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ABSTRACT
THE IRRATIONALITY OF §(2) AND ¢ (3)

by Victor Legge

This thesis gives proots that each of two “naturally occurring numbers” in

, e > .
mathematics. the sums of the two series »_ = and Z/:T which are called J (2) and

=l €=l
< (3) respectively, are both irrational. Two proofs are given for each of these two

numbers. The thesis also looks briefly at the history of the subject of the irrationality of
naturally occurring numbers in mathematics. The crux of all the proofs is the same and

this is examined in detail.

The first proot'that J (3) is irrational is taken from Van der Poorten’s informal
report on Apery’s proot written in 1978. The second proof that (3) is irrational comes
trom Beukers’ paper, also written in 1978 The first proof that < (2) is irrational uses the

proof that 7° is irrational. The second proot that ¢ (2) is irrational uses Beukers® paper

again.
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my beloved wife, Amba Giri
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my beloved daughter, Tara Giri
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I. Introduction

1.1. History of the irrationality of {'(n) for positive integers n.

e Lo ]
DEFINITION. The expression J (n) is detined to be the sum of the series Z gl na

=1

positive integer greater than |.

The history of irrational numbers really begins with the Greeks who proved that J2 and
other algebraic numbers are irrational. The next breakthrough in irrationality proots
happened in 1737 when Euler proved that e is irrational. This proof opened the door for
many other proots. 7 was proved to be irrational in 1761 by Johann Heinrich Lambert.

The tirst proot'that J (2) is irrational was given in 1794 by Adrien-Marie Legendre. He
actually proved that 7° was irrational. This result, together with Euler’s famous theorem
that " (2) equaled %(proved in 1732) proves the irrationality of & (2).

[t has long been known that for 7 even ¢ (n) is irrational. When this was first
discovered is unclear. It has certainly been known since 1882 when the Hermite-

Lindemann theorem proved the transcendence of ¢* for « algebraic and thus proved the
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transcendence of all powers of 7. This, together with Euler’s formula tor  (24), k a

(27[):k

2-(24)!

positive integer, that & (2k) =(-1)" B,, where B are the Bernoulli

numbers, which are rational, proved the irrationality of ¢ (2k), & a positive integer.

For # 0dd proving the irrationality of ¢ () has been difficult. [n 1978 Apéry proved that
< (3)1sirrational for the first time. Since that time there have been other proofs. Two of
these proofs, including Apéry’s, will be given in this paper. For other # which are odd

the only real inroads into this problem has been the claim within the last two years by

Rivoal {unpublished] that he has proved that there are infinitely many integers m such

that J (2m ~1) is irrational.
In this chapter proofs will be given that J (2) is irrational, using the fact that z° is

irrational, and also that ¢ and 7 are irrational. Firstly, the crux of all these proots is

examined.

1.2. The Crux of the Irrationality Proofs for ¢'(2) and & (3).

The crux of the proofs in this thesis is the same. The first kind of proof of this form was
written by Euler. The proofs that a number @ is irrational involves coming up with a

sequence of integer expressions p,, ¢, and a real expression g, such that



I

or, alternatively
O<log,-p,i<g,
and g, >0 as n—- <.
Thus. given £ >0 an # can always be found such that g, <&, and therefore a p, and a

¢/, can be found such that

(121) 0<w-Laic L
9e. 4,

or

(122) O<iwq, -p,l<e

This will prove the irrationality of @ because, as will be proved in this section, one of the
properties of an irrational is that some multiple of the irrational will get within & of an
integer This is not the case with a rational as it is not possible to get arbitrarily close to

an integer if multiples of a rational are taken - the integer is either hit exactly or else the

. N . . . a
closest they get to the integer is 3 if the rational can be written in lowest terms as 3

Looking at equation (1.2.1) carefully it can be seen that it is not sufficient to find any P
4.

that converges to w . The Pn hasto converge fairly rapidly.
9,

Equation (1.2.2) will now be proved beginning with some lemmas.



LEMDMA 1. Given ¢,, a positive integer, and y, a real number, then the inequality

) I .
D< v LA — can have at most 2 solutions for p, .

