San Jose State University

SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

1996

Object-Oriented Design and Literate
Programming

Glen D. Finston
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd theses

Recommended Citation

Finston, Glen D., "Object-Oriented Design and Literate Programming" (1996). Master’s Theses. 1363.
DOTI: https://doi.org/10.31979/etd.8jsS-pqht
https://scholarworks.sjsu.edu/etd_theses/1363

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for

inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F1363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F1363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F1363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F1363&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/1363?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F1363&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9” black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company
300 North Zeeb Road, Ann Arbor MI 48106-1346 USA
31377614700 800/521-0600

OBJECT-ORIENTED DESIGN

AND LITERATE PROGRAMMING

A Thesis
Presented to
The Faculty of the Department of Mathematics and Computer Science

San Jose State University

In Partial Fulfiliment
of the Requirements for the Degree

Master of Science

by
Gilen D. Finston

December 1996

UMI Number: 1382567

UMI Microform 1382567
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI

300 North Zeeb Road
Ann Arbor, MI 48103

€ 1996

Glen David Finston

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF MATHEMATICS AND
COMPUTER SCIENCE

NN R (L —

Dr. Cagl Horstmann

Db e

Dr. Kenneth Louden

any N

Dr. Rudy Rucker

APPROVED FOR THE UNIVERSITY

lora \ﬂ/ﬂzé:?&/;

ABSTRACT

OBJECT-ORIENTED DESIGN
AND LITERATE PROGRAMMING

by Glen D. Finston

[n the first part of this thesis. principles of Object-Oriented Design in C++
are reviewed with a focus on the properties of classes and objects. the Booch
Object-Oriented Design methodology. and the complexity of svstems. The
second part of this thesis discusses formal Literate Programming. first proposed
by Donald Knuth of Stanford University in 1982. A Microsoft Windows C—
Application Design Tool. known as Cloud9 and created by San Jose State
students. is enhanced to include the capability for Literate Programming. The
main ideas behind Knuth's Literate Programming system. known as WEB. are
presented in the application enhancement. Furthermore. the application
enhancement moves the concepts of formal Literate Programming into current
standards of documentation by allowing the user of Cloud9 to create online hyper-
linked documentation for his/her in-process design. The obstacles encountered in
performing this enhancement constitute the primary focus of this part of the

thesis.

(D]

(VR

TABLE OF CONTENTS
PARTI: OBJECT-ORIENTED DESIGN
OBJECT-ORIENTED DESIGN AND COMPLEXITY OF SYSTEMS

.1 Object-Oriented Design Introduction and Comparison to
Structured Design

.2 The Structure of Complex Systems - Human Biological Systems

1.3 Corollaries Between the Medical Analogy and Complex Software
Systems

l.4 Limitations of Object-Oriented Design
1.5 Attributes of a Complex System

THE ITERATIVE AND INCREMENTAL NATURE OF
OBJECT-ORIENTED DESIGN

CLASSES AND OBJECTS
3.1 Classes

3.2 Relationships between Classes

3.2.1 Association Relationship

LI
19
1)

Inheritance Relationship

Aggregation Relationship

[v%)
19
|95}

I
19
$-

Using Relationship

3.3 Class Categories

(V%)
4

Objects
3.5 Types of Operations Performed on Objects

3.6 Lifetime of Objects

e

age

(8]

10

10

11

14

14

w

FOUR MAJOR ELEMENTS OF THE OBJECT MODEL

+.1 Abstraction

4.2 Encapsulation

43 Modularity

4.4 Hierarchy

THE BOOCH METHOD

5.1 Diagrams

3.2 Class Diagrams

5.3 Object Diagrams

54 Module Diagrams

3.5 The Steps of the Booch Method

CLOUD9 APPLICATION

6.1

Cloud9 Overview

Class Frameworks

The Document/View Application Model

Cloud9’s Use of the Document/View Application Model
Structure of Code View Hierarchy

Unfinished Features

vi

(V)
(9]

(9]
wn

9

PART II: LITERATE PROGRAMMING

LITERATE PROGRAMMING AND KNUTH'S WEB SYSTEM

7.1 Computer Programming as an Art 36
7.2 Literate Programming and Knuth's Web System 37
CLOUDY SUPPORT FOR LITERATE PROGRAMMING
8.1 On-line Documentation 41
8.2 Cloud9 Support for Literate Programming 42
8.3 Use of Cloud9 for Literate Programming 44
8.4 Cloud9 Addresses the [deas of WEB 46
8.5 Traversal Order of Documentation 48
8.6 Microsoft Help Compiler Source File Format 49
8.7 Implementation 53
8.7.1 Creation of the Rich Text Source File for the Help Compiler
8.7.2 Development of Rich Text Editor Class 58
8.7.3 Rich Text Control Usage 59
8.7.4 Other Enhancements to Cloud9 60
CONCLUSION 61

Vil

LIST OF FIGURES

FIGURE1 HYDROPONICS GARDENING SYSTEM TOP-LEVEL
CLASS DIAGRAM

FIGURE2 HYDROPONICS GARDENING SYSTEM
CLASS DIAGRAM

FIGURE3 PACKING ORDER SCENARIO DIAGRAM

FIGURE4 HYDROPONICS GARDENING SYSTEM MODULE
DIAGRAM

FIGURES PASCAL PROGRAM GENERATED FROM WEB FILE
FIGURE6 TEX PROGRAM GENERATED FROM WEB FILE

FIGURE7 DOCUMENTATION DEFAULT PRE-ORDER
TRAVERSAL ORDER

FIGURE8 ENTER_PAGE FUNCTION
FIGURE9 RICH TEXT SOURCE CODE FOR HELP COMPILER
FIGURE 10 UPDATE_SEEALSO FUNCTION

FIGURE I1 RICH TEXT CONTROL CLASS DEVELOPED FOR
CLOUD9

FIGURE 12 DOCUMENTING A CLASS

FIGURE 13 DOCUMENTING A CLASS - RICH TEXT EDITOR
ACTIVE

FIGURE 14 DOCUMENTING A METHOD

FIGURE 15 RICH TEXT CONTROL USAGE IN C++ CODE
GLOSSARY

REFERENCES

viit

PART I: OBJECT-ORIENTED DESIGN

l OBJECT-ORIENTED DESIGN AND COMPLEXITY OF SYSTEMS

1.1 Object-Oriented Design: Introduction and Comparison to
Structured Design

Object-Oriented Design can be used to model the real world. Just as the real world
contains physical entities with certain behaviors. Object-Oriented Design employs the use
of objects with certain behaviors. Similarly, just as objects interact. communicate and are
grouped together to perform some higher level function in the real world. the same is true
for objects in Object-Oriented Design. In fact. this natural relationship is one of the
foundations that facilitates the use of Object-Oriented Design by human beings. We are
animals who think in terms of objects and interactions between objects and therefore the
design of software by a similar methodology is perhaps the easiest path to understanding
a complex system.

Object-Oriented Design's predecessor. Structured Design, follows an algorithmic
decomposition of the problem into its component parts. In general. structured design
places emphasis on data flow. not on objects, and how data is input. manipulated and
output. "Structured design should be chosen for architectural design when no more
specialized design methodology exists for the application, and when the flow of data can
reasonably be used as the unifying principle of the software."{1]

Structured Design has no built-in mechanism for encapsulation, i.e. hiding the

implementation of data types. All encapsulation must be made explicit by the

programmer. Object-Oriented Design is by default encapsulated because class methods
and member data are private unless stated otherwise.

Using Object-Oriented Design, one can oreak a problem down into the vocabularv
of its inherent domains, modeling the physical entities and their behavior which leads to
simplification of the problem. This is necessary as software systems are becoming
increasingly complex. In order for a single individual to understand a complex.
monolithic software system. one must remember simultaneously vast amounts of
information related to the system. The human brain struggles to understand the essential
elements of a single complex level of abstraction, and a "complete” understanding of a

complex layer of abstraction can take days.

1.2 The Structure of Complex Systems - Human Biological Systems

Human biological systems provide a good example of complex systems and levels
of abstraction. The human being can be ﬁnderstood in terms of systems. i.e. the
circulatory system, the digestive system, the nervous system. etc. Each system unto itself
has a known responsibility in maintaining the human life, but life only exists within the
homeostatic interaction and equilibrium of these systems (strong allegory with software).
The sciences of medicine and biology are still in their infancy in terms of mastery of the
understanding of these complex systems and their inter-relatedness and intra-relatedness.

Doctors fall into the categories of general practitioner or specialist. A general

practitioner is trained in an overview of the human body. while a specialist can spend

[R9]

his/her working life focused on a single complex system (domain) or even organ in the
human body. The entire human body is too vast an organism for an individual to
understand all its various components and systems completely. The general practitioner
generally only needs sufficient understanding of the micro issues involved in key levels
of abstraction of the human body to be what is considered a competent doctor in our
society.

For the specialist, within each organ are levels of abstraction. At the lowest level.
the problem domain of the organ consists of entities or objects such as different kinds of
chemical molecules. The behavior of these molecules in the presence of others enables
aggregates of them to form into entities known as cells. The cell object has a behavior
such as division which involves the splitting of the cell and a copy being generated. The
ability of the cell to split causes larger, as [will call them. tissue objects to emerge.
Groups of tissue objects in turn support a necessary aspect of the organs function and are
responsible for a new higher level of behavior. Each object with its accompanying
behavior interacts with other objects with their own behaviors, and when these objects are
grouped together and examined as a functioning whole. they in tumn as a group exhibit a
higher level behavior. Eventually, the whole picture of the organ begins to emerge.
Ultimately. the organ itself is an object with its own behavior. An organ performs its
higher level behaviors in concert with other organs. producing systems such as the

circulatory system. Specialists and scientists can spend the greater part of their lives

[V3)

devoted to only a few levels of abstraction related to a specific higher level behavior

problem domain within this complex system.

1.3 Corollaries Between the Medical Analogy and Complex Software
Systems

Similar to medical specialists mentioned in 1.2. software engineers play different
roles and work in different levels of abstraction when solving a large. complex problem.
Often. due to the system's complexity. the software engineer needs to become specialized
(at least temporarily) at a particular level of abstraction as design issues necessitate a
more intimate familiarity. These individuals then become insulated from issues involving
other levels of abstraction as they only need know what happens at the interface between
their level of study and the next level above and below. This is due to a concept known
as abstraction discussed below. Armed with a clear understanding of contractual
obligations to other levels. engineers are free to focus on their complex task of efficiently
modeling the behavior(s) exhibited.

A single system. such as the human body discussed previously. can be likened to
a complex software system. The system exists as a functioning whole. vet can be
decomposed into its components or objects. Different objects live at different levels of
abstraction and each object has behaviors associated with it. At any given level of
abstraction. an object symbiotically performs behaviors in concert with other objects

which, when examined externally. are themselves higher level behaviors. Similar to the

human biological system. the entire system is too complex to understand completely.

simultaneously. at micro and macro levels.

1.4 Limitations of Object-Oriented Design

Many complex systems benefit from the use of Object-Oriented Design. There
are limits to the amount of complexity humans can express using solely Structured
Design and functional decomposition. Although Object-Oriented Design provides better
mechanisms for modeling complex systems. in practice some systems are sufficiently
large and complex that even with the best object ideas and use of encapsulation at the
module level. the system is still quite difficult to comprehend. Errors must be
reproducible but in some cases they are not. The system itself becomes a black box in
which inputs generate outputs and sometimes it can be difficult to explain the results.
Changing even a single line of code can take much consideration and deliberation.

Although Object-Oriented Design is a vast improvement. it is not a panacea.

1.5 Attributes of a Complex System
Booch discusses five attributes of a complex system as follows:
"Frequently. complexity takes the form of a hierarchy. whereby a complex system
is composed of interrelated subsystems that have in turn their own subsystems. and so on.
until some lowest level of elementary components is reached."[2] A complex system is

hierarchical and decomposable.

i

"The choice of what components in a system are primitive is relatively arbitrary
and is largely up to the discretion of the observer of the system."[3] Different observers
have different needs which affect their determination of which objects or methods of a
system are useful. Depending on the observer. an object may be simple or elementary.
yet to another observer. the same object may be complex. An observer's focus on a
particular level of abstraction affects this characterization of the object. Also. different
observers view the decomposition of a system differently depending on their own
paradigms and what are considered key components.

