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ABSTRACT 

CONVECTIVE SYSTEMS IN THE 2006 WEST AFRICAN MONSOON: 
A RADAR STUDY 

by B. Nicholas Guy 

The 2006 African Monsoon Multidisciplinary Activities Intensive Observational 

Period provided a wealth of information regarding the onset and development of the 

monsoon season over the Sahel region of West Africa. Enhanced understanding of 

predictability and variability of monsoon is scientifically and socio economically 

beneficial. Radar observations near Niamey, Niger documented the structure, motion, 

and precipitation of convective cloud systems during the monsoon season, with particular 

focus on mesoscale convective systems. 

A thorough review and analysis of non-meteorological echo removal by the 

quality control algorithm, shown to be largely successful, is a main focus of this thesis. 

Resulting corrected reflectivity data were used to construct rainrate timeseries to examine 

the progression of convective activity throughout the West African monsoon season. It 

was found that mesoscale convective systems contributed the majority of rainfall and 

cloud cover during the season and exhibited variability linked to the diurnal heating cycle 

and African easterly waves. 
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1. Introduction 

The African Monsoon Multidisciplinary Activities (AMMA) is an international 

project focused on the expansion of many facets of knowledge regarding the West 

African Monsoon (WAM), including interaction of the WAM with the physical, 

chemical, and biological environment. Scientific insight into the variability and 

predictability of the WAM, onset mechanisms, and hydrological budget is essential. 

Drought conditions, as seen in the 1970s in the Sahel region, can have devastating 

consequences to West African society by advancing desertification which affects 

agriculture and domestic needs. The AMMA project represents an effort that continues 

scientific research established in the Global Atmospheric Research Project (GARP) 

Atlantic Tropical Experiment (GATE; Kuettner 1974) and West African Monsoon 

Experiment (WAMEX; Dhonneur 1978) in the 1970s that provided a large volume of 

data regarding atmospheric structure and features over Africa. In the 1990s, the Etudes 

des Precipitations par Satellite (EPSAT) project provided a surface rainfall dataset (Lebel 

et al. 1992) which allowed further study of continental Africa, with focus on the Sahel 

region using a raingauge network (EPSAT-Niger). 

The AMMA Intensive Observational Period, which took place during the 

summer of 2006, provided a wealth of information regarding the onset and development 

of the monsoon season over the Sahel region of West Africa (Redelsperger et al, 2006). 

Radar observations near Niamey, Niger (Figs. 1-2) during AMMA documented the 

structure, motion, and precipitation of convective cloud systems during the monsoon 



season. A radar-based analysis of convective storm development and propagation, with 

particular focus on mesoscale convective systems (MCSs), was performed. 

Fig. 1 AMMA implementation region in the Sahel region of West Africa. Location of MIT radar is 
indicated by red X , with the scan region represented by the red circle. 

r 

Fig. 2 Photograph of MIT radar site at Niamey, Niger airport. Location shown in Fig. 1. 
Photograph by Tom Rickenbach. 
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Radar data were collected with the Massachusetts Institute of Technology (MIT) 

C-band Doppler radar from June - September 2006. Radar characteristics can be found 

in Table 1. At the beginning of the experiment, radar setup and optimization was 

performed, where various setup configurations (e.g. Doppler measurements and scanning 

strategies) were tested to reveal optimum performance for a given sampling region. The 

dataset usable for this study (full volume scans) encompassed 5 July - 27 September 

2006 and was collected on-site in Interactive Radar Information System (IRIS) format 

developed by the Sigmet Corporation. An important component of this thesis was the 

description and implementation of quality control (QC) of the radar data to allow further 

detailed analysis. 

Table 1. MIT C-band radar characteristics. 
Operating Frequency 
Antenna Diameter 
Antenna 3dB beamwidth 
Peak transmitter power 
Total power consumption 

5590 MHz 
8ft 

1.2 deg 
500 kW 
-10 kW 

Previous studies have analyzed MCS rainfall and structure for the Sahel region 

using satellite and rain gauge observational datasets or have focused on the dynamics of 

individual storm systems. This study analyzes the raw radar dataset and classifies 

precipitation into large organized cloud systems and isolated convective cells. Though 

they can be related, these two unique phenomena represent different scales of convective 

forcing and impact on the large-scale environment. The precipitation categories must be 

treated separately to accurately infer monsoon season characteristics and effects. Isolated 

convective updrafts are too small in scale to generate significant effects on the large scale 
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environment; however, more extensive MCS events impact the large-scale environment 

due to energy and momentum transport via upward air motion required to maintain a 

steady state mature MCS in an unstably stratified and sheared environment (Moncrieff 

1981). Initial inflow and ascent may result from gravity wave response to MCS heating 

(Schmidt and Cotton 1990). Observational ground-based radar data provided a better 

understanding of MCS and non-MCS precipitation, through qualitative and quantitative 

examination of the 2006 WAM season via rainfall classification and characteristics; and 

estimation and statistics, respectively. Radar-inferred precipitation represents a bridge 

between satellite and rain gauge observations, both on scale and quantitative levels. 

Precipitation analysis from sub-MCS and MCS-scale events allowed exploration of the 

connection between convection and larger scale mechanisms, such as African easterly 

waves (AEWs). Results of this study will provide important insight into the role of 

MCSs in the WAM season and guidance in defining characteristics for climatological 

analysis of the Sahel region. 

4 



2. Background 

a. Tropical convection 

Tropical cumulus convection occurs over a wide range of spatial scales, from 

individual, isolated convective cores (a hundred meters to a few kilometers; Houze 1993) 

to organized systems thousands of kilometers wide called mesoscale convective 

complexes (MCCs; Maddox 1980; Houze 1993). The tropics provide continual heating 

from the surface, which results in strong vertical mixing and can lead to substantial 

instability. Organization of very large systems into MCCs is less prevalent than smaller 

scale events. MCCs were estimated to provide only about 15% of total convective cloud 

cover in a study of the Sahelian region (Mathon and Laurent 2001). 

A common manifestation of tropical convection occurs on the MCC scale. When 

individual convective cores organize into clusters with a single cloud shield, they are 

known as a MCS. Cotton and Anthes (1989) and Houze (1993) define a MCS as a group 

of organized thunderstorms with a contiguous precipitation region (Rickenbach and 

Rutledge 1998) of at least 100 km and can have a horizontal length of several hundreds of 

kilometers. Precipitation from a MCS divides into two distinct regions: convective, 

intense, vertically extended cores; and stratiform, formed from dissipation of convective 

cells or mesoscale ascent (Houze 2004). MCS organization can develop linearly, as 

multiple thunderstorms align along a single axis, or nonlinearly in erratically shaped 

clusters. 

Figure 3 shows a schematic of a mature tropical MCS. The spatial disparity 

between convective and stratiform precipitation regions can be seen, along with the 
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general motions indicated by arrows. Small straight arrows indicate updrafts and 

downdrafts, while large open arrows show comparatively weak ascent and subsidence of 

the stratiform region on the mesoscale where vapor deposition and evaporation drive the 

precipitation process. Long- and short-wave radiation (LW and SW, respectively) are 

shown by wavy arrows. The extent of the cloud cover is indicated by the light gray 

shading. 

30 km 125 km 

Fig. 3 Schematic of the mature phase of a tropical mesoscale convective system. Cloud extent is 
indicated by light gray shading. Solid black region is convective precipitation, while the vertical lines 

in the medium shade indicate stratiform precipitation. Small, straight arrows represent updrafts 
and downdrafts, while large open arrows show ascent and subsidence of stratiform region on the 

Mesoscale. Wavy lines are representative of long- and short-wave radiation, LW and SW, 
respectively (adapted from Houze 2004). 

Figure 4 represents a cross sectional view of the kinematic, microphysical and 

radar echo representation of a linear MCS. New cells are formed in front of mature and 

decaying convective cores in the direction of nominal system motion. The shading 
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represents radar echo, with darker shading representing stronger reflectivity. General 

flow patterns are shown by arrows, indicating descending rear inflow and ascending 

front-to-rear flow. 

Heavy convective rain Heavy stratiform rain 

Region of trailing stratiform rain 

Fig. 4 Vertical cross section of a squall line mesoscale convective system conceptual model, oriented 
perpendicular to the convective line. H and L show centers of positive and negative pressure 

perturbations, respectively. Shading indicates intermediate (medium) and strong (dark) radar 
reflectivity regions. Arrows indicate general flow patterns (adapted from Houze 2004). 

Motions that arise due to the MCS are illustrative of heat and momentum 

transport associated with these systems. The degree to which convective cells in MCSs 

are organized into lines results in vastly different heat and momentum flux aspects. 

Convective and stratiform components result in different heat and momentum transport 

(Houze 1993). The convective portion produces net heating at all levels, where cumulus 

scale updrafts transport heat (condensation) and low level horizontal momentum upward, 

but downdrafts are insufficient to remove condensational heating in the updraft. The 

upper levels of the stratiform region show net heating due to condensation, while levels 

lower in the troposphere cool from evaporation and melting processes. Rear inflow of 

low equivalent potential temperature air below the trailing anvil cloud descends toward 
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the convective line, transporting opposing momentum downward. These processes in a 

linear MCS cause increased momentum against line propagation at upper levels and 

decreased momentum with line propagation at lower levels (LeMone et al. 1984; 

Rickenbach and Rutledge 1998). 

These transports have a substantial impact on the thermodynamic and dynamic 

structure of the free environment. MCS-created disturbances, over a range of 

wavelengths, have the net effect to displace environmental mass downward (Mapes and 

Houze 1995; Houze 2004). Shorter wavelength disturbances are able to feed new 

convection near a MCS, due to longer time near the system. Longer wavelength 

disturbances are able to escape the immediate MCS area and interact with the 

environment. Mid-level convergence associated with the stratiform portion of linear 

MCS events induced mesoscale upward motion that augmented non-convective rain 

(Mapes and Houze 1993). It has been shown that heating profiles of organized cloud 

clusters produce more realistic large scale circulations (e.g. Walker Circulation), than 

heating profiles of individual convective towers (Hartmann et al. 1984). A thorough 

treatment of MCSs can be found in Houze (2004). 