4. 4,

Proof. Suppose there exists p, and p, such that

| 1 ol
O<;_\'-&;<—:- and O<jy - p‘%<—:,
qg,1 4, ! g, 4,
L p. 2 'p L a T
then it tollows that 0 < p_ -B‘—¢' <— Let p_ - &t = —. aapositive integer. The
a4, 4, U/ AR
. . d 2 2 . . . .
solutions of -— < — are ¢, <~ Solutions only exist for @ =1 in which case ¢, =1.
g 4 " a

Thus the result tollows. In factif ¢, > | then there is at most one solution for p, -

LEMMA 2. Given a rational £ in lowest terms, q 2 1, there exists only a tinite number
q

of rationals £z | q, 21 such that

4a

| ,
o<(£-_p_~f _
q9 49, q,

Proof. Simplifying the inequality produces



As p,.q,. p.y are all integers and ;E—&é >0 then
g 4.

Pl .

94, = qq,

Thus the solutions of the inequality 0 < P _P. L have

qy, 4, q 4, q,

[

[fy, -y then

T

the restriction ¢, = ¢ Theretore. given ¢, the possibilities for ¢, are finite.  From
Lemma « there are only finite possibilities tor p, and therefore only finite possibilities

[

tor —

(/-:

p.
Y,

LENMNIA 3. Given an irrational number x. there exists an intinite number of rationals

such that

example. using a rational example for x. Also. (p), =0 if p is an integer Given some

positive integer (O, let

A= {O. (x)f ,(2x)f (Qr), }

(4 )



The elements of A are all distinct for it there exists j and & with j,k <O and
(Jx), = (kx), then for some integers « and 3,

Jx-a=kx-f

o a-
and this implies x =

. which is not possible as x is irrational. Thus [ A{=n+1.
j —_

i 0" -
Consider the set of intervals < } , 5 {+  The union of these
¥ Y

intervals is [O,l), and thus the n ~1 elements of {4 must lie in these intervals. Theretore

ov the pigeonhole principle there exists integersa, dand ¢ all less than or equal to O such

~

that (ax), and (Ax) lie inside the interval z —[ Thus,
00
(ax), - (bx), < L
Y
and therefore tor some integers y and 0
ax - ; —b\*~0’i<L
i y4 XX To| Q
Dividing through by 'a - 8| and rearranging produces
: o’j l
(1.23 X -
> a6l Q-4
Now, la-bi<Q so
P ol P
. a-b| a-bl



Letting p, = ¢ -J and la-b|=g¢, then

Pn

ix—— <—.

4, q’

n -

is infinite. Suppose that it is not

What is needed is to show that the set of all possible

q,
‘o b p)
intinite and let this set be D= { —‘—&> then because the real numbers are well
L9 4 q,
| | o ln | |
ordered there exists 2% in this set such that ?ﬁi— x| <l x| for all £ in the set D.
q, q. g q,
Because the real numbers are dense there exists a rational 2 such that
q
) . 3 L ol

Ly <£<x orx<£<£i. Letting ¢ =qq, then ‘&—xplﬁi—xp— 22—
4, 9 q dq, 4 Q Uq,

. L : | ol
However, trom (1.2.3) it tollows that given ) we can find Bn such that 1x - &¢ < —

4n L 4. g,
P, ) . .. . DL ‘ p,,i ]
This cannot be in D but this is a contradiction as this == satisfies jx - =2 < — and
q, q, P d. q,
theretore is in 2. Thus the set of all possible £uis infinite.
4,

COROLLARY 4. Given an irrational number x, and & > 0, then two infinite sequences,

p., and ¢, can be found with ¢, — = such that



bl L
9s1 4
( p P O . .
Proof. From Lemma 3 the set {—"I x - = <—=¢isinfinite and from Lemma 1 tor any
qn { qn | qn

g, there is at most two p,’s. Therefore there are an infinite number of ¢_’s. As ¢, is an

integer ¢ is unbounded above. -

THEOREM 5. Given an irrational @ and ¢ > 0 there exist integers ¢ and p such that

O<|gow - p|<¢.

Proof . From the corollary above, a p and ¢ can be found with ¢ > 1 such that
.

