San Jose State University

SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2005

Robustness of disturbance observer on a six-DOF
dynamic system

Michael Sungmin Cho
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd theses

Recommended Citation

Cho, Michael Sungmin, "Robustness of disturbance observer on a six-DOF dynamic system" (2005). Master’s Theses. 2750.
DOI: https://doi.org/10.31979/etd.na43-rqghS
https://scholarworks.sjsu.edu/etd_theses/2750

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for

inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.


https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2750&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2750&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2750&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2750&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/2750?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F2750&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

ROBUSTNESS OF DISTURBANCE OBSERVER

ON A SIX-DOF DYNAMIC SYSTEM

A Thests
Presented to
The Faculty of the Department
of Mechanical and Aerospace Engineering

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Michael Sungmin Cho

August 2005



UMI Number: 1429413

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1429413
Copyright 2006 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346



© 2005
Michael Sungmin Cho

ALL RIGHTS RESERVED



APPROVED FOR THE DEPARTMENT OF
MECHANICAL AND AEROSPACE ENGINEERING

Dr. Ji C. Wang \}

?ml fﬂm/

Dr. Frdé Barez

2k o

Dr. Peter Reimer, Applied Materials

APPROVED FOR THE UNIVERSITY

| il




ABSTRACT

ROBUSTNESS OF DISTURBANCE OBSERVER
ON A SIX-DOF DYNAMIC SYSTEM

by Michael Sungmin Cho

This thesis addresses the challenges of the modern control algorithm faced with the
requirements of high resolution in high speed operations. A multiple axis disturbance
observer theory was developed on a six axis mathematical model to simulate the control
algorithm generated from the fundamental theory of the disturbance observer.

The theory of the disturbance observer with the Computed Torque Control is applied
to a multi-electron beam stage requiring nanometer accuracy, a mathematical model of
the stage was derived using Euler’s method, then the simulations using Matlab was done
to verify the performance of the disturbance observer. This research has validated the
performance of the disturbance observer in multi axis dynamic system where high speed

output with nanometer accuracy is required.
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INTRODUCTION

Modermn control algorithms face not only stability criteria but also high speed
operation requirements to ensure high productivity (throughput) in addition to precision
and accuracy requirements for the reduced size components of mechanical devices.
Robustness of control algorithm encompasses traditional controller parameters for
variation of dynamic characteristics from one unit to another as well as many
sophisticated control concepts that are capable of adapting to variation of characteristics
during the operations.

Among many fundamental elements that significantly contribute to degradation of
system performance, control engineers must confront the accuracy of the dynamic
mathematical model on which the control algorithm is be based. Accuracy of the model
is becoming more stringent since the control design employs some of the modern design
concepts mandating the model be highly accurate in order to achieve performance close
to the theoretical estimation.

The discrepancy between the actual output and the output of the nominal model can be
regarded as an equivalent disturbance applied to the nominal model. Professor Tomizuka
of University of California Berkeley, Berkeley, California introduced the disturbance
observer concept in his "Robotics and Automation" published in 1994, this concept was
further researched by Professor Tesfaye of San Jose State University, San Jose, California
in his 2000 research paper. The disturbance observer estimates the equivalent

disturbance then the value of the estimate is utilized as a cancellation signal.



The disturbance observer concept presented by Professor Tomizuka will be analyzed
and simulated using Matlab and Simulink before the concept is implemented on the high
precision wafer stage with Computed Torque Controller. In the original paper published
by Umeno and Hori (1991), the discussion was focused on the robustness and
effectiveness of disturbance observer implemented on the system with two degrees of
freedom; this paper will extend the concept to a system with six degrees of freedom.

Computed Torque Control determines the realistic acceleration torque according to the
dynamic mathematical model of the manipulator and the desired motion, therefore, any
modeling error in the dynamic mathematical model could significantly impact the motion
response and stability of the total system.

A disturbance observer can improve the robustness of the control technique with the
equivalent mass matrix fixed at a constant value during the operation. Numerous papers
previously published support the concept that a disturbance observer can effectively
suppress load variations with fixed nominal mass matrix, however, this concept has not
been applied to a system with multiple degrees of freedom where the fixed mass matrix
fails to decouple multiple axis disturbances applied to the system.

The proposed six degrees of freedom system is a Direct Write E-Beam Lithography
System, a concept being researched and developed by Ion Diagnostics, Inc. located in
Santa Clara, California. Direct Write E-Beam Lithography System is a next generation
maskless lithography system for both drawing and inspecting integrated circuits utilizing

direct-write electron beams capable of sub-100-nanometer resolutions.



The existing stage, a frictionless three legged structure must offer complete isolation
from chamber vibrations and provide smooth and predictable motion holding all points
on the surface of the wafer within one micrometer of the writing trajectory. Raster
commanded trajectory describes a position in the three dimensional space as a function of
time.

One of the main challenges is to obtain the nominal model for a system that possesses
many known and unknown disturbances in a high voltage and high vacuum environment.
High precision motion control design on a six DOF parametric dynamic mathematical
model is to be simulated on a Simulink model with the equations of motion derived with
both Newtonian and Lagragian methods. Three dimensional orientation equations are
obtained using Euler's equations of motion in three dimensions. Due to the complexity of
the three legged design, a non-linear simulation model is designed with Simulink instead
of analytical solutions using the equations of motion for the non-linear system.

This paper will introduce the basic theory on disturbance observer as presented by
Professor Tomizuka, followed by a detailed description of the stage and derivation of the
dynamic model. The subsequent section illustrates implementation of the disturbance
observer concept on a six DOF mathematical model with simulation results. Computed
Torque Control will be designed and the disturbance observer will be added to Computed
Torque Controller to show the improvement in the performance of the system. The final

section will summarize the effectiveness and performance of the disturbance observer.



Stage Design by Ion Diagnostics

Ion Diagnostics has designed a stage exclusively suited to the special requirements of
the multi-column multi-beam (MxM) next generation electron beam lithography tool.
Special features of this stage include:

o Flexible joints

e Non-commutated linear motors
o Insulating ceramic legs

o Wings

The stage offers isolation from chamber vibration and provides smooth and
predictable motion holding all points on the surface of the wafer within one micrometer
of the writing trajectory.

The stage operates in high vacuum which is necessary for the electron beams to travel
undisrupted while the wafer is subject to high voltage emitted by multiple electron beams
during the writing process. The electron optic heads provide several micrometers of
depth of focus and high-speed deflection feedback correction. The stage needs to follow
its trajectory to within £1 pm for all points on the wafer. An advantage that this stage has
over the conventional three axis stage is the small range of motion at virtually zero
vibration.

There are five electromagnetic actuators providing six degrees of freedom of motion
to the stage. The stage is positioned relative to the electron beam structure that is

mounted to be an inertial reference. Instrumentation is attached to the writing structure,



namely three laser interferometers for X, Y, and yaw measurement (in the plane of the
wafer), and three laser triangulation devices for Z (standoff), pitch, and roll measurement.
The flexible joints and non-commutated linear motors for motion in the wafer plane
are possible because of the small range of motion required. The flexible joints are located
at the top and bottom of three ceramic legs. The top joints connect to a wing structure
holding the wafer chuck and the motor coils while the bottom joints connect to
MinusK™ (commercially available vibration isolation spring) devices that provide
vertical support and motion having a low spring rate. Voice coil motors in the support
devices are the actuators for vertical, pitch, and roll control. Flexible joints, in contrast to
rollers or sliding surfaces, provide extremely smooth and predictable motion.
Specification for 300mm wafer X-Y Stage:
e 50mm x 50mm travel, 100mm/s velocity
e /-1 nm measurement accuracy (predicted position while following trajectory, at
all points on the wafer)
e X acceleration at 0.5g, Y acceleration at 0.1g
e Yaw, Roll, Pitch displacement: +/- 0,005 radian
o Ultra High Vacuum environment, Wafer at high voltage: 75kV
o Interferometer velocity data to be used with data age position error of 30nm at
100mm/s

e Triangulation device to provide relative z position to control voice coils in z axis
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Fig. 1: Stage Schematic
Source: lon Diagnostics

The basic structure of the stage is comprised of the following:
1. Ceramic Wafer Stage
2. Non-commutated Linear Drive provide x and y motion.
3. Three ceramic legs to support the stage
4. Three voice coils to provide z motion
The fundamental design concept of the three leg supported stage system is based on
the following merits anticipated:
e The stage has no friction as it is practically levitated by three legs having the

characteristics of inverted pendulum.



e A constant force spring is used to connect the leg to the voice coil that can
completely eliminate the vibration originated from surrounding environment.
e The drive force exerted by the drive elements is directly transmitted to the stage.
e Within 50mm raster motion range, drive force distributions can be assumed
uniform and linear.
Free Body Diagram:
Applied External Forces: X; & X, in x axis,
Y; & Y, in y axis,

Z1, Z,, and Z3 in z axis.