Hierarchical systems are decomposable into identifiable components that are
grouped together on the basis of functionality to express some higher level behavior.
"Intra-component linkages (within components) are generally stronger than inter-
component linkages (berween components). This fact has the effect of separating the
high-frequency dynamics of the components - involving the internal structure of the
components - from the low-frequency dynamics - involving interaction among
components."[4] This breaks the view of an object into two perspectives: the internal
view and the external view. The internal aspects of an object can be modified in relative
isolation from the effect such alterations may have on other external objects. There is.
however. the issue of coupling. Strong coupling or a strong association between
modules is undesirable as this makes any one module harder to understand and change
because of its dependencies on other modules. However. strong coupling exists between

classes because inheritance causes significant coupling. In fact. inheritance allows us to

take advantage of the common behaviors and attributes of classes because of the
advantage of strong coupling. There is a healthy tension between these two extremes
which promotes a good design. :

Hierarchical systems are composed of subsystems. and these subsystems can be
categorized into distinct patterns which enable reuse of known stable designs. These
patterns can be reapplied in similar circumstances with minimum effort. “Hierarchic
systems are usually composed of only a few different kinds of subsystems in various
combinations and arrangements.™[5]

"A complex system that works is invariably found to have evolved from a simple
system that worked."[6] Mature complex systems are built upon simple systems. [f the
simple system is proven to work over time. it is worth enlargement. Note that. regarding
complexity and simplicity, an object considered complex when viewed from a particular
level of abstraction is considered simple when viewed from a different level of
abstraction. Similarly. if viewing collections of objects that work together at a particular

level of abstraction as a system. a system is simple or complex. depending on the point of

view of the observer.

2 [TERATIVE AND INCREMENTAL NATURE OF OBJECT-ORIENTED

DESIGN

Software design using the waterfall life cycle decomposes the process into
concrete steps: each step needs to be as complete as possible before the next is allowed to
proceed. Requirements had to be completed before analysis. and analysis before design.
and so on. The approach could be iterative, or have the ability to wrap back to previous
steps as new issues are discovered later in the process. vet this was typically discouraged
as these modifications to a design produce costly propagation effects typically directly
proportional to length of the gap spanned by the iteration.

The Booch method suggests a different approach for software development than
the waterfall life cycle. In practice and contrary to the waterfall model philosophy.
software design is ultimately an iterative process as previous work is affected by
discoveries found later in the process. The Booch method breaks down the software life
cycle into similar concrete steps. yet allows the engineer to switch between design and
analysis with fewer negative effects. This is due to the fact that as tangible objects and
abstract classes are manipulated, both design and analysis are jointly affected. This
codependent relationship enables a quick appraisal of the suitability of the changes to the
problem domain. The flexibility of iteration is further enhanced by Object-Oriented
Design Tools that allow one to examine different structural approaches to a problem and

produce code quickly.

To iterate on an entire stage encompassing the entire problem domain is
inefficient. Instead. Booch suggests iterating on a distinct logical or physical view of the
system. The strong intracomponent linkages that produce a separation of concerns
between parts of a complex system allow the engineer to start small and iterate on a
single part of the system. As these parts become more refined, the cycle is applied to
more of the system incrementally. Eventually, all the different views of the system are
integrated incrementally into a coherent and functional whole. "The difference (from the
waterfall model) is that is this a *mini” set of steps that is applied iteratively to pieces of a
system. In practice. developers analyze a little. design a little. and code a little. Then
they cycle back and do it again, only on more of the system. All of analysis. design and

coding are accomplished. but in a series of cycles rather than three large leaps."[7]

3 CLASSES AND OBJECTS
3.1 Classes

Classes are factories for objects. A class represents a group of related objects. A
class only exists as an abstract concept. It is given life and existence only through its
instantiation into an object. Some classes will never have an instance created. Their
purpose is to provide common behaviors and member data to the classes that inherit from
them.

A class has both data members and methods. (The term "method" is Smalltalk

terminology.) Depending on the programming language. the methods of a class may be

referred to as operations or member functions. These terms will be used interchangeably.
Also. invoking an object's member function can be called sending a message to an object.
For simplicity. I will not use this terminology. In C++. both member data and methods of
a class can be defined as public. protected or private. Member data declared as public are
accessible anywhere within the program. Methods declared as public may be invoked
anywhere within the program. Private member data are accessible only by methods of
the class itself (or its declared friend classes. if any). Private methods can only be
invoked within another method of the same class (or its declared friend classes).
Similarly. at another level. protected member data are accessible only by methods of the
class itself or its subclasses. Protected methods may only be invoked within another
method of the same class or its subclasses. By default. all member data and methods are
private unless declared otherwise. The behavior of a method is determined by the
method called. the objects current state or value of its member data. and the arguments

passed to the method.

LI
3]

Relationships between Classes

3.2.1 Association Relationship

Relationships exist between classes. An association is the weakest kind of
relationship and denotes a relationship in which only a dependency between classes can
be ascribed. For example. in the Object-Oriented Model for a payroll system. objects

might include such entities as employee and company. The nature of the relationship

10

between the two objects is employment. This is merely a semantic dependency. The
direction of the relationship and how one class will be related to the other in the
implementation is unclear in the analysis and design phase. Ascribing a semantic
dependency is the first step in problem domain analysis. Once this dependency is
established. decisions can be made regarding replacement of these weak associations with
more binding relationships between classes. As these relationships become more refined
and stronger as a result of these decisions. the responsibilities of classes becomes clearer.

These more binding relationships include inheritance. aggregation and uses relationships.

3.2.2 I[nheritance Relationship

[nheritance represents an "is a" relationship. Many classes are similar. have the
same basic structure and exhibit the same behavior as other classes. yet they have minor
differences due to their specialized purposes. These classes are related through
inheritance. By stating that a subclass inherits from another class. one can efficiently
explain many of the characteristic properties of an object instantiated from this subclass.
There is no need to restate the properties of the enclosing superclass in the subclass.
They only need be stated once.

The Control class in a Windows application framework provides a good example
of inheritance. A Control class in a Windows application framework is a class that
enables the user to control the application. The Control class is an abstract class meaning

that an object of this class can never be created. but it is used to give a family of objects

11

common behaviors. There are many types of controls including push button controls.
scroll box controls. check box controls. and radio button controls. [nheritance enables
conservation of code as a radio button controi is a Control. The radio button control
subclass responds to all of the same operations as its Control superclass. The radio
button Control class inherits the member data and methods of the Control class. vet it can
perform its operations differently. Booch notes that. "As we evolve our inheritance
hierarchy. the structure and behavior that are common for different classes will tend to
migrate to common superclasses.”[8] Inheritance allows one to group similar classes
into one class hierarchy.

A subclass can have zero. one. or more superclasses. and classes can inherit from
multiple classes. This is usually done because a class may be very similar to its
superclass. yet it is convenient to provide another class that elicits specific desired
behavior. The class that elicits this specific behavior is called a mixin class. A mixin
class is created only to mix with another class.. For example, suppose that in the Object-
Oriented Model of an air traffic control system, there exists different kinds of radar used
tor screening different characteristics of flying airplanes. One type of radar. I will call a
Velocity Radar. can detect the position, velocity and acceleration of an airplane
accurately. Another type of radar. [will call an Attribute Radar. can detect the position
and the type of plane. Both radar inherit data members from the Radar class such as
Screen and Resolution and methods such as Report Position. yet to give unique

characteristics to each radar. mixin classes are developed. For the Velocity Radar. a class

called VelocityMixin is created that contains only the unique characteristics of a Velocity
Radar (data structures to contain precise velocity and acceleration vectors for airplanes).
Similarly. characteristics unique to an Attribute Radar are placed in a new AttributeMixin
class. The class Velocity Radar would then multiply inherit from the Radar superclass.
and its VelocityMixin class.

Usually the child subclass performs some specialized function. These specialized
member functions may occur inside the subclass itself. or be declared virtual in the
superclass. When a superclass declares a method virtual. it is essentially making a
forward declaration. meaning that the method is then overridden by its individual
subclasses. Overridding means the specifics of the method are determined within
relationship of the subclass to itself and how the subclass would best express the
operation given its own design. Because the subclass has a common superclass with
other subclasses of that same superclass. each different subclass can have its own
individual implementation of this common operation. The named operation may be
applied to many different subclasses as long as they have the same superclass. This is
known as polymorphic behavior. Using the Control class example above. all controls
have a virtual "do click" method which highlights the control and performs the associated
operation: however. the operation each control performs as a result of the mouse button
down is different. Scroll controls scroll text while button controls toggle push buttons.
Any derived Control class may override the "do click” method. When “do click™ is

invoked. it is determined at run-time to which class an object belongs. and the method is

looked up based on this determination. and the corresponding correct function is called.
Virtual methods are declared as such in the superclass and are overridden within the
individual subclasses to achieve the specialized behavior. yet virtual methods express a

known commonality at a higher level.

LI

2.3 Aggregation Relationship

Aggregation represents a "has a" relationship. The record structure is an example
of aggregation. Just as in the case of the record in which structures are contained within
other structures objects may contain other objects or structures or references to other
objects or structures. However. in an Object-Oriented Programming Language "the
combination of aggregation with inheritance is powerful: aggregation permits the
physical grouping of logically related structures. and inheritance allows these common

groups to be easily reused among different abstractions."[9]

3.2.4 Using Relationship

A class which uses another class to perform its operations has a using relationship
with that other class. The using relationship is a refinement of an association. The
"client” class and the "server" class are stated and the relationship is no longer bi-
directional. In the example of Company class and Employee class. a decision could be

made to have the Company use the Employee (although logically the reverse could be

14

stated as well). A uses relationship means that another class appears in the using classes

member functions and is used by the using classes member functions.

3.3 Class Categories

Once several classes and objects have been identified, it is useful to partition the
logical system. Class categories are aggregates of classes and other class categories. A
class category is identified by a name which represents the primary responsibility or
entities within the class category. Class categories partition the logical system into lavers
of abstraction. Related services meaningful to the level of abstraction under consideration
are grouped into class categories. To use Booch's example of the Hydroponics
Gardening System[10], the Greenhouse class category contains the abstract class
Environmental Controller and Nutritionist (see Figure 1. page 63). The underlying
responsibilities of groups of classes are deliberately exposed to present a higher level
model or overview of the system. Different class categories can also live at the same

level of abstraction.

3.4 Objects
Every object belongs to a user or library defined class. Objects are instantiated
instances of a class and are created by invoking a member function of a class known as its
constructor. An object contains both state and behavior information. The state of an

object is determined by the values of data members. The behavior of an object is

determined by the methods which can be performed upon it. The visibility of the
member data and methods (public. private. or protected) is presented in the object's class.
[deally. an object’s data members are declared as private to ensure that they can only be
accessed or manipulated by methods of their own class. The object’s methods can
operate on its own data. Operations performed outside the object directly on the data can
not be guaranteed to be accountable or do not have a necessarv and sufficient
understanding of the object to modify the member data without possible disastrous
consequences. A "client” of an object is an object which invokes its "server's” methods.
Clients are given the means to access the data members through member functions known
as selectors. that the class grants to clients. which are the only prescribed procedures to
view its instantiated object's contents. Classes selectively give clients the means to
manipulate their instantiated object's contents through mutators. which are the only
prescribed procedures to modify its instantiated object's contents. Because the
implementation of a class is completely hidden from the outside, the implementation can
be modified knowing that the change will only have an effect on the operations of its
class and on no other code.

Each object has different responsibilities. Objects cooperate with each other to
perform a higher level behavior. A higher level behavior is a behavior that results from
the cooperative relationship of objects with their inherent individual behaviors. When
examining the entire system. a behavior becomes apparent that the collection of objects

produces. Each object performs a necessary and codependent function in the system to

16

produce the higher level behavior. Therefore. the concept of an object only makes sense

in terms of its relation to other objects.