O<§w—£!<—17_
L4 g9

Multiplying by ¢ gives
o1
O<lqw-pj<—<¢ . Z
4
Once it is known that it is possible to always find integers p, and ¢, and a real number
g, such that
0<log, -p,|<g,<¢,

then the task is to find them!!
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THEOREM 6. Given a real number w, and integers p, and ¢, such that for any ¢ >0

O<lwg, -p,|<e

then w 1s irrational.

. L L a
Proof 1. Suppose w is rational then there exists integers & and 4 such that o = 3 and

-,

O<l—g - i<£.
[bl" P;

Multiplying through by || gives
0<laq, -bp, <ible.
As ¢ s arbitrarily small # can be found such that ble <1. But a.b, p, and ¢, are all

integers and as «q, - hp,| >0 then lag, - bp,| > | and this is a contradiction. -

. - . - . [
Proof 2. (informal) The number of multiples of a rational number 3 between any two

consecutive integers is finite and therefore @ must be irrational.

1.3. The Irrationality of e.

The irrationality of e is proved in two ways: first in the standard way which implicitly

incorporates Theorem 6, and secondly by using Theorem 6.



THEOREM 7. ¢ is irrational.

. . 11 .
Proof 1. By the power series for ¢°, ¢ = ITF»;—'+—+_.. - Assume e is rational,
then ¢ = % where a and b are integers. Let

/ \
a=k' e—l——l——l-ﬁi .A——l— :
\ o2 3 k',
o k! S [ . . k'a.
Notice ¢ -2 = —k' [~ —=—~ ~~—lisaninteger. It k£ 24 . then 2 %isalsoan
h S ] k') b

vy b kel k-l
‘:{(k-l)’ - I k-1-1
k=1 k-1

and this contradicts « being an integer.

Proof 2.(Using section 1.2.) By the power series for ¢,

r

l e . . .
@,= D — . the "tail” of the series. Now, as before,

cz=n-!

¢

> — e — -
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1 1 ! l

= 1
lg = - -
na, = Zk n+l (n-l)(n+") <n+l (n*l)

: 1 . . .
But «, can be written as ¢ — Z;{—’ Theretore given ¢ > 0 an n can be tound such that

|
Let g, =n' and p, -H'V;— and g, ——then p, and ¢, are integers and

<=l

¢, =0 as n — = and it follows that
O<qne—pn <gn <&

which proves that ¢ is irrational by Theorem 6. -

1.4. Proving J(2) is irrational using the fact that ° is irrational.

LEMMA 8. Let g(x)=x"(I-x)". Then for k£ 2n we have n'|g"“'(0)and n'ig"“'(1).

Proof. By the binomial theorem

g(x)=x"(1-x)" = ZC,X' .



where the coefficients ¢, are integers. For & > n, differentiating & times produces

£ ()= Xili-1)i-2)- G-k +D)e .

=;5;i(i—1)(1 3y (i—kl)er

since any term with / < k& is zero. Thus

g (0)=k(k-1)(k=2)1l-c, =k'c,
and since & > n it follows that n'{ k! and hence n!ig"*'(0).

Clearly. g(x)=g(l-x). Differentiating k times produces

g (x)=(-1) " (1-x).

which gives ¢'*'(1) = (~1)" g *'(0) and therefore as n!ig*'(0) then n!! g (1). Z

n

LENMMA 9. For any real number x, lim Lo

nse !
n rn
Proof. Recall ¢* = Z— and this series converges by the ratio test for all x. Thus the

=1 1

n

p X . .
n’” term, —, MUSL O tO Z€ro as 71 goes to infinity. _
n'

THEOREM 10. 7° is irrational

Proof. Suppose 7~ is rational then there exist positive integers a and 4 such that



N
1
o | Q

Let

(1.41) G(x)=b" {;r:"f(x)-;r:"‘:f'(x)v'-;r:"“f"“ (x)—.=(=1)" f" (r)}

x"(I-x . I
where f(x)= (—'l- Now. f*“'(x) for k <n will contain terms with factors x and
n'

I-x Sotorall k<n, f°(0)=0and f“'(1)=0 Asa consequence of Lemma $
S (0) and f7 (1) are integers, for k 2 1. Therefore G(0) and (G (1) are integers.
Ditterentiating (+'(x)sin(7x) - 7G (x)cos(zx) produces
— 105" (x)sin(7x) - 7G (x)cos(7x))
=G"(x)sin(7x) + 7G'(x)cos(zx) - G’ (x)cos(zx) = 7°G (x)sin (7).
(142) = {G'(.r)“-fr:G(.\‘)}sin(frx) .
Ditterentiating (1.4.1), twice, produces
("(x)= 8" {zr:"f"(x) - () () (t)}
As f(x) is a polynomial of degree 2» the last term disappears and thus

G'(x)+7°G(x)=b" {fr:"':f(x)} .