J,,J,.J;: Centers of flex joint
attaching legs to stage

N =P

Z, Z,

Fig. 2 Free Body Diagram of the Stage
Source: Ion Diagnostics



There is one nitrogen cooled electromagnetic drive on each end providing forces in x
[x1x2] andy [y: y2] direction while three voice coils attached to the end of each of the
three legs provide forces in z [z; z; z3]direction. The theoretical drive force
characteristics are determined by permeability theory, however, experimental data with
respect to the applied current versus the thrust force characteristics including the thrust
force distribution in the x-y plane will not be presented in this paper.

There are also gravitation forces acting on the system, from the weight of the stage
and the weight of the legs. The reaction forces between the legs and the stage are applied
at J1, J,, and J3 denoting connection points of three legs.

Dimension of the stage: (diagrams below not in scale)

Yl
In X-Z Plane 4 i
J """"""" ‘JZ +> Xz
% >
X, > J, Jl; 'G
Y
-t = P
z
A Y,
In X-Y Plane
.............................................. T a > X
C in—. A2 X2
A L2 ) Ll 71
Z Z



In Y-Z Plane z

Y.,
A
Y,—> J; J, I, —r> Y,
! 5 < 5 Lt

A

Fig. 3: Stage Dimensions

The development of the stage control systems was divided into two phases as described
below:

Phase 1:

The initial control algorithm was to be developed without forces applied by the
electron beams striking the substrate since the magnitude of the beam force was not
determined until the final phase of the development. Also, there will be resistance forces
caused by nitrogen cooling gas supply/return lines to the stage; the key factors include the
bending radius, material of the line, and the gas pressure. Due to the lack of available
information on the line, any forces caused by the cooling lines are to be disregarded in
the phase 1.

Phase 2:

Both forces caused by the cooling lines and electron beams are time variant forces
requiring a time variant control algorithm to be properly addressed. Neural Network or

Repetitive teaching control is to be evaluated in the phase 2.



Dynamic Mathematical Model of the Stage
The wafer stage system is considered as a multi-rigid-body dynamic system, a set of
dynamic equations describing the stage motion is derived. The equations of motion with
respect to the body inertia frame is first derived in the form of Euler’s equations of
motion, then the coordinate transformation matrix is used to convert to the motion of the

stage to the fixed inertia frame.

Earth-fixed
axes

Vertical
"

Fig. 4. Euler’s EOM Coordinate Systems
Source: B. Etkin “Dynamic of Flight: Stability and Control”

Euler’s equations of motion in three dimension can be found in many different forms,
but the equations introduced in B. Etkin’s “Dynamic of Flight: Stability and Control” was

used to derive the equation of motion.

10



Notation: L:

z B

v

Q:
R:
X,Y,Z:

U,V,W:

rolling moment
pitching moment
yawing moment
rolling velocity
pitching velocity

yawing velocity

components of resulting force

components of velocity of the mass center

Fig. 4 defines the body axes centered at the mass center of the stage, the mass center is

determined from the calculation carried out by Solid Works. Location of the center of

mass and relevant dimensions are shown in Fig. 3.

Reaction Forces at the Joints

The forces acting on the joints connecting legs to the stage are expressed as [ Fx, Fy,

Fz]i=;,,3 Derivation of reaction forces at the joints are shown in Appendix 2. It must be

noted that leg angles 6, and ely are measured from the vertical inertia z axis to the

position in the y-z and x-z plane. Variation of the angles between the legs is minor;

however, derivation of the equations of motion treated each leg separately showing the

angles for each leg explicitly.

Reaction forces at the joints are:

Leg1: Fyq =IO(X—L26)+%(mg+ZIXx—L29)

o]
Fyp =Io(y+D<p)+ﬁ(mg+ZIXy+D(p)
F,| =2, -mf#+L,6-Dj)-mg+NLa,

11



Leg2: F,, =IO(X—L26)+—;Y(mg+ZZXx—L29) Eq 2
Fyy =Io('}'/+D('[>)+%(mg+ZZXy+Dcp)

F =Zy—m{z+L,8+D§)-mg+NLa,

Leg3: Fyy = Io(i—Llé)+—Ili(mg+Z3 Xx——Lle) Eq3

oy 1
Fya =Io(Y+D<p)+§(mg+ Zy Xy+D<p)
F 3 =Z3 -mlz-L,5)-mg+NLa,

Please refer to Appendix 1 for values for variables above.

21
NLa;, NLa,, and NLa; are non-linear terms in the form of NLa = —(—Hyl + % m]elyely

Non linear product of angular acceleration and angular displacement terms will be
considered as a disturbance to the nominal plant. The magnitudes of these terms are
negligible compared to the forces acting on the stage; elimination of these terms does not

affect the performance of the mathematical model during the simulation.

12



External Forces and Moments Acting on the Stage
The stage is subject to six degrees of freedom; Euler’s angle uses X,Y,Z for
translation motion with L, M, N for rotation motion. L, M, N is equivalent to roll, pitch,

and yaw respectively.
The term external forces and moments are due to the fact that forces acting on z-axis

are transmitted through three legs to flexible joints which affect the motion of the stage in

all six axes.
Equations for the external forces and moments

X =Py  +Fp +F 3 J# X +X, Eq 4
Y =~(Fy  +Fyp +Fy3 |+ Y+,

Z=F, +F,p +F,4

L=(Y, +Y, JA+(F,, —le)D—(Fy1+Fy2+Fy3jc

M =(F, | +Fy +F 3 JC-F 3L +(F, +F» L, - (X, + X, A

N=(Fgp ~Fy J-Fyslg +(Fy1 +Fy2)L2 ~bxy—xp K+ {0y -, F

These equations are applied to Euler’s equation of motion presented by B. Etkin.

X + M, gsing = M, (U +QW —RV) Eq 5
Y - M, gcosbeosd = M, (V + RU - PW)
Z— (M, +3m)gcosbeosd = M, (W + PV -QU)

L =Is, P-1,R +(Is, - Is,, QR —Is,PQ

M =Ts,Q+(Is, —Is, )RP +Is  (P* -R?)

N=-Is,,P+Is,,R+(Is,, —Is,, PQ+Is,,QR
where

P =¢ - ysin 0

Q = Hcos ¢ + yrcos BosOs

R = \ycosBoshc — Osing

13



6 = Qcosp — Rsing
¢ = P+ Qsinesing + Rcos@cose
¥ = (Qsin @ + Rcos ¢ )sech

Please refer to Appendix 2 for a detailed presentation of the equations of motion.

In expressing external forces and moments in terms of Euler’s angles, the following

expressions can be obtained for each axis.

