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ABSTRACT
VARIATIONS OF THE OVATION MODEL

by Edric S. Gocka

In nature, many dynamical systems exhibit the behavior of self-organization.
Self-organization can manifest itself in many ways, one of them being the synchroneity of
the individual components of the system. The "Ovation model" is a mathematical model
of systems that exhibit synchroneity. The model consists of individual components
which are influenced by neighboring components as the system evolves over time. The
size and topology of the neighborhoods affect the system's evolution.

This thesis will examine variations of the Ovation model by altering the concept
of neighborhood. Analytical results and computer experiments will be presented.

Also provided is computer-generated experimental evidence for a standing
conjecture, the Road-Coloring Conjecture (RCC). Additional evidence is provided for

two, more general, conjectures: Probabilistic RCC and Strong RCC.
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CHAPTER 1

INTRODUCTION

This thesis addresses variations of a mathematical model known as the Ova-
tion model. The Ovation model was introduced in Consensus in Small and Large
Audiences (Kanevsky, Garcia, and Naroditsky 1992) in an attempt to understand the
dynamics of self-organizing systems. The systems modelled consist of individual en-
tities which are influenced by neighboring entities. The Ovation model’s application
domain includes both biological and physical systems.

A distant relative of the Ovation model turns out to be an outstanding prob-
lem in graph theory, conjectured in 1977. This conjecture is known as the road-
coloring conjecture (Adler, Goodwyn, and Weiss 1977), and it will be described in
chapter 4. Compelling experimental evidence was presented in Ezperimental Inves-
tigation of the Road-Coloring Conjecture (Gocka, Kirchherr, and Schmeichel 1994)
that implies that not only is the road-coloring conjecture true but also a stronger
result is the case.

The unifying theme throughout the thesis is the investigation of how alter-
ations of the Ovation model’s concept of neighborhood affect the probability of reach-
ing unison or the expected time to unison.

Chapter Two reviews the Ovation model and some of the results achieved in
1



2
Consensus in Small and Large Audiences. An extension to the theoretical results for

the discrete case is presented. An experimental investigation, using computer simu-
lation, of the Ovation model with an audience whose members reside on fractional
dimensional lattice is also provided.

Chapter Three analyzes a variant of Ovation model presented in Consensus
with Probability One on a Digraph (Kirchherr, Naroditsky, and Schmeichel 1992).
The results of this paper are presented using the tools of graph theory. An alternate
proof of one of the paper’s results is given using Perron-Frobenius theorem from
matrix theory.

Chapter Four reviews the results from Ezperimental Investigation of the Road-
Coloring Conjecture. The rationale for the strengthening of the conjecture is dis-
cussed.

The appendix establishes the Perron-Frobenius theorem. Results from this
appendix are used in chapters 2 and 3.

New results in this thesis are the following;:

1. Evidence of two new conjectures related to the road-coloring conjecture. These
results were first presented in Ezperimental Investigation of the Road-Coloring

Conjecture.

2. Discrete solution of the Ovation model in one dimension when the neighbor-

hood size is N-1 (chapter 2, section 3) .
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3. Experimental results on expected time to absorption on a neighborhood of

fractional dimension using percolation clusters.
4. Matrix representation of the road-coloring conjecture (chapter 4, section 5).

5. Description of the “worst-case” digraph observed with respect to the strong
g p

road-coloring conjecture (chapter 4, section 3)

1.1 Definitions and Notation

The definitions in this thesis are derived from (Aho, Hopcroft, and Ullman

1974) and (Horn and Johnson 1985).

1.1.1 Graph Theory

A graph I' is a finite, nonempty, collection of “vertices” (or nodes), denoted
by V(I'), and a collection of pairs of vertices called “edges,” which will be denoted
by E(T'). The elements of V(I') will be denoted by v;, where i is an integer from 1
to [V(T')|. If the collection of edges consists of ordered pairs, the graph is a directed
graph, or a “digraph” for short. This thesis is only concerned with digraphs.

A vertex v; is “adjacent” to v;, if (v;,v;) is an element of E(T"). The number
of adjacent vertices of v; is the “outdegree” of v;.

An "adjacency” matrix, A, for a digraph I is defined as a;; = 1, if v; is

adjacent to v;. Otherwise, a;; = 0.
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A path P from v;, to v;,. in a digraph I' is a sequence of edges of the form

(vigs Vip), (Wig, Vig), -+ -+, (Wir_y, vi,). The length of a path is the number of edges in the
sequence. This definition of path implies that all paths are of finite length. A closed
path, is a path that starts and ends on the same vertex. A cycle is a closed path in
which no vertex appears more than once in the sequence, with exception of the vertex
that starts and ends the sequence. The term cycle will be used interchangeably with
simple directed cycle. A cycle of length 1 is called a loop.

A digraph T is said to be strongly connected, if there exists a path from v; to
v; for every pair of integers i, j with 1 < 4,5 < |V(I')|. The period of a digraph is
the greatest common divisor, or ged, of the set of lengths of all of the cycles in the
graph. A graph of period 1 is said to be aperiodic.

The outdegree of a vertex v, denoted by d*(v), is the number of edges in
E(T) in which v is the first vertex in the ordered pair representing the edge. That
is, the number of vertices that have an edge directed from v.

The following is a standard definition in Number Theory (Gilbert and Gilbert
1988):

For integers d and a, d divides a, denoted by d|a, if there exists an integer

g such that d - q = a. Integer d is the greatest common divisor, or gcd, of integers a

and b, if
1. d is positive, and

2. d|a and d|b, and



3. cla and c|b = c|d, where c is an integer.

Denote J as the set of all integers.

1.1.2 Matrix Theory

Denote by My, the set of n-by-r matrices over the complex field. If n = r,
abbreviate this to M,,. Let C™ be the set of n-dimensional vectors over the field of
complex numbers, and R"™ be the set of n-dimensional vectors over the field of real
numbers. Let A,B € M,,. The symbol 0 can mean the scalar, the zero vector, or
the zero matrix. The meaning will be evident from the context.

A function || - || : M, — R is a matriz norm if for all A, B € M, it satisfies

the following axioms:

LAz 0

2. |Al=0if and only if A =0

3. |lcA|| = |c|||A|| for all complex scalars ¢

4. [[A+ Bl < [lAl + |iBll

5. |ABJ|| < [|A||l Bl submultiplicative property.

A function || - || : C, — R is a vector norm if it satisfies the axioms (1) through (4),

where A and B are considered vectors.



The mazimum column sum matriz norm |- ||; is defined on M, by

Al = max Z |as;|

1<j<n

The Euclidean norm || - ||z is defined on M, by

" 1/2
lAllz = (Z laijlz)

1,7=1

The mazimum row sum matriz norm || - || is defined on M,, by

|Alloo = max E |asl

1<z<n

The adjacency matrix A of a graph I' has property SC , if and only if T is
strongly connected.

A matrix A is said to be reducible, if n = 1 and A = 0, or if n > 2 and there is
a permutation matrix P € M, for which there is some integer r with 1 <r <n -1

such that

r.. |B C
prap=[2 €]

where B € M,, D € My, C € My, and 0 € M,_,,. A matrix A € M, is
irreducible if it is not reducible.
Definition (Horn and Johnson 1985) 1.1 Let A,B € M,,,. Then

1. A>0ifalla; >0

2. A>0ifalla;; >0

3. A>BifA-B>0



4. A>BifA-B>0

The relations < and < are defined in a similar fashion. If A > 0, we call A a
nonnegative matriz, and if A > 0, we call A a positive matriz. Define |A| = [|as]].
Note the | - | also refers to the cardinality of a set, if the symbol for a set is between

the vertical bars. This will always be clear by the context.

The spectral radius p(A) of a matrix A € M, is

p(A) = max{|)\| : X is an eigenvalue of A}



CHAPTER 2

THE OVATION MODEL

The process of self-organization is observable in many dynamical systems in
the natural and social sciences. One model of self-organization can be described of
as follows: A system is considered as a collection of individual entities, each entity
having the control over the value of some attribute. The value of an individual’s
attribute can evolve over time. The system self-organizes, if the individuals, over
time, all select a single attribute value. Of scientific interest is how and at what rate
the choice of the common attribute value is communicated among the individuals.

The Ovation model (Kanevsky, Garcia, and Naroditsky 1992) is a mathemat-
ical idealization of the above model of self-organization. The model was inspired
when V. Kanevsky observed the rate at which audience members of a communist
party meeting synchronized their clapping. Hence the model was called the Ovation
model.

The Ovation model consists of an audience of individuals. An attribute with
a finite number of values is associated with each individual. For our purposes, the
attribute will be color. Thus, each individual is associated with a particular color
(e.g. red, blue, etc.), selected from a finite set of colors.

Initially, each individual will be assigned a color at random. This is the
8



9
wnitial distribution of colors. At each time step, the individual is allowed to choose a

color. This choice is a function of the color values of a set of individuals at the prior
time step. This set of individuals is called the neighborhood of the individual. An
individual will choose a color with probability equal to the proportion of its neighbors
choosing this color at the prior time step.

The members of a neighborhood must be connected in some topological sense.
Also, each neighborhood must intersect another neighborhood. The number of mem-
bers of a neighborhood, and the neighborhood’s topology can vary.

We are interested in the evolution of the audience to a monochromatic state
of unison. Other terms used for unison are consensus or absorption. From a math-
ematical point of view, we will look at the probablity of reaching unison and the

expected time to unison.

2.1 Mathematical Description

This section is a review of some of the results from Kanevsky, Garcia, and
Naroditsky (1992). We will start off by providing a mathematical formalism for the
Ovation model.

Let A = {a1,...,an} be an arbitrary set, with |A| = N. Each element of this
set is considered an individual member of audience A. A neighborhood U, C A of
each a € A is defined such that |U,| = n for all @ € A. The definition of the actual

members of U, depends on which variant of the model that we are using. Each a;
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takes one of the m colors from the set A = {Xg, ..., Am—1}.

The dynamics of the system is stochastic, and is Markovian in nature. Each
a; assumes the color \; at time step ¢ + At with a probability proportional to the
number of neighbors with this color at time step #. Let the random variable A(a;, t)
be the color of a; at time ¢. The dynamics of A(a;,t) is described by the conditional

probability

j t j t
Pr(A(a,t + At) = A|A\(ag,t),i=1,...,N) = a(ljt’ial, ) _ a(f;'“’ )
: :

where a(j,a,t) is the number of individuals in U, selecting color A; at time step t.
If the audience reaches a state where it is monochromatic, that state is absorbing.
There are m absorbing states.

In all of the variations of the model explored in Kanevsky, Garcia, and Nar-
oditsky (1992), a € U,. Therefore, a state of absorption is reached with probability
1. In the language of chapter 3, each a can be thought of as a vertex of a strongly
connected graph of period 1. Note that the period is 1, since every a has itself as a

neighbor, implying every vertex has a loop.

