of my using the proportional feedback controller discussed in Section IV.

The best canceliation, on the other hand, is found on all the plots at 125 Hz as well as the plots
for the lower convergence coefficients at 100 Hz. These plots show outputs on the order of 2 mV
for the same (85-90 mV) inputs. This equates to a reduction of acceleration of as much as 45:1,

or-33 dB. This is, without question, a very significant improvement over the proportional

controller.
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VI. Active Transient Control

The purpose for developing this form of controller, as noted eariier, is to suppress transient vibra-

tions that would not otherwise be controlled by a periodic type controller. As noted in the step-by-

step contro! loop discussion in the previous section, the periodic controller has an initial sampling

period during which it is only gathering data and processing it. Consequently, the controlier can-
not possibly effect any canceling during this time. This means that a transient vibration signal -

| which may often be just a pulse or other short-lived event - will not be suppressed with this type

of controller. Thus, it is the attenuation of these transient vibrations which presents the need for

an active transient vibration control system.

As depicted in the block diagram shown in Figure 26, the first attempt at creating the transient
feed-forward controller uses the actual disturbance force, Fq(), as input. (in typical real-world

applications, however, it is not known where this force is coming from nor its magnitude.)

. X = Ax + Bu s
¢ ¥, = Cx + Du z )lm:r
ENTIRE. SYSTEM
Fo(2) % = Ax + Bu
G,
e Yo = Cx + Ducoumo s
& MOUNT

Eigure 26: Block Diagram, Idealized Active Transient Control System (uses Fg
as conftrolier input)
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Using a technique known as Four Pole Parameter Analysis (Snowdon, 1968, 1979), the following
transfer function for the spring-mass system was found by Wang (1991) for the relationship

between the input disturbance, Fq(t), and the control force, F(t):

Fy (s
r=E

[(msc1 )53 +(C1Cs +k1ms )82 +(k1cs +c1ks)s+(k1ks )]

[(m1°s )s® +(°1Cs +ksm1)52 +(kCq +C Ky )5+(k1ks )]

Using this transfer function, the following state-space matrices were established:

X A B.Cq X By +B.Dyg
= v + [Fd]
z [0]3x6 Ag z [0]1x1
X
_Vzm] = [Cmne ] +  [0)y [F)
z
where:
0 0 ]
[ 7 -1
Open-loop 0 m_1
[A] = System B:] = 0 [Bs] = |0
Dynamics 0 0
Matrix 0 0
2 0
L. ms - — -
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Ag Bff The state-space equivalent of Gg(s), numerically evaluated

= using MATRIX,

i D
[CNINE] _ ki e —(kq +ky +ks) —(cq+Cy +Cg) ke c o o0 o

which is the standard output matrix for ¥, adjusted to match the other matrix sizes in this model.

Running this system on MATRIXy generated the plots found on the following pages. As shown in
Figures 27-29, the results are very impressive: the attenuation of the response to the step input
is approximately 80 dB (or 10,0000:1) as compared to open-loop vibrations. And aithough the
controller is designed to attenuate transient vibrations, it does of course work with steady-state
input (as evidenced in Figure 29). Once again, the vibration suppression is in the 4-orders-of-

magnitude range.
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Figure 27: Frequency Response, yo/Fg, Open-Loop & Idealized Actives
Transient Control Systems
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Time, ldealized Active Transient Control, Step Disturbance
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Despite the impressiveness of the previous model, it may be considered only a "textbook" type
system since it uses the actual disturbance force to create the control signal. As noted earlier,
this information would not typically be known in most real-world situations because the source
and magnitude of such a force would not likely be known. The effects of this force, on the other
hand, can be measured. In this case, the acceleration of the upper mass, m4, could be output
through the use of an accelerometer mounted to it. Based on this signal, and the proper math

model, a similar control force should be theoretically possible.

In order to create the proper math mode), the transfer function relating the control force to the ac-
celeration of mq must first be created. This transfer function can be derived by either of two
methods. The first method is based on the idealized transfer function created in the previous
section. Since the overall function relating the control force, F(s), to the disturbance force,
Fq(s), is already known, the relation of interest can be derived by the following equation:

F.(s)

Vi(s)  Yals)
Fa(s)

Where the relation between the acceleration of m¢ and Fy(s) is readily found to be:

¥4(s) - 1
Fa(s) m1+-(;—1+ ki

s2

This results in the following feed-forward transfer function:

F.(s) _as®+bs®+ds® +es? +fs+g
¥4(s)  hs® +js* +ns® +ps? +qs+r
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where:

a=m,m,C,

b =m,(c,c, +kmg)+Cy(MsCy)

d=m,(KCg +CeKg) +Cq(CiCs +Kqmyg) +Kq(MyCy)

e =my(kKs) +Cq(K4Cs +CiKs ) +Kq(C1Cs +kqmy)

f = C1 (k1ks)+k1(k1cs +C1ks)

9=kq(kks)
h = m1ks

i= CiCs +ksm1

Which is equivalent to the following state-space relationship:

~—
N

Bl
1]

6]

O]

[¥1]

[9:]

where the size of the dynamic matrix, A*(s), is 5 x 5 (equivalent to the fifth degree polynomial

transfer function relating F(s) to y4(s)).