Substituting in (1.4 2) gives

bz f (x)sin(xx) = 6" (7°)" 2° f (x)sin (zx),



=" Z—:f(x)sin(frx),
=x7a" f(x)sin(7x).

Normalizing by — and integrating this expression between 0 and 1 gives
/T

Ja sin(x) f(x)de = — Jg—{ ¢)sin (7x) - 7G (x)cos(7x)}dx.

As all the functions in this integrand are continuous, by the fundamental theorem of
calculus the integral becomes

- -

=! M—G(.r)cos(zx) |
G0 GO0 Gay-ny-(0)1

(1.43) =G(1)~G(0).
As shown at the beginning of the proof, this result must be an integer. However

O<f(x)<—17 for 0 < x <1 so therefore
n'

i
0<xfasin(zx)f (x)d <£"'_,
) n:

n n

a . . a 1 C e
From Lemma 9 - 0 as n— x so for all sufficiently large n. — < — which implies

n! n'

n

aa

. <1 Thus it follows that, for some n,
"

14



!
0< ;rfa" sin(7x) f(x)de < 1.

I

However, from (1.4.3) it is known that ;rJ‘a" sin (7x) f (x)dxis an integer which is a
9

contradiction. Therefore the original assumption was incorrect and z° is irrational.

COROLLARY 1. 7 isirrational.

Proof. Suppose 7 is rational then 7 =

SO

a . . . . . .
T = s which would imply that 7~ is rational which contradicts the theorem above.

Thus i is irrational.

Note that the converse deduction is not possible by this argument.

-~

THEOREM 12. ;(z)z%

Proof. The Fourier series for f(x)=x" will be constructed. The Fourier series for

f(x)is given by

g(a cos(rx)+ b, sin (nx)),

, where a and b are integers. This implies that
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where «, and 4, are the Fourier coefficients which are given by

l T
=— dx, >0,
- J; (x)cos(nx)dx, n

lvf
b =— x)si dx, 21,
2 zlf(Y)Sln(ILY) n

Evaluating u, for f(x)=x" produces, after integrating by parts twice,

7
:—J‘rd‘ —sin(nx) |,
T Ln |

z —l_ i

X
T

sin(nx)

-— j —sm (rx)- 2xcdx
n T

-t

L2 (1 )
L .
- j | =y cos (mc)/

2y
= —cos(mc)

1+ 1 2
+— J. -—cos(nx)- —dx.
Tn° T n

n

-T

-7

)

= (1) (1) o] sin(oe)

Evaluating b, for f(x)=x" similarly, gives

1 % r l
— d
== [x !_n cos(n.r))

l____.. ]



x x

1 ' 1 71 R
S ke vy
— ”( cos(mc))_ 7r_'[n( cos(nx)) Y
-’ - . 1 F2x /1. \
S ) Y A ML (7 B
;m( ) /m( ) ;zJ' n l\nsm(mc)J
=0+ —zisin(mc)iz - j L sin (nx)-2uc
an e o

%4

,
=0+0~—cos(nx)
n |

-t

2 Y 2 "
= ()" - (1)
=0.

Alternatively, A, =0 using the fact that f(x) is an even tunction. Evaluating a, for

f{x)=x" gives

1 ¢ . 1 e ] U =220 2 .
a,,:——j‘x'dr:—{T =—l—- ==
T T3 ,TL 3 3 ¢ 3
-7 - -1 -
Thus, the Fourier series for x is
T 4
e == —(-1)"cos(nr)
J 1

Putting x = 7 gives

17



2 M
Therefore —7° =45(2) and so £ (2) = L;_
J

THEORENM 13. [ (2)is irrational.