2.2 Neighborhood size = N

Let the neighborhood be the entire audience, and set the number of colors to
two. In Kanevsky, Garcia, and Naroditsky (1992), this case was handled as follows:

From the set of colors A = {)g, A1}, assign each color a number as follows:



11

/\-,; = 1. Let
N
z(t) = Y Aax)
k=1
where t = 0, 1,2, ..., represents the discrete time steps during the evolution of the

process. Note that the function z(#) is simply a count of the members of the audience
set to color \; at time step ¢. Also note that the range of z(¢) is {0,1,2,...,N} and
that z(t) = 0 and z(t) = N are the two absorbing states.

Since the neighborhood is the entire audience, the probability that a given
individual a; will transition to \; at time step # is i}vﬂ The probability transistion
rule for z follows the binomial distribution (DeGroot 1975):

N
J

Pr(a(t + 1)) = jla(t) = i) = ( ) (6/NY (L — i/ NN

Thus, the process is described by a Markov Chain, with states z(t) = {0, 1, 2,

..., N}. The matrix P representing the chain, has entries
pij = Pr(z(t + 1)) = jlz(t) = )

and is of the form:

1 0 --- 0 0
P=|aq Q q2
0 0 ---0 1

where P € My41, @1 and g2 are N — 1 dimensional column vectors, and Q € My_;.

From the theory of Markov Chains (Bharucha-Reid 1960), P* is the matrix
of transition probabilities for time step k. The form of the matrix P is the same as
the form for P. That is, there is a matrix Q) located in the same position as Q.

Because of the zeros located in rows 1 and N + 1 of P, QF = Q.
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When the process reaches a state of absorption, say, at time step 7, then Q¥

will equal the zero matrix.

Now we want to compute the expected time to absorption. Let p; denote the
probability of absorption at time step k starting from initial state £(0) = i. Note
that the probability & of not being in an absorbing state at time k, starting from
initial state z(0) = i, is

N-1 ®
k=1~ pr= Zqij

=1

where q,(]'c ) is the element from row i and column j of @*. In other words, & is the

sum of row 7 of QF.

The expected time to absorption is:

B()=Y k- p
=0

However, note that an argument by induction shows that E(#) can also be expressed

as
[ ]
E(t)=)Y_Pr(t > k)
k=0
This is easily seen by observing:
Pr(t>21) = pi+ pa+---+ pp+---
Pr(tZZ) = P2+'°'+ pk+...
Pr(ka) = Pr -
and then summing up the equations.

Notice that the negation of Pr(t < k) is &. Therefore,

Pr(t > k) = 1-Pr(t < k)
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= 1—(1—¢&)

So,

E(t) = &
k=0
Let

V=I+Q+Q*+Q°+ -

and note that starting from initial state z(0) = 4,

N-1
ﬂﬂ=zymu

To show that the series representing V is well defined, note that ||Q||c < 1
because each row in the original transition matrix P has a nonzero entry in columns
1 and N + 1, and that the sum of the rows of P is 1.

Now we digress to obtain a solution for the series. First we proof a theorem

(Horn and Johnson 1985).
Theorem 2.1 Let A € M, be such that ||I — Aljec < 1. Then A~ = ¥2(1 — A)*.

Proof First note that if || I — A||e < 1, then 352, ||I — A||%, is a convergent geometric
series. By definition of || - || and the submultiplicative property of matrix norms
which implies ||A*|| < [|A||*, we get the fact that each element of (I — A)* is less
than or equal to

(I = A)Mlloo < I - Allso
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This implies that

o0

Y (I - A

converges. Now from the following identities:

A%(I—A)’“= [I—(I—A)]f:([—A)’“:I——(I—A)N“
k=0 k=0

and the fact that p(I — A) < ||[I — A|| < 1 by theorem A.5, we get
I—(I-AN1

as N — co by theorem A.7. O

By substituting @ for I — A in that above theorem, we get:

(1-@) =3 Q"

k=0

Thus, the expected time to unison is
N-1
E(t)=) [I-Q)7"y
J=1

when z(0) = i.

2.3 Neighborhood size = N — 1

We now provide a generalization of the result in section 2.2.

We will make |U,| = N ~ 1, for all a € A, where N is an even integer. Now
whenever |U,| < N, we must explicitly define a neighborhood. Let the audience of
individuals reside on a 1-dimensional torus (circle). For all a € A, each neighbor-

hood U, consists of a and a’s N/2 closest neighbors on the left and a’s N/2 closest
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neighbors on the right. Thus, the only b € A such that b € U, is the individual on

the opposite side of the torus, so to speak.

Define A = {0, 1}, A(a,t), and z(#) as in section 2.1.

Theorem 2.2 Letp =z(t),t=0,1,2,.... There are

N —p neighborhoods U with Yo Mai,t) =p

and )

P neighborhoods U with 32, i Mai,t) =p —1
Proof First note that there is a one-to-one correspondence between each neighbor-
hood U, and the single individual in the complement of U,. Denote that individual
by C(U,).

If \(C(U,)) = 0, then U, must possess all of the a; € A such that A(a;, t) = 1.

There are p such a;. Since there are N — p individuals b such that A(b) = 0, there
are N — p neighborhoods, each with the color “1” occurring p times.

If A(C(U,)) = 1, then color “1” occurs p — 1 times in U,. Since there are p

individuals b such that A(b,t) = 1, there are p neighborhoods, each with the color

“1” occurring p — 1 times. O

Now we want to obtain the relation
pij = Pr(e(t + 1) = jlo(t) = i)

So, assume that z(t) = 7. Recall that z(t) = Y ,c4 A(a,t) and note that for a given
time t = T there are exactly N A(a,T) random variables—one for each a € A. By

theorem 2.2, for exactly i of these random variables, at time # + 1, we have the
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following conditional probability:

i—1
Pr (Ma,t+1) =13 Aa,t)=z(t) =i) =
Fr i+ D =U D@ ) =) =i) = £

The probability distribution for Pryy=;; is {1 — i 1, T 1} Also by theorem 2.2,
the remaining IV — ¢ random variables, at time ¢ + 1, have the following conditional

probability:

Pr ()\(a t+1) —1|Z/\af)—a:()—1)—
o(t)=i,2 a€A N-1

The probability distribution for Prg(sy=;2 is {1 - Yo g s 1} Note that both distri-
butions Pry(s)=;,1 and Prg(;)=; 2 are independent of time .

Finally note that z(t) is the sum of N independent random variables \(a, #).
From probability theory (Bharucha-Reid 1960) the conditional distribution of such

a sum is expressed in the form of a convolution:

pij = Pr(:v(t + 1)) — ]|x(f) = ’l) = ([z(t)—1 1] *[ ('1)31' ](N—z)*> (J)

where [p]" is the i-fold convolution of the probability p, and * is the convolution
operator between two distributions. Note that this form is legitimate, because the
convolution operation is associative (Feller 1966). The results from the prior section

can now be employed to obtain the expectation.

2.4 Computer Investigation

In Kanevsky, Garcia, and Naroditsky (1992), computer simulations of the

QOvation model were run on one- and two-dimensional audiences. In this section we
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present results of a computer simulation run on what is called a percolation cluster,

although no attempt is made to interpret the results. A percolation cluster has a
fractional dimension of 1.896 (Gould and Tobochnik 1988).

To understand what a percolation cluster is, imagine a two-dimensional lat-
tice. The size of the lattipe is L, which is the number of sites on the side of the
lattice. For example, a chess board can be considered a lattice of size 8. A square
on the chess board corresponds to a site of the lattice. A random number between
0 and 1 is generated for each site on the lattice. A site is considered occupied if the
site’s random number is less than a threshold value p. Of course, if p = 1, every site
will be occupied, and if p = 0, none of the sites will be occupied.

Once each site’s occupancy has been determined, imagine someone trying to
walk across the lattice, from left to right, or bottom to top. This person must only
step on occupied sites, and can move left, right, up or down one square. Diagonal
moves are illegal. If the person can move all the way across the board from left to
right, or bottom to top, a spanning cluster is said to exist. Again, it is obvious that
such a spanning cluster exists for p = 1, and that one does not exist for p = 0.

It is known that as L — oo, there is a critical value p = p. such that if p > p,,
a spanning cluster exists, and if p < p. a spanning cluster does not exist (Gould and
Tobochnik 1988). Call this spanning cluster a percolation cluster. The percolation
cluster has a fractional dimension of 1.896. The value of p. = 0.5927.

The Ovation model on a percolation cluster is defined as follows: Each in-
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dividual resides on a occupied site. The neighborhood for the individual consists

of the individual’s site and the nearest site to the left, right, above and below the
individual’s site. If these nearest site’s are not occupied, they are not included in the
neighborhood. Therefore, an individual can have from 1 to 5 neighbors. Also note
that the lattice will be considered a two-dimensional torus where sites on one edge
of the lattice are adjacent to edges on the opposite side.

To simulate the Ovation model on a percolation cluster, with the two colors
red and blue, the following algorithm was used. A trial consists of the following

steps:

1. Assign each site a random number. The site is occupied if its associated random

number is less than or equal to p,.
2. Determine the size of the neighborhood for each site and store it.
3. Initialize each occupied site with a color.

4. At time step t + 1, each site changes to color red with probability ¢q equal to
the number of the site’s neighbors with color red, at time step ¢, divided by the
size of the site’s neighborhood. The site changes to color blue with probability

1-gq.

5. Repeat step 3 until stability is reached. Stability is defined as having all of the

sites remain the same color for 10 iterations.
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This simulation does not determine if a spanning cluster is actually produced during

step 1. However, given the value of p,, the hope is that on average a spanning cluster
will be produced.

Each iteration of the algorithm is considered a trial. The algorithm was run
for different audience sizes with 100 trials each. The results of this simulation are in

table 2.1.

Table 2.1: Mean Time to Absorption

Audience Average Time
Size (N)  to Unison

25 27
100 179
225 776
400 1,502
625 2,881
900 5,610

1,225 7,010
1,600 10,826

The average time to absorption is roughly N3/2, where N is the audience size.
The fit is pretty good for -;-N 3/2 for neighborhood sizes up to 900. This data matches
up with expectations based on the 1-dimensional results (average time to absorption

goes as N?) and the 2-dimensional results (average time to absorption goes as N).



CHAPTER 3

CONSENSUS ON A DIGRAPH

The paper Consensus with Probability One on a Digraph (Kirchherr, Naro-
ditsky, and Schmeichel 1992), provides a connection between the Ovation problem
and the road-coloring problem. The paper solves the probabilistic convergence issue
for a certain type of Ovation problem. This type of Ovation problem is characterized
by placing the audience on a digraph. That is, each individual resides on a vertex of
a directed graph with the properties that the graph is strongly connected and ape-
riodic. The neighborhood of an individual consists of all individuals that possess an
edge directed toward the individual in question. The problems in this paper are an
interesting extension of the Ovation problem’s assumptions regarding neighborhood
geometry.

Neighborhoods, as defined above, do not seem to have a definable dimension.
Any vertex can be a neighbor of any other vertex, as long as the assumptions of
strong connectivity and aperiodicity are maintained. Thus, neighbors do not have to
be “close,” in the sense of any metric. If individual A has individual B as a neighbor,
individual B may not have individual A as a neighbor. Also, the cardinality of
neighborhoods is not necessarily uniform.