Many studies have proposed MCS classifications using different methods and 

requirements, with infrared (IR) satellite and radar the two most common media used to 

create a classification construct. IR satellite measurements offer wide view angles, 

enabling continuous monitoring of MCS scale systems throughout their lifetime. A large 

number of studies have used cloud top brightness temperatures related to specific MCS 

organization and evolution. Radar measurements, while more limited in sample region 
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extent, allow greater internal detail of MCS structure and resolve mesoscale and sub-

mesoscale features more easily, such as gust fronts and patterns of precipitation 

organization. Analyses during the formative and development stage and during the 

mature stage provide different classifications of linear MCSs (Bluestein and Jain 1985; 

Parker and Johnson 2000). As detailed in Rickenbach and Rutledge (1998), 

classifications vary widely, dependent upon the goals and location of study. 

There are widely used categorical classifications, however, such as squall line 

MCSs (SLMCSs), described in Hamilton and Archbold (1945) and based on 

observational radar data acquired during field experiments (Zisper 1977; Houze 1977). 

Even these SLMCSs offer a wide variety of classification standards [see Table 1 in 

Rowell and Milford (1993)]. Mathon et al. (2002) described a new classification called 

the organized convective system (OCS), which was defined via satellite observations, but 

based on widely accepted radar-based characteristics. This ensured that the majority of 

squall line system occurrences were grouped in a single definition, as previous 

classifications may divide the dataset. This disparity of definition criteria results in a 

subjective classification system, largely dependent upon scope and regional area of study. 

The classification system used in this study will be further discussed in section 3 c. 

b. WAM and rainfall 

West Africa is characterized by zonally-oriented climate zones, with no large 

topographical features to impinge atmospheric flow. The migration of the monsoon into 

these banded zones results in relatively zonally-homogenous monsoon features (Hall and 
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Peyrille 2006). A thermally induced low pressure trough inherent over the African 

continent shifts as a function of seasonality (i.e. a large scale dynamic response to 

variable heating patterns). The intertropical convergence zone (ITCZ), where the surface 

pressure trough and confluence zone are located, acts as a barrier separating the dry 

northern desert region from the moist southern tropical region. During boreal winter, the 

ITCZ is positioned near the equator and allows the dry, northeasterly winds originating in 

the desert (Harmattan winds) to propagate further south confining precipitation to the 

lower portion of the continent. Northward movement of the ITCZ occurs during boreal 

summer, which advects moisture northward (Hastenrath 1991) to the normally dry sub-

Saharan Sahel region. 

A schematic of the fully developed WAM is shown in Fig. 5, where it can be seen 

that the ITCZ has migrated northward bringing southern moisture to the normally arid 

Sahel region and pushed back the Harmattan winds. The African Easterly Jet (AEJ) is 

centered at roughly 12°N at the 600 hPa level, between the dry convection area of the 

heat low and deep convection of the ITCZ. The Saharan air layer (SAL), the dry, 

northern warm air mass, is shown as ascending in front of the northern edge of the ITCZ. 

As the SAL is drawn into the oncoming heat low region, it lifts above the cooler, moist 

air mass transported from the south. This confluence is defined as the inter-tropical front 

(ITF). 
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EQ 10*N 20°N 

Latitude 

Fig. 5 Schematic of a fully developed West African monsoon, displayed as a latitudinal cross section. 
The ascending Saharan air layer is shown to flow toward the low created by surface heating located 
at the ITCZ. Monsoonal flow is shown to be northward and the African Easterly jet forms aloft at 

the leading edge of the ITCZ (adapted from Hall and Peyrille 2006). 

Due to an intrusion of dry air between the ITCZ and ITF (see Fig. 5), this area 

displays convective inhibition that suppresses sub-MCS scale storms that possess limited 

size and strength. A large scale, organized event characterized by deep, moist convection 

may have enough available potential energy to overcome substantial convective 

inhibition, which is often associated with MCSs (Hall and Peyrille 2006). Sultan and 

Janicot (2003b) define two distinct phases of the WAM: the "preonset" and the "onset". 

The pre-onset marks the migration of the southwesterly winds and ITF past 15°N, while 

the ITCZ remains south. The onset of the summer monsoon is defined as the abrupt 

northward shift of the ITCZ from 5°N to 10°N. 
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The WAM occurs nominally from mid-June through September and has been 

extensively studied, with observational campaigns employing rain gauge, ground- and 

satellite- based radar, and IR satellite measurements. It has been established that the 

average onset of the monsoon is 24 June with a standard deviation of 8 days (Sultan and 

Janicot 2003b). The WAM generates a large number of SLMCSs, which contribute the 

majority of observed Sahelian precipitation. The onset criterion mentioned displays 

interannual variability, which leads to one component of rainfall variability. Grist and 

Nicholson (2001) summarized that a weaker tropical easterly jet and stronger AEJ 

characterize a "dry" season, with the opposite true for a "wet" season. These conditions 

are related to moisture flux and increased vertical shear, with the strength of the AEJ 

found to be the most dependable characteristic of monsoon strength. 

A satellite study of West African squall lines concluded that the first 30 minutes 

of SLMCSs produce over half of the rainfall that occurs for the duration of the system 

(Rowell and Milford 1993). Satellite measurements from the GATE experiment suggest 

that convective rainfall area accounts for only -10% of the total MCS area coverage 

(Houze 1993). Past studies have estimated that Sahelian MCS scale storms produce 

between 80 and 90 % of the annual regional rainfall (Laurent et al. 1997; Mathon et al. 

2002), with the average stratiform rain fraction (of total) at 35% (Schumacher and Houze 

2006). EPSAT-Niger raingauge observations (1990-1999) recorded an average of-360 

mm rainfall from 1 July - 15 September (Mathon et al. 2002); while Schumacher and 

Houze (2006) reported that spaceborne radar observations showed average rain 

accumulation doubles during the monsoon season to 170 mm-mo"1. 
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c. African easterly waves 

Another unique trait of the WAM is the existence of westward-propagating, 

synoptic-scale disturbances generated over continental Africa. AEWs exhibit preferential 

propagation paths consistent with baroclinic wave growth (Berry et al. 2007) and 

commonly include two relative vorticity centers, near the ITF and ITCZ moisture band. 

It is known that strong shear is exhibited beneath the AEJ (Burpee 1972), where these 

easterlies aloft are positioned over surface westerlies (Hall and Peyrille 2006). 

One theory suggests that increased shear in the AEJ leads to increased convective 

activity (Matthews 2004), but separating dynamical forcing from the self-organization of 

convective systems proves difficult. AEW genesis occurs at the site of the AEJ (Hall and 

Peyrille 2006); where transfer of momentum and energy from the AEJ circulation, 

through baroclinic and barotropic instability, feeds developing waves. Berry and 

Thorncroft (2005) posit that AEW formation is a result of large MCS environmental 

heating causing a perturbation to the wind field in an already unstable atmosphere, which 

induces barotropically and baro clinically growing AEWs downstream. 

Reed et al. (1977), Payne and McGarry (1977), and Kilades et al. (2006) 

established that MCS formation preferentially occurs in front of or at the leading edge of 

an AEW trough, which form over eastern Africa. The exact formation sequence and 

location is still debated, with recent studies suggesting AEW formation occurs due to 

convection near 35°E (Berry and Thorncroft 2005; Mekonnen et al. 2006). Rowell and 

Milford (1993), however, suggested that SLMCS formation in the Sahel is enhanced by 

synoptic forcing in AEWs. 
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Previous studies have focused on the relationship of SLMCS interaction with 

AEWs; and SLMCS evolution as a function of propagation across Africa. There is little 

previous work on how SLMCSs are involved in the evolution of the WAM. This thesis 

begins addressing this topic by documenting SLMCS occurrence, propagation, and 

associated rainfall via ground-based radar observations. 

d. Radar data quality control 

While space-borne measurements allow the study of large spatial scale (i.e. 

synoptic) occurrences such as AEWs and MCCs, resolution of these instruments for 

mesoscale and sub-mesoscale phenomena have inherent limitations. Previous studies of 

the Sahel region dictates that MCS scale events are the most important feature in terms of 

rainfall during the monsoon season, which also represents the majority of annual rainfall. 

Land-based radar presents a unique opportunity to study features of mesoscale systems in 

great detail and to resolve isolated convection, both contributors to annual Sahelian 

rainfall. 

Radars do present inherent challenges, however, in how they sample precipitation 

systems. Radar echo not associated with the target precipitation system is common, and 

must be removed before analysis. Anomalous propagation (AP) results when 

atmospheric refractivity changes with height alter the normal propagation of the 

electromagnetic signal of the radar beam, resulting in non-weather echo from reflection 

of the beam off the surface. Weather echo may be range-aliased, which can occur when 

systems are located outside the unambiguous range of the radar (2nd trip echo). Ground 
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clutter near the radar is due to topographical features, buildings, and non-meteorological 

airborne targets, enhanced by superrefraction of the beam normally caused by strong 

ground inversions. The curvature of the earth causes the ground to "fall away" from the 

plane parallel to beam propagation and nearly all scans have a small vertical angle 

applied, therefore ducting and superrefraction only affect the lowest elevation scans (see 

Fig. 6). 
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Fig. 6 Diagram of radar beam propagation in various refractivity gradient regimes. It can be seen 
that superrefraction and ducting occur in the lowest elevation scan angles (modified from Pratte et 

al. 1996). 

QC of the data is paramount to prevent misinterpretation of data and provide 

meaningful rainfall estimates. There are a number of methods, ranging from hardware 

setup to radar data processing algorithms, used to remove spurious signal both in research 

datasets and real-time weather data. Use of a specific algorithm is largely dependent 
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upon processing time available and equipment used in observations. Real-time 

techniques to remove spurious echo come with the risk of removing meteorological echo, 

and must be used with caution. 

The most difficult corrections to radar data are false signals embedded within real 

meteorological echo. Removal of ground clutter and AP echo can be initiated during 

radar installation, real-time or post-collection data processing, or post-collection via a 

thorough comparison to alternate dataset (Joss and Wessels 1990; Keeler and Passarelli 

1990; Pratte et al. 1990; Steiner and Smith 2002; Lakshmanan et al. 2007). Optimizing 

radar placement, such as an elevated site, may minimize ground clutter contamination. 