3.5 Types of Operations Performed on Objects

Operations performed on or to create and destroy objects can be grouped into
three general categories: constructor/destructor, selector. or mutator. A constructor and
destructor creates and destroys. respectively. an instance of a class. A class may provide
different constructors for the same class of object. [n C++. these constructors are
uniquely identified by their parameters or signature. An appropriate constructor can then
be called relating to the specific instantiation information most useful to the given
circumstance. In C++. defining the destructor of a class is optional. Any resources that
an object creates must be released explicitly in the destructor method. An object's
destructor method gives the object a means of cleaning up after itself.

A selector is the only method by Whl:Ch objects not granted explicit rights to
directly view the member data of an object can examine the member data. Selectors are
the public interface an object provides which enable other objects to view its member
data. In C++, selectors are typically declared as const. This means that no member
data may be modified within this operation.

Selectors are necessary to promote two of the major elements of the object model.
abstraction and encapsulation. Prior to Object-Oriented Programming. the programmer

could circumvent the weak safety mechanisms of procedural programming. A procedural

17

program’s safety mechanisms consist of documentation written by a programmer or
group of programmers requesting that specific rules are respected with regard to the direct
modification of data and allowing variables to be visible only where necessary (scope).
But these mechanisms do little to thwart the behavior of unscrupulous programmers (such
as those under strict time deadlines) from not following these decided upon rules or
modifying scope as a “quick and dirty” solution to a problem. A selector provides a
protocol which is the only means of getting at object member data and within its
construct is the compiler enforced provision that the data can not be modified.
Obviously. this stronger mechanism found in Object-Oriented Programs can be avoided
by a single rogue programmer performing Object-Oriented Design without responsibility
to a larger group, but in the end. it is his/her program that suffers.

Mutators. as the name implies, are the only explicit mechanisms for modifying
object member data. They provide a well defined interface for modification of member
data. They hide their implementation details (an abstract data type attribute) tfrom the
external program. allowing one to modify their implementation with no affect on the

external program.

3.6 Lifetime of Objects
An object exists until it is destroyed. A local object created on the stack is
destroyed when it goes out of scope. An object created on the heap with the new operator

has to be destroyed explicitly. In C++. objects continue to exist even when all references

18

to them have been lost and can no longer be used. Some languages provide a method
known as garbage collection to reclaim this unused space.

Often if objects are reused frequently in an application. it becomes apparent that
it is far less work to create them and have them live for the duration of the program
instead of having to construct and destroy them on an as-needed basis. Such objects may

be referred to as static objects and exist until the end of the program.

4 FOUR MAJOR ELEMENTS OF THE OBJECT MODEL
4.1 Abstraction

An abstraction is the unified presentation of an object brought about by a
consistent and cohesive set of operations that can be performed upon it. Abstraction is
what distinguishes the object from all other kinds of objects. The abstraction of a real-
world object in a system ignores details which do not contribute to its intended use. “We
(humans) have developed an exceptionally powerful technique for dealing with
complexity. We abstract from it. Unable to master the entirety of a complex object. we
choose to ignore its inessential details. dealing instead with the generalized. idealized

model of the object.™[11]

4.2 Encapsulation

Encapsulation is focused on the internal view of an object’s implementation that

produces its behavior. The implementation of an object's behavior is encapsulated from

19

the outside world and is secret or hidden. This allows one to modify an object's
implementation without affecting any of its clients. Implementation decisions of an
object may now change without consequences to the outside world. One can freely
explore different implementation options with no impact on the outside world as the
client of an object is not exposed to this level of detail. By hiding the implementation. a
client can make no assumptions about an object. It is not necessary to determine the
other parts of the code that need to be changed when a change is made in encapsulated
code. The cost of maintenance. a large portion of the total cost of a project. is reduced.

As a result of encapsulation. a barrier is placed between the internal object and
external objects. The object’s class selectively and Judiciously puts forth only those
properties of an object that make it useful externally. Exposing only those properties that
make it useful to the outside world (or an object's clients) is the principle of least
commitment. The principle of least commitment elicits a safer system as less "can go
wrong.” By hiding the implementation details of an object from the outside. an object has
a safe and consistent interface for the modification of its state (member data) by the
outside. An object can only be modified through known methods that the programmer
gives conditional availability to the outside world (a class has a public. private and
protected section).

Object Oriented Design can be described in terms of the client/server model. A
client object uses the services of a server object. The contract. or protocol. between the

client object and the server object consists of all the member functions of the server

object that the client object may use. The contract defines the operations for which the
object can be held accountable. For maximum safety. whenever an operation is available
to a client. the object must be able to perform its duties as defined whether asked to do so
or not. [n order to provide a clear definition of an object’s duties, certain conditions must
hold true. or be invariant. before and after the operation. These are called pre-conditions
and post-conditions. respectively. If a client violates pre-conditions. it has not performed
its duty as defined in the contract and can not expect valid results from the operation. [f
an object violates post-conditions. it violates its duty under the contract and can no longer
be trusted. The engineer has the choice of placing different aspects of operational
responsibility either with the server object or with the client object. These design

decisions are largely problem dependent.

4.3 Modularity

The classes and objects which compose a program are divided and placed into
modules which are their containers. Logically related classes and objects are placed
within the same module. The difference between modules and class categories is that
modules have a physical representation. and class categories are a logical concept. A
module consists of an implementation file and an interface or header file. A system
which has been decomposed into modules has the property of modularity. Similar to an
object. a module has an interface and an implementation and uses the idea of abstraction.

A module’s interface exposes only those elements of a module other modules must see.

One may change the implementation of a module (or objects within a module) without
affecting the behavior of other modules. A module includes the interface of the modules
it uses. (A module always includes its lower le.vel units.) [f an object or class is altered.

only its enclosing module need be recompiled.

4.4 Hierarchy

The inheritance relationships between classes form a hierarchy. Inheritance
represents an "is a" relationship and produces the "is a" hierarchy. A guppy is a kind of
fish: a house is a kind of building. Another kind of hierarchy is the "part of" hierarchy.
Aggregation represents a "part of" relationship and produces a "part of" hierarchy. As
previously noted. the record structure is a structure that supports aggregation. Objects
that exist independently and have lifetimes independent of their container objects are
contained by reference with a pointer. Objects that can not exist without their container
objects are contained by value and have the.same lifetime as their enclosing objects.
Another hierarchy is the stratification hierarchy of higher level and lower level
abstractions mentioned in 1.2 (The Structure of Complex Systems - Human Biological

Systems).

nlal

5 THE BOOCH METHOD
5.1 Diagrams

The Booch method prescribes that the engineer develop models or views of the
system. These models consist of diagrams which embody analysis and design decisions
with regard to two dimensions: a physical/logical view and a static/dynamic view. Each
dimension consists of several diagrams. Classes or objects living in one diagram can also
live within another diagram. The results of the relations produced by these diagrams are
cumulative. [t is by logically partitioning the classes or objects (depending on the
diagram) that a diagram becomes particularly useful. Each diagram represents some
aspect of the system model under consideration. Each diagram has a theme or name and
by allowing classes and objects to be included in more than one diagram. the true
interdependencies of the system are exposed.

The model of the system is built in stages incrementally and appropriate diagrams
are generated depending on the current area of focus. Encapsulation assists the process as
diagrams can be considered in relative isolation from each other. The area in which two
diagrams overlap can be presented in another diagram. Using an Object-Oriented Design
Tool such as Cloud9 or commercial products such as Rational Rose. the decisions made
in these diagrams may be translated directly into the code. The three general categories
of diagrams are Class Diagrams, Object Diagrams and Module Diagrams. There are also
State Transition Diagrams. but it is beyond the scope of this paper to include this in the

discussion.

3.2 Class Diagrams

Class diagrams represent the inheritance structure of classes with regard to the
particular nouns or objects within the problem domain. In general any particular high
level class (that from which subclasses are derived) has associated with it a class diagram
showing its parent/inheritance relationship to its subclasses. This does not mean that
each superclass has its own Class Diagram. but it is associated with at least one. Class
diagrams present a logical view of the system under consideration and provide only static
information (See Figure 2. page 64). [n the diagram. the different links between the class
clouds represent different relationship adornments. A straight line. such as the one
labeled ““Defines climate™ represents an Association between the classes GardeningPlan
and EnvironmentalController. The class EnvironmentalController contains a Heater. a
Cooler and any number of Lights by Aggregation denoted by the line with the dark circle
at the container class end. Heater and Cooler are subclasses of the Abstract Class
Actuator as denoted by arrows pointing to the superclass. The Actuator Class chooses to
display two of its methods. startUp and shutDown. The Actuator Class uses the

Temperature Class as denoted by the line with an unfilled circle at the using class end.

5.3 Object Diagrams
Object Diagrams. also called Scenario Diagrams. are interaction diagrams which

expose the different scenarios in which objects participate with each other to perform

some higher level function. An object diagram represents a physical view of the system -
- a dynamic snapshot of the interaction between physical objects. An object diagram
contains an ordering of methods which objects invoke upon each other to perform the
higher level function. Each object diagram represents a unique scenario. The name or
description of the object diagram is typically the name or description of the higher level
function portrayed in the diagram. (A good example of a scenario related to processing a

Packing Order for Items at a Warehouse can be found in Figure 3. page 65.)

5.4 Module Diagrams
Module diagrams are used to represent the physical layering and partitioning of
levels of abstraction within the system. A module corresponds to two files in C+=: a
.cpp (body) and .h (specification). Inter-module dependencies generated by #include

are presented in the module diagrams by use of the arrow (Figure 4. page 66).

5.5 The Steps of the Booch Method

The Booch Method of Object-Oriented Design consists of three steps [12]:

1) Requirements Analysis
2) Domain Analysis
3) System Design

briefly summarized below.

In Requirements Analysis. the customer is asked to provide the key elements of
functionality in the system. From this information. key domain specific vocabulary is
determined. The vocabulary is then clarified and understood by the engineer using
books. other works in the problem domain. and the customer or users of the system
(people intimately familiar with the problem domain). Experts in the problem domain
that have a body of knowledge from earlier similar projects are valuable in guiding the
project. Examining publicly available information about similar systems can lead to a
faster understanding of the problem domain. Providing a customer with a rapid prototype
that is executable can promote early modifications based on feedback critical to
expediting the system. Use cases are developed to summarize the desired functionality of
the system. A use case is a "particular form or pattern or exemplar of usage. a scenario
that begins with some user of the system initiating some transaction or sequence of
interrelated events."[13]

[n Domain Analysis. key classes are identified. Any noun in the problem domain
is a candidate for a class. Nouns are examined only as abstractions without regard to
their implementation which takes place later. These class candidate nouns are then
filtered to determine the actual key classes. This filtering process determines the objects
of the system and their roles. Class collaborations are determined and responsibilities are
assigned. Relationships between classes are established and refined. Object-scenario

diagrams of use cases are determined. Focus should be implementation independent.

The goal of System Design is to move the Domain Analysis into implementation.
The architecture should be divided into layers based on class categories. As described in
Section 2. the design should follow an inl:emental and iterative approach. The
implementation of operations and their algorithms is specified. Any relationships
between classes that are not completely "fleshed out" are determined. Any new classes

needed to support the implementation are created.

6 CLOUD9 APPLICATION
6.1 Cloud9 Overview

Cloud9 is a C++ Object-Oriented Design Tool. Its primary purpose is to facilitate
the programmer’s expression and prototyping of a C++ Object-Oriented Design and
associated code. Work started on Cloud9 in January 1995 at San Jose State University in
CS240. Software Project under the direction of Dr. Cay Horstmann. Cloud9 enabled
graduate students to work together on a lafge scale software. Although Cloud9 is
somewhat distant from commercial quality, its scope is realistic as a commercial product.
Teamwork is fundamental to commercial software projects and is a valuable experience
for student software engineers too often focused on solo academic projects. The idea
behind Cloud9 was also to provide a venue for students to work on a thesis project related
to a “real-world™ Windows application. Thesis contributions to Cloud9 would encompass
some selective useful enhancement to Cloud9. While Cloud9 presents the user with a

structure for creating an Object-Oriented Design. it is itself a product of Object-Oriented

Design. A similar micro-macro analogy would be an engineer developing a compiler tor
a high-level programming language. An engineer developing the compiler could not
help but benefit in his understanding of the high-level language as well as the target
machine instructions; a complete understanding of the language is produced by this
exercise. which must account for all language and structural possibilities of the high-level
language. Similarly. the student working on Cloud9 becomes intimately familiar with
issues of object-oriented design because the student is confronted with a generic
framework for any Object-Oriented Design.