The problems in Kirchherr, Naroditsky, and Schmeichel (1992) are related to
20



21
the road-coloring problem in the sense that the graphs discussed must fit the criteria

of being strongly connected and aperiodic.
The next section reviews the results from Kirchherr, Naroditsky, and Schme-
ichel (1992). The following section provides an alternate proof to one of the results

in Kirchherr, Naroditsky, and Schmeichel (1992).

3.1 Review of Paper

In this section we review the main results of the paper Consensus with Prob-
ability One on a Digraph (Kirchherr, Naroditsky, and Schmeichel 1992). Note that
all of the results in this section stem from this paper.

The paper treats a modification of the Ovation problem in which the neigh-
borhood topology is specified by a digraph. Each individual in this modified problem
corresponds to a vertex. The neighborhood of a vertex v; consists of all vertices with
an edge directed towards v;. The number of colors is two. The main result of the
paper is to classify which strongly connected digraphs and which initial distributions
lead to a monochromatic state of unison.

Labelling the two colors 0 and 1, let f : V(I') — {0,1} specify the initial
distribution of the colors. Let Pr(T, f,#) denote the probability of reaching the
monochromatic state of unison at time step t.

The first theorem provides a sufficient condition that a strongly connected

digraph will reach unison with probability one, for all f. This condition is that the
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digraph be aperiodic. The proof will require the next three lemmata.

Let [1,1y, ..., be the lengths of the simple directed cycles C1,Cs,...,C) in

I'. Let v; denote a vertex on C;, 1 < i < k. It does not matter which vertex on C;

is picked. Also note that the vertices vy, vs,...,vx need not be distinct. Since I is
aperiodic, we have ged(ly, lo, . .., k) = 1. The first lemma is:
Lemma 3.1 There ezists integers (1, s, .. ., Bx such that

k
1=ged(ly,lo, ..., ) =D Bili

i=1

Proof This is a standard result in Number Theory (Gilbert and Gilbert 1988). For
the case k = 2, assume one of Iy, I, is nonzero. If I3 = 0, I; # 0 and ged(ly, &2) = |4
If both !4, l; are nonzero, define the set S = Bl + Balz : 51,82 € J and the set ST =
s € §:5>0. ST isnonempty because Iy = [,-0+1l5-1 € S and —lp = [;-0+ls-—1 € S.
By the Well-Ordering theorem, S* contains a least element d = 311y + Baly. By the

Division Algorithm, there exists integers ¢,r such that Iy = dg+ 7 with0 < r < d

so we have:

r = l1—dq
lh— (Baly + Bala) - q

11(1 = B1q) + lo(—B2q)

Therefore, r € S and 0 < r < d. Since d is the least element of S, we have r = 0.

Thus, d|l;. Similarly, one can argue that d|l;. Finally, if there exists an integer ¢
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such that c|l; and c|l3, there exists integers h,k such that l; = ch, I3 = ck. So,
d = Bily + Bale

Bich + Back

¢ (Bih + B2k)

which implies c|d. The rest follows easily by induction. 0O

Lemma 3.2 There exists an integer My such that for any integer m > My there
ezists non-negative integers oy, as, . .., ar such that the following representation can

be made:

Proof Let lp = min{ly,ls,...,l} > 1. Let B = max{|8;| : Bi < 0}, using S; from
the prior lemma. Set

k
Mo=>_ B-(lp—1)-1;>0

i=1

Each coefficient in this summation is a constant equal to B - (lg— 1) and is a suitable
a;. Therefore, for all i, 1 < i < k, B; can be added to «;, (lp — 1) times, with each

sum being non-negative. Therefore, iteratively adding

k
1= Bil;

i=1
(lo — 1) times to the equation for My produces the desired representation for the
integers Mo, Mo+1, ..., Mg+lo—1. For these (lo—1) representations, adding 1 to one

of the coefficients with minimum cycle length (lp) obtains the desired representation
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for the integers My + lo, Mo + lo + 1,..., Mg + 2lp — 1. Further multiples of this

coefficient produce the representation for all integers m > M. O

Lemma 3.3 Let vy € V(I'). There exists an integer T such that for any w € V(I')

there is a path of exactly length T from vg to w.

Proof Since I' is strongly connected, there exists a path P, from vy to w that
passes through v;,vs,...,vx. Let L = max, |Py]. Choose the integer T such that

T > L + My where My is defined in the prior lemma. For any w € V(I'),

T-|P) > T-1L

v

Mg

Therefore, T — |P,| can be represented as

k
T - |Py] =) al;

i=1
where a3, ag, ..., ar are non-negative integers.
Now examine a path from vy to w following P,,, with the exception that when

v; is reached, the path "detours” around C;, a; times. This path has length

k
IPwl + Zaili =T
i=1

The next theorem establishes aperiodicity as a sufficient condition for strongly

connected digraphs to reach unison.
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Theorem 3.1 LetI' be a strongly connected, aperiodic digraph. For all f,

Jlim Pr(T, f,#) =1

Proof Lemma 3.3 implies that after T time steps, every vertex will “hear” vertex
vp. So, there exists a nonzero probability ¢ that all w € V(I") will possess the same
color as the current color of vg. Thus, the probability of not reaching consensus at
time T is £ 1 — €. The relation is an inequality because there are other ways to
reach consensus. For each time kT, where k is a positive integer, the probability of

not reaching consensus is < (1 — ). Therefore,
Pr(D, f,kT) > 1-(1—-¢e)* > 1ask — oo.

So, we have lim;_.o Pr(T’, f,#) = 1. O

The next theorem establishes aperiodicity as a necessary condition for the
prior theorem, unless, of course, the initial distribution starts in unison. That is, if a
strongly connected digraph is periodic with period d > 1, we cannot be certain that
unison is reached, if f is nonconstant. Before we state the theorem, we will start off

with a few more lemmata.

Lemma 3.4 A closed path on a digraph can be expressed as a union of directed

simple cycles.

Proof Assume the closed path starts with vertex vg. Follow the closed path, record-

ing vertices along the way in an ordered list. Label this list 1. If a vertex, say v;, is



26
repeated, remove those vertices in the list that appear after the first occurrence of

v;. Create a new list starting with vertex v; followed by the removed vertices in their
original order, labelling the new list with the next consecutive number. Eventually,
the closed path will terminate at vp. List 1 will form a directed simple cycle because
only vertex vg has been repeated. This argument can be applied to all of the other
lists because each list forms a closed path. This process must terminate, because a

closed path has finite length. O
Lemma 3.5 The length any closed path on I is divisible by d.

Proof Since a closed path is an edge-disjoint union of directed simple cycles, all of
which are divisible by d, then the length of the closed path must be divisible by d.

O

Lemma 3.6 For any v,w € V(I'), and any two paths Py, Py, from v to w, we have

Pyl = |Py| (mod d).

Proof Let v -5 w. Then a path that follows P; then P is a closed path with
length |Py| + |P|. Likewise, a path that follows P, then P is a closed path with
length |P;| + |P|. By lemma 1, both of these closed paths are divisible by d. So,
|P1| + |P] = |Ps| + |P| =0 (mod d). Therefore, |P;| = |P,| (mod d).

The remaining lemmas and theorem establish that if I" is a strongly digraph

with period d > 1, V(I') can be expressed as the union of d mutually disjoint
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vertex sets Vo(T'), Vi(D), ..., V4_1(T'), with the following property: if v € V;(I'), and

(v,w) € E(T'), then w € V;y1(T). To prove this, the concept of “collision” is required.
Define the relation n : V(I') — {0, ... d} as follows: Start with any vo € V(')

and traverse the graph in a breadth first manner, making the following assignments

for n:
_ 0 for v = Vo
n(w) = { i+1 for (v,w) € E(T') and n(v) =4 (3.1)
A “collision” is said to occur if w has already been assigned j, where i + 1 #
j (mod d).

Lemma 3.7 There are no collisions. In other words, the relation n, as defined

above, is a function.

Proof Assume collisions occur, and that the first collision occurs at vertex w. This
implies that two distinct paths vg B w and vo B w exist, such that |P;| = i and
|P1| = j with 7 # j (mod d). This contradicts lemma 3.6. O

This proves that V(T') can be partitioned as the union of d mutually dis-
joint vertex sets Vo(I"), Vi(T'), ..., Va—1(T'), with the property that if v € V;(T'), and

(v,w) € E(T'), then w € V;41(I"). Vertex v € Vi(T') if n(v) = 1.

Lemma 3.8 Ifged(ly,ls,..., k) =d> 1, gcd(%, %, cee, %) =1.

Proof By the definition of gcd, there exist integers mq, mg, ..., my such that d-m; =

l;,1<i<k. Let gcd(%, %, e, %) = p. There exist integers s, sg, ..., sk such that
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p-s; = %,1 <4 < k. Therefore, p-d-s; = ;,1 < i < k, which implies p-d|l;,1 <4 < k.

Since d|p - d, d being the ged of Iy, 1o, . . ., I is contradicted, unless p = 1. O

Lemma 3.9 Let vg € V(I'). There ezists an integer T such that for all w € V(T')

with n(w) = n(vg), there exists a path P such that v £ w and |P|=d-T.

Proof Again, let l1,1ls,. .., be the lengths of the simple directed cycles Cq,Cs,. ..,
Ci in T'. Let vq,vs,...,v; denote vertices on those respective cycles, where n(v;) =
n(vg). Such vertices exist because as you progress through any of the cycles, at least
d distinct values of the function n will be seen when n is applied to the vertices of
the cycle.

Let w € V(') such that n(w) = n(vg). Define path P, such that v & w
and P, passes vj,vs,..., v in order of v}s subscripts. Since n(vg) = n(vy) =--- =
n(vg) = n(w), and d divides the portion of the path between each vertex, there exists
an integer s, such that d-s = |P,|. Let L = 5maxw | Py|. By lemma 3.2, there exists

an integer My such that for any integer m > My there exists non-negative integers

a1, 0, . .., such that the following representation can be made:

(i)
m = [6 798 Shed
i=1 d

Pick integer T such that T > Mo+ L. The fact that T — s > T ~ L > M allows us

to use the above representation for T — s. Since T — |Py,| = d(T — s), we have

d-T = d-s+d-T—d-s
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= d-s+d(T —s)

k L
d-s+dd o (3>

i=1

il

k
= lel + Zaili

i=1
Just as the argument went in theorem 3.1, there is a path P, v £ w following P,

and the cycles C;, a; times, and P has length exactly equal to d- 7. O

Theorem 3.2 Let I be a strongly connected digraph with period d > 1. If f is

nonconstant,

tllr&Pr(F, fit)y<1

Proof Let f: V(I') — {0,1} be a any nonconstant initial distribution. Choose ver-
tices vy,v2,...,v4-1 € V(I') such that v; € V4(T'),0 < j < d -1, and f(v;) # f(vj)
for at least one pair (i,j). By lemma 3.9, there exists integers Ty, T5,..., Ty
such that there is a path of length d - T; from v; to any vertex w € V;(T"). Let
T = max{Ty,Ts,...,Ty4—1}. After d - T time steps, the probability is greater than
0 that all vertices w € V;(I') will have the same color f(v;). If this event is
realized, the color f(v;) will cycle through the digraph between the vertex sets
W(T), Vi(T),..., Va1 (T'). Since f(v;) # f(v;), there is positive probability that
all vertices w € V;(I") will have the same color f(v;), and this different color will
cycle through the vertex sets. Thus, there exists a positive probability that unison

will not be reached. O
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3.2 Alternate Proof of Lemma 3.3
In this section we provide an alternate proof of lemma 3.3 using the results of
matrix theory (Horn and Johnson 1985). Lemma 3.3 is the key to proving theorem

3.1. We need the next three theorems, but first a definition:

Definition 3.1 Horn and Johnson A nonnegative matrix A € My, is said to be

primitive if it is irreducible and has only one eigenvalue of mazimum modulus.