Thought must also be put into the radar characteristics; wavelength, antenna size, scan 

strategy, etc. Decision trees based on radar spatial resolution may also be used as a 

filtering or processing step for collected data. Precipitation and thermodynamic 

measurements collected or inferred from other data sources, such as IR satellite, rain 

gauge, lightning data, etc., maybe used in a probabilistic approach for prediction of AP 

echo, providing a base line for processing. A thorough review of the issues discussed 

above can be found in Steiner and Smith (2002). 

Another well studied approach for mitigation of non-meteorological echo is 

removal in archived data. This approach not only supplies valid observational data for 

research purposes, but leads to a greater likelihood of the development of AP echo 

suppression techniques to be implemented in real-time weather analysis. There are 

multiple approaches that have been explored. Many algorithms have used horizontal and 

vertical reflectivity gradients (Mueller and Sims 1975; Lee et al. 1995; Rosenfeld et al. 
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1995; Fulton et al. 1998) or spatial and temporal continuity checks (Smith 1990) for 

processing archived data. Other approaches focus on Doppler velocity and differential 

reflectivity fields for removal of spurious echo (Hall et al. 1990; Joss and Wessels 1990; 

Pratte et al. 1993). The most recent development has been the advent of probabilistic 

approaches using multiple parameters as input in fuzzy logic (Kessinger et al. 2001) and 

neural network (Lakshmanan et al. 2007) procedures for more sophisticated removal of 

spurious echo. Though each technique seeks optimal removal of egregious echo, 

algorithm success is dependent on data characteristics and time frame to produce results. 

Comparison to alternative datasets and probabilistic approaches are often labor and time 

intensive. Reflectivity and velocity value and gradient checks may be implemented in 

real-time observational networks, such as that deployed by the National Weather Service. 

The QC approach utilized in this study will be discussed in section 3. 
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3. Methodology 

a. Data 

SIGMET-IRIS format data from the MIT C-band Doppler radar were saved on-

site in real time and archived for later dissemination. Multiple scan techniques were 

employed to process radar information. The dataset included volume, survey, and Range 

Height Indicator (RHI) scans; only the volume scan was used for this research. A full 

360° (with radar at the center), three-dimensional field of view was attained for multiple 

distances by adjusting the pulse repetition frequency (PRF), which is a measure of pulses 

per second and effectively controls the unambiguous scan range given the inverse 

dependence on PRF (survey scans). A vertical profile of the atmosphere was produced 

by vertical scan steps along a constant radial (RHI). Reflectivity volume scans (with 

fixed PRF), composed of 15 elevation angle sweeps, were collected at ten minute 

intervals (characterized in Table 2). Over 11 250 volumes from the observational period 

underwent conversion processing and analysis. 

Table 2. Software packages utilized to process MIT radar data for the 2006 AMMA project. 

Elevation angles(degrees) 

Maximum unambiguous range 
PRF 
Bin spacing 

0.5,1.3,2,2.8,3.9,4.9,6.2,7.5,9.1, 
11.1,13.5,16.4,19.9,24.1,29.2 
149 km 
950 Hz 
250 m 

Iterative examination of reflectivity fields throughout the lowest 3 km above 

ground level (AGL) revealed no substantial difference in the occurrence of non-

meteorological echo; therefore, all ensuing analysis was performed at a constant 1 km 

altitude. Analysis at low altitude allowed rainfall estimates of precipitation reasonably 
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close to the surface, enhancing the comparison to surface-based rain measurements. 

Unambiguous radar reflectivity range was 150 km, though only values within a 130 km 

radius were used in calculations. Outside of this calculation range, beam expansion 

resulted in significantly lower resolution of convective elements. 

b. Processing raw data 

SIGMET-IRIS radar data, a proprietary format, were first converted to universal 

format (UF; Barnes 1980; Dolan and Rutledge 2007), a standardized radar data format 

that maintains the natural coordinates of the radar, via a software package developed as 

part of the ground validation program at the Tropical Rainfall Measurement Mission 

(TRMM) Satellite Validation Office (TSVO) at the National Aeronautics and Space 

Administration (NASA) Goddard Space Flight Center (GSFC). The package includes 

Radar Software Library (RSL) RSLnsigtoradar and RSL_radar_to_uf functions, 

available from the TSVO Web site (http:// trrnm-fc.gsfc.nasa.gov/trmm_gv/). The RSL 

algorithm distinguishes between full volume scans, which are retained, and RHI or 

survey scans that are discarded. Conversion to UF is necessary for processing with 

further software packages, and represents an accessible format easily read by most radar 

processing packages and analysis programs in commonly used languages (e.g. C, 

FORTRAN, or Interactive Data Language (IDL)). 

An alternate software program, called the Ground Validation System (GVS), was 

used for data QC purposes. This TSVO software, also freely distributed online, contains 

capabilities of a complete processing package with three components, file conversion and 
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QC product (Level 1; 1C-51) and two precipitation characterization products (Levels 2 

and 3). Only Level 1 was employed to produce QCed, or corrected, reflectivity scans, 

based on an algorithm derived from Rosenfeld et al. (1995). Removal of contamination 

by non-meteorological echo and AP is covered in more detail in section 3d. 

Next, the "REORDER" software package (in FORTRAN) developed at the 

National Center for Atmospheric Research, processed UF files to network Common Data 

Form (CDF) file format, a standardized, commonly used data format (Mohr et al. 1986). 

Polar coordinate-oriented raw data were interpolated to a Cartesian coordinate system 

representative of the geographic sample area, with 1 km horizontal and vertical spacing 

using a Cressman weighting scheme (Cressman 1959; Daley 1991). Delta-azimuth, 

-elevation and -range components of the radius of influence are employed during 

conversion, which results in variable radii, rather than fixed delta-x, -y, and -z radii to 

optimize the interpolation accounting for the increasing distance between data rays with 

increasing range. Figure 7 shows the sampling volume used for Cartesian transformation 

of radar data from polar scan coordinates (Mohr and Vaughn 1979; Mohr et al. 1986); 

note the constant change in azimuthal, elevation, and range steps. 
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Sampling 
Volume 

Fig. 7 Illustration of sampling volume used for Cartesian transformation of radar data from polar 
scan coordinates. Solid dots are projection points, while the open dot represents a Cartesian grid 

location on consecutive elevation scan planes, k and k + 1. The angle along azimuth is 6, while 0 is 
the elevation angle (modified from Mohr et al. 1986). 

Transformation can result in smoothing of data at high altitudes (DoIan and 

Rutledge 2007), resulting in the coarse resolution aloft. This study is interested in ground 

precipitation and therefore disregard the outermost 20 km of radial reflectivity data where 

natural beam propagation is elevated AGL and sample volume has poor resolution due to 

radar beam divergence. Multiple data fields are available for retention in CDF file 

format, including the raw reflectivity data and QCed, or corrected reflectivity data. 

Doppler radial velocity data may also be included, but was not used for this study. 

Finally, a program written in ITT Visual Information Solutions, Inc. IDL was 

used to process CDF files into image formats (gif, tiff, ps). IDL is a powerful 

visualization software package with the ability to process multiple file types and output 

high quality images. The algorithm assigned the interpolated Cartesian grid data onto a 

map image. The resulting image files were merged into animations used for event 
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classification and iterative QC measures. Software operation procedures can be found in 

Table 3, with an overview of the procedure flow for radar data processing found in Fig. 8. 

Table 3. Software packages utilized. 
Input Data —> Software —» Output Data 

Initial analysis 

Quality control analysis 

IRIS (raw) 
UF 
CDF 
IRIS (raw) 
UF 
CDF 

RSL 
REORDER 
Cappi vol 
GVS level 1 
REORDER 
Cappi_vol 

UF 
CDF 
gifs 
UF 
CDF 
gifs, plots, data files 
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RSL package 

UFfile 

REORDER 

Radar 
Data 

GVS 1C-51 
GVS package 

Enter/Adjust 
QC Parameters 

Fig. 8 Flowchart depicting the order of software operation according to the decision tree structure 
indicated. 
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c. Data classification (qualitative) 

Classification techniques for cloud system size and strength have been developed 

in the past according to the scope of study. Rickenbach and Rutledge (1998) used a four-

event categorical system that included MCS and sub-MCS horizontal dimension scales as 

the two general classes, and subclasses that denote whether the convective cells displayed 

linear organization, referred to as linear and non-linear. A simplified version of the 

classification system was used for this study, in which systems were classified as either 

MCS or sub-MCS. These categories arise as a function of spatial scale according to the 

definition provided in Section 2 from Houze (1993); where MCS-scale events have 

horizontal scale >100 km and sub-MCS scale events horizontal scale < 100 km. Though 

not pertinent for this study, MCS-scale events were designated as MCS or SLMCS, 

depending on amount of linear organization; and sub-MCS scale events were given such 

designations as isolated convection and scattered convection. 

Time-lapse animations of reflectivity scans allowed the manual construction of an 

event log, in which each scan volume was categorized according to classification of 

events present. Radar reflectivity images allow the viewer to classify sub-MCS and 

MCS-scale events (see Fig. 9). 
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H 
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Fig. 9 Constant altitude plan position indicator radar reflectivity maps at 1 km height, containing a) 
a MCS scale system and b) a sub-MCS scale system, occurring on 14 July and 6 July 2006, 

respectively. Radar range rings are given every 50 km. 
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The majority of MCSs are easily identified, but there is a degree of subjectivity present. 

A limited number of cases (<5) do arise when only the far edge of a SLMCS is visible in 

the limited viewing area of the radar; designation is then somewhat subjective which 

accounts for differences that can arise from study to study. 

Tables 4 and 5 show a monthly distribution and occurrence time, respectively, of 

MCS events, where SLMCS occurrences are a large subset of MCS events. 

Table 4. Monthly distribution of and total MCS-scale events for the 2006 West African monsoon 
season. 

Month 

July 
August 
September 
Total 

Number of events 
MCS 
12 
14 
11 
37 

SLMCS 
9 
10 
5 
24 

Note that Niamey local time (LT) is Universal Coordinated Time (UTC) + 1 hour. End 

times were defined as the time when convective and stratiform precipitation regions 

propagated out of the scan area or dissipated sufficiently. Sub-MCS scale events were a 

result of localized convection forming in the scan region, typically diurnally heat-driven. 