Forces acting on x-axis:

X, +X, = (31, + M, )}k - 31 L5+ 28  JmeL
H H
1

Jrﬁ(z1 17, +Z3)x—%(L221 +L,Z, +L,Z3 )0+ M, (62— y)

L0 —M gsind Eq 6

Forces acting on y-axis:

Y, +Y, = (3L, + M, )y +31,Dé + 3‘11{1gy+ 3“11{‘°’D<p+%(z1 +Z,+Z))y Eq7

+%(Zl +Z, +Z3)Do+M,gcosbeosd+ M, (yx — ¢z)

Forces acting on z-axis:

Z,+Z,+Z, =M, +3m)z +5mL,6 + 3mg + (M, +3m)gcosdcosd Eq 8
+M, (63 -62)- NLay

where NLa; =NLa, + NLa, + NLa,

Moments around y-axis:

(Y, +Y,)A =3I,Cy + (31,CD + 2D’m + Is, fp —Is,, i + 3n11_IgC y+ 3mfICD © Eq9

+%(Zl +Z, +z3)y+?{—c(z1 +Z, +Z; )0+ (Is,, ~ s, Py ~TIs,, 96 ~(NLa, ~NLa, )D

14



Moments around x-axis:

(Z1 +7Z, )L2 -L,Z, =-31 CX+5mL,Z+ [3IOL1C -3mL? + ISny Eq 10
) 3rr11_IgC - 9mgCL, 043

—%(Z, +Z, +z3)x+—%(Lzz1 +L,Z,+L,Z,p-L,NLa, +L,(NLa, + NLa,)

lmg+(ISxx _Iszz )W(P+ stz ((p2 _\ilz)

Moments around z-axis:

(X, - X K+ (Y, =Y, JF =311, - BIoDL, +Iyz o + 15,0 Eq 11
3L 3L 3Z,L N
-Tlmgy——H—lng(p— I%I 1 (y+Dcp)+IXZ9\|/+(Isyy —stx);oe

Vector Equations of Motion

The above equations can be put into the form:
Mq+N(q,9)+G(q)=WF=1 Eq 12
M is a mass matrix, N a non linear matrix, G a gravity matrix, 7 is an external force

matrix represented by force distribution matrix W multiplied by actuator force vector of F.

Non linear term N can be represented by
N(an)=N1q+N2(q) Eq13

here q=[ %, v, 2, 6,0, ¢ ]

15



Mass matrix M

(‘

3, +Ms 0
0 31, +Ms 0
0 Ms+3m
0 3L,C 0
0 SmL,
0 -3LL, 0

-

Non Linear Matrix N;

r

(3mgtZ,+Z,+Z)H

0

COmg-Z,-Z,-Z,)H

0

(Bmg+Z,+Z,+Z,)/H

0

C(3mg+Z,+Z,+Z,)H

0

3L,(mg-Z,)/H

31D

3 L,CD+2D? L+1,,

3 ,DL+L,

D(mg+Z,+Z,+Z,)/H
0
C(3mg+Z,+Z,+Z,)/H
0

-3DL,(mg-Z,)/H

16

3LL,

3mL,

31,CL-3mL,2 +1,

<[Omg L+ L(Z,+Z )+
L,Z,H

0

0

-C[9mg L+ Ly(Z+Z,)+
L,Z,JH

0

-1,

L,




N; (¢) Matrix

-

Ms(0 z-¢ p)
Ms(@ x-¢ z)
Ms(¢ y -6 z)

1.6

L @
W Matrix and F vector

[ 1 1

0 0

W= 0 0

0 0

0 0

-K K

(Iz'yy)e (D'Ixz¢ 9
(Ixx' ZZ) ¢ Q"XZ(¢2'¢2)

[am—y

o P o

m o P O

o Nl"‘ o — [

p—

o [ o

17

G(q) matrix

,

-Msg sinf

Msg cosb sind

(Ms+3m)g cosD cosd

0
3mgL,
0

N N N < < KN

W




Methodology

This paper describes two types of control methods applied to the stage to achieve the
desired performance; the first basic method is Computed Torque Control capable of
delivering excellent performance if an accurate mathematical model is provided. The
second control method is integrated to Computed Torque Control in order to complement
the missing terms and non-linear terms that were not represented adequately in the
mathematical model.

Stage Motion Control with Computed Torque Control

This section describes the basic principle behind Computed Torque Control which can
be commonly found in robotic manipulator control systems. It consists of two control
loops: Model based inner control loop, and Servo based outer control loop. The model
based inner loop is similar to a feedforward control loop consisting of Mass matrix M,

gravity term G, and the non-linear terms V.

dq

dq
dq

Fig. 5: Block Diagram of Computed Torque Control

This control scheme allows decoupling of all six control loops for the stage control.
However, this control scheme mandates a very accurate mathematical model of the plant

due to its poor handling of unknown disturbances.

18



Above figure, [ d,q 44 d] represent the desired trajectory in the three dimensional

space for the stage to follow. The equation of motion to describe the dynamic of the
system is:

Mg + N(q,9) + G(q) + 14 = U(t) = WE(1),

where 14 includes both the modeling error and the process noise.

Computed Torque Control signal T can be derived as:

7= Mg + N(q,q) + G(q) + Mu(t)

where the feedback control signal u(t) generated by the servo control loop can be

expressed in terms of proportional gain and derivative gain:
u(t) = -K, E(t) - Ky E(t) (note that the integral term — K, J: E(t)dt can be added)

where E(t) = qa(0-9(®) , a) =[x, %,2,9,6,¢ 1"

The objective of the motion control system is to have the stage follow the desired
trajectory of x(t) and y(t) within the acceptable tolerance while [ z, 9, 6, ¢ ]* motions are
constrained to zero. By substituting the above equation, it can be readily seen that:

B(t) = u(t) - 14 ()
141in the above equation prevents the decoupling of the dynamic equation, this presents a
great deal of difficulty in designing a control system.

However, if 141s ignored, then the state dynamic equations can be decoupled allowing
all control loops to be individually designed. By designing a control system which can

compensate for inaccuracies in dynamic modeling of the plant, t4 can be ignored during

19



Computed Torque Control design step. Any inaccuracies in the dynamic modeling are to
be compensated by disturbance observers in each loop.

The state dynamic form of the above equation is:

e= (g o)+ [1]u 8]

Where X=(E, E)’

Plant matrix is controllable which allows the pole placement method to be used to
obtain the best set of the feedback gain [ K, K], then the servo control loop will be in the
form of:
u(t)=-K,E- KyE which yields
E+K, E + K, E=0 - here 14 is ignored.

It is important to note that since 14 is ignored, the robustness of the servo loop is not
optimized, nor the performance of Computed Torque Controller. A disturbance observer
with robust control approach will predict the ignored term 74 in addition to inaccuracies in

the dynamic mathematical model.

20



Disturbance Observer Theory
The accuracy of a mathematical model generated either to derive the control algorithm
or to simulate the system plays an important role in validating the system performance.
The disturbance observer is designed to estimate the difference between the actual output
and the nominal model output, and to use this information to generate a cancellation

signal to minimize the dynamic effect of the difference.

6800060060000 0000008050
>

Disturbance

Fig. 6: Block Diagram of Disturbance observer

Mathematical Derivation of Disturbance Observer

Gy : Actual Transfer Function

GEV : Nominal Transfer Function

d:  Nonliner disturbance not compenstaed
&y : Measurement Noise

v:  Velocity Output

From the figure above, when Q(s)=1, the transfer function of the system will be
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A A G> 1
o=d=[1-—lu+—=~&, +d
G
uv uv

The derivation of the above equation is as follows:

The velocity output can be expressed as
V=0 u=d+e
=Gyy(d+e) e=u-d
= Gyy(d+u-9)

Let X| = V+§V
1
= X
2 Gﬁv(s) :

A 1 a
d=xy e = (Guy(@+u-+&y) ¢
uv

And x
Guy uv

8 =d where Q(s)=1
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Eq 16

1 1 .
=48 = By @ u- 9+ 8y} Eq 17
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Next the velocity output is then expressed as

V=Gt =CE+d)=G,d+u-38 Q=1and d=5 Eq 19
= Guy(u-d+d)

now,

1
n
GUV

v=x;—-§y where x,= X| Xy = Gﬁvxz

=G3Vx2—§v &=x2—s=x2—u+8=x2——u+&

= Gyyu—&y X»=Uu

. 3 n
Eq 20 shows that the input-output relation between u and v as characterized by the
nominal model.

From the figure 6, the following relation can be established

0 0 0
V= Guv (su + GuV (s)d + GuV (S)&V . Eq 21
where
o - GuvGuv o __ GuGw(1-Q
Gﬂv +(Gyy - GﬁV)Q dv GEV +(Gyy - GEV)Q
and GP = Siat

SvV G{llv +(Gyy - G{llv)Q

if Q(s) = 1, the three transfer functions above are

0O _ 1 o _ [y _
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and the relation in Eq 20 is resumed. On the other hand, if Q(s)=0, the three transfer

functions are

Guy =Guy, Gy, = Guy: vav =0

and the open loop dynamics is resumed. Professor Tomizuka recommended allowing the
low frequency dynamics of Q(s) to be close to 1 for disturbance rejection and the model
inaccuracy compensation. For the high frequency dynamics, Q(s) needs to be close to 0
in order to bring the relative order of Q(s) equal or greater than that of Gy (s).