Cloud9 provides the user with two primary output commands which may be
applied to the C++ Object-Oriented Design under development: generate code and

generate documentation. Generating documentation is the contribution of this thesis.

6.2 Class Frameworks

Cloud9 is implemented using the Borland Object Windows Library or OWL.
OWL is a application class framework for developing a Windows application. Class
Frameworks perform much of the work involved in creating a Windows application by
providing a generic framework for the basic structural units of any Windows application.
There is a generic Window class with built-in useful operations to perform on a Window.
and there is a generic Dialog Box class with built-in useful operations to perform on it.
and so on. An Application Class Framework is actually composed of high-level C++

wrappers around standard Windows function calls. The user of the Class Framework is

largely protected from much of the implementation of Windows function calls:
consequently the users can focus on the problem at hand of the unique contribution of
their Windows application. Class frameworks provide the building blocks for any
generic Windows application. The programmer needs to add derived classes and
overrides generic member functions to produce the desired functionality. Default
behavior for standard Windows messages is largely already in place. and the application
framework is complete except that the programmer must specify how the application
should handle application specific Windows messages. Most applications also have
programmer defined classes specific to the purpose of the application itself which are not

part of the Class Framework.

6.3 The Document/View Application Model

The single document and multiple view model of an application was created
because it is often useful to view a single document with respect to different criteria.
Many application frameworks (Borland Object Windows Library (OWL). Symantec
Think C++ Application Framework. Microsoft C++ Foundation Class Library) provide
support for this model using built-in classes. They all possess a built-in base class
devoted to the Document (in Borland’s OWL it is called TDocument). Some of the
common functions that appear in the TDocument base class that can be applied to
TDocument objects are open. close. save. save as. and view in a particular view. The

application framework programmer has his custom document class inherit from the

TDocument base class and by doing so takes advantage of common built in behavior.
The users then provide additional functionality to their document class by over-riding
member functions of the TDocument base class and creating their own member functions.
An instance of the user-defined document class is associated with a text file which will be
referred to as the underlying document. The underlying document is anything that you can
display and manipulate inside a View. discussed below.

All the application frameworks mentioned also provide a built-in base class
devoted to the View (in Borland’s OWL it is called TView). An instance of the TView
class is a Window through which the underlying document can be modified. However. a
View is more than a Window: it is also accompanied by a unique set of pull-down menus
and/or push buttons appropriate for modification of the underlying document in that view.
Similar to the built-in TDocument class, the application framework programmer has his
custom view class inherit from the TView base class and by doing so takes advantage of
common built in behavior. The data of the underlying document is organized by the
programmer so that it can be inspected and modified by multiple programmer-defined
custom views. Each custom view is designed to present the data of the underlying
document according to distinct criteria, so the user of the application can modify aspects
of the underlying document without having irrelevant information presented in the view.

Cloud9 supports the single document multiple view model of an application.

6.4 Cloud9's Use of the Document/View Application Model

The Booch method describes two categories of models important to object-
oriented development: the physical/dynamic model. and the logical/static model. The
physical/dynamic model is captured in Object (also called Scenario) Diagrams. and the
logical/static model is captured in Class Diagrams and Module Diagrams. Cloud9
provides two different ways of viewing the same design document. the "code view" and
the "cloud view.” The logical/static model of the class structure is represented by a
“cloud view" of the design document. and the physical/dynamic model is represented by
a "code view" of the design document. The design document viewed and modified using
Cloud9 is an in-process product of object-oriented analysis and design. Decisions can be
made quickly regarding the suitability of any particular design by determining a logical
structure using the “cloud view,” refining it in the “code view.” generating the code. and
“trying it out” which enables rapid prototyping of different designs.

In the "cloud view.” new classes are entered by selecting the cloud icon and
placing the cloud into the view. The class can then be named. and relationships can be
established with other classes. Relationships of inheritance. aggregation and using
relationships can be established visually using the "cloud view" input tool by drawing a
line between the two class clouds and modifying a dialog box. The cardinality and data
type of aggregation relationships can be established. While in the “cloud view.” the user
is not presented with largely irrelevant information such as the code of a particular

method. Only logical/static information is presented. such as inheritance and aggregation

relationships. When the user wants to specify the “guts” of the code. the user opens the
same design document in the “code view.” Mechanisms for each view updating the other
independently are in progress.)

The "code view" represents a tiered division of the code into separate blocks
normally found in C++ code such as the public, private and protected blocks within a
class. Blocks are further subdivided into sections for consistent placement of various
types. such as enumerated types or record types Consistent placement of blocks and
types within blocks produces code that is readable and facilitates finding specifics within
the code as it is logically grouped. The physical/dynamic model can be gleaned by
examining the "code view.” Similarly, the “code view" does not present cloud diagrams.
and the user will switch back to the “cloud view” of the same design document when
such modeling is desired. Although the dynamic model is not explicitly present in
Cloud9. as it does not offer an Object Diagram (or Scenario) View with an ordering of
methods (see Figure 3, Packing Order Scenarié Diagram). these mechanisms are likely to
be relatively simple. and a drawing outside of Cloud9 can usually provide other engineers
with the basic information. In Figure 3, the anAgent Object invokes the schedule()
method of the aPackingOrder Object. This causes the aPackingOrder Object to invoke
the assign() method of the aStockPerson Object. The aStockPerson Object invokes the
query() and update() methods of the inventoryDatabase Object. the update() method of

..i¢ anOrder Object and the schedule() method of the shipping Object. The aStockPerson

Object finally invokes the close() method of the aPackingOrder Object. The higher level

function the scenario portrays is the processing of a Packing Order. As shown. the Object
Diagram contains ordering of methods which objects invoke upon each other to perform
some higher level function. The first method invoked appears at the top and the last
method invoked appears at the bottom. The engineering work of this thesis. Cloud9's

support for Literate Programming, has been done entirely in Cloud9’s “code view.”

6.5 Structure of Code View Hierarchy

Credit for the basic structure of the Hierarchical View (or “code view™ above) can
be given to another graduate student at San Jose State. Gene Yao. Although the
Hierarchical View structure lacked documentation. it was sound and allowed the
development of the Literate Programming enhancement on top of it with a few
alterations.

All the information inside the Hierarchical View window is contained within an
instance of the HViewView class. The HViewView class is derived from the Borland's
OWL TWindowView class. which is in turn derived from the TView and TWindow
classes. HViewView derives from the TView and TWindow classes to provide the
Hierarchical View with default features common to many Windows applications. for
example custom menu settings for a View and any Window accepting default Windows
messages.

As mentioned before. an instance of the TView class is an interface to a

document. It allows a document to access its view(s) (a document can be displaved in

U2
(93}

more than one view simultaneously). Views in turn can call document functions to
request input and output streams. Public functions common to a TView include
SetViewMenu which sets the menu for a view. GetWindow. to get the View's enclosing
window. GetDocument to get the document displayed in the View. and GetViewld to get
the identification number of a view. An instance of the TWindow class is a generic
Window that can be resized and moved. It provides default behavior specific to any
Window and additional adornments such as scroll bars.

The HViewView class contains a pointer to a single HViewNode class. The
HViewNode class contains a hierarchical subtree structure for any of the C++ basic
structural units. functions, classes. etc. For example. the section in the Hierarchical View
where the programmer would enter a class is an HViewNode and consists of separate
subtrees for each of the functions of the class. and a table (single subtree) which provides
the area to modify the private fields of the class. and other appropriate subtrees. The
HViewNode class displays its own subtree in the Hierarchical View window when its
Paint function is invoked. Each of the subtrees of the HViewNode class is an instance of
the HViewChild class. The HViewNode class contains an array of pointers to
HViewChild.

The HViewChild class (each subtree) provides hierarchical text edit windows in
which the programmer specifies code: for example. the arguments of a function. or the

functions of a class. The programmer clicks on the appropriate section of the

HViewChild to invoke a text edit window. [t was part of the work of this thesis to return
a Rich Text Edit window when appropriate.

HViewNode class inherits from the HViewChild class and so the HViewNode is
also an HViewChild. This class design allows a recursive nesting of hierarchical subtrees
displayed in the View. In order to display the entire hierarchical structure in the
Hierarchical View. the Paint function of the _root HViewNode in HViewView is called.

This recursively calls the Paint function of all the HViewNodes in the Hierarchical View.

6.6 Unfinished Features
Cloud? is at a stage at which it is beginning to become a useful tool to a software
engineer. Currently, the “cloud” view and the “code™ view are not strongly connected
and work needs to be done linking the two. Until these two views are fully integrated. an
essential aspect of Cloud?9 is still lacking. This will become the work of future graduate
students. Bugs have been ironed out in producing this thesis that make Cloud9 useable in
the “code view.” Cloud9 is now much less likely to cause General Protection Faults

(none were experienced during testing).

(%)
v]}

PART II: LITERATE PROGRAMMING

7 LITERATE PROGRAMMING AND KNUTH'S WEB SYSTEM
7.1 Computer Programming as an Art

Computer Science has struggled to eamn its name as a science since its beginning.
A major goal of Formal Computability Theory was to make working with computers a
legitimate scientific academic discipline. ~Most dictionaries. such as the New World
Dictionary. 1974. define a science as "systematized knowledge derived from observation.
study and experimentation carried on in order to determine the nature or principles of
what is being studied.” A science has laws and principles. and laws and principles are
exactly what Formal Computability Theory provides computer science. If computer
science were not called a science, then it would not have been a legitimate emerging
academic discipline when viewed by a staunch academic community in the late 1950's.
The purpose of all Association for Computing Machinery's (ACM) periodicals was
described in 1959: "If computer programming is to become an important part of computer
research and development, a transition of programming from an art to a disciplined
science must be effected."[14] It was as if something was inherently bad about art. and a
clear separation of science and art must be established. Inevitably computer science was
to become an academic discipline with or without Formal Computability Theory. and the

new technology has changed all of our lives.

Donald Knuth of Stanford University proposed the resurrection of the idea of
computer programming as an art. In his 1984 treatise on Literate Programming. he
explores this idea. Knuth states. "When I speax’ about computer programming as an art. |
am thinking primarily of it as an art form. in an aesthetic sense. The chief goal of my
work as educator and author is to help people learn to write beautiful programs. . . . My
feeling is that when we prepare a program, the experience can be Just like composing
poetry or music: as Andrei Ershov has said programming can give us both intellectual
and emotional satisfaction. because it is a real achievement to master complexity and to
establish a system of consistent rules."[15] In conclusion. Knuth states "We have seen
that computer programming is an art. because it applies accumulated knowledge to the
work. because it requires skill and ingenuity, and especially because it produces objects
of beauty. Programmers who subconsciously view themselves as artists will enjov what

they do and will do it better."[14]

7.2 Literate Programming and Knuth's Web System
Literate programming presented the concept of a program as a work of literature.
The program itself was an expository text explaining to the reader the purpose of a
program and how the program accomplished its task. The programmer focused on
explaining the program to the reader rather than writing the actual code. In an effort to
explain the program to the reader, the programmer ends up explaining the program to the

computer. ideally with much less struggle. There is less struggle as the programmer

presents the parts of a program in ". . . an order that makes sense on expository grounds"
{13] which naturally parallels human psychology. The programmer designs the program
as a narrative story told to another. rather than the computer driving the programmer’s
method. Although the computer is. of course. considered when writing a literate
program. the idea behind true literate programming is that the computer is considered
second.