Schematically, this type of control is shown in Figure 30.

=" Yils
| owscs [ % = Ax + Bu ooy F .
Ro—e | o | %= Cx + Du yz(s)l
bom ENTIRE SYSTEM + ey
| I
VZ(S)i
CONTROL
¥(s)
Fet X = Ax + Bu
Gy —{ . -
Y, = Cx + DU comoL sucen
& VOUNT

Figure 30: Block Diagram, Practical Active Transient Control System (uses Y1

as controller input)
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Using these relations and performing some matrix algebra, the following state-space representa-

tion was found for this controller;

X A B.C*| | x
= [-PI + [-PI" [Bd [Fd]
z [o]SxG A* z
X
[ae] = [Creven] + [0} [
z
where:
[A] [B.] [Ba] fA*] & [C*] are previously defined,
[Py BP*  [0Jsxe
[P = ; (derivation appears in Appendix C)
Plsxi  B*  [0lsxe
[1 = (#1x11 dentity Matrix)
and
ol ki e (ky+Ks +k) —(cq+C,y +C5) ks ©
[CELEVEN] = | m, s ~ y my m, [0L

which is the standard output matrix for y, adjusted for the size of the current model.

Running a simulation of this model on MATRIX,, the plots shown in Figures 31-33 were

established. Analysis of these plots, like those for the idealized system presented in the previous
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section, shows very effective vibration cancellation. Specifically, the Bode plot shows a peak
resonance approximately 60 dB lower than the open-loop system, which is a ratio on the order of
1,000:1. In contrast to the idealized system, this one does not theoretically cancel the vibration

as well, but it does represent a system that could operate in a practical application.
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Further inspection of the Bode plot for this model, as well as the time response plot, shows a
difference in the characteristics of this system in comparison with the idealized model. First of
all, the idealized system oscilllations are roughly at the same frequency as the open-loop (free)
responses. In addition, the peak resonance of the Bode plots for these two models occurs at the
same frequency and the overall plots have roughly the same géin/phase relationship across the
frequency spectrum. The model that uses the acceleration of m4, on the other hand, shows a
much different response: the frequency of oscillation is more than twice as fast as the open-loop
system. Moreover, the peak on the Bode plot appears at a much higher frequency
(approximately 150 Hz versus 80 Hz) than those on the open-loop plot. These circumstances
reflect a change in the eigenvalues of the system when the control is based on the acceleration
of mq. A possible reason for this change might be the fact that the input to the controller on the
practical system essentially lags the disturbance input (due to the fact that the mass does not
accelerate instantaneously, as the input does, but ramps to a peak acceleration 20 milliseconds
later). Essentially, the input on the practical controller (¥,) is not as "clean" a signal as the

idealized system's input (Fy(t) itself), and the performance of this controller demonstrates this

fact.

Regardless of the comparatively less accurate cancellation of the practical system versus the
idealized system, as well as the differences in the vibration characteristics, the performance of

this controller is, without question, very effective.
As mentioned at the beginning of this section, there is a second way of establishing the transfer

function relating Fq(t) to the acceleration of mq, y,(t). This method uses the Four Pole

Parameter Technique discussed at the beginning of this section and solves for the transfer
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function directly (rather than using the division of fwo transfer functions, as was presented earlier

in this section). Application of the Four Pole technique yields the following relation:

Fe(8) (msc1 )53 +(c1cs +Kqmg )52 +(k1cs +C4Kg )s +kekg
yi(s) sz(css +ks)

which is equivalent to the following state-space relationship:
M = [A1 ] + [B] f[¥]

Fl = [~ W + [P~ []

Once again combining with the open-loop system dynamics and performing some matrix algebra

yields:
X A B.C**| | x
= [-Puw]” +  [-Pew]”  [Bd] [Fd]
W Oks A™ | |w
X
[VZNH ] = [Cnme] + [0, [F]
z
where:

[A] B.] [Bl

[A**] & [C**] are previously defined,
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[Olx1 BLP*  [0)sxe
[PNEW] = ; (derivation appears in Appendix C)
[Olsxs B*  [0lsxg

M = (9 x 9 Identity Matrix)
and
k c —(kq+ky +k.) —(cq+cCy+C.) k c
(o] = 1 1 1712 S 1 2 s s s 0
[Crine] [mz m, m, m, m, m, [0k

Based on this model, the plots shown in Figures 34-35 were generated using MATRIX,.
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Figure 34: Open-Loop, Control-Force Induced, & Net Accelerations of mo vs.
Time, Practical Active Transient Control (w/ alternate transfer function
Fc/V1), Step Disturbance
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Analysis of the output plots for this model once again shows very effective vibration cancellation;
in fact, possibly too good. Both the response due to the step disturbance and due to the
sinusoidal disturbance show net accelerations of my effectively equal to zero. (Although a Bode
plot was not generated for this model, attenuation is on the order of 1 x 10e14:1, or about 280

dB!) Although these results first appear quite encouraging, they do raise some questions.