. .. . a
Proof. Suppose J (2) is rational then there exist integers « and 4 such that J(2) = 5

- T )
From theorem 12, J(2) = r which means that

o - ba C : C e . .
which implies that 7~ = Y which is rational which implies a contradiction and therefore

< (2)is irrational.

18
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[I. Apery’s Proof of the Irrationality of £(3)

using Van Der Poorten’s Paper

2.1. Introduction.

Using Van der Poorten’s paper, A Proof that Euler Missed ... Apérv’s Proof of the

Irrationality of £'(3), this chapter presents a formal proof of the irrationality of ¢ (3).

An attempt is made at explaining some of the mysteries of the proof The proof defines

integers .\, , ¥, and a function f(n) which convergesto 0 as » — x . It is then proved

that given £ >0 an N can be found such that

n

.. 4.27
0<X$(3)-Y,<f(n)= g <€ for n> N,

”n

and from Theorem 6 in the first chapter this proves the irrationality of ¢ (3).

2.2 The Formal Proof of the Irrationality of £ (3).

DEFINITION. Using the notation /lem{1,2,3,....n} to mean the lowest common

multiple of {1, 2,3, 4,5, ..., n}, then d, =lem{1,2,3,..,n}.



LEMMA 14. Using the definition of d,, above, d, = [ ] pn el
psn

p prime

X

Proof. Letting p be a prime number then for some real number, x, n = p* implies

tnn = xlnp whichimplies x =In# Inp. Thus [x]=[Inn/In p] will be the highest

integer power of p for which p[‘l <n.

Given a set of positive integers 4,, 4., 4;, ..., 4 where

v

A=ptptoptops. i=l.n, pbeingaprime, j=1..a.p, >4, forall 4

1=1_n, (note that y will be 0 for some of the p, ), then

ms m n

lem{ A, A, A, .4,V =p"p"  p" 0,

where m_=max{y, ., 1=1.n} Inthe special case where 4 =/, m = lnn/lnpfiv

L

DEFINITION. The number of primes less than or equal  is defined to be 7 (n).

LEMMA 15. The following is true

n plnnllnp = nx\n).

psn

p prune

nnlnp _

v, then ln—nln p =Iny which implies n= y. Thus

Proof.  Letting p l
np



l_[p:“" "7 = the product of 7 (n) n's or n™"
pun

papnme

LEMMA 16. For sutficiently large n,

i an

n <2

where n 1s a positive integer.

Proof. From the prime number theorem, given € >0 there exists a positive integer .V

suchthat forall n>V

-

logn logn

n en
x(n)< '
Choose ¢ =log3 -1 then there exists a positive integer N' such that

-—

» , foralln> .V’
logn logn logn

_nlog3

(n) < n_ nlogd n

logn

Thus tor these n

nlog 3
n"an ™

Letting .X =n ™" then log.¥ =

noilogn which implies log.Y =log
logn

~n

J

which implies .U =3"

Thus

-

n™" <3" for sufficiently large ».
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s

COROLLARY 17. Given an integer, n, d, <3".

Proof. From Lemmas 14 and 15, d, = I—[p[!“" el ¢ r[p‘“" me o=t

pin p<n
paprnme 2 aprime

Therefore «, <n™" and thus from Lemma 16. <, <3" -

c

THEOREM 18. Letting J(3) = Z—I— then ¢ (3)is irrational.

Pl
i : n‘k\): = 1 < ("l)m-i
Proof. Leta, =Y "] i c,,, where ¢, = Y—B*Z——— ~ Letting
f_—"/\}& k -—m sinifn+m)
PR m=1 m=1 2m ‘ i

mil om

d, =lem{1.2,3,. .n}itis shown in Corollary 20 that d.’ divides the denominator of d,.