Knuth's belief that programmers "who subconsciously view themselves as artists
will enjoy what they do and will do it better” prompted him to write a new svstem for
program documentation. In 1984. he proposed a system of program documentation called
WEB. WEB files were a combination of two different languages. a programming
language (Pascal) and the TEX documentation language (developed by Knuth). TEX is a
typesetting command language and Knuth wrote a compiler that when input a TEX file.
output a formatted descriptive document. A WEB file functioned as both a program and
a descriptive document. The WEB file could be compiled with an ordinary Pascal
compiler into an executable program. or with the TEX compiler into a readable
descriptive document. The descriptive document produced using WEB could use any of
the commands of the TEX formatting language. including tables. formulas. boxes.
diagrams, producing a previously unknown level of documentation within a program.
(See Figures 5 and 6 on pages 67-68.)

A style of literate programming commensurate with a procedural language.

Pascal. was first introduced. The program was divided into logical units called sections.

Sections were grouped. and each section group was named by topic such as "The Output
Phase” and "The Program Plan.” The individual sections would further the goals of that
particular section group topic. Each section consisted of “code™. a single macro
associated with the “code.” and literate text. These macros were typically several word
long descriptions of the task the “code” performed. such as "<Initialize the data
structures>" or “<Increase j until next prime number>.” although they could also be
entities such as "<Other constants of the program>." “Code™ consisted of Pascal code
and other macros embedded within the Pascal code. The literate text described the theory
behind the “code™ presented in the section, or if the section related to a larger topic (such
as a section under "The Program Plan") described the program or other larger abstraction.
This allowed the programmer to focus on explaining the basics of the section under
consideration. A top-most section was allotted for the purpose of the program. The high
level procedures of the program were each allotted a section (“code™ and associated
macro. and text) and procedures were broken down into sub-sections (“code” and
associated macro. and text) representing other logical scraps of code. The decomposition
of the program could take place in a top-down order or a bottom up order. For example.
the specifics of a function’s implementation or the general purpose of a module could be
explained first. It really did not matter as the program could be viewed as a "web" or
tree. Whatever order suited one's stream of consciousness could be used.

WEB provided excellent support for document readability. [t automatically

generated numbered sections and embedded the section number of the macro into the

macro itself. [t automatically created an index by section number of all identifiers and

macros in the program and placed it at the end of the document. Actual mathematical

symbols could be placed in the document code listing. instead of the symbols the

computer interprets as mathematical symbols.

The primary ideas behind WEB were:

1

9]
—

Code and documentation must come from one source. or they will diverge.
Literate Programming copes with this problem by embedding the
document inside the program itself.

Documentation order may differ from code order. In order to clearly
describe a program to another person. it is better to traverse the program in
a natural psychological progression rather than explanation by way of a
linear traversal of each module.

Plain ASCII cannot provide decent documentation. Other visual cues are
necessary 10 convey the organization and information hierarchy of the
module. Visual cues provide a necessary means of explaining difficult
material. [t is easy for the reader to interpret a document differently than
the author intended without visual cues. Visual cues include the use of
whitespace and different typefaces to indicate the hierarchy of
information. These cues tell the reader about the organization of the
document. The reader should be able to look at a document and from the

format determine the organization of the document. The use of visual cues

40

should be consistent throughout the document. Figures or images also help

to convey information which is difficult to describe verbally.

8 CLOUDY SUPPORT FOR LITERATE PROGRAMMING
8.1 On-line Documentation

Much has changed with regard to the presentation of documentation since Knuth
introduced WEB in 1984. On-line documentation has become popular in the 1990s.
The internet has promoted the idea of hyper-links (links from documentation to related
documentation) and added the capability of user choice determining the logical flow of
documentation. The user of an [nternet Browser chooses what he or she would like to
see next in accordance with their own style of learning. Although the implementor of a
set of web pages devoted to a particular topic may present the information in a default
format that is believed to be logical. the user often has the choice of whether to accept the
default order of presentation or create his/her own.

The idea of a document as a growing, evolving and living entity has been
promoted by on-line documentation. As such, on-line documentation does not
necessarily become out-of-date but can be updated. Pages can be inserted into the
document with minimum difficulty. The document is updated in real-time. From a
conservation standpoint. on-line documentation also makes sense as it saves paper and

can be printed when and if necessary.

41

The purpose of this thesis is to provide the engineer the additional capability of
embedding literate text in a Cloud9 design document. Furthermore. in keeping with the
advent of on-line documentation. the implementiation of embedded literate text in Cloud9
is as Microsoft Rich Text. Microsoft Rich Text was selected for three reasons:

1) [t is an industry standard and most Word Processing applications read it.

There is no need to “re-invent the wheel” by having to worry about
formatting issues for printing and displaying that have already been
engineered.

2) With the proper formatting adornments, a Microsoft Rich Text File can be

compiled into a hyper-linked Microsoft Help File.

3) [t was possible to create a Rich Text control from an existing simple Text

Edit control. Currently. there is no Hyper-Text-Meta-Language (HTML)
control offered by any class framework. This is why HTML was not
selected as the output documentétion of Cloud9.

This thesis moves the ideas behind WEB into current on-line standards of documentation.

8.2 Cloud9 Support for Literate Programming
Each C++ module for a project is a separate Cloud9 document. As mentioned
previously. the underlying document is simply a set of data. In the “code view."
the module or document is broken down into two major sections. the public section and

the private section. The public section and the private module sections represent a

separation of concems. The public section contains classes and code that are to be used
by other programmers (the target audience of programmer’s class. encapsulated from the
private section). The private section contains classes and code that support the user
classes defined in the public section. These are classes which the user of classes of the
public section does not need to know about. They contain implementation dependent
information.

Cloud9 can generate two distinct types of descriptive documents: a user document
or an implementor document. The user document contains only the information in the
public module section. and the implementor document contains information in both the
public and private module sections. In this way, a true separation of concerns is effected.
The user of a class will not be exposed to implementation details. vet the user of a class
will have basic information on the use of any public classes. functions. data types. etc.

The example Cloud9 document presented during the thesis defense and in thesis
defense pre-meetings illuminates this separation of concerns. The document called
Camera consists of three classes: Camera. Box3. and Polyhedron3. This module
encapsulates a common graphics primitive known as a Camera which is used to view
shapes in 3-space. The Camera views the shapes in mathematical 3-space and projects
the shapes onto a real 2-dimensional surface, the pixels of the screen. As mentioned. the
document is a C++ module. and as such Cloud9 can be used to perform a code generation
and produce camera.cpp and camera.h. The Camera class lives in the public module
section. while Box3 and Polyhedron3 live in the private module section. Box3 and

Polyhedron3 support the Camera class. An instance of Box3 is the “world™ which the

Camera views. and Polyhedron3 are the shapes or objects which the Camera views. Of
course. it is somewhat arbitrary in this case to assume that Polyhedron3 lives in the
private module section and Camera lives in the public module section. The Camera could
be seen as a supporting class to a Polyhedron3 which lives in the public module section.
but. the author has chosen the Camera class to live in the public module section. This

choice would affect the focus of the literate presentation of the module.

8.3 Use of Literate Programming in Cloud9

Similar to the Booch incremental and iterative method of Object-Oriented Design.
the engineer can logically pick a level of abstraction and begin to document ideas at that
level. Names may be chosen for classes, variables, and any other structures. and their
purposes can be described at the literate level first. The iterative philosophy of system
development and incremental integration into a functional whole in stages are facilitated
by tools which give the programmer the ability to provide explanation anywhere within
the code. The programmer has freedom to express in literate text in whatever level of
detail is necessary at the current stage of development. Notes can be revisited and fleshed
out in more detail during the process. As notes are modified and refined. the code is
refined.

For example. suppose that the programmer wanted to create a virtual tape drive.
The virtual tape drive would respond to exactly the same Escon Channel messages that a
normal IBM 3490 tape drive would respond. Its status would be updated based on these

commands. but instead of it being a physical tape drive. it is just software mimicking the

44

behavior of an IBM 3490 tape drive. Instead of the storage media being magnetic tape.
suppose the storage media were a physical hard drive which greatly outperforms the old
tape drive. Some key abstractions the programmer might want to code would be some
mechanism for the Escon Channel messages to be converted into software messages and
virtual tape drive itself. Another would be a software simulation of physical paths which
might be available to the tape drive and a unit to manage these paths to prevent conflict
with other virtual tape drives using the same paths. First the names of classes appropriate
to these abstractions would be selected. then space would be allotted in Cloud9 for each
of these classes. The programmer could immediately begin filling in the literate text
associated with these abstractions speaking to their purpose. use. necessity of their
presence or whatever. Based on the information in some of this literate text. the
programmer could begin to think about the data structures necessary tor the problem.
What attributes would a virtual tape drive have? What needs to be present to mimic a
physical tape drive? Coding could begin at this abstract level. with literate text being
revisited and updated as new discoveries are revealed by the coding process. The classes
are iterated upon and refined. first with “broad strokes of the paint brush.” then more
details are fleshed out.

This enhancement is not meant to modify the philosophy behind all coding in
Cloud9 to a literate philosophy, but to enable the programmer to use literate techniques.
A convenient interface and mechanism to show and hide literate text is essential to
making this task easy for the engineer. If it is not easy to use. it will not be used. This

was a primary goal of the enhancement. A reminder that Cloud9 has a literate

programming tool is the comment box provided for the module. all classes. all functions
(class methods and external) and operations which invoke a Rich Edit control. The
programmer will merely have to click on the comment field to add literate text. The hope
is that because the tool interface is visible at all times. literate prose and comments will
be added more frequently and that updating comments after modifications is more likely.
Associated with each area where it is possible to specify Rich literate text in the
Cloud9 document are additional fields titled “See Also™ and “Next Comment.” “See
Also™ places a hyperlink to the page specified by the “See Also™ field on the page
associated with the Rich literate text. “Next Comment” ensures that the next page viewed

when using the Browse Buttons of the Help file is the page specified here.

8.4 Cloud9 Addresses the Ideas of WEB

[t is not the goal of this thesis to recreate Knuth’s WEB System within Cloud9 but

to add the ideas behind WEB to Cloud9.

1) Code and documentation must come from one source. or they will diverge.
Because the code, object oriented design and descriptive document all
come from the same Cloud9 document, the descriptive document and code
are not allowed to diverge. The descriptive document automatically
contain sections of literate text for all classes and class operations present
in the document, as well as global functions and module level comments.
The programmer can also specify logical links to related Classes using the

“See Also™ feature of Cloud9 which creates physical hyper-links.

46

2) Documentation order may differ from code order. Through use of the
"Next Comment™ feature. documentation traversal order can differ from
the code order. Cloud9 aiiows the programmer to present the
documentation associated with their module in an order which facilitates
the reader’s understanding. The programmer can have one topic lead into
another related topic which is not necessarily physically adjacent in the
code. For example. an operation of a class which calls another operation
of a different class could be made adjacent in the documentation.

3) Plain ASCII cannot provide decent documentation. Documentation created
using Cloud9 provides all the symbols available to a Rich Text Editor.
including mathematical symbols. The programmer has the complete set of’
fonts and sizes available in Microsoft Rich Text. Code can be inserted
into the Rich text in the Courier font. a standard for most tvpeset code
documentation which makes code immediately recognizable as code. Font
sizes and underlining can be used to give visual cues to the hierarchy. or
relative importance, of the information being presented. Although cutting
and pasting of figures into the Rich Edit control would have been a nice
feature. the support for embedding objects through use of Microsoft OLE
technology could not be accommodated in the time frame of this thesis.

[n addition to addressing the main ideas of WEB. Cloud9 provides additional

functionality. Similar to WEB. Cloud9 supports a table of contents of all the classes in

the module (the second page: the first page is the literate description of the module). The

47

table of contents in conjunction with automatic indexing using the built-in Help file
search for topic capability provide instant alphabetized reference to any topic in the
documentation. Similar to WEB. Cloud9 aiso supports associating specific code with
literate text in the document by simple cutting and pasting. Although it would have been
desirable to have the code change in the documentation when changed in the code view.
this feature could not be accommodated in the time frame of this thesis. It also presented
the issue of the documentation becoming automatically out of synch with the code when
this occurred. Beyond the scope of WEB. on-line documentation with hyper-links brings

the ideas of WEB into modern day standards of documentation.