Umeno & Hori stated that (1-Q(s)) and Q(s) can be interpreted as a sensitivity
function and complementary sensitivity function for the velocity feedback loop, and

suggested Q(s) in the form of:

N —
1+ > ra k (z's)k
Q(s) = —K=1 here, T determines the cutoff frequency of the Q filter.

k
1+ > ay (zs)
K=1 k

Umeno & Hori further suggested employing a Butterworth filter design in where Q(s)
is defined such that 1-Q(s) has the frequency characteristics of a high pass filter.

Figure 7 shows Bode plot Q(s) by the order.

Bode Ciagram

Parameter Q(s)

1 £
N = g "
Type 0: Q) p— 8
Type I:  Q(s)= 12.41(sr)+1
(s7)“ +1.41(s7)+1 §
2 ’
Type 2:Q(s) = 23(”) +§(”)+1 ‘ TR LT
(57)° +2(s7)“ +2(s7)+1 i 0 it

Freguency (rad/sec)

Fig. 7: Bode Plot of Q filters
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From the Bode Plot above, it is clear that by selecting proper cutoff frequency 7, both
magnitudes and phase angles can be shifted.

The conventional PI controller is equivalent to type 0 since it can be derived by setting
Q(s)=0. Close comparison of three types of Q filters reveals that it is difficult to
recognize the superiority of any one type of filter over another. The cutoff frequency
determines the sensitivity of the observer. The observer’s basic design employs a

Butterworth filter design.

Fig 8: Block Diagram of Disturbance Observer w/ Filter

Robustness of Q(s) parameter was simulated using Simulink, as the disturbance d was
applied to the plant Gp, the disturbance observer measures the difference between output

y and control signal u which is utilized as a cancellation signal.
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The following relations can be readily seen.

_y _GpGn
Cw=1="2
G. .Y _GpGn(1-0) Eq 23
bg A
_y _GpQ
TN s

A=Gn+Q(Gp—-Gn)
low frequency:Q -1 G,, =Gn, G4, =0
high frequency:Q - 0 G,, =0

As an example, the figure below illustrates Simulink diagram that was used to

generate simulation data. Both references and disturbances are step functions.

Disturbance Observer Performance
Parameter Q{s)

(D>«

Michael Cho T (O >—-
[ it | [loe=> o
Disturbance
o9 & SH
- $ 5
ef
1 21aurzs 22 taus+1 2" taus2s 2 taust 1 »
taunz.s?+z'taus+1 taun3.s2+2*taurps2+ 2 taust1 taung.sI+2 tau 2+ 2% tausH t w2 s2+2Maust
TF1 Transfer Fen
(Dhsv]

Fig. 9: Simulation Diagram with Double Integrator

HeO

errof

1
is added to make the system realizable.

TZSZ +2 +1

The disturbance observer cannot be implemented if Q(s)=1 since

ln 1s not realizable

uv

by itself. Instead Q(s)/ G, (s) can be made realizable by making the relative order of

Q(s) equal or greater than the order of G}, (s).
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As an example, a plant of a simple double integrator is designed with a PD controller.
Figure 10 shows the performance of the parameter Q(s). Step input of 50 was given with

step disturbance of 50, the results are shown below.

Errar Observed Disturhance Cancellation

50 : : .' : 50 . : : :
T e S e R
e
YR S s e " S ——
D0 N NS [ U SO A A S

S SRS SOt | S S SN
0 : H H H 10 H H H H

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.4 0.4 08
Tirme {sec) Time (sec)

Fig. 10: Simulation Output of Double Integrator

Error is the difference between the desired outputs versus the actual output while the
observed disturbance cancellation signal displays the output of the disturbance observer.
It can be seen that the disturbance observer effectively estimates the magnitude of the
disturbance signal, then utilizes the signal to generate a cancellation signal.

The disturbance observer cancels the disturbance signal in 0.01 second while error
signal is still driving toward full cancellation after 0.5 second; this slow response is due

to the performance of the PD controller not being properly tuned.
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State Space Dynamic Equations

Vector equations of motion M4 + N;q +N,(q) + G(q)= WF =t can be converted to

state space dynamic equations in the form of X=AX + BU +f where X=[q q] ', U=F.

. 0 I + 0
X=l N, o viw [UF

The measurement equation is Y=CX+DU, C is assumed to be an identity matrix, and

0 .
-&.l}c«qw _M.l} N%(q) Eq 24

D to be a zero matrix for the purpose of simulation.

Matrix A is the system matrix, where A= {-I\/(I)-lNl (ﬂ which explicitly indicates that
the stability of the systems is affected by non linear terms N;. The term N; contains
forces from z actuators to counterbalance the forces from gravity in addition to apply
forces to maintain the top surface of the stage normal to the z axis. Forces from three
voice coils supporting the three legs will have impact on the stability of the stage.

Suppose no forces from z actuators, then the N1 matrix will be in the form of,

( 3mg/H 0 0 0 OmgLyH )
0 3mg/H 0 3mgD/H 0 0
0 0 0 0 0 0
0 3meC/H 0 3meC/H 0 0
3mgC/H 0 0 0 -9mgCL/H 0
0 0  3mgl/H 3mgDL/H 0 0

. J
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The stability of matrix A can be tested using many different methods; this can be also
measured by building a plant in Simulink. Simulink can simulate a dynamic system as

long as there is sufficient force in the z-direction to counterbalance the gravity force.
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Trajectory Generation

The desired trajectory of the stage is raster trajectory, e

50mm travel in x axis, then 50mm travel in y axis as l

shown in Fig. 11. '

Fig. 11: Raster Trajectory

The maximum velocity of the stage is 100mm/s with 0.5g (4.9m/s®) acceleration in x
axis and 0.1g (O.98m/sz) acceleration in y axis. A linear Function with Parabolic Blends
(LFPB) was used to generate the desired trajectory, then the first derivate of the position
with respect to time became the desired velocity trajectory, and the second derivative of
position with respect to time became the desired acceleration trajectory.

The desired position can be obtained:

a, +(@-t,)b, +(—-t,)c,, full acceleration
44, (®) = d; +vit, constant velocity
e, +(t~t,,)fi +(t=14,1)" & full deceleration

The coefficient v; may be interpreted as the

P Q:

maximum velocity allowed, the design parameters

are v; and the duration of the acceleration t,. The 0

remaining coefficients can be obtained:

| | | »
T T T >t
te it t, Bty T

Fig. 12: Trajectory of Acceleration by LFPB
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a; =q;(t; ), b =gty ), ¢ =vi_2—zi(tk‘)'
b
- qi () +q;(tgar) = Vitis
2
e; =qitin)  fi=qi(tkn)
_ Vitkot +4i () =i Gar) = Vit + 28 [ (Ben) =V ]
27

d;

i

The above equation will yield the trajectory of the desired position. By using Matlab,
the matrix of the position against the time was generated, and then this matrix was
differentiated once for the velocity matrix and twice the acceleration matrix from

Simulink. These matrices were plotted below in Fig. 13.

Desired Position Velocity Acceleration
v 250
s0f 1 1on} {1 2o
180 ¢
40
80+ ﬁ 100 b
.| _ so}
°£ D
g E O E O
E E
20+ 1 80+
E-] 4 -100 b
10 ’—
-150
o -100 . -200 ¢
L ; . L . ) 250 . L .
a 0.5 1 1.5 2 0 0.5 1 14 2 n} 05 1 1.5 2
time (sec) time (sec) time (sec)

Fig. 13: Trajectory of LFPB

The trajectory generated by LFPB presented implementation problems in real time
operation including torque generation that is not realizable. As it can be seen from the
plot above, torque generation is similar to square wave format implying torque must be
reversed from 200mm/s? to negative 200mm/s® instantaneously, this is a challenging

issue with actuators.
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In order to alleviate any potential problems with the actuators due to the unrealizable

torque curve, a more realistic torque curve was generated by simply creating a matrix that

contains a sine curve shaped torque profile. Acceleration and deceleration curves are in a

sine curve form with a maximum acceleration of 4m/s*>. Once the torque matrix is

created, values were integrated to generate a velocity profile with maximum velocity of

100mm/s.