MCS-scale events generally entered the radar view field from the east and 

propagated in a westward direction, though northwestward and southwestward 

propagation were also observed. While strengthening and decaying were sometimes 

evident, no MCS formation was observed within the radar area. There were a total of 39 

MCS scale events that occurred throughout the WAM season, approximately 72% of 

which were designated as SLMCSs. Generally MCSs appeared as strong convective 

cores, often in a well-organized leading line, with trailing stratiform region behind (Fig. 
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10). Stratiform precipitation often formed as convective cells decayed and persisted well 

after convection moved through the sample region. 

MIT Radar AMMA 150km CAPPI at 1 km: 22 Aug 2006 0221 Z 
fl>, 
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Fig. 10 Observed squall line mesoscale convective system on 22 August 2006, representative of many 
MCS scale systems observed over the course of this study. This particular system exhibited a classic 
bow structure of the leading convective cores, with massive trailing stratiform precipitation. Radar 

range rings are given every 50 km. 
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Table 5. MCS event times for the 2006 West African monsoon season. Niamey, Niger local time is 
UTC + lhr. 

Month 

July 

August 

September 

Begin 

Date 

05 
06 
08 
11 
13 
14 
17 
19 
22 
24 
25 
31 

Time (UTC) 

1621 

1511 

1351 

1331 

2151 

2211 

0411 

0211 

0311 

2051 

1941 

0631 

End 
Date 

05 
07 
09 
12 
14 
15 
17 
19 
22 
25 
26 
31 

Time (UTC) 

2331 

0721 

1511 

0031 

1021 

1331 

1311 

1221 

1621 

1931 

0811 

1651 

03 
06 
07 
08 
11 
14 
17 
18 
22 
24 
26 
28 
30 
30 

1101 

0321 

1051 

0941 

0031 

0641 

0431 

0131 

0011 

1601 

1041 

0001 

0531 

2351 

04 
06 
08 
08 
11 
14 
17 
18 
23 
25 
26 
28 
30 
31 

0651 

1801 

0131 

2201 

1031 

1841 

1101 

1541 

0401 

0311 

1831 

1551 

1241 

0251 

03 
03 
05 
08 
08 
10 
12 
14 
18 
21 
23 

1101 

2141 

0701 

0151 

2341 

1301 

1301 

0511 

1921 

0121 

2211 

03 
04 
05 
08 
09 
11 
12 
14 
19 
21 
24 

1901 

0051 

1731 

1901 

0851 

0901 

1811 

1031 

0741 

1501 

1551 



One unique MCS event occurred 9 September between 0000-0900 LT, where 

widespread stratiform was present throughout the observable domain (Fig. 11). 

Contiguous, low order precipitation was present across a wide scan area, with no 

discernable organization. This event was quite similar in structure, evolution, and diurnal 

timing to nocturnal stratiform systems in western Amazonia (Brazil), described in 

Rickenbach (2004). There was no evidence of local convection embedded with the cloud 

cover, though the horizontal dimension was adequate to meet requirements of the MCS 

classification. This was the only occurrence of such a system. 

MIT Radar AMMA 150krn CAPPI a t 1 k m : 0 9 Sep 2 0 0 6 0 0 1 1 Z 

<dBZ> 

Fig. 11 A unique stratiform precipitation event that occurred 9 September 2006. There was no 
preceding or subsequent convective system to account for widespread stratiform observed. Radar 

range rings are given every 50 km. 
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d. Data quality control (quantitative) 

General information regarding the displayed reflectivity data was attained through 

classification of the raw data, including duration and occurrence time of events, 

propagation direction, and visual estimates of portion of the total system that was 

acquired in the sample region. To attain useful quantitative results, egregious echo must 

be removed, leaving only the meteorological echo of interest. The QC algorithm in the 

component of GVS (1C51) was applied, which is controlled by eight adjustable 

parameters; three echo height thresholds (HI, H2, and H3), and five radar reflectivity 

thresholds (ZO, Zl, Z2, Z3, and dBZnoise) that provide a logical decision tree for removal 

of AP (Kulie et al. 1999; Marks et al. 2000; Robinson et al. 2001). The parameters are 

utilized to help distinguish between typical characteristics of anomalous echo and those 

of echo associated with various types of rain producing clouds. Echo heights and depths 

along with reflectivity gradients are evaluated to ensure reasonable precipitating features 

are kept, while questionable echo is discarded. AP is manifested as shallow radar echo 

that appears as a radial spike or speckle (noise) pattern in the radar field, while 

meteorological echo displays substantial vertical echo structure. Parameter values are 

site-specific, dependent upon local characteristics, such as topography and climatological 

profiles of moisture and temperature in the lower atmosphere. Use of values optimized 

for another location would likely result in inadequate QC results. 

The algorithm applies a corrective filter to the reflectivity data by way of ~lxl 

km masks, resulting in echo suppression according to user-specified parameters discussed 

below. Uncorrected reflectivity fields can be attained by subtracting the mask from the 
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corrected reflectivity field. This algorithm represents a modified approach developed by 

Rosenfeld et al. (1995), where the following radar data conditions are considered for 

decision tree input: 

Ztop < H3 or Zmax (3km) < Zl; and Zraax (m) < Z3, (1) 

Ztop<H2, (2) 

ZmJl.5km)<Z0, (3) 

{Z > dBZnoise and Z < Z2 } in the lowest tilt. (4) 

where Ztop represents echo top height, with general radar noise defined by the dBZnoise 

threshold, and Zmax(h) is a maximum reflectivity value at a specified height, h. Once any 

condition put forth in Eq. 1-4 is satisfied, the reflectivity value is rejected. 

Equation 1 filters shallow noise and some ground clutter. Suppression is 

accomplished if Ztop does not exceed the user-specified height parameter (H3); or the 

reflectivity value at 3 km altitude is less than a user-specified reflectivity parameter (Zl). 

In addition to the previous conditions, if the maximum reflectivity at the first user-

specified height threshold (HI) is less than parameter reflectivity threshold (Z3), the echo 

is masked. These conditions remove spurious echo that is manifested in the lowest scan 

levels (and hence heights) and requires that a level of vertical development is required to 

maintain precipitating clouds. 

Equation 2 establishes a minimum level for echo top height by requiring that Ztop 

be higher than a parameterized height threshold (H2). Any low clouds (stratus) will be 

masked according to this condition. If Zmax at 1.5 km height is less than a minimum 

31 



threshold (ZO), the reflectivity values are filtered, according to Eq. 3. This enacts a 

minimum reflectivity at 1.5 km altitude to ensure echo present is precipitation. 

Finally, the lowest tilt is checked. If the reflectivity is greater than the dBZnoiSe 

threshold and is not greater than parameterized threshold (Z2), reflectivity data will be 

suppressed. Ground clutter, often manifested as low- to mid-level noise, is largely 

removed from this condition. Upon satisfaction of any criterion specified by Eqs. 1-4, 

echoes are masked up to a level of H3 + 1 km and height checks are only performed 

when the top of the examined volume scan is greater than echo top height. Reflectivity 

values are rejected when all conditions listed are fulfilled. 

Ground clutter is manifested as weak echo that is normally confined to the lowest 

tilt and therefore will be removed largely by a radar noise threshold. If a stronger signal 

is apparent from a stationary target, it will likely be confined to low tilt levels and thus be 

filtered. Weak 2nd trip and clear air echoes are effectively removed with the algorithm 

above; however, strong 2nd trip echo proves more difficult to differentiate from a 

meteorological signal, especially when embedded within real precipitation. Approaching 

MCSs often produced large 2nd trip echo signals, removed by maximizing filter settings, 

in essence clearing all reflectivity from the scan. Any light precipitation preceding a 

MCS was also filtered. It is important to note types of meteorological events that are lost 

during the QC process. Some meteorological echo, such as gust fronts and light 

precipitation, were filtered via the algorithm. This thesis is interested in general system 

morphology and relative rainfall, therefore the filtering was appropriate to ensure 

optimum performance for the scope of this study. 

32 



The NASA GSFC TSVO graciously provided guidance on a small number of test 

files from the Niamey radar data set, offering their enormous amount of experience of 

radar data QC in the TRMM ground validation program (Gebremichael et al. 2006). A 

parameter file with variable threshold parameter values dependent upon scan time was 

constructed to automate the QC process over the entire dataset based on operator review 

of echo situation in each scan. Default algorithm parameters were established to apply to 

the entire data set, except for certain meteorological situations as described later. 

Parameter sets extracted for individual cases, e.g. 2nd trip echo preceding a MCS system 

approach into the radar view area, were applied to similar events throughout the dataset 

(see Table 6) and provide processing schemes for removal of spurious signal by 

atmospheric phenomena and ground and AP echo. 

Table 6. GVS Level 1 quality control software (1C51) parameters resolved for quality control 
algorithm of the 2006 AM MA radar dataset. 

Situation 

Local 
convection 
Default 
AP 
Complete 
echo 
removal 

HI H2 H3 
(km) 

2.0 3.0 1.5 

3.5 3.5 4.0 
5.0 4.0 6.0 

7.0 7.0 7.0 

Z0 Zl Z2 Z3 dBZnoise 
(dBZ) 

10.0 10.0 10.0 15.0 0.0 

16.0 18.0 18.0 28.0 0.0 
18.0 22.0 20.0 30.0 15.0 

77.0 77.0 77.0 77.0 0.0 

Default values were applied to all cases unless the parameter file indicated use of 

a select parameter scheme. The default values were based on those used at a separate 

AMMA radar location in Senegal, Africa and previous GSFC experience of land-based, 

continental radar systems. These values often proved to be the best filter settings when 
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SLMCSs propagated through the scan area. Corrected scans were compared with raw 

data files by visual inspection to judge removal of egregious echo while meteorological 

echo remained largely intact. Analysis of SLMCS cases showed less contamination in 

the radar scan range than other events mainly due to the presence of strong reflectivity 

(deep convection) signals in the scan and the substantial area coverage associated with 

SLMCSs. 

During local convection less low-level noise was apparent, therefore parameter 

values were minimized to allow the maximum amount of precipitation to be unfiltered. 