8.5 Traversal Order of Documentation

The default traversal order of documentation is first a help file page of top-level
module comments. then a help file page of all the class names (names are links) in the
module. then a help file page of the first class with names of its functions (names are
links). then a help file page for each function/operation of the first class. then a help file
page of the second class with names of its functions (names are links). and so on
following a breadth first traversal. This traversal order is known as breadth first. (See
Figure 7, page 69.) The user is provided with a reasonable default if he/she does not wish
to provide any information in the “Next Comment™ field. If the user specified a title in
the “Next Comment™ field. the program follows “Next Comment” links as far as possible.

then returns to first unvisited node given by the default traversal.

48

8.6 Microsoft Help Compiler Source File Format

There are two source files that the Microsoft Help Compiler needs in order to
produce a Help file: a Rich Text Format (.RTF) file, and a Help Project ((HPJ) file. The
Rich Text file contains the topics of the compiled Help file. separated by page breaks:
each page is a Help file topic. The Rich Text from the comment field of the Cloud9 topic
appears exactly the same in the Help file, and all formatting is maintained.
Characteristics of the Help file topic such as browse page ordering. page identification for
hyper-links. title of the topic. and related key words for searches are determined by
hidden embedded footnotes in each page (see Diagram 1). The footnotes precede the title

of each topic and are as follows:

49

Footnote

character Used to identify Purpose
£ Context String Uniquely identifies the topic
$ Title Appears as the topic title in the

Search dialog box and the history list
K Keywords (and These words and phrases appear

phrases) in the Search dialog box

+ Browse sequence Determines the order of the topics when the

user browses through them.

Diagram 1

Footnote Insertion

———/\//

3 K - Drawing a Circle

$
47"

[T0 draw 4 circle, follow these steps:

——

1] [Footnotes
L{ # draw_crrcle
{ $ Drawing a Circte

{ K circles, drawing;drawing circles
——1{ +draw:0235

N\

{ context string

{ title

{ search keywords
1 browse sequence

{diagram from Creating Windows Help. Microsoft Corporation. 1993)

Code to generate these footnotes with appropriate title/identifiers as specified in

the Cloud9 document has been added. Hyper-links are also added if the user specifies a

topic in the “See Also™ section. The Microsoft Help compiler recognizes hyperlinks by a
special formatting. The hyperlink highlighted text is double underlined and s
immediately followed by special formatted hidden text of the Context String (# footnote)

of the page of the link (see Diagram 2 below).

Diagram 2

Hotspot Insertion

[~ Apply double-underline formatting to the text
!i that will appear in the topic as the hotspot.

‘ x
See also Drawing 3 Circledraw_circle

T

L Apply hidden text formatting tc the context
string that idertifies the destination topic.

(diagram from Creating Windows Help. Microsoft Corporation. 1993)

The “Next Comment” field determines the Browse Sequence (+ footnote). The
"+ footnote determines the order of traversal of documentation when using the Help file
browse buttons. Each topic is given a distinct integer browse number. and there is no
possibility of a cycle. In this implementation. search Keywords (K footnote) are the
same as the Title (§ footnote) of the topic and when invoking the search for topic

tunction of a Help file. the titles of the topic pages are presented.

The Help Project (.HPJ) file contains information that the Help compiler uses to
construct the Help file. It consists of instructions which control characteristics of the
Help file. Only a few simple instructions are needed to generate the Help file using
Cloud9. The Help project file is the same for all Cloud9 generated help files. except the
name of the Help project file and Rich Text file reflects the current name of the

document. Cloud9 uses only three instructions in the Help project file:

-CNTENTS=context_string //specifies the contex:t string
// 2r ID of the first page
CCNEFIS!
Srcwseduttons (!} //include crowse tuttons
IFILZS]
2T Iilename //Rich Text £ile name

BrowseButtons () enable left and right arrow keys which appear at the top of the
Help file and allow a programmer specified traversal order. Cloud9 automatically calls
the DOS program HCP.EXE. the Microsoft Help file compiler when performing

document generation.

8.7 Implementation

8.7.1 Creation of the Rich Text Source File for the Help Compiler

The data structure that contains an individual Help file page or Help file topic is

called a page_node. Itis as follows:

typedef struct page_node {

struct page_node
Chi_.

int

String

Chi_String
Chi_sString

Chi_String

Chi_String

int

} PAGE_NODE, *PAGE_NODE_PTR;

marked;

*left, *right; // ptrs to subtrses
title; // title string
id; // # context integer id
browse; // K search keywords
rich; // rich text associated
// with page
next; // name of *Next Comment”,
// if any
seeplso; // name of “See Also”,
// if any

// TRUE if the page has been traversed
// when determined page order outpuc

// (related to BrowseButtons() feature;
/7 alcthough traversal order may

// change, each page is visited once)

Each page of the Help file is placed into a binary tree based on the alphabetical

title of the page. A binary tree was used to preserve the uniqueness of topics. If a page

already exists in the binary tree it can not be inserted. (Although two pages may have

links to the same page. there should only be one copy of the page in the tree.) Another

reason for selecting a binary tree is that it is an easy structure to traverse recursively. The

fields of the data structure are standard left and right pointers to the nodes™ sub-

trees. the title of the page (printed at the top of the page), the id of the node (also

called the context string (ID) and is associated with the “#" footnote). the browse field

that identifies the search keywords which appear when using the search for topic function

n
[9F]

of Microsoft Help files (set the same as the title). the rich text associated with the
page. the title of the page of the next comment (if the field is used). the title of the
page of the seeAlso field (if the field is used), and a Boolean representing if the page
has been traversed or marked (used for page ordering).

The rich text associated with the page of the Help file in the rich field grows in

stages. First it only contains the rich text of the page or whatever appears in the Cloud9
Rich Text comment field. Then the footnotes are inserted at the front of the rich text
based on information found in the other fields of the page_node structure. Next. links
to functions and operations for the page of each class and see also links are added to the
rich field (if any). As a last step, only the rich field of each page need be written to
the .RTF file. The rich field eventually contains all the necessary information.

The page_node binary tree is constructed by first inserting the page_node
associated with the module. then the page node listing the names of all the classes in
the module (links to all the classes), then starting with the public module section. the first
public class page. then pages for each of its member functions and operations. the second
public class page. then pages for each of its member functions and operations. Then the
private module section classes, functions and operations are iterated as above if
implementor documentation is being generated.

The last page to be inserted is a page containing only a closing paren !}~ which

has the title "zzzzzz". Microsoft Rich Text is a completely parenthesized language.

and by traversing the binary tree in alphabetical order by title. the last closing paren is

placed at the end of the Microsoft Rich Text file. This ensures that the Microsoft Rich
Text file is always valid because an unclosed parenthesis in a Microsoft Rich Text file
will cause the Help compile to fail.

The tunction to enter a Help file page, called enter _page. follows a standard

binary tree insertion algorithm and is listed in Figure 8. page 70. Prior to calling the

enter_page function, a function called try_enter_page ensures that the page has

not already been entered.

It is helpful to dissect the Rich Text of a page of a Help file and expose the Help
file attributes that have been entered. Figure 9 on page 71 lists a standard Help File page
source code in Rich Text (note the C++ comments to determine the meaning of svmbols:
actually. C++ style comments are illegal in Rich Text but have been added to aid the

reader). Similar to the “C” programming language. Microsoft Rich Text is fullvy

parenthesized and the “\" character represents special formatting. Fonts are listed in the
font table and are referred to by “\f#” associated with them in the font table. The font
table closest to the formatted rich text is the one that applies.

Following the insertion of the all basic page data. a recursive function named
iterator is called given the binary tree root node as an argument. This function
inserts all four footnotes at the beginning of each page (in the rich field) with the

corresponding footnote information based on the fields of the page node structure

(except the “+" browse traversal order footnote. which is determined last by following the

“Next Comment” links).

(9]
w

After iterator is called. a function named update functions is called.
This function searches the page node binary tree for the page associated with each
class. Each class page is modified (the rich field) by adding the names of its member

functions as links. Recall that links are created by applyving hidden text to the context
string associated with the member function page immediately following the double
underlined member function name. The context string associated with the member

function page is provided by searching the binary tree for the title of the member
function. then reading the associated id field of the page_node.

After update_functions is «called. a recursive function named
update_seealso is called with the binary tree root node as an argument. The code
for update_seealso is in Figure 10, on page 72. It compares the seeAlso field of
each page with the empty string. If the seeAlso string is not empty, the title of the

page of the seeAlso string is searched in the binary tree. Similar to

update_functions. the context string id of the seeAlso entry is added as
hidden text following the double underlined title of the seeAlso string creating a link to
the seeAlso page. As shown in the code. it was convenient to define some commonly
used Rich Text strings such as short_title openand newline. These contain

Rich Text instructions to format for the insertion of a title name and addition of a new

line. respectively.

Next. the sequence function updates the “+" footnote (traversal sequence) with

the appropriate page number. [t determines the page number of the next page bv

following the next comment field of the current page (if it has any) and searching for a
match in the binary tree with that title. If a match is found. the value of page

number is incremented and placed in the “+” footnote of the binary tree node associated

with this next page. marked is set to TRUE for this next page. and the “Next Comment”

of this next page is followed (if any). If the page has no next comment field. the next-
next page is determined from the default traversal sequence (see Section 9.7N.

All the pages are written to the .RTF file using the recursive iterator

function shown below. Because the Help compiler takes care of browse sequence
ordering based on the "+ footnote, the files can be written to the .RTF file in any order
(used in-order traversal of the binary tree. although pre or post would have been fine).

Lastly. the memory of the page_node binary tree is freed using the recursive

delete_page display function.

void iterator (PAGE_NODE_PTR page_display,DOC_OutputStates rcfos)
if (page_display)
{
iterator(page_display->left,rtfos);

rctfos.princ (page_display->rich) .endl () ;
icerator(page_display->right, rtfes);

8.7.2 Development of Rich Text Editor Class

[n order to provide Rich Text for the Help compiler. Cloud9 needed a Rich Text
Edit control. Borland's OWL. used to create Cloud9. does not offer an encapsulated class
to provide the functionality of a Rich Text Edit control. Borland does. however. offer a
TEdit class which provides the basic functionality of a simple Text Edit control. One of
the obstacles involved in this thesis was to implement a Rich Text Editor class similar to
Borland’s TEdit class but having Rich Text functionality. Specifically. what was missing
from Borland’s TEdit class was the ability to select fonts and sizes. perform bold. italic
and underlining. Research into a Rich Text Editor application written in C which used
calls to Windows 95 Rich Text Library suggested that it could be possible to simply add
the functionality of a Rich Text Editor to Borland’s TEdit class. Part of the design work
of this thesis involved creating new methods for the TEdit class which encapsulate Rich
Text Editor functionality. For example. if the new Rich Edit class received a “CmBold™
command. it would have to perform the appropriate Rich Text modification. [t would
also have to by default perform all of the same functions of a TEdit control when
appropriate. For this reason. the new Rich Edit class created for this thesis inherited from
the TEdit class. Depending on the area of the Hierarchical View clicked on. an
appropriate Rich Edit control or TEdit control would be returned. It is interesting to note
that while this thesis was in development. Microsoft Foundation Class Library Version
4.0 implemented a class to encapsulate a Rich Text Edit control. It performs everything

the version created for this thesis performs. but also supports cutting and pasting of

n
oo

pictures. The header file for the new Rich Text Edit control class appears in Figure 11.
on page 73. The actual name in the Cloud9 application for the new Rich control class is
TExampleRich. Although it appears to inherit from a class called TRich. TRich is an
exact duplicate of TEdit. except for the name change TRich for TEdit. This was done
because a direct inheritance from the TEdit class produced compile errors related to the
internal workings of OWL and this was a simple work-around. As shown in Figure 11.

the new member functions were added to express the new desired functionality.

8.7.3 Rich Text Control Usage

Once the Rich Text control had been created. it was necessary to modify Cloud9
so that the new Rich Text control was returned if a Rich comment box was selected in the
“code view.” This was easily accommodated by looking at the name of the node in the
“code view.” If it was an edit control for comments associated with a function. for
example. a Rich Text control would be returned. (See Figures 12. 13. and 14 for
common uses of the Rich Control. pages 74-76.) In order to discern whether a Rich Edit
control or a TEdit control had been invoked when updating the contents of a edit control
(when the user clicked outside the active edit control) a dynamic_cast was
convenient. As shown in Figure 15 on page 77 in the C++ code to update a “code view"”
string (HViewString::update). if the edit control updated was indeed a

TExampleRich. some special behavior needed to take place.