Next it is proved in Lemma 25 that a, satisties the recurrence relation

(2.2.1) nwu, = (n- 1)5 u, .= (34113 -5ln* +27n - 5):1 nz2

n-1»

nooNe Ve
. ‘n<k . . . .
Letting b, = !:/’ g"k }‘ then clearly b, is an integer. It is then shown in Lemma 26

FET
that b, satisties the same recurrence relation (2.2.1). Using the fact that both a,and b,

satisty the recurrence relation (2.2.1) the following is proved using Lemma 27 and 30

and then Lemma 32 proves the irrationality of ¢ (3). The proof of Lemma 32 uses the

fact that .’ divides the denominator of a, . —



9
(O3]

LEMMA 19. Using the previous definitions of ¢,, and d,_, if

N m-1 . N

:ZL ; Z——(ﬂ——— ,k<nand d, =lcm{1,2,3,...,n} then 2¢_, "+H. is a

met M ..,17,,,3["\("""‘ Uk
\mj\ om

. . . .. 3
rational number whose denominator expressed in lowest terms divides o,

Proof. First it 1s shown that

. ‘n+k [(nemy (n+ k\‘; (k>
(2.2.2) j ¢ [ ! ! P P
J

\ omo \k Joumj

Writing the left hand side in full produces

(n~k) min! :(t1+k)!n1' (n+k)m!(k-m)! _ (n~k) / k!
kKinl(n=m)t k' (n=m)t (k-m)(n+m)kt (k-m) ()z*m)/m'(k -m)!

(n-k 2
kemf ()

The number of times any given prime p divides the denominator is checked to see if that

is less than the number of times p divides «/,"  Let ord ,X mean the highest exponent of

p that divides x then, for m <n,

‘=0rc1p (n!)—ordp(m!)

’ ,m/‘

n(n-l) (n—m-‘-l) E <ord,

in [
ord |
L

<ord,(d, )—ord m-I logn : ~ord ,m,
loap i

where [m] denotes the greatest integer part of m. Next, it is checked that the

denominator of each term in the expression for 2c, L dmdes d The terms of



24

-k ,’ n l
2 "A ' — do not need to be checked. The following do need to be checked: the terms
ey
~ n-k o -1 .
of 2" Y—()— The denominators of these terms are

k — 3 n}'n:»m\

mi 2me .

mlt m )

9

3n ‘;L'n.om\, ”rh-k‘,

I
m |k

/

and using (2 2 2) this becomes

m

4“: A“! (n+k
[m' IA -m |

‘m/

Thus.

- - I - ;
i logn { i
= g—ordpm,«-<

l

logp j

< 30r d Jm = —ord m - orcl

8
U3
'h

!
|
!
|

Clogn | logk
< log ‘

‘

|+ ord Jm.
IO(YPJ

logp )

As m <k <n then

ordm<ordd, <ord d, <ord ,{, and therefore

r ' logn y i logk
logp. blogp

()I'd d



COROLLARY 20. Using the previous definitions for @, and «,, the denominator of

a, divides o~

Proof. The definition of a, is that

a=3 ][‘

ﬁ‘) \
. - in+kt . . 3 .
From Lemma 19 the denominator of 2¢, . "k . divides o~ Theretore so does the

denominator of «,

LENMDMIA 21. The equation

to

wu, -(n-1)u, . = (34;13 =5 =2Tn-5)u, . n>
is equivalent to

(n+1) u, —(34115 =5’ 2T+ S)u, =n'u, =0 n>1.
Proof. Letting n =n+1 in the first equation, above. gives

(n=1) u,, -n'u,_ 34(11—[) —Dl(n~l) +27(n+1)- Drll n>1.

=|

This gives

(n=1) u,, ~nu,, =[340° +1020° = 1020 =34 = SIn* 1020 =51+ 27n + 27 -

7
i
- du,.

Simplitying and rearranging produces

3 Pmg 3 27,2 3 3
(n=1)u,., | 34n’ +51n +27n+5Jun +nu,_ =0, n>1.



\ i +k“:
| ! l then
J

"

LEMMA 22, [t‘Bx=4(2n+1)[k(2k+1) (2n+1) f

3 n—l\,: 1";1-l<—k‘:: 3 . » - /n‘\: n+k Y I” =1V n-l-k '-
-1 o L= {34’ £ 517 =20+ 50" ( ' ! .
=) T ST e

Proof. From the definitions of combinations the following are true:

(223 LA PN
- - ‘m H=k~lipe’
(224 L= —
k) n+=1 .k
(223 i’n»k’?:'l’k{’n*k-l‘t
A
(220 ek n=+1 ek
k0 ok -1tk
(22.7) P bl
: k k-1
(22 3) fnki_ N+ /f{rwk b
Lk ko k-l
The first identity will be proved only.
Thus
ni n! i n(n-1) ot

ki kY n-k)! - k'(n-k)(n-k-1)! n—k k-
and the first identity is proved.
Returning to the main identity that is to be proved the left hand side of the identity

is worked on first. Using the definition of B,, produces



B, - B, =4+(2n-1)k(2k-1)-(@n-1) 1" "k

n« nx __"\k/r‘ » k ;