Default values were produced through the iterative optimization mentioned above; which 

can be found in Table 6, where each successive row represents a more stringent set of 

values for echo removal. Height and reflectivity thresholds were increased to retain wide 

spread stratiform event information, which would be lost with more stringent parameter 

values. AP echo proved more difficult to remove as often the associated reflectivity 

values were higher than those filtered through the default settings and were often present 

preceding and after a MCS system was observed in the radar range. All echo was 

removed from a scan area by applying the final set of parameter values. This case was 

used for instances of wide-spread egregious echo; such as widespread speckle generated 

by a morning temperature inversion, at a time when no meteorological event occurred, 

which were verified by operator logs and satellite imagery. 

The process shown in Table 3 was employed once again to produce output data 

and images. The filtering process was iterated to provide optimum results in general and 

on a case-by-case basis for the removal of non-meteorological echo, while allowing 
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precipitation echo to remain largely unchanged. Visual inspection of the raw reflectivity 

images against images of iterative corrected attempts with adjusted algorithm parameters, 

were used to judge spurious echo removal. Exclusion of obvious non-meteorological 

echo was mandatory, along with weather echo aliasing. Minimum loss in meteorological 

echo, e.g. preserving maximum stratiform echo coverage, was sought. Figure 12 

demonstrates a) raw data, b) GSFC results, and c) study results of the QC process; note 

there is a general concurrence of precipitation features. Nearly all clutter near the radar 

and 2nd trip echo was removed by parameters used by both GSFC and those selected for 

this study. The light echo at the far left (western) edge was retained by the San Jose State 

University (SJSU) parameter set (Fig. 12c), while largely removed by the GSFC 

parameters (Fig. 12b). Though this echo exhibited radial reflectivity patterns similar to 

some AP occurrences, it was deemed to be meteorological echo due to the non-uniform 

nature of the radial reflectivity and the presence of a large noise level within this 

particular file, often associated with greater convective activity in the scan field. Lower 

values of reflectivity were retained as the scan range limit was approached, allowing 

weak echo to remain. 
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Fig. 12 Radar echo maps showing a sample of a) no quality control filter, b) region-specific default 
parameters provided by GSFC, and c) region-specific special case parameters applied for spurious 

radar echo removal resolved by SJSU. 

The results of this study consistently show greater precipitation coverage at longer 

range, due to refinements in applied QC parameters chosen from interpretation of results 

via the iterative process previously discussed. There is a small tilt to the radar beam 

(0.5°), resulting in increased elevation as the beam propagates away from the radar. 
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Information close to the radar comes from the same elevation angle, while multiple 

elevation angles are needed to construct 1 km Constant Altitude Plan Position Indicators 

(CAPPIs) at distant ranges, resulting in lower overall resolution of features near 

maximum range. The QC algorithm tends to retain a greater amount of echo at large 

distances (> 100 km) due to decreased data resolution that limits the echo that maybe 

discarded at low levels closer to the radar. 

Sources of clutter also included morning temperature inversions, which result in 

the radar beam bending toward the ground; and range aliasing preceding the approach 

and following the propagation of a MCS. Inversion clutter was removed by application 

of an increased reflectivity threshold value filter during morning hours. False convection 

was verified with parallel analysis of infrared (IR) satellite images and removed by more 

stringent parameter criteria. One well known caveat of the 1C51 software is the failure of 

the algorithm when spurious echo is embedded in real precipitation echo. Removal often 

requires rejection of real precipitation echo, which can result in an underestimate of 

rainfall in the scan region. This spurious echo was commonly observed in the trailing 

stratiform components of large SLMCSs propagating through the scan region. Therefore, 

there was a need to sacrifice some stratiform coverage to eliminate artificial convection. 

Most egregious anomalies remaining in the data were, however, removed during 

processing by the situation-specific parameter filtering discussed (Fig. 13). 
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Fig. 13 Radar reflectivity data displayed as a) raw data and b) quality controlled data. Spurious echo 
was removed via quality control efforts employing GVS 1C51 software. Radar range rings are given 

every 50 km. 
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e. Rainfall estimation and convective-stratiform partitioning 

After QC of the dataset, reflectivity data was used to estimate rainfall. Sauvageot 

and Lacaux (1995) analyzed drop size distribution (DSD) shape with respect to rainfall 

rates from disdrometer data obtained for several locations in Africa and France, with 

continental African sites at Niamey, Niger and Boyele, Congo. Averaged DSDs were 

used to remove random variations inherent in the instantaneous DSD measurement due to 

such complications as kinematic effect on drop trajectory. A lognormal distribution was 

used to represent averaged drop spectra, where concentration of small drops was very 

low. Reflectivity - rainfall rates (Z-Rs) were obtained through direct regression of raw 

disdrometer data at a one minute resolution. The Z-R used for this study was: 

Z = 3647?136 (5) 

The general approach of Rickenbach and Rutledge (1998) was followed for 

convective-stratiform partitioning and may be consulted for a more detailed account of 

the approach used; a general overview is provided here. Identification of convective and 

stratiform regions would ideally come from direct measurements of vertical air motion 

magnitudes (Houze 1993), with strong vertical updrafts associated with convective cells. 

These data are not available for convection in the radar range during AMMA; and 

therefore an indirect method is required to identify convective and stratiform regions. 

Assessment of spatial radar reflectivity gradients allows the isolation of intense, 

horizontally variable precipitation from weaker, extensive precipitation indicative of 

convective and stratiform rain, respectively (Steiner et al. 1995; Rickenbach and 

Rutledge 1998). Criteria for this convective rain-identifying technique are intensity and 
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peakedness, a local reflectivity maximum of specified strength. The intensity criterion 

was satisfied when reflectivity > 40 dBZ, implying convective rain. Local maxima less 

than the 40 dBZ threshold may also be considered convective if a peakedness criterion is 

met. The value must exceed the mean reflectivity in an 11 km circular radius about the 

point by 4.5 dBZ, which equates roughly to a factor of two in rainfall rate. Upon 

convective cell designation, a circular cell about the point, with radius between 1 and 5 

km, are considered convective. All other reflectivities are considered stratiform 

precipitation. A SLMCS case is shown in Fig. 14, with the reflectivity map of the QCed 

radar data (Fig. 14a), and the accompanying convective-stratiform partition map 

generated through the algorithm discussed (Fig. 14b). The linear, leading structure of 

strong convection can be seen (red and yellow in Fig. 14b) with a substantial trailing 

stratiform component (blue in Fig. 14b). There is no apparent echo beyond 130 km, 

which is a product of the partitioning algorithm that does not extend beyond this range, 

due to the low resolution of data and the radial differencing calculations employed. 

Comparison to the reflectivity map shows that the partitioning algorithm effectively 

separates the components. 
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Fig. 14 A large squall line mesoscale convective system event plotted as a) reflectivity and b) 
convective-stratiform component map. The reflectivity map is generated from corrected radar data, 

while the convective-stratiform map is resultant from a partitioning algorithm operating on 
corrected radar data. A linear, strong leading convective edge is apparent with a large trailing 

stratiform component. The color gradation in a) is related to reflectivity value (dBZ), while in b) red 
and yellow represent areas of convection and blue show areas of stratiform. 
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4. Results 

a. QCperformance 

Default QC parameters effectively erased spurious echo such as ground clutter 

and weak 2nd trip echo. Figure 15 shows examples of a) weak and b) strong ground 

clutter and clear air signals that are effectively removed (Figs. 15c-d) by application of 

default parameters in the QC algorithm. Morning inversions, more prevalent in 

September (Fig. 15c), were also efficiently removed by this basic default state. Given 

that these egregious signals are present at the lowest scan levels; vertical extent of the 

contamination up to 3.5 km is unlikely to occur. Reflectivity values are relatively weak 

when compared to convective reflectivities, even in the case of Fig. 15b, which shows the 

strong noise case. The maximum reflectivities are generally no more than 10 dBZ, while 

the default parameters will filter signal less than 16 dBZ. 

As a radar pulse propagates away from the source, beam divergence due to non

zero beamwidth results in a larger scan area. If a storm is detected outside of the 

unambiguous radar range, the signal will be aliased within the scan area (a function of the 

wave characteristics of the radar pulse). The aliased signal will appear in a volume 

smaller than that sampled and will therefore appear as an elongated reflectivity signal 

along the radius of displayed scan area. This is referred to as 2nd trip echo, and is shown 

in Fig. 16. An example of weak 2nd trip echo is shown in Fig. 16a where only noise is 

present with no precipitation, while Fig. 16b shows 2nd trip echo preceding an 

approaching MCS, with precipitation signal beginning to appear near 3.5°E, 13.25°N. 

This spurious signal may also be embedded within and adjacent to precipitation signal as 
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seen in Fig. 16c. Default parameters, as discussed above, often remove weak 2nd trip 

signal (Fig. 16d), but are unable to remove stronger signal. 
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Fig. 15 Examples of before (a-c) and after (d-f) quality control of radar reflectivity scans containing 
a) weak noise, b) strong noise, and c) noise caused by morning inversions by the GVS 1C51 

algorithm. Radar range rings are given every 50 km. 

i n d . 
The AP scheme in Table 6 is applied for removal of stronger 2 trip echo 

preceding and adjacent to precipitation signal. Figures 16e-f show the remaining 

reflectivity after QC processing, in both cases the convective signal is retained, with a 

small portion of 2nd trip echo remaining at the southern edge of the convective signal 

centered near 1.8°E, 13.5°N. It is evident that some stratiform echo was sacrificed (Fig. 

16f), which caused artificial gaps in the echo cover. Some loss of MCS stratiform may 
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occur due to the condition expressed in Eq. 4, which will filter signal between 15-20 dBZ 

at the lowest tilt angle. 

<dEZ) (dBZ) {JBZ> 

MWi idEL') i dB7) 

Fig. 16 Examples of before (a-c) and after (d-f) quality control of radar reflectivity scans containing 
2nd trip echo a) in pure noise, b) preceding MCS approach, and c) embedded in a precipitation 

signal by the GVS 1C51 algorithm. Radar range rings are given every 50 km. 

Isolated convection is composed of small, individual convective cores (Fig. 17a) 

often formed from local thermal forcing. These storms have a short lifetime and 

normally possess relatively small amounts of stratiform echo compared to MCSs. 

Multiple occurrences in the radar scan area constitute scattered convection (Fig. 17b). 