The raster motion requires SOmm travel in x direction given maximum acceleration of

0.5g and maximum velocity of 100mm/s. The sine curved torque profile integrated twice

yields position profile in x-direction with elapsed time of approximately 1.5 sec for a

complete raster loop. Plots of trajectory shown below in Fig. 14.

50|
40l
30}
20+

10

Raster Motion in X-axis Velocity in X-axis

100 -

—_

50+

B0L

-100 |

0.5 1 1.8 [¢] 0.5 1 1.8
time (sec) time (sec)

Fig. 14: Sinusoidal Position and Velocity Profile
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And the torque profile:

Acceleration in X-axis

4000 |- ' ‘ -
3000 - i
2000 - —

1000 — -

o] 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
time (sec)

Fig. 15: Sinusoidal Torque Profile

Position, velocity, and torque matrices generated above are to be used as desired

reference points for Computed Torque Control scheme.
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Simulation Analysis of Computed Torque Controller

Based on the dynamic mathematical model presented in the previous section, a
Simulink model is built to simulate the performance of a system with Computed Torque
Controller. Simulations have the following conditions applied:

Trajectory: Motion only in the x-axis while maintaining the y-axis constant. Also the
controller must maintain the wafer surface perfectly normal to the z axis. For the first
simulation, matrices in x-axis contain non-zero terms as shown in the "Trajectory
Generation" section, however, for other axes, all the desired reference input matrices
contain all zero elements. This trajectory is consistent with the raster motion specified
which allows motion in one axis at a time.

The control system is designed to have the closed loop system behave as a critically
damped system by selecting K=[K,, K,]. This pole placement method can be used only
when the plant is controllable.

Matlab command “place” is used with the following desired pole.

P=-3000*[3 2.99 2.98 2.97 2.96 2.95 4.10 4.09 4.08 4.07 4.06 4.05];
Then, the following Ks are generated:
Kp = 1.0e+008 *

1.0860 0.0029 -0.0003 0.0019 0.0002 0.0005

0.0028 1.0938 0.0029 -0.0007 -0.0004 -0.0005

-0.0002 0.0028 1.0952 0.0005 -0.0001 0.0001

0.0019 -0.0007 0.0005 1.0919 -0.0011 0.0014

0.0002 -0.0004 -0.0001 -0.0011 1.0851 0.0030
0.0005 -0.0006 0.0001 0.0015 0.0031 1.0944
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Kv = 1.0e+004 *

2.1108 0.0033 -0.0004 0.0015 0.0001 0.0004
0.0032 2.1175 0.0033 -0.0006 -0.0004 -0.0004
-0.0004 0.0032  2.1169 0.0004 -0.0001 0.0001
0.0015 -0.0007 0.0004 2.1145 -0.0009 0.0012
0.0001 -0.0004 -0.0001 -0.0009 2.1105 0.0025
0.0004 -0.0005 0.0001 0.0012 0.0025 2.1198

In the first simulation, effect of the system disturbance torque term 14 is set to zero in

order to validate the performance of Computed Torque Control based on the

mathematical model.
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Simulation 1: Computed Torque Control with Zero Disturbance

Computed Torque
Disturbance STAGE
accel_desired I ¥ Distrurbance
I + M*u + q
+ Control
» -

GRAVITY

G out qin
N2(qd)

G

| velocity_desired {——M—

~<Fe—
<o

[ position_desired AV plactua

P> Desired

Fig. 16: Simulink Design of Computed Torque Control

The outputs of the three axes shown below:

X Axis % 10° Y Axis x10°  ZAxis
60 1 ‘ 1
50 |
40 0.5 0.5} “‘
. 30 ‘ c f f
0 — ‘ O——
€ 2 € l
10¢ 0.5 0.5 4
0
0. : : L » l . p , , .
0 05 1 15 0 05 1 15 0 0.5 1 1.5

Fig. 17: Output of Computed Torque Control
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In order to display the magnitude of the output, the x axis is scaled from —10mm to
60mm while the y and z axis are scaled in the range of +1¢®mm or Inm. The
performance of Computed Torque Control can be evaluated from the position error plots

shown below; all three axes are in the range of £10nm.

X 10°° X Axis . 107 Y Axis | 108 Z Axis
0.5 | o5 i osl
i
|
E ¢ I I I I E o £ o
€ I ) [ g £
05: 1 05 { 05
i
|
1 -1 : 1
0 0.5 1 15 0 05 1 1.5 0 0.5 1 1.5

Fig. 18: Position Error of Computed Torque Control
Analyzing the error position by axis:
e X axis: The range of the error is within +3nm, the maximum error is observed during
the maximum acceleration phase. Gain parameters are tuned to reduce the error

during the maximum acceleration, but it is not possible to achieve the range of error

less than 3nm.
e Y axis: The range of the error is less than £1nm; this is within the original
specification.
e Z axis: The range of the error is less than +1nm, satisfies the specification.
The overall performance of the control algorithm heavily depends on the rate of the
acceleration, by reducing the rate of acceleration; Compute Torque Control can provide

more robust performance.
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Simulation 2: Large Disturbance on Computed Torque Control

Computed Torque w/ Disturbance

DISTURBANCE

Disturbance 7

STAGE
8 5 P Distrurbance 12

P{Control
}-
: GRAVITY
G out qin 12

6 N2(qd)

6 12
Qe ooy

accel_desired Je 6

6 12
. 3 < :‘ 3
I position_desired Fr’@ 5 —frciia

6) Desired
Fig. 19: Simulink Design of CTC w/ Disturbance

In this simulation, sine waves are added as disturbance torques to all six axes. Desired
acceleration has the maximum acceleration peak of 4,000mm/s* while the applied
disturbance torque sine waves have the amplitude of 500 gf/mm. The frequency of the
disturbance signals are set at 10 rad/s for the demonstration purpose.

The following plots display position errors on three axes scaled in £10nm.

ok 10° X Axis S 10° Y Axis S 10° I Axis
1.5 15
2
1 1
0 ; 08 D5
€ € £
£ £ D g 0
2 05 s
-1 i
-4
-1.5 1.8
.2 2
BD 08 1 1.8 2 0 as 1 15 2 0 05 1 15 2

Fig. 20: Position Error of CTC w/ Disturbance
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Analysis of disturbance effect on each axis:

X axis: Clear indication of the disturbance effect on the position error, the maximum
torque error is in phase with the sine wave, frequency of the disturbance is well
preserved. Should the peak torque coincide with the sine wave, the magnitude of the
position error will exceed far above 10nm.

Y axis: It appears there is less disturbance effect on y axis compared to x axis, it is
speculated that the system has a stiffer structure in the y axis than in the x axis based
on the three leg design.

Z axis: This axis has the most pronounced effect of the disturbance, the amplitude
calculated in the z axis is larger than either the amplitude of error in the x or y axis.
The system has three legs on the voice coils which provide a certain degree of
damping which was not taken into consideration in the dynamic model; these
damping forces may reduce the effect of the disturbance in the prototype simulation.

Generally, Computed Torque Control cannot effectively handle the disturbance since

the control algorithm is based on the imperfect mathematical model. Disturbances not

included in the mathematical model will certainly degrade the performance of the control.