First off, the best resuits for attenuation of the vibration of my should occur on the idealized case
(because that is the model where the disturbance force itself was used as input to the controller).
As noted in the section where that model was presented, the attenuation was found to be about
80 dB. Those results are significantly less accurate than those found with the current model.
Secondly, the other model that uses the acceleration of mq as input to the controller yielded even

less accurate cancellation than the idealized case, which was to be expected. Lastly, the
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“"cleanliness" of the net signal on all the previous models was very smooth and predictable. The
outputs on this current model are very noisy and uncertain, which may of course be attributed to
numerical round-off error in the control algorithm processing software, but are nonetheless

significantly different from the other model outputs.

It is indeed curious as to why the generation of an equivalent, though admittedly simpler, practical
transfer function would improve the' overall controller performance so well. This is clearly an
issue that laboratory testing would quickly resolve. Regardless of the outcome, however, the
results yielded by both the practical models (those that use the acceleration of mq as controller

input) provide a very encouraging basis for further investigation of this type of active control.
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Vil. Summary of Results

With respect to the various simulations and laboratory tests discussed herein, the following is a

summary of resuits:

1. The mathematical model and laboratory test data involving the open-loop properties of the
spring-mass system are in relative agreement, thus validating the mathematical model. Resonant
frequencies of 75 Hz for both m4 and my (in response to the input forces, Fy & F¢) predicted by
the mathematical model were confirmed by the laboratory testing Comparison of the

corresponding phase angle relationships, on the other hand, were not quite as accurate.

4. Computerized simulations of the system when using proportional feedback controf reveal
vibration attenuation of up to 1 order of magnitude. As feedback gain was increased, overall

attenuation improved while (apparent) settling time increased; this observation may be the result

of an anomaly in the modeling software.

2. Active periodic vibration cancellation, using an existing control algorithm in a laboratory
environment, shows attenuation of unwanted vibrations ranging from roughly 1 to 2 orders of
magnitude (specifically, 17 to 33 dB) when compared to open-loop vibrations. These results are
also an improvement - though to a lesser degree - over the cancellation predicted by computer
simulations for proportional feedback control The effectiveness of the algorithm varied with

respect to both an internal convergence coefficient and the external disturbance frequency.

3. Computerized simulations of an active transient vibration control system show very effective

vibration cancellation, with a minimum attenuation level of 60 dB (about 1,000:1). These results
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were found for both transient and periodic disturbance inputs. Moreover, virtually no perceptible
lag time was noticed in these controllers. Results varied with respect to the type of feed-forward

transfer function used to generate the control force, F.
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VIIl. Conclusions and Future Work

This project has focused on two types of active vibration suppression methods: an existing one
that attenuates periodic vibrations and a new one that cancels both periodic and transient

vibrations.

Results of laboratory testing of the first type show very effective vibration cancellation. Attenuation
of vibrations caused by periodic disturbance forces ranged from as little as 7:1 to as much as 45:1.
These results are at least as effective as what would be expected using classical proportional

feedback control.

Computerized simulations of mathematical models for the second type of controller are even more
impressive. With respect to periodic disturbances, vibration attenuation was found to be no less
than 60 dB (about 1,000:1). Provided this degree of vibration suppression can be reproduced in a
laboratory environment, it alone would be a significant improvement over the other active control
system. Moreover, this approach yielded equally effective cancellation of transient vibrations, a
capability that is not even possible with the other controller. Overall, these results provide a very

encouraging basis for further studies.

Regarding future work, additional laboratory testing of the existing periodic vibration controller
closer to the resonant frequencies of the spring-mass system would provide more insight into its
suppression capabilities. As for the new transient vibration controller, development of an algorithm
for the digital signal processor would enable laboratory testing to ensue. Such testing would

readily determine whether attenuation as effective as that predicted is in fact possible. In addition,

44




addition, the smaller issue of determining the better of the two feed-forward transfer functions to

use in the transient controller could be resolved via such laboratory testing.
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Appendix A: Derivation of Open-Loop State-Space Equations

For the system shown below, a system of state-space equations is desired (to facilitate

computerized simulations on MATRIX,).