Default and AP parameter schemes work equally well to QC a file. The decision of 

which scheme to use is dependent upon the level of noise present in the scan. Note that 
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in Fig. 17d, a small piece of non-meteorological echo remains near 1.75°E, 14.7°N 

(northeastern domain at 140 km range) due to a relatively strong reflectivity signal of-35 

dBZ. Applying more stringent QC parameters in this case would result in diminishing 

the meteorological echo in the scans, and begin to sacrifice convective precipitation 

signal. The non-meteorological echo was diminished to a small area with reflectivity that 

is too weak for convection, and the precipitation contribution from this echo is 

sufficiently small enough to warrant no further removal iterations. 

MIT Radar mm 150km W l at 2 mi 15 Sep 2006 PB51Z 

MtT Raaar AidMA 150km CAFPI at 1 Km: 15 Sep 2QP6 0S51Z 

Fig. 17 Examples of before (a-b) and after (c-d) quality control of radar reflectivity scans containing 
a) isolated and b) scattered convection by the GVS 1C51 algorithm. Radar range rings are given 

every 50 km. 

Mir Radar AMMA n c w m CAPPI at 2 km: QG Jul 2006 171U 

MIT Radar AMMA 150WTi CAPPI at 1 km: Qb -Jul 2CHJtl 171'IZ 

45 



Retention of MCS precipitation was an important aspect of this study. A MCS 

covering nearly one quadrant of the radar scan area is examined in Fig. 18 a, while 

another MCS system that occupies almost the entire scan region is shown in Fig. 18b. 

AP and 2nd trip echo are clearly visible in the scans and were efficiently removed in 

regions adjacent to precipitation signal (Fig. 18c). Spurious echo embedded within the 

precipitation signal (Fig. 18d) was not easily removed without sacrificing convective 

precipitation. 
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Fig. 18 Examples of before (a-b) and after (c-d) quality control of radar reflectivity scans containing 
a SLMCS precipitation signal as the system a) enters the scan range and b) passes over the center of 

the radar scan area by the GVS 1C51 algorithm. Radar range rings are given every 50 km. 
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As previously explained, the removal of non-meteorological echo resulted in stratiform 

loss and gaps in MCS stratiform echo (Figs. 19a-d). However, the loss of precipitation 

due to QC echo removal in the reflectivity range of 1 - 10 dBZ, corresponding to a 

rainrate range of 0.013 - 0.071 mm-hr"1, is negligible. 
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Fig. 19 Examples of before (a-b) and after (c- d) quality control of radar reflectivity scans containing 
stratiform precipitation signal a) not associated with a large-scale system and b) trailing a SLMCS by 

the GVS 1C51 algorithm. Radar range rings are given every 50 km. 

Per the previous discussion, parameter sets are not only site-dependent, but specific to 

event occurrence and level of non-meteorological echo within the scan file. A decision 

tree documenting the appropriate parameter set for various situations is shown in Fig. 20. 
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Fig. 20 Flowchart of the decision tree for quality control algorithm application and parameter set 
used for various radar scan situations. 

Analysis of QCed data with respect to raw data was performed to gauge the 

degree to which the QC algorithm was successful. The QCed dataset was divided by the 

raw dataset to yield a bias. Rainfall and total area coverage fields were examined for this 

thesis. The QCed dataset should result in less overall precipitation and areal coverage 
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than the raw dataset that contained greater amounts of reflectivity. The entire dataset was 

analyzed and produced similar results. 

A bias was calculated by comparing rainrates attained after QC with those before 

QC (bias = QC / Raw data); values of bias for mean monthly and seasonal rainfall are 

shown (Table 7). Looking at the month of August, the bias of the means is - 5 1 % for all 

events, while QCed MCS scale events (not shown) exhibit a bias of means of-74%. 

Temporal distribution of bias roughly follows the time series of rainrate values 

extrapolated from reflectivity data. 

Table 7. Mean monthly rainfall and total area per month and seasonally bias calculations during the 
2006 West African monsoon season. 

Rainfall Bias 

Total Area Bias 

July 

0.3837 

0.2041 

August 

0.5061 

0.3189 

September 

0.3287 

0.1725 

Seasonal Mean 

0.4062 

0.2318 

Also shown in Table 7 are monthly and seasonal biases of mean area, where 

August has a bias of-32% for all events, while QCed MCS scale events exhibit bias of 

-54% of raw data values. The bias distribution follows the monthly rainfall and area 

coverage discussed later. A lower retention of area coverage is expected, as optimization 

of the QC algorithm required the loss of stratiform. While the stratiform component 

contributes a large total amount of echo area, the convective component is more intense 

and contributes greatly to rainfall totals. 

To confirm that the QC algorithm was successful, analysis of the frequency of 

occurrence of bias fractions was plotted for sub-MCS and MCS-scale events. Bias of 
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remaining rainfall in MCS-scale events after QC showed a bimodal structure (Figs. 21a-

c), with a peak at 0 and ~80% for July, August, and September. September presents a 

lower frequency due to the fact that less MCS-scale events occurred, resulting in a lower 

number of files for examination when compared to July and August. Sub-MCS event 

plots (Figs. 21d-f) are less dramatic for the same reason stated for September MCS cases, 

though the rough bimodal structure is still visible. The peak at 0% can be explained by 

the large number of cases in which no precipitation was present in the scan region, so all 

non-meteorological echo was removed via a complete removal parameter set. The 

second peak occurring near 80% suggests that in a large number of MCS-scale cases the 

majority of precipitation was retained. With the frequency between these two peaks low, 

MCS information retention was achieved. 
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Fig. 21 Relative frequency of rainfall bias (in percent) for July a) MCS and d) sub-MCS scale events; 
August b) MCS and e) sub-MCS scale events; and September c) MCS and f) sub-MCS scale events. 
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As suggested by the mean values above, retention of area coverage was not as 

successful as rainfall. Sacrifice of the stratiform component resulted in much less area 

associated with the MCS after QC. Frequency distribution of MCS-scale events was 

broader without substantial peaks outside of the zero peak discussed above (Figs. 22a-c). 

As mentioned previously, sub-MCS events do not have a large stratiform component and 

were often accompanied by weak non-meteorological echo. This combination resulted in 

an apparent low frequency in greater retention of echo area (Figs. 22d-e), though this 

means that there was a large amount of spurious weak echo that the QC algorithm 

successfully removed. 
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b. Rainfall estimates 

Rainfall production is forced by the annual variability of moisture fields 

transported by an advancing ITCZ; on average the ITCZ reaching the most northerly 

extent in August. Individual storm propagation, duration and occurrence time was of 

interest for precipitation morphology and structure and characterization of the role of 

SLMCSs in synoptic-scale patterns. 

Le Barbe and Lebel (1997) and Laurent et al. (1998) found that July and August 

represent the "core" of the rainy season, when the greatest frequency of rainfall events 

occurs. There was an increase leading up to this point with a sharp decrease through 

October, observed in multiyear rain gauge data. Monthly rainfall rate time series plotted 

to examine the intensity and variability of precipitation during the monsoon season are 

shown in Figs. 23-25 for July, August, and September. Unconditional rainrate is defined 

as the rainrate over the scan region. 
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Fig. 23 July radar reflectivity-estimated rainfall rate for total (black), convective (red) and stratiform 
(blue) precipitation components. This 10 minute interval data indicates the temporal passage of rain 

events, most with close connection to MCSs. 
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Though full volume scans were only available starting from 5 July, surveillance 

scans acquired beginning 24 June, suggested that the monsoon season onset occurred in 

early July. Local rainfall rate maxima indicate propagation of events across the scan 

region, where all maxima with peak > 0.5 mm-hr"1 were MCS-scale events, with general 

westward movement. The onset was characterized by active rain events with a maximum 

rainfall rate > 2.5 mm-hr"1, where approximately 25% achieved a rainfall rate > ~1.5 

mm-hr"1. As the monsoon season progressed into August, more frequent and 

homogeneous rainfall rate events occurred with approximately 40% of the events near 1.5 

mm-hr"1. The end of the monsoon season in September recorded less frequent and less 

active storms, where only ~17% possessed a rainfall rate of ~1.5 mm-hr"1. 

MCS-scale storm duration displayed large variability throughout the monsoon 

season (Fig. 26), where storm duration was denned as the time from when a MCS 

propagated into the radar scan region until trailing stratiform precipitation associated with 

the system dissipated or departed the sample area. SLMCS sampling times ranged from 

~2-28 h, with a mean of 12.1 h, with mean monthly event duration decreasing throughout 

the season. 
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Fig. 26 Duration of MCSs throughout the West African monsoon season. Regions are divided (heavy 
vertical dashed line) based on month in which system occurred. 

Previous studies report SLMCS lifetimes between 10-13 h (Aspliden et al. 1976; Payne 

and McGarry, 1977; Rowell and Milford, 1993; Fink and Reiner 1999). Results from this 

study likely underestimate actual storm duration, because stationary, ground-based radar 

limits the observation field and may not record the full lifetime of a storm. The 

decreasing duration could suggest SLMCSs occur with greater speed at the beginning of 

the season; however, if genesis location was temporally dependent, there is no way to 

verify this with radar data alone. However, event duration revealed the time interval that 
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each MCS impacted the local region; an important parameter in whether or not this was 

controlled by system lifetime or system propagation. 

Relation of precipitation events to prevailing larger scale flow was analyzed via 

spectral analyses of rainfall time series. The Fourier transform technique was applied, in 

which the rainfall time series were decomposed into sinusoidal components. Specifically 

a fast Fourier transform (FFT) algorithm, which allows more efficient processing of the 

discrete Fourier transform as fewer computations are required, was applied. The FFT 

reveals periodicities in a data set and the relative strength of the periodic components. 

Data series were divided in two distinct sets for analysis; separated by month and 

also bisected into approximately equal time periods. Both data groups yielded similar 

results, suggesting a robust confirmation of storm frequency. A strong one day diurnal 

harmonic was found, as expected, and a 2-4 d frequency of SLMCS event passage (Fig. 