The above simulation also proves that the z axis is rather sensitive to the disturbance;

the actual system is designed to provide support from the three voice coils on the bottom

through minus K springs which provide constant forces rather than normal spring force

relative the distance of the spring. Two magnetic coils on the x axis are also designed to

provide the support in the z axis; however, the characteristics of the actuators in the x, y,

and z axis are never established during the project by Ion Diagnostics.
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The next simulation has the disturbance observer implemented on each of six axes to
cancel the disturbance; the sine wave disturbance is maintained for this simulation to
compare the performance of the controller. The subsequent simulation shows the
performance of the controller given different types of disturbance other than the sine

wave applied to the system.
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Simulation 3: Disturbance Observer on Computed Torque Control

The disturbance observer is designed as:

Desired I

6
—P
Mux 8

12 Observer

=l >

Actual %
Actual signalb
e oo omoay

L—————P»|Cbv_in Obv_out

Desired signal6
g LA

Actual signal1
L—-’ Qbv_in Obv_out

Actual signal6

Fig. 21: Simulink Design of Disturbance Observer

the final Simulink design with disturbance observers on each axis is

l Computed Torque with Disturbance Observer l

DISTURBANCE

7
STAGE
8 7 Distrurbance

< !
§ s GRAVITY

12
3 .
Destred -4°—J

Actual

DISTURBA OBSERV

A 8 12
s s "

N2{qd)

accel_desired s

Observer

velocity_desired
[ 12
[ € 6
position_desired w3 e [Actual
>

Desired

6
8

Fig. 22: Simulink Design of CTC with Disturbance Observer
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Simulink yields the following position errors on six axes. (scaled £ 10nm)

x10° X Axis x 10° Y Axis

0 0.5 1 1.5 0 0.5 1 1.5
x 10° Z Axis x 10° Phi Axis
1 ; . - 1 :
| |
0.5/ i 0.5
E o | £
£ 0: £ 0
|
05} - 0.5
-1 : , - -1 : : o
0 0.5 1 1.5 0 0.5 1 1.5
X 10° Theta Axis | X 10° Psi Axis
. ‘ .
0.5 ; 0.5:
E g ;
g 0 e 0
-0.5 -0.5
|
\
- : , : A : , :
0 0.5 1 1.5 0 0.5 1 1.5
sec sec

Fig. 23: Position Error of CTC with Disturbance Observer

In all six axes, no trace of sine wave disturbances can be found. The disturbance
observer has effectively cancelled the sine wave disturbances; however there is
degradation of performance both in the x axis and y axis.

In Simulation 2 where disturbances is applied to Computed Torque Control without
the disturbance observer, the position error is within + 4nm, however, when the
disturbance observer is added to the controller, the range of the position error increases

by the factor of 2, as large as + 7nm.
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The basic theory of operation of the disturbance observer is to compare the actual
signal against the desired signal; both signals are filtered through Q parameters. In this
particular simulation a Butterworth filter design is employed. Q(s) is defined such that 1
— Q(s) has the frequency characteristic of a high pass filter.

Since there is one sample time delay between actual and desired signal, the
performance of the disturbance observer can be tuned by adjusting the value of time
delay, tau. The outputs of the disturbance observer for the x axis and the y axis are

shown on the scopes below:

For tau = 0.001 10 %
8 | 20
s 15
. 10
g § 5
i -
Z 4
0
: -5
2 10
4 15
6 : : : -20 . . L
0 0.5 1 1.5 2 0 05 1 1.5 2
X Axis Y Axis
For tau = 0.00001
12 : 2500
10 1 2000
8 1500
6 1000
§ 4 g 500
g2 i oo
0 1 -500
2 -1000
4 -1500 ‘
6 ‘ 2000 : : |
0 0.5 1 1.5 2 0 05 1 15 2
X Axis Y Axis

Fig. 24: Position Error of CTC w/ Disturbance Observer @ tau=0.001
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The output of the disturbance observer in the x axis is consistent while the output in

the y axis had increased by 100 times.

The performance of the system with tau= 0.00001:

x 107 X Axis x 10° Y Axis x 10 Z Axis
8- ] 1.5 T - 1.5 :
4 | |
| 1 ‘ ‘
0.5 1
£ = , , | E
E e 0 — E
-0.5
Al
) , . ; 15! . ) . |
0.5 1 1.5 2 0 0.5 1 1.5 2 2

Fig. 25: Position Error of CTC w/ Disturbance Observer @ tau=0.00001

Apparently the disturbance observer perfectly cancels any trace of disturbance signals
without affecting the performance of the system. However, there is a clear indication that
this disturbance observer degrades the performance of Computed Torque Control while
successfully canceling the disturbance noises. By analyzing the desired torque signal
generated by Simulink, the cause of the degradation can be addressed.

Fundamentally, there is an inherent delay between the actual output and the desired
input since the mathematical model compares the current desired input with the previous
actual output. Any torque signals with the high rate of acceleration or deceleration will
suffer from this delay effect of the disturbance observer. Furthermore, the information
from the disturbance observer will be applied to adjust the value of the desired torque for

the subsequent sample signal, therefore, there will be two sample time delays between the
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actual output and the application of the disturbance signal to the system as illustrated

below:

Desired Input at T+AT Actual Outputat T

Disturbance Observer

Disturbance Observer Output at T+AT+AT

Fig. 26: Time Delay

It is evident that the disturbance observer generates the signal that reflects the time
delays between the desired and actual output, which in turn degrades the performance of

Computed Torque Control.
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Conclusion
This research addresses two major issues:
1. Design of control algorithm for the multiple electronic beam stage.
2. Evaluation of performance of the disturbance observer in a multiple degrees of
freedom system.

The physical characteristics of the stage are carefully analyzed, and then the dynamic
equations are derived using La Grange and Euler method. The control algorithm is
developed based on Computed Torque Control; robustness of the control is determined
by the accuracy of the mathematic model generated. Due to the complexity of the stage
design in addition to non-linearity of the system, it is not feasible to invest an extensive
amount of time in developing an accurate mathematical model.

Dynamic equations are simplified and linearized, then converted to state space format
to build a Matlab Simulink model, on which the control algorithm is validated. A
simplified plant in state space dynamic equations format is used to tune Computed
Torque Control, the performance of the control algorithm is within the specification
originally targeted.

In order to compensate the terms eliminated during the simplification and linearization
process, a disturbance observer is designed. Non linear terms and other eliminated terms
are treated as disturbances to the system, and then the disturbances are applied to the
system that is controlled by Computed Torque Control. This result is compared with the

output of the system that has Computed Torque Control and the disturbance observer.
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Computed Torque Control behaves poorly with the introduction of the disturbance;
this supports the fact that the performance of Computed Torque Control heavily relies on
the accuracy of the mathematical model. Introduction of any terms that affect the system
will result in the degradation of the control since the control algorithm cannot effectively
handle the inaccuracy of the model.

The disturbance observer added to Computed Torque Control significantly reduces the
effect of the disturbance introduced to the system, virtually canceling any trace of a
disturbance. However, this causes the degradation of the overall performance of the
control of the system as the disturbance observer is suffering from the time delay between
the desired and actual output. Regardless of numerous attempts made to minimize the
time delay effect of the disturbance observer, the performance of the control system
suffers from the time delay.

Computed Torque Control can provide excellent control performance if the
mathematical model is accurate. The disturbance observer can be used to compensate for
the inaccuracy in the mathematical model; however, the addition of the disturbance
observer degrades the performance of Computed Torque Control while successfully

handling the disturbance.
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Appendix 1
Values and Definition of Variables
Units: British Units (lbs, inches)

Inertial Tensor (physical value given by Solid Works)

z
X-Z Plane 4
I =Zm(y; +z)
- 2 2
I, =Xm(z; +x;) 4 T
I =Zm(x!+y}) CyX X,
]xy - yx = _Zmi‘xiyt :L i 3 >
IXZ = sz = _Emixlzl 1 2 1 T
Iyz = Iyz =-Xm.y,z, 7 7
g = (32.2ft/sec?)*12
m = (1.32)/g (mass of leg) (unit: Ib)
Ms=(51.67-(3*m*g))/g (mass of stage w/o legs)
(units: inches) z Y-Z Plane
B= 1.503 1
c= 0.283
d= 5.4125 ¢
= 15.07 Y A >y
H=  24.640 =P 3 , Js —r> Y,
JI= 3.380
k= 5.082 <+ < >
= D >
£;= 3'21*2519 Y, y‘_ X-Y Plane
A
) A —i—y X,
Iy
2Iyy m + » X
I =- 5t X,(—» *J, 1 G
H 2
- F

Fig. 27: Notations

49



Appendix 2

Dynamic Equations of Motion Derivation

The stage with three supporting legs is 5 X
A <
considered a multi-rigid-body dynamic system 4
requiring two frames of reference in order to Co
derive the dynamic equations. Leg Physical Property
The fixed inertia coordinate frame and the 0 H gi;llnz fbs
I
) . ! Diameter=1.125 in
body coordinate frame are used to describe the Thickness=0.125 in
position of the stage. The body coordinate frame
Zl'E » )A(

is fixed on the stage body mass center that is time
Fig. 28: Leg Physical Properties
invariant with respect to the body coordinate
frame.
The equation of the motion in the body coordinate frame is then transformed to the
fixed inertia frame using the coordinate transformation matrix. The motion of the mass

center of the stage and the orientation of the stage with respect to the fixed inertia frames

are derived from the Euler’s Equation of Motion.