ACCELEROMETER —\

L
CONTROLLER m,

y;t“ M, kz% B %
j Fe®

ALV RRRRRRRRRARRRARNAAND

FOUNDATION

The physical constants for this system are:

m, =1.25kg k, = 31,600 % c,=80"=S
m m

N N-s

m, =1.25k k, =31,600— c, =80——
2 a 2 m 2 m
N N-s

l'T]s = 2.09kg ks =74'200—[}|— Cs =85-—n1—



Applying Newton's Second Law, the following differential equations of motion are established:

For m4:
ZFy =My,
=—Fy—cy(V4-¥2) -Ke(y1—-Y2)
= MyY 4 +C4(¥g —¥2) +Ky (Y1 - ¥2) = -F4
For my:
sz =m,Y,
=Kq(¥1-Y2) +C1(¥1=¥2) K (Y2 —¥s) - Cs(¥2 = ¥s) ~KaYs — C2¥>
= MyYy —Cq (Y1 =Y2) +Cs (Y2 — Y6 ) +C5¥2 —Ke (Y1 = ¥2) +K (¥, —-Y¥s)+kyy, =0
and for mg:

> Fy =mgy,
=ks(Y2 _ys)'*'cs(yz _95)+Fc
= msys _cs(yz _95)_ks(y2 _ys) =Fc

Starting with the differential equation for m4, state variables can now be assigned as:
uy =Fy X3 =Y>
X1 =Yq X4 =X3

Xy =X




For which the following is found:

. K, 1
Xy =—— (X4 —X3) +—(X3 — X;) ——u
2 =, e Xa)+ (% 1)m11
or:
xZ =‘_—1‘X1 —‘_1'XZ +'k—1X3 +—1X4 —"——u1
1 my my m, 1
The equation for m,, yields:
X5 =Ys u, =F;
Xg = X5
For which:
k ki k k
Xg = = Xq Xy 4| —L——S 2 % 4
m, m, m, m;, m,

and, from the equation for ma:

. G, K
Xe—m (X4 Xe)+m

£ S

or

. Ke (o K, C
Xg = —=Xg +—Xg4 ——Xg ——=

m m; m, m

1
(X3 —X5) +——Uy

S

1
Xg +—Uy

S mS

s

m,

Ca
m,

|

c
X4 +—X5 +—=Xg

m;



These relations can now be expressed in matrix form as:

C r TT7 7 B ]
X, 0 1 0 0 0 0 X4 0 0
X, K =G kK o 0 0 X, 1 0
m, m, m, m, my
X3 = 0 0 0 1 0 0 X3 + 0 0 uy
5(4 ﬁ ..CL a b .k_s C_s X4 0 0 u,
2 m; m, m;
X 0 0 0 0 0 1 Xs 0 0
X5 0 0 k& k=G X 0 A
| N L mS mS S ms B mS
where:

_ Ky +K, +Kg b= Cq+Cy +C
m, -

The output variables of interest are x, & X,, which represent ¥, & ¥,, respectively. The ouipui
equations are thus:

X, LS ) LR Sal 0o o =1 oy,
my my my my my
- [x] +
. Ky <, —(ky+ky+k.) ~{c,+cy 4+, ) K, Cq
X4 — - = 0 0
m; m, m; m; m; m;

This system of equations were simulated for unit step inputs of Fq and Fg on MATRIX, using the
program listing on the following page.




'Program for assembling open-loop system matrix for use with MATRIX,/

m1i1=1.25
m2=1.25
ms=2.09
k1=31600
k2=31600
ks=74200
c1=80
c2=80
cs=85

a=<0 1 00 0 O;
-1"k1/m1 -1*¢1/m1 k1/m1 ci/m1 0 0;
000100

k1/m2 ¢1/m2 -1*(k1+k2+ks)/m2 -1*(c1+c2+cs)/m2 ks/m2 cs/m2;
00000O0 T,
0 0 ks/ms cs/ms -1*ks/ms -1*cs/ms>

b=<0 0; -1/m1 0; 0 0; 0 0; 0 O; 0 1/ms>

c=<;1*k1lm1 -1*¢t/m1 k1/m1 ct/m1 0 O;
Ki/m2 ci/m2 -i*(ki+k2+ks)ym2 -i*(ci+c2+cs)/m2 ks/m2 cs/mz>

d=<-1/m1 0; 0 0>

s=<a b; ¢ d>




Appendix B: Derivation of Closed-Loop Proportional Control Relationships

As depicted in the figure below, the spring-mass system is to be modeled using proportional

feedback control.

Fa) ————> X = Ax + Bu — %
F. () —b y = Cx + Du = ¥,

As was shown in Appendix A, the open-loop state-space representation of the spring-mass

system is:
M. ] B T '} - T
X4 0 1 0 0 0 0 X4 0 0
XZ :51_ __(:1 ﬁ_ &. 0 0 xz .:1_. 0
m my my m, m,
X4 .1(_1_ _C1_ a b .&5_ C_S X4 0 0 U,
m; m; my m,
Xz 0 0 0 0 0 1 X 0 0
Xg 0 0 k& ks —Cs Xg 0 4
J mS mS mS mS mS




where:

az_[k1+k2 +ks] b=_[c1+cz+c$]
m; m,

This model accounted for the control force, Fg, but only as an independent input (up). Asthe

figure on the previous page shows, however, this force is now generated implicitly. It is directly

proportional to the acceleration of my, or:

Fc = ‘prz

As was also shown in appendix A, ¥, is equivalent to the state-space variable X4, thus yielding:

FC = _KP*4

Using this relationship, the differential equation for mg can now be rewritten as:

ZFy = msys
(=mgXs)
=Kq (X3 —X5) +Cs (X4 _XG)_Kp).(t%

.k c k Kp .
= Xg = —— Xz +—— X4 ——=Xg — ——Xg ———X
Xg m, 3 m, 4 msxs msxs m, 4

for which the expression for x, is the same as was found in the open-loop model, or:

. ks +k, +k C,+C, +C
x4=_|ﬁ_x1+_ﬁ_x2_( 1 2 S)x3"( 4 2 S)X4

k c
,*.__5_)(1 +..ix2
m, m, m, m,

m, my




Substituting this expression into the one for x4 yields:

Xg = 8X; +bX, +CX5 +dX, +exg +xg

where:

a
m,Mg

c=[£s_+Kp(k1+k2+ks)

s

mg

_ Kk

mzms

mzms

e= [:&_&]

b - —KPC1
m,m,
d= C_s+ KP(C1 +02 +cs)
my m,my

fo|2Cs _ KeCs
ms mzms

which yields the following state-space relationship:

-1
my

r r~ B ol

X4 0 1 0 0 0] 0 X4

. -k - k

Xy s " = i 0 0 X5

m, my m, my

Xa = 0 0 0 1 0 0 X3

« Ky 2 —(ky+ky +kg) -(cq+c,+C,) ks Cs «
4 ms, msy my my my my 4

X5 0 0 0 0 0 11| xs

Xg | a b c d e f Xg

fus]

where a, b, ¢, d, e, & f are defined on the previous page. In addition, since the control force, Fe is

now generated implicitly, the state-space model has only one input, uq =Fg.



The output matrices for this system are:

. [k -c k c -1
X5 Bk K. b i I 0 0 =
my m, my my my
= X o+ [us]
% Kk, c4 —(kq +ko +ky) —(cq+c5 +Cy) Ke Ce 0
¢ m; my my m; m, m; ..

Using the program listing on the following page, the time response plots of 4 & ¥, for various

values of the feedback gain, Kp, appearing in the main body of this paper were generated using

MATRIX,.




'Program for assembling system matrix for closed-loop proportior:al control'

print 'input proportional control constant, kp'
inquire kp

m1=1.25
m2=1.25
ms=2.09
k1=31600
k2=31600
ks=74200
c1=80
c2=80
cs=85

a=<0 10000
-T*k1/m1 -1*c¢1/m1 k1/m1 ¢1/m1 0 0;
000100;
k1/m2 c1/m2 -1*(k1+k2+ks)y/m2 -1*(c1+c2+cs)/m2 ks/m2 cs/m2;
00000 1;

0 0 ks/ms cs/ms -1*ks/ms -1*cs/ms>

aa(1,1)=0

aa(5,6)=0
aa(6,1)=-kp*k1/(m2*ms)
aa(6,2)=-kp*c1/(m2*ms)
aa(6,3)=kp*(k1+k2+ks)/(m2*ms)
aa(6,4)=kp*(c1+c2+cs)/(m2*ms)
aa(6,5)=-kp*ks/(m2*ms)
aa(6,6)=-kp*cs/(m2*ms)

atot=a+aa

b=<0; -1/m1; 0; 0; 0; 0>




'Program for assembling system matrix for closed-loop proportional control (cont.)'

c=<-1*k1/m1 -1*c¢1/m1 k1/m1 ¢i/m1 0 0;
k1/m2 c1/m2 -1*(k1+k2+ks)/m2 -1*(c1+c2+cs)/m2 ks/m2 cs/m2>

d=<-1/mt; 0>

s=<atot b; ¢ d>




Appendix C: Derivation of Closed-Loop Active Transient Control Relationships

l. Control Using Fq as Controller input:

The block diagram below schematically depicts the approach used to cancel the vibration of my

when the system is acted on by the disturbance force, Fg.

'y',(s)l
X = Ax + Bu oPeN +
Fy(0) > o > (s
Y= Cx + Du NET
ENTIRE SYSTEM +
Sr'z(S)l
CONTROL
o o @ | %= ax + Bu
L)
1 ¥, = Cx + Du| commoL
& MOUNT

As the diagram shows, the net acceleration of my (¥, = X,) is the sum of the open-loop
acceleration and that induced by the controller. Despite this fact, the mass my, itself is not acted

on by either of the external forces directly. (its motion is affected solely by the vibration mounts

adjacent to it.) This fact explains why the expression for yzm, below, does not contain any non-

zero contributions from Fy or F:

[X] Al MK o+ [B] ] + [B] [R]

Pow] = [ W + [0 F] + [ []
In the this relationship, an expression for the control force (F) is required. This expression is the

state-space equivalent of the transfer function relating F to the disturbance input, Fg. From

Wang (1290), the transfer function has been found to be:



Fo(S) _ | (MsCy)s® +(C4Cs +kim,)S? +(K4Cq +Ckg)S +kiks
Fa(s) | (MyG4)s® +(CeCq +KeMy)s? +(KoCq +Cky)S +kok

which can be re-written in state-space form as:

[2] [Ad]l [+ [Be]l [F

1]

[F.] [C] [ + [Ds] [FRd]

where the size of Ag is 3 x 3 (which is equivalent to the third degree polynomial transfer function

noted ahove). The values of the constituent matrices in the system were not evaluated

algebraically, but numerically via MATRIX,. For the known values of the physical constants for

the system, these matrices were found to be:

-936.9 -158.5 -168.4

[A¢] = | 5120 0 0 {Bx]
0 256.0 0

[ce] = [-246  -28 -3.0] [D¢]

1]

32.0

[16]

With the control force, F,, known, the matrix equations listed at the beginning of this section can

be combined and re-written as:

By +B Dy
= + [Fd]



and

X
2] = [Cnmel + [0y [Fd]
z
where:
- 0]
[~ 7
Open 0
[A] = Loop [B] = o [&]
Dynamics 0
L Matrix 0
' 1
mS
I T =LY
[CNINE ] - m; m, m; m; m;
and:

a=k1+k2 +kS

b=0€y+Cy +C4

and the other matrices were previously defined.




Using this model, in the form of the program listing on the following pages, various time-domain

and frequency-domain plots were created and are shown in the main body of this paper.




‘Program for assembling system matrix for closed-loop transient control using Fq as controller
'input”

m1=1.25
m2=1.25

* ms=2.09
k1=31600
k2=31600
ks=74200
c1=80
c2=80
cs=85

a=<0 1000 0
-1*k1/m1 -1*¢1/m1 k1/m1 c1/m1 0 O;
000100

k1/m2 c1/m2 -1*(k1+k2+ks)/m2 -1*(c1+c2+cs)/m2 ks/m2 cs/m2;
00000 1,

0 0 ks/ms cs/ms -1*ks/ms -1*cs/ms>

num=<167.2 72.84e3 8.62e6 2.34e9>
den=<106.25 99.55¢3 8.62e6 2.34e9>

sff=sform(num, den)

aff(1,1)=sff(1,1) aff(2,1)=sff(2,1)
aff1,2)=sff(1,2) aff(2,2)=sff(2,2)
aff(1,3)=sff(1,3) aff(2,3)=sff(2,3)

aff(3,1)=sff(3,1)
aff(3,2)=sff(3,2)
aff(3,3)=sff(3,3)



'Program for assembling system matrix for closed-loop transient control using Fd as controller
'input (continued)"

bff(1,1)=stf(1,4)
bff(2,1)=sff(2,4)
bff(3,1)=sff(3,4)
cff(1,1)=sfi(4,1)

cff(1,2)=sff(4,2)
cff(1,3)=sff(4,3)
dff(1,1)=sff(4,4)

zero(3,6)=0

acombine=<a bc*cff; zero aff>
bcombine=<bd+bc*dff; bff>

cnine=<k1/m2 c1/m2 -1*(k1+k2+ks)/m2 -1*(c1+c2+cs)/m2 ks/m2 cs/m2 0 0 d>

sff=<acombine bcombine; cnine 0>




Appendix C:  (Continued)
ll.  Control Using Acceleration of m4 as Controller Input (First Model)

The system modeléd in the previous section was based on a feed-forward controller with an input
of the disturbance force, Fg, that acts on the system. As this force is often unknown in most
practical vibration control problems, a more useful control system would use a parameter that can
be found for this purpose. Since accelerations are readily measured via the use of
accelerometers and related electronics, the acceleration of m4 is used as controller input in this

derivation.

In order to create the proper math model, the transfer function relating the control force to the
acceleration of mq must be created. One method of establishing this transfer function is via the
use of the model presented in the previous section. Since the overall function relating the control
force, F(s), to the disturbance force, Fy(s), is already known, the relation of interest can be found

via the following relation:

Fe(s)
Vi(s)  Ya(s)
Fa(s)

where the relation between the acceleration of m4 and F(s) can be easily determined by the

following means:

ZFy = m1y1

=Kgy1+Cqyy +Fy




Taking the Laplace transform of this equation yields:
ms?Y,(s)+ C48Y4(8) +KYy(s) = ~Fy(s)

and differentiating twice vields:

me¥(5) + 219, (6)+ 1Y, (5) = -Fi(s)

52

Y
Fa(s) St Ko
s s?