First. a special operation specific to saving Rich Text had to be invoked. called
SaveText () . SaveText () calls a Windows callback function. A callback
function is a function which once invoked automatically invokes itself until it is finished.
Each time it is invoked. a known amount of data is processed. As a result the callback
function pulls consecutive units of data out of the Rich Text control repeatedly and saves
them as text in a specified location. This repeats until the entire length of the data of the
Rich Text control has been processed. Notice that with the deletion of the Rich control
at the end of the operation. the position and length had to be reset to zero for the callback
function as the callback tunction had to remember where it left off in-between its

recursive calls to itself.

8.7.4 Other Enhancements to Cloud9

Cloud9 had a number of problems at the outset of this thesis. While the
framework existed for public and private module sections in the “code view." data
entered into the public module section would appear in the private module section.
Apparently. the flag for determining the module section that an edit was to be inserted or
replaced was neglected for “code view” editing updates. The solution was simple. An
additional field for public vs. private module sections was added to all moditication and
creation function for the basic types supported by Cloud9 to ensure the appropriate

updates. For example. a function to change the name of a function. called

60

update_function_name. would have the additional parameter of module section
(public or private).

Several small bugs were fixed during the course of this thesis. including General
Protection Faults caused by dereferencing NULL pointers. poor memory deallocation.
and incorrect array indexing for the names of files produced using Cloud9. Some of these
problems made Cloud9 unusable due to frequent crashes. and they had to be dealt with
immediately before progress could be made on the topic of this thesis. Some cosmetic
changes to Cloud9 were also performed. including hiding the of inactive Rich Text Edit
controis.

[n order to ensure unique Help File page names for functions and operations.
arguments entered into the Function Argument Table had to automatically update the
function name. Uniqueness is a necessary attribute due to the common overloading of
functions in C++ producing functions with identical names but with different argument
lists. Function Argument Table changes and insertions are now instantly reflected in the

function name.

9. CONCLUSION

Object-Oriented Design is most useful when applied to real world modeling
because it is natural for us to think of the world as composed of objects interacting. It
allows the programmer to break down a complex system into different levels of

abstraction and to focus on encapsulating behavior with respect to each level. Similarly.

61

explaining a program to another person more naturally parallels human psyvchology than
explaining the program to a computer. Using Literate Programming techniques. in an
effort to explain the program to another persor.. the programmer ends up explaining the
program to the computer. ideally with much less struggle. Although Cloud9 is still in its
development. it already possesses some attributes which make it unique and allow
programmers to express their ideas in ways which facilitate Object-Oriented Design and

promote understanding.

FIGURE 1

HYDROPONICS GARDENING SYSTEM TOP-LEVEL CLASS DIAGRAM

Automated
Garaener

————————————s

T

Stanning

- 3ul
GargeningPlan - Lprary
PlanAnaiys:
-
_ Greennouse Garaening
EnvironmentaiControiler Datapase
Nutritionist
//\/\ -
~ \
et ——— et a———— e et sttty
Climate ~ Nutnents CropTypes

global

A3

FIGURE 2

HYDROPONIC GARDENING SYSTEM CLASS DIAGRAM

) . Detines cimate =nyirgnmenta .-
N R ___—"" - Conrrotier
GargeningP'an - o
crop ‘- @
2xecuter
canHarvest
o N
Heater _ant
12ooler
= > o
Actuator B
startUpi) e~ Temoperature.
-, shutDowniy -

/.

FIGURE 3

PACKING ORDER SCENARIO DIAGRAM

inAgent :Packing :Stock nventerv inQOrger imoping
Jrger Jerson Datapnase
scheaule
Agent iniiates a DackiNg orger "cr —————p
aclion Dy a siockoerson
A packing orger Is assigned to the 2ssign
next avaraole stockoerson - >
For eacn oroauct in the orger
querv
Stockpersaon gueries location —_—
Jpaate
Stockperson retneves proguct —_—
and aqas it 10 the orger Jbaate
Stockperson oresents orger to T neau!
snIPPING 1or getivery >¢ ecn.i
close

65

FIGURE 4

HYDROPONICS GARDENING SYSTEM MODULE DIAGRAM

cooter

—
—————
—
—

66

FIGURE 5

PASCAL PROGRAM GENERATED FROM WERB FILE

{1:}{2:}PROGRAM PRINTPRIMES (QUTPUT) ; CONST M=1000;{5:}
RR=50;CC=4 ;WW=10;{:5}{19: }ORDMAX=30;{:19}VAR{4:}
P:ARRAY(1. .M]OF INTEGER;{:4}{7:}PAGENUHBER:INTEGER;
PAGEOFFSET:INTEGER;ROWOFFSET:INTEGER;C:O..CC;{:?}{IZ:}
J:INTEGER;K:O..M;{:12}{15:}JPRIHE:BOOLEAN;{:15}{17:}
ORD:Q..ORDMAX;SQUARE:INTEGER;{:17}{23:}N:2..DRDHAX;{:23}
{24:}MULT:ARRAY (2. .0RDMAX]OF INTEGER; {:24}BEGIN{3:}{11:}
{16:}J:=1;K:=1;P[1]:=2;{:16}{18:}ORD:=2;SQUARE:=9;{:18}:
WHILE X<M DO BEGIN{14:}REPEAT J:=J+2;{20:}

IF J=SQUARE THEN BEGIN ORD:=0RD+1;{21:}
SQUARE:=P[URD]‘P[0RD];{:21}{25:}HULT[ORD‘1]:=J;{:25};
END{:20};{22:}N:=2; JPRIME: =TRUE;

WHILE(N<QRD)AND JPRIME DO BEGIN{26:}

WHILE MULT(N]<J DO HULT[N]:=HULT[N]+P[N]+P[N];

IF MULT(N]=J THEN JPRIME:=FALSE{:26};N:=N+1;END{:22};
UNTIL JPRIHE{:14};K:=K+1;P[K]:=J;END{:11};{8:}

BEGIN PAGENUMBER:=1;PAGEQFFSET:=1;

WHILE PAGEOFFSET<=M DO BEGIN{9:}

BEGIN WRITE('The First ’);WRITE(M:1);

WRITE(’ Prime Numbers --- Page ');WRITE(PAGENUMBER:1):
WRITELN;WRITELN;

FOR ROWOFFSET:=PAGEOFFSET TQO PAGEOFFSET+RR-1 D0{10:}
BEGIN FOR C:=0 TO CC-1 DO IF ROWOFFSET+C*RR<=M THEN WRITE
(P[ROWOFFSET+C‘RR]:WV);HRITELN;END{:10};PAGE;END{:9};
PAGENUMBER:=PAGENUHBER+1;PAGEOFFSET:=PAGEOFFSET*RR'CC;
END;END{:8}{:3};END.{:2}{:1}

67

FIGURE 6

TEX PROGRAM GENERATED FROM WEB FILE

\lnput webmac
W Prize exampie
“font.ninerm=car9

descriptiins are replaced by their expanded meanings, a
syntact:izally correct \PASCAL\ program will be obtained.\]

“Y\P3\+\XZ:Program to print the first thousand prime
numbers\X\S3\6\

\&{pregrzal\1n 373\\{print_primes}(\\{outpuc})$;\6
Vd\g{const} \373\ (m=1000%;\5

XS:Other :onstants of the program\X\6

\4\g{var} "37\X4:Variables of the program\X\6

\g{begin} 37\X3:Print the first “|m prime numbers\X;\6
\g{end}. par

WU secticn”l.\f2

The first three macro definitions here are parametric;
the other two are simple.\]

AYAPAD T 273\\{print_string} (\#)\S\\{write} (\#)$\C{put %
a given string into the \\{output} file}\par

\P\D V373\\{print_integer} (\#)\S\\{write} (\#:1)$\C{put %
a given :nteger into the \\{output} file, in decimal Y%

\inx
\:{Bertrand, Joseph, postulate}, 21.
“:\\{boolean}, 15.

\:\.{WEB}, 1.
\:\\{write}, 6.
Vis\{wr:te_ln}, 6.
i\ {wwr, [5]., 5.

fin

k4, 7, 12, 15, 17, 23, 24:Variables of the program\X
\U section™2.

con

68

FIGURE 7

DOCUMENTATION DEFAULT PRE-ORDER TRAVERSAL ORDER

o
l Module

Hin]
b e

Class l Classl! ’ s3 '! Class-t! g[Class 3
i | a i
| 1 !

i @

A9

—_—

FIGURE 8

ENTER_PAGE FUNCTION

wer_gage /Chi_String &title,Chi_String &browse,Chi_String &rich,

Chi_sString &seehAlso,Chi_String &next, PAGE_NODE_PTR *npp)
// mpp = ptr te ptr to page rIc-
int cmp; // result of string compare
PAGE _NODE_PTR new_nodep; // ptr to new entry
PAGE_NODE_PTR np; // ptr o node to test

// Create a new node for the name.
new_nodep = new PAGE_NODE;

new_ncdep->title = titla;
new_ncdep->browse = browse;
new_nodep->rich = rich;
new_nodep->seelAlso = seeAlso;
new_ncdep->next = next;
new_ncdep->left = new_nodep->right = NULL;
new_nodep->id = id;
new_ncdep->marked = 0;
id-+;
// Locp to search for the insertion point.
while ((np = *npp)!= NULL)
L
1£ {(title < np->title)
npp = &(np->lefc);
2lse
npp = &{(np->right);

4
*npp = new_nodep;

FIGURE 9

RICH TEXT SOURCE CODE FOR HELP COMPILER (SINGLE PAGE)

{\fonttbl {\fO\fnil MS Sans Serif;}{\f1\fnil\fcharsec2 Symbel; }
[\f2\fswiss\fprq2 System;}{\f3\fmodern Times New Recman; }
{\f4\Zswiss\fprq2 Arial;}
{\fs\fmodern\fprg2 Modern;}}
// specifies the font table and
// associated £ identifier

£4
fs

{.colortbl\red0\greend\klueo;}
// specifies use default coloring

{\cs1s\super #{\footncte \pard\plain \s1S \f4\£s20 {\cs16\super #} 12j}
// id or context string (# footnote) of the page is 13

{‘csis\super s{\footnote \pard\plain \s15 \f4\£fs20 {\csi6\super 5}
AddBounce (Vector3& position,Vectorig velocity) }}
// title of the page ($ footnote) is functiom signature

{\csi6\super K{\fcotnote \pard\plain \s15 \f4\£s20 {\cs16\super %}
AddBounce (Vector3& pos:tion,Vectoria velocity) }}
// search keywords (K footnote) same as function name
{*cs16\super ~{\foctnote \pard\plain \s15 \f4\fs20 {\cs16\super -} 017 .}
// page is 17th page using BrowseButtons (+ footnote)

vdeflangl033\pard\plain\f4\£fs32 Box3::AddBounce (Vectoris& gesiticn, Vecteorla
ralocicy)

‘par ‘par {\fonctbl{\f0\fnil MS Sans Serif;}{\f1\fnil\fcharser2
Symbol; } {\£2\fswiss\fprq2 System;}{\f3\fmodern Times New

Reman; } {\f4\fmodern\fprgl Courier;}{\£5\froman\fprqg2 Roman;}}
f\co-ortbl\redo\greeno\blueo }

~deflang1033\pard\plain\£3\£fs26 For a \plain\f4\£fs26 Box3\plain\£3\£s25 , add
the velecity to the position of the objecr. If you pass the border

“par of the box, then reflect the velccity and keep the old position.

The position of \par the object is the position of the center ‘or centroid) =f
—he object.\par

‘par Here is an example for the position exceeding the x-dimension of the bex:
‘par \plain\f2\fs20\b

‘par \plain\f4\fs26 if (pesition.x(} < _lox || position.x() > _hix)
par \

‘gar ‘tab velocity.Set(-velecity.xi), velocity.y(), velccity.z’1);
\par bounceflag = TRUE;

‘par \}

‘par

‘par ‘plain\f5.£s26 Note that either AddBounce or Wrap are used for zhe
plication, ‘par but not both at the same time.