Fig. 28 show two coordinate frames; fixed inertia frame X-Z and body coordinate

frame €; —€g, the transformation matrix is shown below.

Transformation Matrix

% ) sinely cosGly P ér _ sinely cosely
% cosGly —sinely ée ée cosely —sinely 5

>
| I
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There are three legs supporting the whole weight of the stage translating forces in z
direction from the voice coils supporting the legs. Fig. 28 describes the leg displacement
and the physical property of the legs.

Kinematics

T~ =2 2+Eé =z 2+E(sine X +cosh 2) —Esine X+ z +Ec§se Z
G lg" 2T g™ ly ly®) =27y lg 2"y

~ . A~ A ~ Ha . A H.
VG =Zlgz+91yee XEEr =Zng+—Eelyer

LaGrange’s Equation

Kinetic Energy

1 2 1 :
T=—mVG +'2—Iyye

2
o s Be e Vo 50 Be o el
= 5 m{(zng‘F > elyerJ [Zng‘l" > elyer)}"‘ 2 Iyyely

2
2 H* 2| 1. 2

2
ly

D |

2
1 .2 1 H 52
Potential Energy

U= mg(% cosely) + mgzy, = mg(% cosely + Zlg]

Generalized Forces
H . H

Qe = E sm@lyZ— FX 3

Q=2+ FxsmGly - cmosely - Kzlg

Minus K spring allows Kz, to be constant; then, the force from Kz, can be included in
Z.

Since L=T-U

2
12 1 H® .2 (H
_Emzlg+2(1yy+ 7 m}ely mg(zcosely-f-zlgj
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For all generalized coordinates

in z - coordinate

oL

aL_ L _ .. d (oL y

5z 8 7 g @l Ig

in G,y - coordinate

LR P [IWHZ }ely af o {Iyy&im]ély
By, 2 691y 4 dt| o6, 4

Equation of motion can be expressed in terms of
Z . milg +mg=Z+FXsin91y—cmosely
2
H n H H H
ely: (Iyy +— ) Iy ™3 rngsmely smelyZ —FX

Now, F, and F, can be found

2
H H H . H .
7Fx = {Iyy +— Jely > mgsmely + ?smelyz

21 H .
Fx =—[ }}I’y += 3 mJely (mg+Z)s1n91y

FZcosﬂly = Z+Fxsi1191y —m'z'lg -mg

=7+

2w Bk i N0, —mz. —
( = +2mJ91y+(mg+Z)s1nely}sm91y mz, —mg

21
|4y H_ e s .2 j ( 2 _)
{ i + 2m]91y51n61y mzlg+Z(1+s1n ely +mg| sin ely 1

cosely

Fzz

This equation can be linearized and simplified

21 H
Fz=‘(Tyy+2 jelyely mZ1g+Z mg =7Z- mzlg—mg+NLa
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21
where NLa = —( gy

+dm
2

0

|

iy®ly

Leg angles 6 and ¢, and displacement z can be expressed in the stage coordinate

system

Leg#1
X —L26

91y H
%-L,6
H
X—L2é
- H

Gly =

1y

Leg#2

Note that L2=2xL1

_y+Do _
x =g zlg—z+L29—D(p
. _y+D¢ o Y
=T Z]g =z2+L,6-D¢
. _y+Do L. R
x =g zlg—z+L29—D<p
_y+Do _
x> zlg—z+L29+D(p
. _y+Dg . S
x=TH o Zlg =2+L,0+Do
. _y+D . TR
Ix =T g zlg-z+L29+D(p
y+De¢ _
x =g 21g =2-149
. _y+D¢ S :
(plx = H Zlg —Z—Lle
. y+Do¢ W 1o
Px =g Zlg‘Z_Lle

Forces supporting the stage, F,,F,, and F, can be linearized and expressed as,

2yy
H

+2m
2

|

2lyy
H

H
2

+

Ayy m
)

2

k

|

0, +(mg+ Z)sinely

]+ﬁng+2{

e ZJ(X_LZG)

ly

Xx-L,0 x-L,0

|

"L26)+(f+ﬁ
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21
H 2

~Fx = Io(i-—L26)+%(mg+Z)(x—L26)

Leg#l F,q =1 (x L29)+ mg+ZIXx Lze)

1
H
mg+ ZZXX L26)

(mg+Z3X -L 6)

Leg#2 F, o =Io(i—L29)+

m|~

Leg#3 F,4 =Io(i—L16)+

|-

For a cylindrical bar, I, =1, , then same analogy can be applied to obtain F, for all 3

w?

legs.
y= —H2 5 [P1x +Umg+Zkingy,
=101, +(mg+Z}ing;,

. oy 1
=To(§+ D)+ (mg+Zy + Do)

Leg#l Fy1=10('y+D<'p)+ (mg+21Xy+D<p)

Leg#2 Fy2=Io('y+D¢>)+ (mg+22Xy+D<P)

Leg#3 Fy3=Io(y+Dp)+ (mg+Z3Xy+D<P)

|~ |- I -

F_ to be obtained as follows,

F; = Z—rnilg —mg+NLa

LegHl F,, =Z, -mlz+L,6-Dj)-mg+NLa,
Leg#2 F22 = Zz —m(Z+L29+D(P)—mg+NL32
Legh3 Fy =Z3 —mlz—LB)-mg+NLa,

NLa;,NLa,, and NLa, to be discussed later
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External Forces and Moments

X= —(Fxl +F 9 +F,3 )+ X1+Xy X, and X,: External forces from magnetic motors

Y= ‘(Fyl +Fpo+ Fy3)+ Y +Y, Y, and Y, : External forces from magnetic motors
Z = le + FZZ +FZ3

L=(Y; +Y, JA+(F,, ~F, P (Fy +Fyp + i )C
M=(Fy1 +Fyy +Fy3C-F 3L +(F,y +Fp Ly — (X + X JA
N =(FX2 _FX1)J—Fy3L1 +(Fy1 +Fy2)L2 _(Xl —X2)1(+(Y2 _Y].)F

3 external forces and 3 moments are described as:

X = -(F

X1+FX2+F3)+X1+X2

=—IO(X—L25)+—(mg+Zl)(x—Lze)+IO(5{—Lzé)+—é—(mg+22)(x—L26)
1
I -L.0)+— Z Le X, +X
+ ( 1)H<mg+ 3X )]+ )

. s 3mg_  Smgly 1
=-Blok—3L 8+ Ex+— 1e+ﬁ(zl+zz+z3)x-

%(L221+L2Z2+LIZ3)9]+X1+X2
Y= ( 1+F2+F )+Y1+Y2
1
[Io y+D(p ( g+Z1Xy+D(p)+Io('y+D¢)+E(mg+22Xy+D(p)

_ 1
+Io('y+Dép)+ﬁ(mg+Z3Xy+D(p)]+Y1 +Y,

. . 3mg 1
= —|:310y+310D(P+T(y+D(P)+ﬁ(zl +Zz +23 Xy'f‘D(P)jl‘FYl +Y2

Z=F, +F,+F,
=(Z,+Z,+7Z,)-3mz-5mL,6 -3mg+NLa, + NLa, + NLa,
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L=(Y,+Y,)A+(F, -E,)D-(F, +F, +F,)C

=(Y, +Y,)A -2D’m{ + (NLa, - NLa, )D

- {310y+ 31,D§ + 31}‘11—g(y + Do)+ -I:T(zl +Z,+Z, Xy + D(p)]C

M= (Fxl +F, +Fx3)c_Fz3Ll +(le +F22)L2 _(Xl +X2)A

[arx-31,L6+ 085 28 g, Lz bz 1z
H H H

- %(Lzz1 +1,Z, +L,Z, 0 |C-[z, - m(i - L,6)- mg+ NLa, |,

+|(z, +2,)-2m(z +1,8)- 2mg + NLa, + NLa, [L, - (X, +X,)A

3meC , _ 9m§L‘C 0 +§I—(Z1 +Z,+Z, )