As was shown in the previous section, the overall transfer function relating F¢ to Fq was found to
be:

Fo(S) _ | (MsC1)s® +(C4C, +Kqm,)S? + (KyCq +Ck)s +koks
Fa(s) [ (Myc,)s® +(ceCq +kymy)s? + (K Cy +C.Kq)S +kiK

Therefore, the desired transfer function may now be written as:

| (Mge)s® +(C4e, +kym,)s? +(K4C, +CK,)s +Kek,
Fo(s) [ (mycs)s® +(4Cq +kMy)s? +(KeCq +Cokq)S +Keke

Vi(s)
-1
c; kK
Mt



which is equivalent to:

F.(s) _as®+bs® +ds® +es? +fs+g
Vi(s)  hs®+js* +ns® +ps? +qs+r

where:

a=mm,c, h=mycg

b =my(c;c, +kymg) +c4(mcy) j=c4c5 +km,
d =m4(K/Cs +C4Kg ) +C4(C1C +kqmg ) +k4(MgC4) Nn=K¢C;+CgKq
€ =My (KqKs) +C1(KyCs +C4Ks) +Kq(C1Cs +kymy) P=kiKs
f=Cq(kiks) +kq(K(Cs +Cike) q=0
g=Kkq(ksks) r=0

This transfer function was then numerically transformed into a state-space system using

MATRIX,, vielding:

[2] A1 [ + BT [

[Fe]

el [ + P11 [%]



where:

0 0 0 0 o | [ o ]
0 0 0 0 0 0
[A7] = |o o 0 0.0026 0 B =1 o
0 o 0 0 0.0051 0
0 0 -00017 -0.0016  -0.0094 5.243
[c] = [3325 o002 o0 0 0] P = [o]

With this state-space relationship for generation Fg, the overall system modei can now be soived.

This model has the form:
K= A K o+ Bl [R] + [B] [F]

o) = I M+ [ [R] + [] [F]
where:

[Al [ [B] [e]
have been previously defined.

Substituting in the expression derived for F, (with the physical parameter ¥, listed as its state-

space variable, x,)

10




The overall system now looks like:

X A B.C*| | x B.D*
= + el + [Ba [F]
4 0 A* z B*
X B.D* A BLC*| {x
= - (] = + [Bd [F]
z B* 0 A* z
Resizing the matrices on the left hand side:

= [|]11x11 [ ]

and:
Bl BP* [0
Pl =
[°]5x1 B* [0]5x9
yields:
X A B.C X
0-P] = + [Bd Rl
z 0 A* z

11



= = | —P]—1

z [0):.6

and the output matrix is

o ol]

where [C] has been previously defined.

[C ELEVEN ]1x1 1

Using this model, in the form of the program listing on the following page, various time-domain and

B.C*

c

A*

+

-

[Bd]

frequency-domain plots were created and are shown in the main body of this paper.

12
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‘Program for assembling system matrix for closed-loop transient control using ¥, as controller
'input (first model)"

mi=1.25
m2=1.25
ms=2.09
k1=31600
k2=31600
ks=74200
c1=80
c2=80
cs=85

a=<0 1 0000

-1*k1/m1 -1*c1/m1 k1/m1 ¢1/m1 0 O;
000100

k1/m2 c1/m2 -1*(k1+k2+ks)/m2 -1*(c1+c2+cs)/m2 ks/m2 cs/m2;
00000 1;
0 0 ks/ms cs/ms -1*ks/ms -1*cs/ms>

bb=<0; -1/m1; 0; 0; 0; 0>

cc=<k1/m2 ct/m2 -1*(k1+k2+ks)/m2 -1*(c1+c2+cs)/m2 ks/m2 cs/m2>

dd=<0>

num=<-2.09e2 -1.044e5 -2.189e7 -5.923e9 -4.6e11 -7.4093e13>
den=<1.063e2 9.955e4 8.622e6 2.345e9 C 0>

sstar=sform(num, den)

13



'Program for assembling system matrix for closed-loop transient control using ¥4 as controller

'input, first model (continued)"

astar(1,1)=sstar(1,1)
astar(1,2)=sstar(1,2)
astar(1,3)=sstar(1,3)
astar(1,4)=sstar(1 ,;1)
astar(1,5)=sstar(1,5)

astar(3,1)=sstar(3,1)
astar(3,2)=sstar(3,2)
astar(3,3)=sstar(3,3)
astar(3,4)=sstar(3,4)
astar(3,5)=sstar(3,5)

astar(b,1)=sstar(5,1)
astar(5,2)=sstar(5,2)
astar(5,3)=sstar(5,3)
astar(5,4)=sstar(5,4)
astar(5,5)=sstar(5,5)

bstar(1,1)=sstar(1,6)
bstar{2,1)=sstar(2,6)
bstar(3,1)=sstar(3,6)
bstar(4,1)=sstar(4,6)
bstar(5,1)=sstar(5,6)

cstar(1,1)=sstar(6,1)
cstar(1,2)=sstar(6,2)
cstar(1,3)=sstar(6,3)
cstar(1,4)=sstar(6,4)
cstar(1,5)=sstar(6,5)

dstar(1,1)=sstar(6,6)

astar(2,1)=sstar(2,1)
astar(2,2)=sstar(2,2)
astar(2,3)=sstar(2,3)
astar(2,4)=sstar(2,4)
astar(2,5)=sstar(2,5)

astar(4,1)=sstar(4,1)
astar(4,2)=sstar{4,2)
astar(4,3)=sstar(4,3)
astar(4,4)=sstar(4,4)
astar(4,5)=sstar(4,5)