Theorem 3.3 Horn and Johnson If A € M, is nonnegative and primitive, then

lim [p(A)7'A]" =L >0

m-—00

where L = zyT, Az = p(A)z, ATy =p(A)y, >0,y >0, 2Ty = 1.

Proof The matrix meets the conditions stipulated in lemma A.6. Therefore, the

proof is identical to theorem A.14. O

Theorem 3.4 Horn and Johnson If A € M, is nonnegative, then A is primitive

if and only if A™ > 0 for some m > 1.

Proof If the positive entries of A are set to 1, the resulting matrix can be thought of
as an adjacency matrix for some digraph. Call I" the name of this graph associated
with A. If A > 0 and A™ > 0, then from every vertex v; of the digraph I' to every
other vertex v; there must be a path of exact length m, by Corollary A.1. This

implies that A is strongly connected which is equivalent to A being irreducible.
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Now if Ay, ..., A, are the eigenvalues of A then )\’f, ..., A¥ are the eigenvalues

of A™. We know that p(A) is an eigenvalue of A by Theorem A.16, so if p(A) were a
multiple eigenvalue of A, then p(4)™ = p(A™) would be a multiple eigenvalue of A*.
This contradicts the fact that p(A™) is a simple eigenvalue of A™ by Theorem A.15.
Thus, p(A) is a simple eigenvalue of A. Now assume there exists A # p(A) such that
|A| = p(A). By the above argument, we have A\* # p(AF) such that |\*| = p(A4)F

which contradicts theorem A.12. Thus, A is primitive.

Conversely, if A is primitive, then
: =1 41m _
lim [p(A)T A" =L>0

by theorem 3.3. Let o equal the minimum value of the vector L. Take ¢ = a/2. There

exists an integer n such that |[p(A)~1A]™ — L| < € which implies [p(4)71A4]" > 0. O

Theorem 3.5 Horn and Johnson If A € M, is nonnegative and irreducible,
and let T be the associated digraph of A as discussed in theorem 8.3. Denote by
{li,la,...,1,} the set of lengths of all simple directed cycles for T'. Then A is primi-

tive if and only if ' is aperiodic.

Proof Assume A is primitive. Since this implies that A is irreducible, and thus
strongly connected, each v; € V(') has a cycle. Also, A™ > 0 implies that A* > 0
for £ > m. This implies that there are closed paths for all v; € V(I') of length
m,m + 1,m + 2,.... Since ged({l1,ls,...,l,}) divides the length of every closed

path, by lemma 3.5, then 1 = ged({l1,ls,...,l:}).
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Now suppose that A is not primitive. If A has exactly k¥ > 1 eigenvalues

of maximum modulus, then by A.1 we know that oIt = 0 for all i = 1,...,n and
for all such m such that m is not an integral multiple of k. Therefore, all closed
paths, including simple directed cycles, have lengths that are a multiple of k. Thus,
1<k <ged({ly,lg,...,0}). O

Now note that one direction of theorem 3.5, assumes that A is irreducible,
hence I' is strongly connected, and that I' is aperiodic. This implies that A is
primitive. Thus, by theorem 3.4, A™ > 0 for some m > 1. This fact is identical
to the result from lemma 3.3, which now can be used to prove theorem 3.1. It is
readily apparent that clearer results are derived from the cycle structure of the graph
(section 3.1) than from deriving the same results from the adjacency matrix (cross
reference the appendix where the Perron-Frobenius theorem, required for the above

three theorems, is derived).



CHAPTER 4

ROAD-COLORING CONJECTURE

In this chapter we review the main results of the paper Ezperimental Investi-
gations of the Road-Coloring Conjecture (Gocka, Kirchherr, and Schmeichel 1994),
and elaborate on some of the results. For the sake of proper citation, it must be
noted that most of the results in the paper, and those presented here, are due to W.
Kirchherr and E. Schmeichel.

The road-coloring conjecture (Adler, Goodwyn, and Wiess 1977) originated
in the field of ergodic theory, but the conjecture is expressible completely in graph-
theoretic terms. Before stating the conjecture, we will start out with a few definitions.

Let T’ be a strongly connected digraph with d*(v) = 2 for all v € V(T'). A
vertex v has a loop if (v,v) € E(T). A pair of vertices v and w has multiple edges if
there is more than one occurrence of (v, w) in the set E(T). In this chapter, digraphs
with loops and multiple edges will not be considered.

Let x : E(I') — {R, B} be an edge coloring of I such that for each v € V(I'),
v has exactly one red edge, labelled “R,” and exactly one blue edge, labelled “B,”
with both edges directed out of v. The function x is called a road-coloring of . A

string I € {R, B}* will be called a set of instructions or a map. Given v € V(T)

33
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and x, let I(v) designate that w € V(I') which is arrived at if one begins at v and

follows the path labelled by I.

Definition 4.1 Let v € V(I'), and let x be a road-coloring of . We call x a
resolving road-coloring for v if and only if there exists an I € {R, B}* such that for

allw € V(I'), I(w) = v. Call I a universal map to v.

In Adler, Goodwyn, and Wiess (1977), the above situation is described in
layman’s terms with respect to cities and roads: Imagine a map of cities, with each
city having two one-way roads coming out. For each city, we can paint one road
coming out red and the other road blue. Now assume that we want to supply
generic directions (a universal map) to a destination city. That is, we will supply a
traveller with a sequence of colors (e.g. red, blue, blue, red, red, red, ...) such that
if the traveller follows the path indicated by this sequence, then the traveller will
reach the destination city regardless of the source city. Now the question is: Can we
paint the roads in such a way that a sequence of generic instructions exists?

Note that the universal map may be inefficient in terms of representing the
shortest path between cities, and the map may force the traveller to enter a city
multiple times (Adler, Goodwyn, and Wiess 1977).

Adler, Goodwyn, and Weiss (1977) proved the next theorem.

Theorem 4.1 Let T’ be a strongly connected digraph such that d*(v) = § for all
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v € V(I'). Then

I’ has a resolving road coloring = T' is aperiodic

Proof Assume vertex v has a resolving road coloring with universal map I. Let n be
the length of string I. Starting at v, follow the path indicated by string I. Call this
path P;. Since I(w) = v for all w € V(T'), I(v) = v. Therefore, P; is a closed path
with [P| = n. Now start from v again and move to any one of the two adjacent
vertices. Call the vertex p. Since I(p) = v, we now have path P, which is closed and
| P2] = n + 1. Since two closed paths originating from the same vertex are divisible
by the period of the digraph, and the only number that divides n and n+1is 1, I is
aperiodic by lemma 3.5. O

The converse of the above theorem has been outstanding for 18 years and is

known as the road-coloring conjecture. We will refer to it as RCC.

Conjecture 4.1 Let I' be a strongly connected digraph such that d*(v) = 6 for all

v € V([). Then
I is aperiodic = T' has a resolving road coloring.

The following two related theorems have been proven by O’Brien (O’Brien

1981):

Theorem 4.2 RCC is true for § =2 = RCC is true for all § > 2.
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Theorem 4.3 Let ' be a strongly connected digraph such that d*(v) = 6 > 2 for all

v € V(T') and such that T’ contains a prime-length directed cycle. Then
[ is aperiodic = I" has a resolving road coloring.

We point out that there exist strongly connected, aperiodic digraphs such
that some road colorings admit a universal map while other colorings do not. The
simplest example, given by O’Brien (1981), is three vertices where each vertex has
an edge directed toward the other two vertices, and each vertex has an edge directed
inward from the other two vertices. First off, this digraph is obviously strongly
connected with d*(v) = 2 for all v € V(I'). To see that the digraph is aperiodic,
note that there are cycles of length 2 and 3, and that ged(2,3) = 1.

Now color edges (1,2),(2,3), and (3,1) red. The other edges must be colored
blue. This coloring does not have a resolving set of instructions. To see this, imagine
a coin placed on each vertex. Also imagine that each coin moves from vertex to vertex
as specified by a universal map. Note that the coins must simply cycle around
the graph, regardless of the map. This type of coloring will be referred to as a
permutation coloring.

Now color edges (1,2),(3,2), and (2,3) red, and the other edges blue. The
string { RB} is a set of instructions that brings the coins together.

Thus note that for a coloring to have a universal map, the map must make
the coins come together. This process must continue until, finally, all of the coins are

stacked on one vertex. The process of two or more coins coming together at vertex
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v will be referred to as collapsing at vertex v.

Given the difficulty of finding a proof of RCC, the hope was that computer-
based experiments might lend insight into the problem. To carry out such exper-
imentation, two types of algorithms were required. One algorithm was needed to
generate a strongly connected, aperiodic digraph with d*(v) = 2 for all v € V(I).
If possible, this algorithm should randomly select digraphs from the set of all such
digraphs. The second algorithm must determine if the digraph possesses a resolving
color, or better still, what percent of the road colorings are resolving. In the next
section we present two algorithms. The second algorithm is proved to work using

Formal Language theory. The first algorithm is more heuristic. We will discuss its

merits.

4.1 The RCC in Formal Language Theory

From here on, we will use M instead of T’ to indicate a strongly connected
digraph such that d*(v) = § > 2 for all v € V(M). Consider M as a finite state

automata with n vertices labelled {1,2,...,n}

Lemma 4.1 M has a resolving road-coloring for a particular vertex i if and only if

M has a resolving road-coloring for every vertez j € V(M).

Proof Assume M has a resolving road-coloring for every vertex j € V(M). Then

obviously M has a resolving road-coloring for vertex i.
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Now assume that M has a resolving road-coloring for a particular vertex i.

Since M is strongly connected, for any vertex j € V(M) there is a sequence of colors
that lead from i to j. Therefore, for any vertex k & € V(M) direct k to i, and then
toj. O

Therefore, without loss of generality, we can assume that any vertex is the
target vertex. This allows us to refer to a resolving road-coloring as an attribute of
M, itself, and not just one of M'[, vertices.

Let S = {i1,42,...,4x} be a subset of V(M). Call a set of instructions I such
that I(i;) = I(i2) = -+ = I(ix) = n a resolving road-coloring for S. We will say

that such a set of instructions directs vertices {i1,ia,...,9x} to n.

Lemma 4.2 Let

S={SCV(M):|S| =k}

If, for alli € V(M), there exists a corresponding set of instructions, I;, such that

then M, has a resolving road-coloring for S.