27) was extrapolated. The latter suggests a direct connection to AEWs and will be 

expanded upon in section 4f. FFTs of monthly rainfall data, shown in Fig. 27, are noisy 

as a result of the chaotic nature of rainfall. Application of low-, high- and band-pass 

filters resulted in the loss of significant rainfall event period information, suggesting that 

both high and low frequency forcing are key contributors to the variability of WAM 

precipitation. 
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Fig. 27 Spectral analyses of monthly rainfall time series data to assess periodicity of dataset. Fourier 
transform algorithm analysis of rainfall frequency is shown for a) July, b) August, and c) September. 
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c. Rainfall and area coverage 

MCS events dominated (88%) the total precipitation during the wet season and 

contained a larger convective rain fraction at the start of the season compared to later 

months (Fig. 28), with a decrease in each subsequent month. Laurent et al. (1998) found 

a similar fraction of MCS precipitation (of total) at 95% with the EPSAT - Niger rain 

gauge dataset. As expected, convective rain contributed the majority of total rainfall 

during the WAM season (59%), with July possessing substantially higher convective rain 

fraction than August and September. 

AMMA 2006 MCS Rainfall 

July August 

Month 

September 

Fig. 28 Monthly convective (dark) and stratiform (light) rainfall portions of total precipitation in 
MCSs, in terms of radar reflectivity-converted rainrate per hour. 

Conditional rainfall rates, defined as rainrate in area where rain occurs, revealed 

that July experienced the highest fraction of convective precipitation. By definition 
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conditional rainrates may be viewed as rainrate per unit area, or intensity of rainfall. This 

suggests that July events were the most intense of the season. July also possessed the 

highest convective rain fraction for sub-MCS scale systems, suggesting greater local 

instability near the beginning of the season, preceding synoptic-dominated forcing found 

as the season progressed. Larger convective rain fractions are consistent with weaker 

synoptic forcing (leading to less synoptic-scale weak ascent and thus less stratiform rain), 

lifting and moistening in easterly wave troughs, earlier in the season as discussed later. 

As expected for the Sahel region, observed monsoon MCSs exhibited the trailing 

stratiform structure discussed earlier, resulting in mostly stratiform (87%) mean SLMCS 

precipitation area. Using a slightly different definition discussed earlier, Mathon et al. 

(2002) found that 78% of cloud cover was associated with OCSs, a sub-group of MCSs, 

while this study finds that 85% of echo area results from MCSs. The monsoon season 

peaked in intensity in terms of precipitation and number of events in August. This would 

suggest that synoptic forcing was greatest at this time due to greater easterly wave 

activity as the ITCZ reaches the furthest north before receding back toward the equator. 

This forcing leads to the largest SLMCS area in August at ~6 % of total scan area, while 

July SLMCSs cover ~4 % of the total area and September ~3 % of scan area. Because 

the WAM is defined in terms of rainfall this suggests the season peaks in August along 

with the largest number of systems and area covered. Figure 29 shows area coverage 

normalized to the total area covered each month, suggesting that July convection 

represents a larger portion of area coverage of SLMCS storms. The vertical axis in Fig. 

29 has an upper limit of 0.2 to display characteristics of the convective portion. Due to 
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the fact that the convective component is a small portion of the total area coverage, the 

display has been modified to highlight the most interesting features. Stratiform coverage 

encompasses the remainder of the normalized mean area to unity. 

AMMA 2006 MCS Area Coverage 
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Fig. 29 Monthly convective (dark) and stratiform (light) portions of total areal coverage 
encompassed by MCSs. Each month is normalized separately against total area covered by MCSs. 

d. Diurnal composites 

Monthly diurnal composites were constructed separately for SLMCS (Fig. 30) 

and sub-MCS scale events (Fig. 31). The vertical scale of Fig. 30 is approximately ten 

times greater than that of Fig. 31, showing that MCS systems provided a much larger 

contribution to rainfall than sub-MCS systems. The peak in the SLMCS diurnal 

composite plot showed a strong preference to pass through the radar domain near sunrise 

(07 UTC), occurring every 2-4 days according to spectral analysis and observations. A 
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late afternoon peak in the sub-MCS diurnal composite can be related to afternoon 

convection resulting from surface heating throughout the day. 

AMMA 2006 Average Rainfall Diurnal Composite—mcs 
Q g r — i 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 r 

Fig. 30 Seasonal diurnal composite of average rainfall for SLMCSs. Seasonal total (black) of July 
(red), August (blue), and September (green) are plotted as a function of hour of day. 
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Fig. 31 Seasonal diurnal composite of average rainfall for sub-MCS events. Seasonal total (black) of 
July (red), August (blue), and September (green) are plotted as a function of hour of day. 
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A frequency distribution of SLMCS passage during the WAM season is shown in 

Fig. 32, where passage is defined as the time when the storm was located over the center 

of the radar scan area. A clear preference for morning hours is observed with a peak at 

07 UTC, with a small secondary peak of only three occurrences centered near 14 UTC. 

This diurnal phase-locking suggests a common temporal and spatial SLMCS origin east 

of Niamey, with system generation linked to AEW propagation. The small secondary 

peaks seen in the afternoon suggest an alternative genesis connected to local convective 

forcing (diurnal cycle). 
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Niamey 2006 SLMCS Event Frequency 
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Fig. 32 Frequency histogram of SLMCS passage over radar during the West African monsoon season 
in Niamey, Niger. 

Examination of diurnal data from the EPSAT - Niger experiment by Shinoda et 

al. (1999) shows a strong precipitation signal at 08 UTC, which compares well with the 

results from this study. Mathon et al. (2002) confirm the idea posited by Shinoda et al. 

(1999) that the early morning Niamey precipitation signal is resultant from SLMCS 
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genesis at a point east of the radar area, by plotting system genesis location. Generation 

often occurs in the afternoon over eastern Niger at the southern end of the Air Mountains, 

and propagation speeds place them in the Niamey area during nocturnal hours. Ferreira 

et al. (2008) provide a similar conclusion for the radar dataset used in this study through 

satellite analysis of SLMCS and easterly wave genesis. 

Slight difference in precipitation maxima could result from the difference in 

analysis technique from study to study. For example, a three hour average of rainfall data 

was used by Shinoda et al. (1999), while this study worked with one hour averages. 

Variable average AEW propagation speeds (Fink and Reiner 2003; Berry et al. 2007) 

may transport disturbances at different rates through sample regions, while SLMCSs 

embedded near troughs would experience a range of propagation speeds (Aspliden et al, 

1976; Fink and Reiner 1999). Mathon et al. (2002) also confirm a nocturnal precipitation 

signal. 

Sub-MCS events (Fig. 33) were locally generated in the late afternoon, with a 

seasonal average of 15 UTC, by solar heating resulting in small-scale instability. 

Monthly data shows some variability, with an August maximum occurrence 2-3 hours 

earlier. Figure 33 shows scattered, isolated convection to the west and south of the radar. 

This represents a typical local convection scenario, with generally smaller events, but 

ranging in size and localization. Reflectivity shows that these events are primarily 

associated with a small convective core without a great deal of stratiform surrounding the 

core. 
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Fig. 33 Isolated local convection in south and western portion of the radar scan domain during the 
afternoon of 10 July 2006. Radar range rings are given every 50 km. 

Shinoda et al. (1999) show the same temporal relationship of convective occurrence, 

though seasonal data is used and therefore finer-scale time resolution is not possible. 

This study hypothesizes that stronger synoptic forcing in mid-season likely weakened 

convective inhibition (CIN), resulting in rain initiation earlier in the day during August 

compared to other months. Convective available potential energy (CAPE) is highly 

dependent upon air mass properties. The furthest northward progression of the ITCZ 

occurs during August, bringing more moisture and higher relative humidity values, which 

in turn increase CAPE. Figure 34 shows 10 day rainfall estimates for a) January (winter), 
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b) April (spring), c) August (summer), and d) November (fall) based on satellite and rain 

gauge data generated by the Climate Prediction Center 

(http://www.cpc.ncep.noaa.gov/products/fews/rfe.shtml). 

NOAA CPC FEWS-NET Rainfall Estimate ( m m ) : 
based on Satellite and Rain Gauge Data 

N O M CPC FEWS-NET Rainfall Estimate ( m m ) : 
based on Satellite and Rain Gauge Data 

JANUARY 01-10 2008 APRIL 01-10 2006 

NOAA CPC FEWS-NET Rainfall Estimate (mm) : N 0 A A C P C FEWS-NET Rainfall Estimate ( m m ) : 

based on Satellite and Rain Gauge Data b a s e d o n S°W** and Rain Gauge Data 

AUC05T 01 -10 2006 NOVCMDCI? 01 -.0 20M 

Fig. 34 Rainfall estimates for a) January (winter), b) April (spring), c) August (summer), and d) 
November (fall) derived from satellite and rain gauge data. Plots generated by the Climate 

Prediction Center (http://www.cpc.ncep.noaa.gov/products/fews/rfe.shtml). 
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The moist air mass is transported north into eastern Africa and then transported west over 

Niamey by synoptic flow resulting in convective genesis. Vertical transport of moist air 

in large-scale ascent from synoptic forcing in the region may have weakened CIN and 

lowered the threshold of daily heating required for convective initiation (thus earlier 

diurnal convection). 

e. Vertical structure 

The WAM supplies a large amount of rainfall to the Niamey region, with 

contributions from both sub-MCS and MCS-scale systems. Though SLMCSs contribute 

the vast majority of precipitation, sub-MCS events are also important in understanding 

the underlying dynamics involved in storm generation and structure for the Niamey 

region. Large amounts of precipitation are often associated with deep convection. 

Petersen and Rutledge (2001) note that cloud cover and lightning flash density, both used 

as indicators of deep, intense convective rainfall, may not present a completely accurate 

picture of precipitation capability. Demott and Rutledge (1998a) found that over the 

tropical oceans where warm rain processes are important, the vertical depth of convection 

does not necessarily correlate with heavy rainfall. Over land, heavy tropical rainfall is 

better correlated with deeper convection (Zipser 1994). 

Mean vertical reflectivity profiles for the 2006 WAM season were created, with 

analysis limited to below 13 km, where areal coverage of radar echo was at least 15% of 

coverage at the 1 km analysis height (Yuter and Houze 1995). Profiles were calculated 

for the entire season and monthly for July, August, and September (Fig. 35). Output was 
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divided into three panels: all events, convective, and stratiform components (according 

the convective-stratiform partitioning discussed in section 3e). Maximum reflectivity 

values are recorded between 3-4 km AGL, with July exhibiting stronger reflectivity 

values than August and September. The profiles indicate that July exhibits deeper 

convection, indicated by higher reflectivity values aloft, implying stronger convective 

updrafts lifted larger ice particles higher in the storm, enhancing the precipitation process. 