--%(Lzz1 +1,Z,+L,Z,¥-LZ, +(Z,+Z,)L, —(mL, +2mL, )7

=3[ Cx-1,(2L, -L,)C6+

+(mL2 - 2mL% - 3L,mg + L,NLa, + L, (NLa, + NLa, )
N = (sz - Fx1)J - Fy3L1 + (Fyl + Fyz )Lz - (Xl - XZ)K + (Yz -Y, )F

= O+ 1,5+ D)+ & ng + 2, Do) 2L, -1,) (5, = X, K + (1, - VF

L
=3I L, y+3[ DL+ 311_;1 mgy + SHI mgDo

+255 (44 D) - (X, - X, K + (Y, - Y, F
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Magnetic forces X,,X,,Y,,Y,,Z,,Z, and Z, can be obtained using Euler’s equation.
Euler’s Equations

Pitch, roll, and yaw angle of an object in 3-D can be described by Euler angles.
Utilizing this concept, Dynamics of Flight by B. Etkin provides necessary equations with
all the coupling terms already derived as shown below:

Terminology:

A,B,C  moments of inertia about (x,y,z) axes
D,E,F  products of inertia

L,M,N scalar components of resultant external moment vector about the mass
center

P,O,R  scalar components of angular velocity vector

U,V,W  scalar components of velocity vector

X,Y,Z components of resultant forces acting on the object

v,0,¢ Euler angles

M, mass of stage

m mass of one leg
Equations: (Modified to reflect Ion’s coordinate system)

X +M,gsind = M, (U +QW -RV)
Y —M_gcosfeosb = M, (V +RU - PW)
Z—(M, +3m)gcosfeosd = M, (W + PV -QU)

L=Is, P-1,R+(Is, —Is, QR —Is,PQ
M =Ts,,Q +(Is,, s, JRP +Is (P> ~R?)
N=-Is,P+Is, R +(Is, ~Ts, PQ+Ts QR

P =¢—\sind

Q = Hcose + ycosBoshs

R = {rcosBosbc — Osing

0 =Qcos¢g — Rsing

¢ =P + Qsingsing + Rcospcose
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= (Qsin(p + Rcoscp)sece

dx'

e Ucos 6cosf + V(sin QIin@sin sY — cos osPs )
+ W (cos @OSPsin sy + sin @ings )

%— = Ucosfcost + V(sin(pin(psim\y + cos<poscpc)

+ W(cos<posq>sim\u — sin@ingc )

!

d_Zt = Usin® + Vsinesing + Wcospcoso

Evidently, forces and moments are coupled barring from building any potentially

realizable mathematical modeling. The following steps are necessary to decouple forces

and moments in order to build a mathematical model.

X + M, gsind = M, (U+QW -RV)
X =M, (U+QW - RV)-M,gsind

=M, lx + (écosq; + \ifcoseoses)z - (\jfcoseosec - ésin(p)y]— M, gsinb
=M, (& + 62— yry)— M, gsin®
a5 - 31,16+ 228 x 4. 2mEL
H
—%I-(LZZI +1,Z, +L,Z,)0 ] +x, +x,

=M, (% + 0z — iy )~ M, gsind

1e+%(zl+zz+z3)x

. L _
X, +X, =(3, +M, )k -3I,L8+ 3‘I’;g X+ 9m§ L9 —M,gsind +

1 1 _
ﬁ(z1 +Z,+Z, )X -E(Lzz1 +L,Z, +L,Z, P +M, (02— yy)
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Y — M, geos6cosd = M, (V + RU - PW)
=M, (§+ Y% - ¢z)
—{310y+310D<';5+3’%(y+mp)+%(z1 +Z, +z3)(y+D<p)}rY1 +Y,
= M, (¥ + X — ¢z)+ M, gcosBcosd

Y, +Y, = (31, +Ms)'y+310D<'p+-3—11’-{‘-“=1y+3ng]3<p+%(z1 +Z,+Z,)y

+ fil—(z1 +Z, +Z,)Dg + M _gcosbcosd + M, (yx — ¢z)

z—-(M, + 3m)gcosBeos® = M (W +PV - QU)
= MS(Z+(Py_eZ)

(Z,+Z,+Z,)-3m7~5mL,d - 3mg + NLa, — (M, +3m)gcosOcosd
=M, (z+ ¢y -6z)

where NLa; = NLa, + NLa, + NLa,
Z,+Z,+Z, =(M, +3m)i + 5mL,6 + 3mg + (M, +3m)gcosfcosd

+M, ¢y -62)- NLa,

L =I5, P~ Is ;R + (Is, ~Is,, JQR - Is,,PQ

= I, &~ Is o 1+ (I, ~Ts,, P —Ts,, 00

(Y, +Y,)A - 2D?mij + (NLa, — NLa, )D — 31,C§ — 31,CDg — ~EC , _ 3mEC |

H
—%(Z1 +Z, Jrzz)y—%(zl +Z,+Z)o=Ts §-Ts i+ (Is,, —Is,, Py s, ¢6

3mgC y+ 3mgCD
H H

+%(Z1 +Z,+ z3)y+—DH£(Z1 +Z,+Z,)o+(s, —Ts,, Py —Ts o0 — (NLa, - NLa,)D

(Y, +Y,)A = 31,Cy +(31,CD + 2D ’m +Is,, fp —Is s +
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M = ISny+(stx _Iszz )RP +ISXZ (P2 _Rz)
= ISyyé+(stx —Iszz)‘i’(.p-'-ISXZ((.pz —\1’2)

9mgCL
3meC [ ImeChiy Cz vz, +2,)x
H H

C

—E(Lzz1 +L1,Z, +L,Z,0-L,Z, +(Z, + Z,)L, -m(L, + 2L, )2

31 Cx —31,L,C6 +

-3mI26-3L,mg+L,NLa, +L,(NLa, + NLa,)
=Ts, B+ (Is,, ~Ts, i +Is,, (6> —9?)

(Z, +Z,)L, -L,Z, = =31,C& + 5mL,z + [31,L,C - 3mL? +TIs ]
_3mgC ‘o 9mgCL

H

+ %(LZZI +L,Z,+L,Z,)8-L,NLa, +L,(NLa, + NLa,)

19 +3L,mg+(Is, —Is,, )i +Is,, (¢ -\1;2)--%(2, +Z,+Z, )

N = -Isg, P +Is R+ (Isyy —Isyx PQ + T4, QR
=—Isy, 0 +Is,,\ + (Isyy —Isyx );09 +Isy A

) 3L 3L, 3Z,1,
3oLy +3LoDLy + — ! mey + —L mgDe + — b+ Do)

~(%y =Xy JK+ (Vg = ¥ JF = ~Isygp + Is 0 + (Is,, — Is,, o + Isx 60

(X, - X K+ (Y, =Y F = =31oL,§ - BIoDL | + Iyz f5 + 1,0
) gy - 2L g o - 2230
g ey -y mebe

(y + Do)+ 1,6y + (Isyy ~ Is g );ae
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In summary, external forces in X, y, z direction can be described as:

Forces in x-axis:

(X, - X K +(v, - Y F=-31,L,5-PBIoDL{ +1Ix; J5+ 1%
3L 3L, 3Z 4L,

—-H—mgy —ngD o - = (y+D(p)+Ixz€')\|'/+(Isyy—-stX )06

Forces in y-axis:

(Y, + Y,)A =31,C§ +(31,CD + 2D m + Is, Jp — Is i + 3n}l{gC gs 3m§ICD ]
C

nu-ﬁ(z1 +Z, +Z3)y+%c(21 +Z,+Z,)o+(Is,, —Is,, piy—TIs .96 —(NLa, - NLa, )D

Forces in z-axis:

Z,+Z,+7Z, = (Ms +3m)i+ 5leé+3mg +(Ms +3m)gcos 0cosf
+M,(¢y - 62)- NLa ,
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