Proof Prove by induction. For k = 1, such an I exists for every i. Assume the
hypothesis is true for k-1. Pick any i € S. Start with I;(i) = Ii(n) = n. This
leaves at most k-1 vertices to be directed to n. By induction, there exist a set on
instructions, I, that directs these k-1 vertices to n. Just concatenate the string for

I; with the string for I to get the necessary set of instructions. O
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Lemma 4.3 The road-coloring x is a resolving road-coloring for M if and only if

for alli € V(M) there ezists a corresponding set of instructions, I, such that

I(i) = I(n) = n

Proof If x is a resolving road-coloring for M, the implication comes directly from
the definition. The converse holds if we take S = M in lemma 4.2 O

To consider M a finite automata we need to name an initial state and a set
of final states with x describing the transition function. Let M; be an automaton

with initial state i and final state n. Let L, denote the language accepted by M;.

Theorem 4.4 The road-coloring x is a resolving road-coloring for M if and only if

forallie {1,2,...,n~1}, LN L, # 0.

Proof Assume the road-coloring x is a resolving road-coloring. By lemma 4.3, for
all 7 € V(M), there is a set of instructions I = I(7) = I(n). Let L; = L, = I. Note
that L; is accepted by M; and L, is accepted by M,,.

Now assume for all i € {1,2,...,n— 1}, L;NL, # 0. Let I = L; = L,,. By
definition, I(i) = I(n) = n which implies that x is resolving. O

Construct M,, a finite automaton that accepts language L, N L, for all 7 €
{1,2,...,n — 1}, as follows (Gocka, Kirchherr, and Schmeichel 1994): The states
of M, consist of the cross-product V(M) x (M). There is an edge labelled “R”
(“B”) from (j, k) to (I,m) if and only if in M there is an edge labelled “R” (“B”)

from j to ! and k to m. The initial state of M, is (i,n) and the final state is (n,n).
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A language is accepted by M, if and only if there is a directed path from (i,7) to

(n,n). That L; N L, is accepted by M, is easily seen by observing the following:
simultaneously start “following” the transitions made by M; in response to L;, M,
in response to L,, and M, in response to L; N L,. Then M, is at state (p, q) if and
only if M; is at state p and M, is at state q. Of course, the transitions made by
M, in response to L; and M, in response to L, will terminate at state n.

Let a root-directed arborescence be a directed tree in which all paths are

directed to the root.

Theorem 4.5 The road-coloring x is a resolving road-coloring for M if and only if
Mi contains a root-directed arborescence rooted at (n,n) which includes nodes (i,n)

foralll <i<n-—1.

Proof Proof follows directly from the above comments. [J

Now we define an algorithm that determines if a road-coloring x is resolving
for a digraph M.
Algorithm 4.1 Compute the function

1, if x is a resolving road-coloring for M

FM,x) = { 0, otherwise (42)

where M is a digraph such that, for alli € V(M), d*(i) = 2 and x is a road-coloring

of M.

1. Create Mi from M and x.
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2. Perform a depth-first search from vertex (n,n) in Mi against the direction of

the edges and return “1” if every vertez of the form (i,n) for1<i<n—11s

encountered. Otherwise, return 0.

Based on the running time of depth-first search and the fact that F (Mi) =
2n2, the above algorithm has running time O(n?).

We must produce a randomly generated strongly connected digraph as input
to Algorithm 4.1. This is the job of the next algorithm. This algorithm uses the
concept of a Priifer code. Priifer showed that there is a one-to-one correspondence
between sequences of length n — 2, taking values on {1,2,...,n} and labelled trees
on n vertices (Moon 1967). Thus one may generate a random tree with n vertices
by generating a length n — 2 random sequence.

In order to make the generated tree a root-directed arborescence, direct all
paths to a chosen root. This root can be the initial vertex in the Priifer code.

The root-directed arborescence, 7, may be converted to a digraph I such that
every vertex has outdegree 2 by doing the following for every vertex v € V(I") except
the root: Suppose (i,j) is the edge in 7 originating at i; let k be a randomly selected
element of {1,2,...,n}—{4, 7}, and add edge (i,j) to 7. For the two edges originating
at the root, r, one need only to randomly select two elements from {1,2,...,n}—{r}.

The resulting digraph must be checked for strong connectivity and aperiodic-

ity; if these properties do not hold, throw the graph out. Strong connectivity can be
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checked by doing a depth-first search on each of the vertices, making sure on each

scan that all of the vertices are reached.

To check for aperiodicity, construct the adjacency matrix A from I' and raise
the matrix to consecutive powers of i = 1,2, ..., n. From Kirchherr, Naroditsky, and
Schmeichel (1992) we get the following result:

For each A,, where m = 1,2, ..., n, check if [ag")] #£Qforanyi=12,...,n.
If so, record the power m in a set CP. The power j € CP if and only if I' contains
a closed path of length j.

Let {,1a,...,1, be the lengths of the simple directed cycles in I'. By lemma
3.5, we have

ng(l17 l2a ceey l'n) = ng({JlJ € CP})

Thus, if the numbers in C P have a common divisor > 1, then I is not aperiodic. To
test for a common divisor, note that m > 1 can be expressed by a unique product
of prime integers (except for the order of factors), by the virtue of the Fundamental
Theorem of Arithmetic (Gilbert and Gilbert 1988). Therefore, for each prime number
p from 2 to n/2, divide each element of CP by p. If any p evenly divides all of the

elements of C P, then T is not aperiodic.

Algorithm 4.2 Algorithm 2 generates a random strongly connected, aperiodic di-

graph with n vertices, where each vertex has outdegree 2.

1. Generate a random tree T with n vertices.
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2. Orient the edges of T to get a root-directed arborescence.

3. Generate digraph T from T so that each vertex of I' has outdegree 2.

4. TestT to see if it is strongly connected and aperiodic. If so, return I'. Other-

wise, start from step (1) again.

4.2 Experimental Results

Algorithms 4.1 and 4.2 were implemented for the purpose of trying to generate
a counter-example to RCC. No such counter-example was found. In fact, the evidence
led us to make two stronger conjectures.

First algorithm 4.2 was used to generate a strongly connected, aperiodic di-
graph with each vertex having outdegree 2. The digraph was supplied with a road-
coloring and then algorithm 4.1 was employed to test if the road-coloring was resolv-
ing.

Two types of experiments were performed. The first experiment took each
graph and exhaustively tested each road-coloring to see if it was resolving. Note
that although there are 2" possible road-colorings, only 27! are unique. To see this,
assume that a particular coloring is resolving, with universal map I;. Change every
edge colored blue to red, and every edge colored red to blue. This coloring is also
resolving with a universal map I where each instruction is the opposite of I;. That

is, if I, = RBBBRRBR, then I = BRRRBBRB.
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The results from the first experiment are summarized in table 4.1.

Table 4.1: All Possible Road-Colorings

No. No. No. Average No. Percentage
Vertices Graphs Colorings Resolving Resolving
10 10,000 512 511.25 99.8535

15 500 16,384 16,383.37 99.9962
20 100 524,288 524,287.50 99.9999

These results simply state that more than 99 percent of a typical digraph’s
road-colorings are resolving. Needless to say, these results are striking when one
considers that RCC only requires 1 coloring to be resolving. Even more intriguing
is the spread of the distribution. For example, each of the 20 vertex digraphs had
at least 99.9992 percent of their colorings as resolving. Also, the number of graphs

that had all of their colorings resolving is impressive. These results are in table 4.2.

Table 4.2: All Road-Colorings Resolving

No. Vertices Percentage of Graphs in Table 4.1
with all Colorings Resolving

10 48.91
15 65.00
20 74.00

Since exhaustive checking of all possible colorings of a digraph with a large
vertex set is intractable, the second experiment went as follows: Each digraph was
colored a certain number of times with randomly selected colorings. Each coloring

was then tested to determine if it was a resolving road coloring by algorithm 4.1. The
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results here were equally impressive. Table 4.3 simply lists the number of digraphs

and colors tested. The number of resolving colorings is not listed because every

random coloring in this experiment was resolving,.

Table 4.3: Random Road-Colorings

No. Random

No. Vertices No. Graphs Colorings
50 1,000 10,000
80 10,000 1

Although we did not collect any data, one of earlier versions of the implemen-
tation of the experiment suggest that, for many of the colorings, the length of the
universal map need not be very long. In this version, algorithm 4.1 was not used.
Instead, all possible universal maps, up to length n were applied to the n-vertex
digraph. If one of the universal maps brought all of the vertices together, a count
of colorings that fit this criteria was incremented, and we moved on to the next col-
oring. Note, of course, this criteria is a sufficient, but not necessary, condition for a
resolving color. Thus, the number of colorings that fit this criteria was less than the
number of resolving colorings. This is, of course, because algorithm 4.1 can detect if
a color is resolving, regardless of the length of the universal map required to bring the
vertices together. But, even with this stronger criteria, the percentage of colorings
fitting this criteria was close, in average, to the number of resolving colorings.

The fact that a counter-example to RCC was not found certainly lends more



46
evidence for the conjecture. Qur data suggests that a proof of RCC would have a

great deal of freedom in choosing the coloring proposed to be resolving. Hopefully

this information can help toward the goal of obtaining a proof.

4.3 New Conjectures

The evidence from the computer experiments led to two new conjectures:
Let €2,, be the set of all strongly connected, aperiodic digraphs without loops
or multiple edges, on n vertices in which each vertex has outdegree 2. Let x be a
road-coloring for I € Q. The pair (T, x) € Q, x {R, B}" is a resolved pair if x is a
resolving road-coloring for T'.
Conjecture (Probabilistic RCC) 4.1

Pr((T', x) is a resolved pair) — 1, as n — oo

This just states that the probability that a randomly selected digraph with a
randomly selected road-coloring is a resolved pair that tends to one as the number
of vertices goes to infinity.

Now for T € Q,, define

Road Colorings x of T’

n—

where f(T, x) is defined as in algorithm 4.1. f(T') is the fraction of the road-colorings

of I which are resolving. Define
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Conjecture (Strong RCC) 4.1 1. For anyn 2> 3, we have f, > 0

2. limp_oo frn = 1

Statement (1) of Strong RCC is equivalent to RCC. Statement (2) implies Proba-
bilistic RCC.

The evidence for Stréng RCC is the observation that the distribution of the
fraction of resolving colorings over all colorings is tightly clustered around 1. How-
ever, it should be pointed out that one graph was observed that makes us less sure
about Strong RCC than we are about RCC and Probabilistic RCC. The graph has
six vertices, labelled 1 through 6. The graph can be drawn in planar form by stacking

the vertices as such:

N =
Sy O

and connecting the following edge list. {(1,4), (4,1), (2,5), (5,2), (3,6), (6,3), (1,2),
(2,3), (3,1), (4,6), (6,5), (5,4)}. Only 15 of the possible 32 colorings of this graph
are resolving. Note that for each vertex, indegree = outdegree = 2. This means that,

some of the nonresolving colorings will be permutation coloring.

4.4 Comments on Sampling Method

One criticism of algorithm 4.2 is that we do not know if all ' € Q,, are equally
likely to be picked by algorithm 4.2. For example, algorithm 4.2 may be sampling
from certain clusters of graphs in Q, with a higher probability than other clusters.