\pa: ‘plain\f4\£s26
r

// rich text source of the page.

FIGURE 10

UPDATE_SEE.4{ LSO FUNCTION

veid update_seealsotconst DOC_Module Zmodule, PAGE_NODE_PTR page!
{

int p.Xx,Y.2;

char number(S];

Chi_String £Name;

PAGE_NODE_PTR ptr;

i ipage)

1

update_seealsc (module, page-s>left);

if {!{(page->rich} == close))

if (page->seeAlso.comparei{""))
T
£ (ptr != NULL)

fName = dbl_u;

fName .append (page->seelilso’ ;
fName .append (close) ;

P = page->rich.find(the_page, 0);
Chi_String hidden = hide;
sprintf (number, "$34\0",ptr->id);
hidden.append (number) ;
hidden.append(close) ;

r = search_page (page->seeAlso,page_display!;

Chi_String func = short_titls open - deflang -
néwline+ "See Also: " - fName - aiddern
newline;

page->rich.inserc(p-1, func) ;

)
I
’
;

update_seealso{module, page->right);

FIGURE 11

RICH TEXT CONTROL CLASS DEVELOPED FOR CLOUDY

lass TExampleRich

~— 0

sublic:

TExampleRich(TWindow+

public TRich

parent,
e id,
const char far+ cexet,
it x, nt y, int w, int h,
JINT texctlen = 0,
300L multiline = TRUE,
TModule~ module = 0)
: TRich(parenc, id, text, x, y, w, h, textLen, multiline, module)

_view_string_container =

}

NULL;

//New constructor calls parent TEdiT (recall TRich is TEdit)
// constructor and sets new container string attribute to NULL

void SetupWindow() ;

roid CmEdicCut () ; o
void CmEditCopyl() ; s
roid CmEdicPaste() ; 7/
roid CmeEditDelete() ; /
wvoid CmEditClear(); //
roid CmEdittndo() ; /7
roid CmdBold() ; /
void CmdItalic(); //
roid CmdUnderline() ; /
roid CmdFentDialogl() ; /7
~roid CmdIncreaseFcnc () ; //
void CmdDecreaseFont (} ; //
roid setHViewStrContainer {HViewString *); //
// “sets” the string the control
HViewString * hViewStrContainer() const:; 4

// “gets” the string the control

TEdit
TEdit
TEdit
TEdit
TEdit
TEdit
Bold
Italic
Underline

Font Dialog Box
Increase Font
Decrease Font
command

Cut
Copy
Paste
Delete
Clear
CTndo

Standard
Standard
Standard
Standard
Standard
Standard
New Rich
Mew Rich
New Rich
New Rich
New Rich
New Rich
New Rich
contains
New Rich
contains

command

roid EvKeyDown (UINT key, UINT repeatCount, UINT flags);
// Standard TEdit event key dcwn
reid gvLButtonDown (UINT modKeys, TPoint& point);
// Standard TEdit event butten
/7 down
soid NotifyParent (int nctification) ;
// Standard TEdit notify parenc
/7 dindow of update
void SaveText!(); // Saves the Rich Text into
// an ASCII string --
// formatting instructions
void RestoreText () ; // Restores the Rich Text
// from an ASCII string--
// formatting instructions
“oid RTF_ChangeCharAttribute (DWORD dwMask, DWORD dwEffects) :
// Changes the attribute (italic,
// underline, or bold) of
// selected Rich Text
void RTF_ChangeFonct(}; // Changes the font of
// selected Rich Text
woid RTF_ChangeSizeAttribute (int iPointChange) ;
// Change che size of
// selected Rich Text
HWND +parent; »/ Standard TEdit handle to parent Window
orivrace:

HViewString *_view_string_container; ’

}

i

’

/7

DECLARE_RESPONSE_TABLE (TExampleRich) ;

New ASCII string --
formatting instructicons

FIGURE 12

DOCUMENTING A CLASS
(‘+’ is Rich Text Editor Activation Hot-Spot)

Bcoudd-feameradat) _ _ _ ___ MERA|
{ Bie Edit Search Jools YiewBy.. Window Heip 2l xf
feds) B] 1) Gl [w[71X] e B UIAAR)
o | I 3
| T1EE
L -
| >
—{See Alsoj
‘—INext Commentl
Name
Ll l ___ AJ
INUM

FIGURE 13

DOCUMENTING A CLASS - RICH TEXT EDITOR ACTIVE

B clouds - [cameradat] - " ' : NER
C

Elo Etﬂt Search Tools VjewBy... mov Help - =|@] x|

Camers Pespective Profections
WO MUk OF 3 CIMENF 35 3 IEWDIZNS SN 3 CONIST OF CRYSCon

e e e =l

ceme o Lide e e e aima

Name

~
w

FIGURE 14

DOCUMENTING A METHQCD
(‘+’ is Rich Text Editor Activation Hot-Spot)

B cloudS - [camera.dat] !E]m
C Eile Edt Search JTools YiewBy.. Window Heip '

=X
; —3
et L
—@ D const []virtual [_linline gpure _I
Purpose 3
—-{See Also|Box3
—-[Next Comment,| SetProjectionType(int projectiontype)
—-{ Retumn Type|void
Value ;Commy
|
" .

76

FIGURE 15

RICH TEXT CONTROL l:SAGE IN C++ CODE

void HViewString::updare (TEdit * edirt)

int length, num_lines, num_char;
char *the_contents;
Chi_String Label = getLabel();

// we cnly do that for an existing edit cecntrel
1f (edir)
{

length = 0;

num_lines = edit->GetNumLines () ;

for (int i=0; i< num_lines; i++)

Isngth += edit->GetLineLength(i); // length of tha line

TExampleRich *theCntrl = dynamic_cast<TExamplaRich +*>iedi=z;;
// convenient dynamic_cast

"
[A]]

(theCntrl == 0) // Standard TEdit Concrl

the_contents = new char(iength+1];

// fetch texts from edit control
edit->GetText (the_contents, length+1);
Chi_String contents(the_contents) ;
setContents (contents) ;

}

2lse // New TExampleRich control
{

theCntrl->SaveText () ;

// calls the callback funczicn and
// setContents() for the Rich
// control
1
1
i1f {theCntrl == Q)
delete {] che_contents;
Chi_String newContents = contents(); // retrisves set contants
// for sither czontrol

FIGURE 15 (end of listing)

RICH TEXT CONTROL USAGE IN C++ CODE

’

// Get the module, determine what type of node
// has been modified, and medify that acde
HViewView* view = getView() ;

Decument& document = viaw-s>GetDocument () ;
COC_Module* module = document.getMcdule();
H7iewChild::class_tvpe clss_type = getClassTvoe () ;
Chi_String clss = getClass();

int parent_:index = getParent ()->getChildIndex(};

HViewChild::module_type mod_tvpe = getMcduleType () ;

’
5

switch (_node_tvype)
{
case MCLDULE:
if (Label == "Pach")
module->set _path (newContents; ;
2lse if (Label == "Comments")
module->set _comment (newContents) ;
2lse if (Label == :See Also™)
module->sec_seealso(newContents; ;
2lse if {Label == "Next Comment")
module->set _next (newCentents) ;

break;
case OPERPATION:

deActivate(!;
adit->Destroy() ;

if {theCnerl != Q) // Special TExampleRich deletion rasets
// atctrikbutes necessary for Rich control

// text saving

delete theCntrl;
setRichLength(0);
setRichPesition (9 ;
setRichFil= (NULL) ;

IR

GLOSSARY

The following terms are taken directly from Cay Horstmann's book. Mastering Object-
Oriented Design in C++[16]. except those with an *.

literate programming*
Changing the focus of programming from instructing the computer what we want
it do to instructing a person(s) what we want the computer to do. Viewing
programs as works of literature.

abstract class

A class without instance objects. An abstract class serves as a base class for other
classes but is not specific enough to provide implementations for all operations.

accessor

A class operation that does not modify the object on which it is invoked but
reports the value of the object (called selector herein*).

class

A collection of objects with the same operations and the same state range.

constructor

An operation that turns raw storage into an object by initializing the fields and
bases.

design phase

The phase of a software project that concerns itself with the discovery of the
structural components of the sottware system to be built. without concern for
implementation details.

79

GLOSSARY (continued)

destructor

An operation that turns an object into raw storage. carrying out any actions that
are necessary before the object is abandoned.

encapsulation
The act of hiding the implementation details of a class or module.
implementation phase

The phase of software development that concerns itself with realizing the design
in a programming environment.

inheritance
The definition of a derived class as an extension of a base class. The derived class
specifies how it differs from the base class and keeps all base class features that it
does not redefine.

instance
An instance of class is an object of the class type (part omitted*).

instantiation
The process of making an instance.

member (data member*)
A feature of the class.

method (operation*. member function*)

A class operation.

80

GLOSSARY (continued)

mixin
[nheriting from one or more abstract classes to add a specific service or protocol
to a class.

module
A collections of variables. constants. functions and types that have common
functionality.

mutator
An operation that modifies the state of an object. A field mutator is a mutator
modifving the value of a single field.

object

An entity in a programming system that has state. operations. and identity.
postcondition

A logical condition that an operation guarantees on completion.
polvmorphism

Associating different features to a name. together with a mechanism for selecting
the appropriate one.

precondition

A logical condition that the caller of an operation guarantees before making the
call.

state

The current value of an object. which is determined by the cumulative action of
all operations on it and influence the reaction to future operations.

81

GLOSSARY (continued)
subclass

A class that modifies another class (its pase class) by adding fields and adding or
redefining operations.

virtual operation

A family ~f operations that is specified in a base class and redefined in derived
classes and can be dynamically bound in a call.

WEB*

A system of program documentation in which files are a combination of two
different languages. a programming language (Pascal) and a documentation
language.

REFERENCES

[1] G. Jones, Software Engineering. 1990. New York. New York: John Wiley
& Sons.. p. 287.

[2] P. Courtois. On Time and Space Decomposition of Complex
Structures. June 1985. Communications of the ACM vol. 28(6). p. 596.

[3] G. Booch. Objecr-Oriented Analysis and Design. 1994. Redwood C ity.
California: The Benjamin/Cummings Publishing Company. Inc.. p. 12.

(4] H. Simon. The Sciences of the Artificial. 1982. Cambridge. MA: The
MIT Press. p. 217.

(3] Ramamoorthy. C. and Sheu. P. Fall 1988. Object Oriented Systems. 1EEE Expert
vol. 3(3). p.14.

(6] J. Gall. Systemantics: How Systems Really Work and How They Fail.
1986. Second Edition. Ann Arbor, MI: The General Systemantics
Press. p. 65.

(71 [. White. M. Goldberg, Using the Booch Method: A Rational Approach.
1994. Redwood City, California: The Benjamin/Cummings Publishing
Company. Inc.

[8] G.Booch. p.6l.

9] G. Booch. p. 65.

[10] G.Booch. p. 183.

(11} M. Shaw. ALPHARD: Form and Content. 1981. New York. NY:
Springer-Verlag, p. 6.

[12] L White. M. Goldberg, p. 6.

[13} L Jacobson. Object-Oriented Sofrware Engineering, A Case Driven
Approach. 1992. Reading. MA: Addison-Wesley.

REFERENCES (Continued)

[14] W. Bauer, M. Juncosa. A. Perlis, "ACM Publication Policies and Plans".
J. ACM 6 (Apr. 1959).. p.121-122.

[15] D.Knuth. Literate Programming, 1992. Stanford. California: Center for the
Study of Language and Information, p. 7-8, 126.

[16] C. Horstmann. Mastering Object-Oriented Design in C++.1995. Brisbane.
California: John Wiley and Sons, Inc., p. 441-445.

[17] C. Pokorny. C. Gerald. Computer Graphics: The Principles Behind the Art and
Science. 1989. Franklin, Beedle & Associates. Irvine. CA.

84

	San Jose State University
	SJSU ScholarWorks
	1996

	Object-Oriented Design and Literate Programming
	Glen D. Finston
	Recommended Citation

	tmp.1290447007.pdf.TB37n