This strengthens results shown in Figs. 23-25 revealing July to have higher rainrate 

values than August and September, suggestive of more intense precipitation. Events in 

July were less numerous than August, however, yielding less total rainfall. 
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Fig. 35 MIT radar mean vertical reflectivity profile for the 2006 West African monsoon season 
(black); and sub-divided by month: July (green) and August (red) and September (blue). The top 
panel represents all events, while the middle and bottom panels show convective and stratiform 

components of the events, respectively. 
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Vertical structure of observed SLMCSs were likely similar to tropical continental 

systems studied previously (Petersen and Rutledge 2001; Rickenbach et al. 2002). Then 

assuming a nominal melting level of 5 km altitude, results summarized by Petersen and 

Rutledge (2001) indicate that profiles with reflectivities >30 dBZ concentrated below the 

freezing level suggest dominant warm rain convective processes. The difference between 

mean reflectivity values increased more quickly with height in July than the other months 

up to the freezing level for total, convective, and stratiform areas. Yet, above the 

nominal melting level, the July profiles were several dB higher than August or 

September. This suggests increased water mass in the lower and upper troposphere in 

July when compared to August and September, consistent with both an enhanced warm 

rain process and stronger updrafts. 

Next the seasonal mean vertical reflectivity profile was separated into SLMCS 

and sub-MCS events, with profiles calculated for both cases (Fig. 36). Comparing the 

curves reveals that the seasonal profile of all events is most heavily influenced by the 

SLMCS case, which is likely due to SLMCS events providing the majority of 

precipitation through the season. The SLMCS mean vertical reflectivity profile is much 

different than that of sub-MCS events. When comparing the SLMCS case and the sub-

MCS cases, the relative reflectivity value maximum for the sub-MCS case occurs slightly 

lower than the SLMCS case at ~3 km, but the reflectivity value does not substantially 

change throughout the vertical profile. It is apparent that the SLMCS case exhibits 

higher reflectivity values up to ~7 km, at which point the opposite is true. This is 

suggestive of intense small-scale convection, supporting the notion that strong diurnal 
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forcing allows for deep vertical development. These storms are small and short-lived, 

however, producing a small sample size which introduces inherent statistical noise into 

profile analysis. It is shown that sub-MCS convection does not provide a great deal of 

rainfall over the course of the WAM season. The fact that SLMCS cases show greater 

reflectivity values to the mid- to upper-troposphere (7 km) suggests that synoptic forcing 

associated with SLMCS systems plays a greater role during the monsoon season. 
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Fig. 36 MIT radar mean vertical reflectivity profile for the 2006 West African monsoon season (solid 
line); and sub-divided into SLMCS (dotted line) and sub-MCS (dashed line) scale components. The 
top panel represents all events, while the middle and bottom panels show convective and stratiform 

components of the events, respectively. 
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Time series of mean 30 dBZ contour heights were constructed as a measure of 

convective intensity (Fig. 37). Data were summed into one day intervals for averaging, 

effectively applying a time filter that reduced the short-term variability of the dataset. 

The daily rainfall values were normalized to monthly maximum values to provide 

correlation between contour heights and rainfall. Monthly averages of mean 30 dBZ 

contour heights were calculated with July at 1.68, August at 1.65, and September at 1.11 

km. This suggests that July possessed more intense convection, but due to less frequent 

events, August produced more monthly rainfall. Fig. 37 suggests an irregular 7-10 day 

variation in mean convective strength, a timescale greater than the 3-5 day AEW 

variability. Future work will investigate the synoptic factors controlling changes in 

vertical structure. 
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Fig. 37 MIT radar mean 30 dBZ contour height time series (solid line) for a) July, b) August, and c) 
September 2006. The dashed line indicates daily rainfall normalized against the monthly maximum. 

Local maxima of the normalized rainfall series are closely related with peaks in 

the mean 30 dBZ contour heights, showing a substantial correlation between convective 

intensity and rainfall. Using the mean 30 dBZ contour height as a measure of intensity 

suggests that the sub-Sahelian region produces intense convective precipitation similar to 

other tropical regions (Petersen and Rutledge 2001). The WAM reflectivity profiles 
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suggest behavior much like other continental monsoon regions, with large variability in 

convective structure, but similar to isolated oceanic regions during the wet season. 

f. SLMCSs and AEWs 

In parallel with the results of this thesis, Ferreira et al. 2008 investigated the 

relationship between SLMCSs and AEWs. Analysis of Global Precipitation Climatology 

Project (GPCP) satellite-based observations were used to identify precipitation 

anomalies, while National Center for Environmental Prediction reanalysis data were used 

to interpret AEW position over tropical Africa (Ferreira et al. 2008). The westward 

propagation of AEWs was tracked by positive vorticity centers and showed that SLMCSs 

tended to occur ahead of the passage of an AEW trough during this period, located to the 

northwest of the AEW trough. Fink and Reiner (1999) suggest a preferential SLMCS 

formation in the area west of AEW troughs, consistent with Ferreira et al. 2008. The 

change in the central latitude of the ITCZ results in AEW propagation along the northern 

edge of the ITCZ where flow instability that maintains the waves is maximized. The 

radar results of this thesis will be integrated with the results of Ferreira et al. (2008) in a 

journal article in preparation. 
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5. Conclusion 

The AMMA summer 2006 intensive observational period provided land-based 

radar data for the sub-Sahel region of Niamey, Niger. The reflectivity data were used for 

analysis of structure and propagation of MCSs during the onset and development of the 

WAM season. Study of relative precipitation of convective systems provided insight into 

the interaction between MCSs and the surrounding environment. Improved 

understanding of these WAM characteristics and mechanisms offer valuable information 

of the hydrological and thermodynamic budget; and improved understanding of the 

variability and predictability of the WAM. 

Radar data provides valuable information regarding storm structure and genesis, 

but may be hidden by sources of error inherent to radar setups. To obtain reliable and 

robust data for further detailed analyses, a QC algorithm was applied to the dataset to 

ensure that egregious artifacts were removed. Many methods have been established for 

the removal of spurious echo and perform well in a research environment. GSFC has 

developed one such robust package and made it freely available. The GVS 1C51 

software package utilizing a modified version of the Rosenfeld et al. (1995) algorithm 

was employed for the radar data set collected in order to study the 2006 WAM season. 

The algorithm parameters were optimized for this study to produce the best results in 

removal of non-meteorological echo, while retaining the greatest amount of valid echo 

possible. 

Once satisfactory removal of false echo was attained, the data were interpolated to 

a Cartesian grid and mapped as convective and stratiform components, using available 
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software packages and software packages developed in-house. Final data output revealed 

substantial suppression of non-meteorological echo, though some stratiform precipitation 

was sacrificed to obtain optimum performance of the QC algorithm. Resultant 

convective events showed proficient QC results, with embedded 2nd trip echo proving 

most difficult for removal. The data has since been requested by and transferred to 

Meteo-France for future studies, and is available online 

(http://amma_catalogue.mediasfrance.org/EditDataset.do ?datsld=129). 

Analysis of precipitation and cloud cover allowed for development of a better 

understanding of sub-MCS and MCS-scale systems during the WAM. Observed rainfall 

reached a maximum in August and tapered dramatically in September. Through 

examination of estimated rainrates and vertical reflectivity structure, July exhibited the 

most intense convection. Analysis of 30 dBZ contour heights confirmed this result and 

suggested weak vertical motion and warm rain processes, similar to other continental 

monsoonal regions. 

Rainfall in the Niamey region was associated primarily with SLMCSs, with 

trailing stratiform squall line structure as observed previously. Convective rainfall 

contributed slightly more of total rainfall (59%) than the stratiform component, though 

stratiform cloud cover dominated precipitation areal coverage (87%). Spectral analysis 

was performed on rainfall time series to attain the expected diurnal convection signal and 

a signal of 2-4 day passage time, consistent with results from parallel research (Ferreira et 

al. 2008) showing AEW propagation through Niamey. 
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Future study of individual storm thermodynamic structure may result in a more 

refined characterization of environmental forcing properties inherent to WAM in the 

Niamey region. Though not the focus of this study, a statistical analysis of storm 

propagation and vertical intensity might be combined with spatiotemporal AEW 

characteristics to gain a greater understanding of sub-Sahelian SLMCSs before reaching 

the western African coast where propagation across the Atlantic is a possibility. Also, 

quantitative rainfall estimates may be produced as a comparison to rain gauge network 

data and used as basis of SLMCS tracking via satellite. 
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APPENDICES 

Appendix A List of Symbols 

R rainfall rate 

Z radar reflectivity 

ZdBz radar reflectivity threshold 

Zmax maximum reflectivity value 

Ztop echo top height 

h height 
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Appendix B List of Acronyms 

AEJ African Easterly Jet 

AEW African Easterly wave 

AGL Above ground level 

AP Anomalous propagation 

AMMA African Monsoon Multidisciplinary Activities 

CAPE Convective Available Potential Energy 

CAPPI Constant Altitude Plan Position Indicator 

CDF network Common Data Form 

CIN Convective Inhibition 

DSD Drop size distribution 

EPSAT Etudes des Precipitations par Satellite 

FFT Fast Fourier transform 

GARP Global Atmospheric Research Project 

GATE GARP Atlantic Tropical Experiment 

GSFC Goddard Space Flight Center 

GVS Ground Validation System 

IR Infrared 

IRIS Interactive Radar Information System 

IDL Interactive Data Language 

ITCZ Intertropical convergence zone 

ITF Inter-tropical front 
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LT 

LW 

MCC 

MCS 

MIT 

OCS 

PRF 

QC 

RHI 

RSL 

SAL 

SJSU 

SLMCS 

SW 

TRMM 

TSVO 

UF 

UTC 

WAM 

WAMEX 

Z-R 

Local time 

Long-wave radiation 

Meso scale convective complex 

Meso scale convective system 

Massachusetts Institute of Technology 

Organized convective system 

Pulse repetition frequency 

Quality control 

Range Height Indicator 

Radar Software Library 

Saharan air layer 

San Jose State University 

Squall line MCS 

Short-wave radiation 

Tropical Rainfall Measurement Mission 

TRMM Satellite Validation Office 

Universal format 

Universal Coordinated Time 

West African Monsoon 

West African Monsoon Experiment 

Reflectivity - rainfall rate 
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