It would especially skew the results if algorithm 4.2 sampled only a subset of 2,.
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The fact is, we do not know if algorithm 4.2 uniformly samples Q,,. On the

other hand, by Priifer’s code, we know that we are uniformly sampling the set of all
labelled trees, which is a superset of §2,,. We see no evidence that the construction
of " from 7 restricts the selection of " to a subset of 2,,.

Finally, even if algorithm 4.2 sampled only a subset of Q,, we know from
observing the output of algorithm 4.2 that this subset appears, on the surface, di-
verse. We also know that the data obtained from this subset of digraphs implies that
Strong RCC holds. Therefore, it would be of great interest to know what property

these digraphs possess such that almost of their road-colorings are resolving.

4.5 Alternate Description of RCC

Let T € Q, and A = [a;;] be the adjacency matrix for I'. Let x be a road-
coloring of I'. Note that each row of A has exactly two “l1’s,” with the rest of the
entries in the row being zero. Color the matrix by associating exactly one of the
“I’s” in each row with red, based on the road-coloring x. For each row, the “1” not,

associated with red is associated with blue. Consider the matrices R = [r;;] where

i x[(vi,v;)] = R
i = { 0 otherwise (4.3)
and B = [b;;] where
1 if x[(vi,v;)] = B
bij = { 0 otherwise (4.4)

Again, imagine a single coin placed on each vertex of I'. If the character R

shows up in a set of instructions, a coin on vertex v; will transition to vertex v; if
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and only if r;; = 1. Thus the matrix R represents the transitions made by the coins

when the current instruction is R. Likewise, for the character B and the matrix B.

Therefore, to determine where the coins end up after a set of instructions
are applied to I', simply multiply the matrices R and B in the exact order of the
instruction set. For example, if the instruction set is {RBBR}, the matrices are
multiplied in order RBBR.

Now note that if a coloring is resolving, a set of instructions, I, exists such that
all of the coins will eventually be stacked on top of one another. This corresponds
to the product of the R and B matrices to be a matrix with all ones in one column
and zero everywhere else.

Thus, a coloring is resolving if the adjacency matrix A can be partitioned as
the sum of two matricies, as described above, such that there exists some multiplica-
tive combination of these matrices such that the product is a rank 1 matrix with all
the ones in one column and zero everywhere else. Note that if such a product has
rank 1, the product matrix must have all 1’s in one column because each row of the

product has exactly one 1.

An interesting feature of this representation is that
AN = (R+ BN
is a multinomial where the coefficients form all possible combinations of the products

of length N of R and B. This is because matrix multiplication is, in general, not

commutative. Thus, all universal maps are imbedded in this multinomial form.
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Somewhat intriguing is that by theorem A.14, we know that

limy_oolp(A)]TAY - L

where L is of rank 1. Of course, this does not imply that any of the coefficients of

the multinomial form have rank 1.

4.6 RCC'’s relationship to the Ovation Model

There is not a true relationship between RCC and the Ovation Model, but the
following discussion relates RCC to the Ovation Model variant discussed in chapter
3.

Let ' € Q,. Let x be a road-coloring of I'. Now change direction of all of
the edges of I'. Now each vertex has an indegree of 2, with each edge colored red or
blue. It is easy to show that this graph is strongly connected and aperiodic.

Again, imagine a set of n coins, but this time place all of the coins on top
of one vertex, any vertex will do. If an instruction indicates to follow a blue edge,
for example, note that for a given vertex there may be z blue out-edges, where
z = 1,...,n. When such a vertex and instruction occurs, break out z coins along
the z edges. Where the balance of the coins go is mentioned subsequently.

Now it is also easy to see that x has a resolving coloring if an instruction set
causes the entire stack can be spread out to all n vertices. Now we will assume that

just the right number of coins are x-furicated at each point.
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This is similar to the crucial result in Kirchherr, Naroditsky, and Schmeichel

(1992) that determines if a bit value can be propagated to all of the vertices at
the same time point T'. Here the neighborhood of a vertex (individual) consists of
exactly the two vertices with edges directed in toward the vertex. The choice to
which bit value from which neighbor a vertex will transition is not a stochastic one
but is determined by an instruction set that is globally applied to all vertices. This
is fundamentally different from the Ovation model, where the transition function
for an individual is solely dependent on the individual’s neighborhood. Thus, this
characterization of a relationship between the problems puts them a fair distance

apart.



CHAPTER 5

CONCLUSION

One strong impression obtained from the topics reviewed in this thesis is
that processes modelled with relatively simple rules of transition appear to be very
difficult to handle analytically. Even the startling results leading to Strong RCC do
not provide an immediate path around the difficulties of proving RCC. This might

lead one to two conclusions:

1. More mathematical machinery needs to be developed to handle processes be-
yond the most trivial. For example, stationary Markov Processes are relatively
well understood, but little literature exists for non-stationary Markov Pro-

cesses.

2. Computer investigations are extremely valuable in the understanding of such
processes. As such, more formal rules need to be developed about how com-
puter experiments should be carried out. These rules would be analogous to

the experimental protocols of the natural sciences.

Future work in this area would include the computational experiments men-
tioned in Consensus in Small and Large Audiences (Kanevsky, Garcia, and Naro-

ditsky 1992), as well as work trying to analytically solve the Ovation problem for
52
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arbitrary neighborhood sizes. For RCC, one still hopes that the results leading to

Strong RCC lead to a proof of RCC. However, even a proof of RCC, without further
understanding of Strong RCC, would still make us feel that we do not understand

the taproot of the problem.



APPENDIX

PERRON-FROBENIUS THEOREM

In this appendix we establish the Perron-Frobenius theorem. This theorem
serves as the basis of an alternate proof of a result in chapter 3. Assumed is a basic
knowledge of matrices from linear algebra.

All of the results in this appendix were extracted from Matriz Analysis (Horn
and Johnson 1985), with some of the details of the proofs fleshed out.

Assume the next three theorems:

Theorem (Horn and Johnson 1985) A.1 For a finite dimensional space, if a
vector sequence converges to a vector z with respect to one vector norm, it will con-
verge to vector x with respect to any vector norm. Thus vector norms are equivalent

on a finite-dimensional space.

Theorem (Horn and Johnson 1985) A.2 Suppose A € M, is irreducible and
nonnegative. Denote A™ = [ag-n)] form = 1,2,3,.... If there is exactly k > 1
(m

eigenvalues of A of mazimum modulus, then a;; ) =0 foralli=1,23,... whenever

m is not an integral multiple of k.

This next theorem is known as Schur’s theorem.

54



55
Theorem (Horn and Johnson 1985) A.3 Suppose A € M, with eigenvalues A,

..., An in any prescribed order, there is a unitary matric U € M, such that U*AU =

T = [ti;] is upper triangular with diagonal entries t; = A;, i = 1,2,3,...,n.

A.1 Adjacency Matrices

Theorem (Horn and Johnson 1985) A.4 Let v;,v; be vertices of digraph T' and

A € M, the adjacency matriz of I'. There exists a directed path, v; Eit v; with

|P| = m if and only if [A™];; # 0.

Proof By induction: The case m = 1 is obvious. For m = 2,

n

[4%);; = ,;[A]ik[fl]kj = ;;X: ik Gk

so that [AZ],-J- # 0, if and only if for at least one value of k, a;; and ai; are both
nonzero. This is the case if and only if there exists a path of length two from v; to

v;. Now assume the assertion is true for m = q. Then

(AT, = g[Amk[Alkj - ;[A”]mam £0

if and only if for at least one value of k, [A%;x, and ax; are both nonzero. This is
equivalent to having a path from v; to v of length q, and one from v to v; of length

1. This is the case if and only if there is a path from v; to v; of length q+1. O

Corollary (Horn and Johnson 1985) A.1 Let v;,v; be vertices of digraph T" and
A € M, the adjacency matriz of I'. Then A™ > 0 if and only if from each vertez v;

to each vertez v; there is a directed path in ' of exactly length m.
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Corollary (Horn and Johnson 1985) A.2 Let v;,v; be vertices of digraph T and

A € M, the adjacency matriz of . Then A is strongly connected if and only if

(I+A)"1!>0.

Proof

n— n—1
(I+A)""1=I+(n—1)A+(21)A2+---+(n—2>A"—1>0

if and only if for each pair v;, v; such that i # j at least one of the terms A, A2, ...,
A™! has a positive (4, j) entry. But Theorem A.3 says this happens if and only if

there is some directed path in I' from v;,v;. This is equivalent to I' being strongly

connected, which is equivalent to A having property SC. O

Theorem (Horn and Johnson 1985) A.5 An adjacency matric A € M, of T,
is trreducible if and only if

(I+A)"1>0

Proof Assume A is reducible and that for some permutation matrix P we have

B C

Azp[o D

] PT = pAPT

where 1 <r<n-1,Be M, DeM,,, CEMyp,and0 € M,,,is a zero
matrix. Notice that A2, A3,..., A*! all have the same (n-r) by r block of 0’s in the

lower left corner as A. Thus,

(I+A4)" 1 = (I+PAPT)*1



= (P[I + A]PT)"1
= (P[I+A]"'PT)

= Pfremonds (F) B (02 0) A 7

and all of the terms in the square brackets have an (n-r) by r block of 0’s in the
lower left corner. Thus, (I + A)"! is reducible and hence it cannot have all nonzero
entries.

Conversely, suppose that for some p # ¢ that the (p,q) entry of (I + A)* lis
zero. Then we know that there is no directed path in I' from v, to v,. Define the set
of vertices

V1 = {vi : v; = vq or there is a path from v; to vy}

Define Vo = {v; : v; € V1}. We have v, € V; # 0 and no path from a vertex in V5
leads to a vertex in V5. Relabel the vertices V3 = {91,...,0,} and Vo = {Up41,. .., Un}
and notice that

A:PTAP=[B C]

0 D
where 1 <r<n—-1,BeEM, De M,,,C€Myp_,,and0 € M,_,, is a zero

matrix. Therefore, A is reducible. O

A.2 Matrix Norms

Theorem (Horn and Johnson 1985) A.6 If||-| is any matriz norm and if A €

My, then p(A) < ||A]l.
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Proof If Az = A\z,z # 0, and |A\| = p(A), consider the matrix X € M,, all columns

of which are equal to the eigenvector z, and observe that AX = AX. If || - || is any
matrix norm,

IMIX N = [IAX | = [ AX || < IAlIXl

and therefore || = p(A) < [|A]]. O

Theorem (Horn and Johnson 1985) A.7 If||-|| is any matriz norm on M,, and

if S € My, is nonsingular, then ||Alls = ||STYAS|| for all A € M, is a matriz norm.

Proof For axiom 1, ||A|ls = ||[S1AS|| > 0.

For axiom 2, if A = 0, ||0]|]s = [0l = 0. If ||A]ls = 0, then ||S™'AS| = 0
which implies that A = 0 because S is nonsingular.

Axiom 3: [|cA|ls = ||S7cAS|| = ¢||STIAS|| = ¢||Alls.