14



'Program for assembling system matrix for closed-loop transient control using Y, as controller

'input, first model (continued)"

bc=<0; 0; 0; O0; 0; 1/ms>

Gce=<a bc; cc dd>

bd=<0; -1/m1; 0; 0; 0; 0; O; O; O; O; 0>
zero(5,6)=0

p=0*ones(11,11)

p(:,2)=<bc*dstar; bstar>

ident=eye(11,11)

pinv=inv(ident-p)

aprime=pinv*<a bc*cstar; zero astar>
bprime=pinv*bd

celeven=<k1/m2 ¢1/m2 -1*(k1+k2+ks)/m2 -1*(c1+c2+cs)/m2 ks/m2 cs/m2 0 0 0 0 O>

sff=<aprime bprime; celeven 0>

15




Appendix C:  (Continued)

Il.  Control Using Acceleration of mq as Controller Input (Second Model)

The model presented in the previous section utilized a transfer function reiating the control force,
F¢. to the acceleration of mq (¥,), that was solved for indirectly. Though not presented here,
direct application of Snowdon's Four Pole Analysis (1968, 1979) yields a lower-order transfer

function relating these two parameters. This function is:

F.(s) _ (Mm.C,)s® +(c C, +Kkim,)s? +(K,Cq +Ciky)s +ik,
¥,(s) s?(cs+ky)

which was numerically transformed into a state-space equivalent using MATRIX,:

[] A1 W+ [ [3]

[F.] -1 M + b1 [3]

where:

0 1.0 0 0
Al = o 0 10 Bl =] 0

0 0  -8729 4096.0
[c*] = [e7346 248 -02] p*] = [o.2]

16



Now, similar to the last section:

X A B.C**
w 0 A**
X B.D**
=> -—
w Btt

x B.D**

+

] + [Ba] [Fa]

w B*t

A BcC*| |x

[%.] = + [Ba] [Fa]

0 A** w

and resizing the matrices on the left hand side:

= [|]9x9

and:

[0

[Prew]

[0k,

yields:

[1-Pyew]

BD**  [0hy

B** 0],

A B.C**| |x

+ [Ba] [FRs]

0 A** w

17



= = [-Pa]" + [-Pen]" B[R]

and the output matrix is

Cunele = [C [0]1)(3]

where [C] has been previously defined.

Using this model, in the form of the program listing on the following pages, various time-domain

and frequency-domaih plots were created and are shown in the main body of this paper.
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‘Program for assembling system matrix for closed-loop transient control using ¥, as controller
‘input (second model)"

mi=1.25
m2=1.25
ms=2.09
k1=31600
k2=31600
ks=74200
c1=80
c2=80
cs=85

a=<0 10000

~1*k1/m1 -1*¢1/m1 k1/m1 ct/m1 0 O;
000100;

k1/m2 c1/m2 -1*(k1+k24ks)/m2 -1*(c1+c2+cs)/m2 ks/m2 cs/m2;
00000 1;
0 0 ks/ms cs/ms -1*ks/ms -1*cs/ms>

bb=<0; -1/m1; 0; 0; 0; 0>

cc=<Ki/m2 ci/m2 -i*(Ki+k2+ks)/m2 -1*(ci+c2+cs)/m2 ks/m2 cs/ﬁ12>

dd=<0>

num=<-1/ms*c1 -1*c1*cs-k1*ms -1*k1*cs-c1*ks -1*k1*ks>
den=<cs ks 0 0>

snew=sform(num, den)
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'Program for assembling system matrix for closed-loop transient control using V4 as controller
'input, second mode! (continued)"

anew(1,1)=snew(1,1) anew(2,1)=snew(2,1)
anew(1,2)=snew(1,2) anew(2,2)=snew(2,2)
anew(1,3)=snew(1,3) anew(2,3)=snew(2,3)

anew(3,1)=snew(3,1)
anew(3,2)=snew(3,2)
anew(3,3)=snew(3,3)
bnew(1,1)=snew(1,4)
bnew(2,1)=snew(2,4)
bnew(3,1)=snew(3,4)
cnew(1,1)=snew(4,1)
cnew(1,2)=snew(4,2)
cnew(1,3)=snew(4,3)
dnew(1,1)=snew(4,4)

/
bc=<0; 0; 0; 0; 0; 1/ms>
bd=<0; -1/m1; 0; 0; 0; 0; O; O; 0;>
zero(3,6)=0
pnew=0*ones(11,11)
pnew(:,2)=<bc*dnew; bnew>

ident=eye(9,9)

pnewinv=inv(ident-pnew)

20



'Program for assembling system matrix for closed-loop transient control using ¥, as controller
'input, second model (continued)"

aprime=pnewinv*<a bc*cnew; zero anew>
bprime=pnewinv*bd
cnine=<k1/m2 c1/m2 -1*(k1+k2+ks)/m2 -1*(c1+c2+cs)/m2 ks/m2 cs/m2 0 0 0>

sff=<aprime bprime; cnine 0>
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