Axiom 4: [|[A+ B|ls=||S"YA+B)S| = ||IS'AS+S"1BS|| < ||IS7(A)S] +
IS=*(B)SIl = | Alls + I Blls-

Finally, axiom 5, follows from

IABls

Is—*ABS|
= [(57'A8)(57'BS)|

< I(s~'Aslls~'BS)l|

I

IAlisllBlls-

Lemma (Horn and Johnson 1985) A.1 Let A € M, and ¢ > 0 be given. There

is matriz norm || - || such that p(A) < ||A] < p(A) +e.
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Proof By the Schur triangularization theorem, there is a unitary matrix U and an

upper triangular matrix A such that A = UAU*. Set D; = diag(t,t%,t3,...,4" and

compute
[\ t—ldlg t—2d13 i t_n+ld1n ]
0 A2 t_ld23 <. t_n+2d2n
U I T D VIO
D:AD;" = 0 0 0 - )
0 0 0 o tldpgn
0 0 0 e An

Thus, for ¢ > 0 large enough, we can be certain that the sum of all the absolute
values of the off-diagonal entries of D;AD;! is less than e. In particular, we can be
sure that | D;AD;||; < p(A) + € for large enough t. Thus, for a given ¢ > 0, if we

define the matrix norm || - || by
1B]l = 1DU*BUD; Iy = [|(UD) ' B(UD; )y

for any B € M,, and if we choose t large enough, then we will have constructed a
matrix norm such that ||A|| < p(A) + e. Note that this is a norm because UD;! is
nonsingular and theorem A.6. For the other inequality, ||A|| > p(A) for any matrix

norm, by theorem A.5. O

Lemma (Horn and Johnson 1985) A.2 Let A € M, be a given matriz. If there

is @ matriz norm || - || such that || A < 1, then limg_o, A* = 0.

Proof If ||A|| < 1, then | A¥|| < ||A||¥ — 0 as k — co. Since all vector norms on M,,

are equivalent, then A¥ — 0 with respect to vector norm || - ||eo. O

Theorem (Horn and Johnson 1985) A.8 Let A € M,. Then limy_ AF =0 if

and only if p(A) < 1
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Proof If A¥ - 0 and if z # 0 is a vector such that Az = Az, then AFz = \fz — 0,

only if [A| < 1. Since this inequality must hold for every eigenvalue of A, p(A4) < 1.
Conversely, if p(A) < 1, then by lemma A.1l there is some matrix norm | - || such

that ||A|| < 1. Thus, A¥* — 0 as £ — oo by lemma A.2. O

Corollary (Horn and Johnson 1985) A.3 Let A € M, and ¢ > 0 be given.

There is constant C = C(A,¢€) such that

(4%)i5] < C(p(A) +€)F
forallk =1,2,3,... and alli,5 =1,2,3,...,n.
Proof Note that if Az = Az, z # 0, then if A = cA, Az = cAz = c)z, z # 0 implies
that c) is an eigenvalue of A. Therefore, A = [p(a) + ¢]"!A has spectral radius
strictly less than 1 and is convergent by theorem A.7. Hence, A* — 0 as k — 0.

This implies that {A*} is bounded, and thus, |(A¥);| < C, k = 1,2,3,... and all

i,7=112,3,...,n. O

Corollary (Horn and Johnson 1985) A.4 Let || - || be a matriz norm on M,.

Then
p(A) = lim || A*|V/*
k—oo
forall A € M,

Proof First note that if Az = Az, z # 0, then

A’z = A(Az) = A(Mz) = Mz = N
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when z # 0. Now assume that

AFz = AFg
for any integer k. For & + 1 we have

ARy = A(AFz) = AOFz) = AFAz = Mg

This, and theorem A.5 imply that p(A)* = p(AF) < ||A*||. Hence, p(A) < ||A*|Y/*
forallk=1,2,....

Given € > 0, the matrix A = [p(a) + €]~1A has spectral radius strictly less
than 1 and is convergent by theorem A.7. Thus, [|A¥|| — 0 as k¥ — oo and there is
some N = N (e, A) such that ||A*|| < 1 for all k > N. This implies || A*|| < [p(A)+€]*

for all k > N, or that ||A®||'/* < p(A) + € for all k > N. Since,
p(A) < | AMIV* < pla) + ¢

for all k and arbitrary € > 0, the limit exists and is p(A4). O

A.3 Positive and Nonnegative Matrices
Claim A.1 |A™| < JA|™ for allm =1,2,....

Proof It is obvious for m = 1. Assume true for some m. We have

n
4™ =13 afPas] < 3 laij™laz] = |A™]|4] = |AI™|4] = 4™
Jj=1
for i = 1,...,n. The inequality comes from the triangle inequality for complex

numbers. O
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Claim A.2 If0< A< B,then0< A™ < B™ forallm=1,2,....

Proof Show 0 < A implies 0 < A™ for all m = 1,2,.... The case m = 1 is obvious.

Assume true for some m. A™! =37, ag")aji for i = 1,...,n Now note that each
ag-n) >0and aj; > 04,5 = 1,...,n which implies that the sum is greater than or

equal to zero.
Now show 0 < A < B implies A™ < B™ We have m = 1 by hypothesis.

Assume true for some m
1 1 n n
+ +1 _
B — AT = 3 bighsi - Y afa:
=1 =1
i=1,...,n. Now just note that each difference is > 0. O

Claim A.3 IfA >0,z >0, and z # 0, then Az > 0.

Proof
n
Az = Z a,-j:cj
Jj=1
i=1,...,n. Since each a;; > 0, at least one z; > 0 then the sum is greater than
zero. [J

Claim A.4 If|A| < |B|, then ||All2 < ||Bllz.
Proof |A| < |B| implies that

laij| < bijl = lag|® < |bisl® = ||Allz < ||Bll2
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Claim A.5 [|Alz = |||A]|2-

Proof This is immediate from the definition of || - ||2 and the fact that taking the

modulus of the modulus of a number is the same as the modulus of the number. O

Theorem (Horn and Johnson 1985) A.9 Let A,B € M,. If|A| £ B, then

p(A) < p(|4]) < p(B).

Proof For all m = 1,2,..., we have [A™| < |A|™ < B™ by claims A.1 and A.2.

Thus, by claims A.4 and A.5 we have
IA™ ]2 < (1AM 2 < IB™|l2

and

A™13™ < [I1A™™ < 1B™1F™

for all m = 1,2,.... If we now let m — oo and apply theorem A.5, we have

p(A) < p(|A]) < p(B). O

Corollary (Horn and Johnson 1985) A.5 Let A,B € M,. If0 < A < B, then

p(A) < p(B).
Proof 0 < A implies A = |A|. By the above theorem, p(A) < p(b). O

Lemma (Horn and Johnson 1985) A.3 Let A € M, and suppose 0 < A. If
the row sums of A are constant, then p(A) = ||A|lco- If the column sums of A are

constant, then p(A) = ||Alx.
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Proof By theorem A.5, p(A) < ||A|| for any matrix norm ||-||, but if the row sums are

constant, z = [1,...,1]7 is an eigenvector with eigenvalue || Ao 50 p(A) = || Allco-

To get p(A) = ||A||1, apply the same argument to AT. O

Theorem (Horn and Johnson 1985) A.10 Let A € M, and suppose 0 < A.

Then
lrgm Zau < p(A) < 12% z_:a,,
and

lréljlgnZa” < p(A) < max z:azJ

Proof Let o = min;<;<, Z;-;l a;; and construct a new matrix B with 0 < B < A
and Y7_; b = o foralli =1,2,...,n. For example, a =0, set B=0. If a > 0, set
bij = aay; (X7 ai) ™

By lemma A.3, p(B) = a. Also, p(B) < p(A) by Corollary A.5. The upper
bound case can be handled in a similar fashion. To handle the column sum bounds,

use AT. O

Corollary (Horn and Johnson 1985) A.6 LetA € M,. If0 < A and¥}_; a;; >
0,i=1,2,...,n, then p(A) > 0. Note that this implies p(A) > 0 if A is irreducible

and nonnegative.

Proof Immediately follows from the prior theorem. O
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Theorem (Horn and Johnson 1985) A.11 Let A € M, and suppose 0 < A.

Then for any positive vector z € C™.

B8, Y om S0 S e 0 ey

and

. a1_7
mmn z < max T
1<j<n JZ; i ’.Z

Proof Let S = diag(z,...,z,) and if all z; > 0, then S714S > 0 if A > 0. Thus,
the matrix S~1AS satisfies the conditions of theorem A.9. Apply this theorem,
noting that p(A) = p(S~1AS), gives us the desired result by theorem A.6 and the

fact that S is nonsingular. O

Corollary (Horn and Johnson 1985) A.7 Let A € M,, x € R™. Suppose A >0
andz > 0. Ifa,B > 0 are such that az < Az < Bz, thena < p(A) < B. Ifax < Az,

then a < p(A). If Az < Bz, then p(A) < 8.

Proof If axz < Az, then az < minj<;<p E]_l aijrj. Then a < p(A) by the above
theorem. If az < Az, then there is some n > a such that nr < Az. Again, by the
theorem, n < p(A), so « is strictly less than p(A). The proof the upper bounds is

similar. O

Corollary (Horn and Johnson 1985) A.8 Let A € M, and suppose that A is

nonnegative. If A has a positive eigenvector, then the corresponding eigenvalue is

p(A).
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Proof If z > 0 and Az = Az, then A > 0 and Az < Az < Az. Then A < p(A) < ),

by the above Corollary. O

Lemma (Horn and Johnson 1985) A.4 Let A € M,, and suppose 0 < A, Az =

Az, z #0, and |\ = p(A). Then Alz| = p(A)|z| and |z| > 0.
Proof

p(A)lz| = |)|z|
= [Az]
= |Az|
< |All=|

= Alz]

Set y = A|z| — p(A)|z| = 0. Since |z| > 0 and |z| # 0, claim A.3 implies A|z| > 0.
Corollary A.6 guarantees that p(A4) > 0.

Now if y = 0, we have A|z| = p(A)|z| and |z| = p(A)~tA|z| > 0.

If y # 0, set z = Alz| > 0 and apply claim A.3 again. Then 0 < Ay =
Az — p(A)z which implies Az > p(A)z. However, by Corollary A.7 we have the

contradiction p(A) > p(A). Therefore, y = 0. O

Theorem (Horn and Johnson 1985) A.12 Let A € M, and suppose 0 < A.

Then p(A) > 0, p(A) is an eigenvalue of A, and there is a positive vector x such

that Az = p(A)z.
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Proof By definition, there is an eigenvalue A with |A| = p(A) > 0 and an associated

eigenvector x # 0. By Lemma A.4, the required vector is |z|. O

Lemma (Horn and Johnson 1985) A.5 Let A € M, and suppose 0 < A, Az =

Az, z %0, and |\ = p(A). Then for some f € R, e ¥z = |z| > 0.

Proof We have |[Az| = | \z| = p(A)|z| and from lemma A.4 we know that A|z| =

p(A)|z| and |z| > 0. These identities and the triangle inequality give us

n
p(A)lzkl = leel = Azel = |3 akpry
p=l1
n n
< Z |lakp||zp| = Zakplxp|
p=1 r=1
= p(A)|z«l
fork=1,...,n.
Thus, the above inequality is an equality, so the numbers axpz, forp =1,...,n
have the same arg, say §. Then e"“’akpz,, > 0forp=1,...,n. Since ay, > 0 we

have e~¥z > 0, O

Theorem (Horn and Johnson 1985) A.13 Let A € M, and suppose 0 < A.

Then || < p(A) for every eigenvalue || # p(A).

Proof By definition, |A| < p(A) for all eigenvalues |A| of A. Suppose |\| = p(A) and
Az = Az, £ # 0. By lemma A.5, there exists w = e~z > 0 for some § € R, so w is

an eigenvector of A. Hence, A = p(A) by Corollary A.8. O
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Theorem (Horn and Johnson 1985) A.14 Let A € M, and suppose 0 < A and

that w and z are nonzero vectors such that Aw = p(A)w and Az = p(A)z. Then

there exists some o € C such that w = «=z.

Proof By lemma A.5 there exists real numbers #; and 6, such that p = e~z > 0
and g = e ¥z > 0. Set 8 = minj<i<n 4iP; ! and define r = ¢ — Bp. Notice that
r > 0 and at least one coordinate of r is 0, so = is not a positive vector. But
Ar = Aq — BAp = p(A)q — Bp(A)p = p(A)r, so if r # 0, we know by claim A.3
that r = p(A)"'Ar > 0. Since this is not true, r = 0 and hence ¢ = Bp and

w = Beif2—01); O

Corollary (Horn and Johnson 1985) A.9 Let A € M, and suppose 0 < A.
There ezists a unique vector z such that Az = p(A)z, z > 0, and X7, z; = 1.

The unique normalized eigenvector is called the Perron vector.

Proof A vector z, such that Az = p(A)z, ¢ > 0, exists by Theorem A.11. By
Theorem A.13, any other such vector must be a multiple of . Thus, if the vector z

is normalized, it must be unique. O

Lemma (Horn and Johnson 1985) A.6 Let A € M, and A € C be given. Sup-

pose = and y are vectors, with L = zyT. We will make the following assumptions:

1. Az =Xz
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3 2Ty =1

4. A#0
5. X is an eigenvalue of A with geometric multiplicity 1
6. |\ =p(A)>0

7. X is the only eigenvalue of A with modulus p(A). Also, the eigenvalues of A

are ordered as such:
A1l < |A2] £ -+ L [ Aaaa1] < [An| = |A] = p(A).
The ten parts of lemma A.6 make use of some or all of these assumptions:
(A) A.1 Assume statements (1),(2),(3). Lz =z and yTL = y7.

Proof Note that taking the transpose of (3) implies yzT = 1 Thus, Lz = (zyTz =z

and yTL = yTzyT = yT. O

(B) A.1 Assume statements (1),(2),(3). L™ =L for allm =1,2,....

Proof Note that L? = z(yTz)yT = zyT = L. The induction step trivially follows. O
(C) A.1 Assume statements (1),(2),(8) A™L = LA™ = \™ for allm =1,2,....

Proof For the first part, A™L = A™zyT = \™zyT = A™L For the second part, note

that (2) implies yT A = \yT. We then have LA™ = zyTA™ = zyTA™ = [A™. O
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(D) A.1 Assume statements (1),(2),(3). L(A — AL) =0.

Proof By (d) and (c), we get

L(A-AL) = LA-)L

= (A=

= (A-NzyT
= (Az — Az)y”
=0

(E) A.1 Assume statements (1),(2),(3). (A — AL)™ = A™ — \™L for all m =

1,2,....
Proof By (d) and (c), we get for m = 2

(A —AL)? A% — ALA — DAL + X2L?

A% — 20AL + \2L?

= A? —2)2L + 2L

= A’- )L

The induction step trivially follows. 0

(F) A.1 Assume statements (1),(2),(3). Every nonzero eigenvalue of A— \L is also

an eigenvalue of A.
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Proof If p # 0 is an eigenvalue of A — AL and if (A — AL)w = pw for some

w # 0, then by (d), L(A - AML)w = 0-w = 0 = pLw. Hence, Lw = 0. Thus,

(A—AL)w = Aw = pw, so u is also an eigenvalue of A. O

(G) A.1 Assume statements (1),(2),(3),(4),(5)- X is not an eigenvalue of A — AL.

Proof Let p = A If w were a A eigenvector of A — AL, then it would also be a A

eigenvector of A. But (5) implies that w = az for some a # 0. But then

pw = Aw
= (A-AL)w
= (A-AL)azx
= alz — Aoz
= 0

which is impossible since A # 0 and w # 0. Therefore we have a contradiction. O
(H) A.1 Assume statements (1),(2),(3),(4),(5),(6),(7). p(A=AL) < |An_1| < p(A).

Proof Because of (f), we know either that p(A — AL) = |\g| for some eigenvalue
Ak of A or that p(A — AL) = 0. Since we have ordered the eigenvalues of A by
increasing modulus and |\,| = |A| = p(A), we know that in either event from (g)

that p(A — AL) < |An—1|. The inequality now follows directly from (7). O

(I) A.1 Assume statements (1),(2),(3),(4),(5),(6),(7). (\"'A)™ = L + (A\~14 -

LY™ — L as m — oo.
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Proof Combine (H) and (E) to get (\"1A— L)Y = (A\"1A)™ - L — 0 as m — oo.

This is because
p(\T'A—L) = p(A—AL)/p(A)
S I’\n—ll/p(A)

< 1

O

(J) A.1 Assume statements (1), (2), (3), (4), (5), (6), (7). For every r such that
[ An=1l/p(A)] < r < 1 there exists some C = C(r,a) such that |[(A\7TA)™ — L] <

Cr™ forallm=1,2,....

Proof This is a direct consequence of Corollary A.4 applied to the matrizr \™'A— L

with € chosen so that

PATA—L) +e < [Anaal/p(4)] + ¢

(|
O (End of lemma A.6)

Theorem (Horn and Johnson 1985) A.15 Let A € M, and suppose 0 < A.

Then

: =1 41m __
Jim [p(A)"A]" =L
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where L = 2yT, Az = p(A)z, 2> 0,y >0, 2Ty =1.
Proof The assumptions (1) through (7) of the Lemma A.6 are met with A\ = p(A),
z the Perron vector of A, and y = (272)~1z where z is the Perron vector of AT.

Thus, (I) in Lemma A.6 implies the conclusion. O

Theorem (Horn and Johnson 1985) A.16 Let A € M, and suppose 0 < A.

Then p(A) is an eigenvalue of algebraic multiplicity 1.

Proof By the Shur triangularization theorem, A = UéU*, where U is unitary, 6
is an upper triangular matrix with main diagonal entries p, ..., p, Agy1,...,An and
p = p(A) is an eigenvalue of algebraic multiplicity ¥ > 1. The eigenvalues \; all have
modulus strictly less than p(A) for alli = k+1,...,n. Thus, L = lim,,_oo[p(4)tA]™

which equals

B am
*
, 1 .
U Jim, Dy v
0
An
L P
which equals )
1 1™
%
1 *
U 0 U
0
-3 0 -

Since this last matrix has rank k, and the matrix L has rank 1, & > 1 results in a

contradiction. O
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Theorem (Horn and Johnson 1985) A.17 Let A € M, and suppose 0 < A.

Then p(A) is an eigenvalue A and there is a nonnegative vector z > 0, x # 0, such

that Az = p(A)z.

Proof For any € > 0, define A(e) = [a;j + €] > 0. Denote by z(e) the Perron vector
of A(e), so z(e) > 0 and Y- z(e); = 1. Since the set of vectors {z(e) : ¢ > 0} is
contained in the compact set {z : z € C", ||z||; < 1}, there is a monotone decreasing
sequence €1, €2,... with limg_,., ex = 0 such that limg o z(ex) = z exists. Since
z(ex) > 0 for all k = 1,2,..., it must be that z = limg_, z(ex) > 0. Now z =0 is

impossible because

Zzi = lim Z:t:(ek)1 =1
=1 koo it
By Theorem A.8, p(A(ex)) > p(A(egs1)) = -+ = p(A) for all k = 1,2,..., so this

sequence is a monotone decreasing sequence. Thus, p = limy_, p(A(ex)) exists and

p > p(A). But from the fact that
Az = lim A(e)z(ex) = lim p(A(er))z(ex)
k—oco k—o0
= lim p(A(ex)) lim z(ex) = pz
k—o0 k—o0
and the fact that = # 0, we deduce that p is an eigenvalue of A. But then p < p(A4),

so it must be that p = p(A4). O

Lemma (Horn and Johnson 1985) A.7 Let A € M, and let Ay,..., )\, be the
eigenvalues of A (including multiplicities). Then A\1+1,..., ,+1 are the eigenvalues

of I + A and p(I + A) <1+ p(A). IfA >0, then p(I + A) = 1+ p(A).
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Proof If A € o(A) has multiplicity k, then X is a root of the characteristic equation

pa(t) = det[tI — A] = 0 of multiplicity k. But then A + 1 is a root of pa.r(s) =
det[s] — (A + I)] = 0 of multiplicity k because det[t] — A] = det[(t + 1) — (A +1I)].

Thus, A\; + 1,..., A, + 1 are the eigenvalues of I + A. Therefore,
p(I+A)= lrgiaszgl)\i +1] < %%ﬁl)‘ii +1=1+p(A).

However, by theorem A.16, 1 + p(A) is an eigenvalue of I + A when A > 0, so that

p(I+A)=1+p(A). O

Lemma (Horn and Johnson 1985) A.8 Let A € M,, A > 0, and A* > 0 for

some k > 1, then p(A) is an algebraically simple eigenvalue of A.

Proof If Ay,..., A, are the eigenvalues of A then )%,..., )k are the eigenvalues of
A¥. We know that p(A) is an eigenvalue of A by Theorem A.16, so if p(A) were a
multiple eigenvalue of A, then p(A)* = p(A¥) would be a multiple eigenvalue of A*.

This contradicts the fact that p(A*) is a simple eigenvalue of A¥ by Theorem A.15.

O

The next theorem is the Perron-Frobenius theorem.

Theorem (Horn and Johnson 1985) A.18 Let A € M,, irreducible and non-

negative. Then
1. p(A) > 0.

2. p(A) is an eigenvalue of A.
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3. There is a positive vector = such that Az = p(A)z.

4. p(A) is an algebraically simple eigenvalue of A.

Proof Corollary A.6 shows that (1) is true. Theorem A.16 implies (2). Theorem
A.16 also implies that there exists a nonnegative vector x # 0 such that Az = p(A)z.
By lemma A.7, (I + A)z = [1 + p(A)]z so, (I + A)" "tz = [1 + p(A4)]"'z. By lemma
A4, we have (I + A)""! > 0, and therefore, (I + A)" 'z > 0 is positive by lemma
A.3. Thus,

z=[l+p(A)) "I +A4)" x>0

which proves (3). If p(A) is a multiple eigenvalue of A, then 14 p(4) = p(I+A) is a
multiple eigenvalue of (I+A) by lemma A.7. However, (I+A) > 0and (I+A)" ! >0
by lemma 8.4.1, so 1 + p(A) is a simple eigenvalue of (I + A). This contradiction
establishes (4). O

Note that the unique normalized and positive eigenvector of an irreducible

and nonnegative matrix is called the Perron vector.
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