42 (k-1 (2k-1)=(n=1) T

k=t k-

-~ -

Using (2 2 7)and (2.2.8) this becomes

n on-k'"

Kk (8"*4)"ﬁ—3/‘:*k—-ln:—.tn—l—

. k: = \
“(n-k=1) (n~k):,

Sk =3k -l -4 —dn-1

Next. the right hand side of the identity we are trving to prove is worked on and thus

Sy - l-l-k': Ny 3 o s _ n‘-: n-k 2 o=l - n—l-"'-:
(1 =1) e , —()4}1‘«-)1}1‘-—27}1«3)“ ~-n "

Using (223).(224).(2.25) and (2.2 6) this becomes

(/1~[): (n=k-1) 7 uek”
(n-k-1) (n-1y k. k

o on~k
i

(/1-[): . .

=(34n" =507 =270 -3)

- ("-k): n ,"‘Y': nek
n (n-k): Sk

n \: ‘n+k '
_ k&
(n—lc—:-l):(n*k)

- {(n -.-l)': (n~k~ l): (n-k)

~(34n° 510" =270 -5)(n o/c): (n-k =1y ~n’(n —k) (n-k-1Y
The main identity to be proved now reduces to

(3n +4){[2k: +k—4n -4n- l](n -k +1)(n ,-k): —[Zk: ~3k -4 —411}/(‘}



-

=(n- 1)3 (n+k+ 1): (n+k) —(34113 +5Wn° 1-27n-+-5)(n-:-k): (n-k+ l):

-

+)13()1 —k):(n -k +1)

This polynomial identity can be proved to be true by expanding both sides either by hand

or more easily by using Mathematica.

Looking at some of the coefficierts produces a convincing argument that this is correct.

Left hand side Right hand side
n -32 1-34-1=-32
k 42-2)=0 0
k H1-4+3)=0 0
K H-1-2+2)=-4 1-5=-4
constant: 0 0
" 0 0
" -4 [-5=-4
n’ -16-8-8=-32 3-2-27-10=-32
nt -16-32-4-32-16=-100 1+3-6-4-32-16-16-32=-100 -

LEMMA 23. Using the previous definition of ¢, , that is

LY 3

_ () kE (k-1
ik n* (n+k)!

then ¢,, —c



Proof. Using the definition of ¢, , gives the following

&

NP R o ey

n n-1

1
mlm

k l)m-l

—_.’

m—lm =l Im

G 1. (=n"
iy Zr ]

n+m-|

.m m

= 2m n'(rﬂ-m)'

-
—Z 2m’ (n -1)! (n-1+m)!

m=1 =

m!(n—m)im!n!

mt(n-1-m)mt(n-1)!

) L‘_i(-l)m (=) (m=1)1 (n=m)! ‘“i(_l)m (m-1)(n-1-m)

& (n+=m)'2m & 2m(n-1+m)!

t=1=-m)l{(n+m)l=(n-m)!(n-1 '—m)!}

“—*Z ) (m-1)r {(r

< (=) (m=1)"(n

2m(n+m)!(n-1+m)

-l=m)l(n-1-m) {n—m-(n—m)}

:—°Z 2m(n-m)t(n-1+m)

-1-m)!

I & (=) (m=1)"(n
2:9 =— =
( ) n ; (n+m)!

(m-1)F(n-1-m)(-1)"

The traction
(n+m)!

purpose of telescoping.

Thus

(=0 (m-1)(n-1-m) :(—l)m(m—l)

can be split up into two fractions with the

- (n—l—m)![m: 0 -mt

(n=m)!

J
n* (n+m)!

_ (1) (m=-1)"(n-1 —m)!l:m: -(-1)(n=m)(n -m)]

n*(n+m)!



30

(-1)"m" (n-1-m)! -—(—1)"'—l (m—-1)F (n-m)i(n+m)

n*(n+m)

(-1)"m" (n-1-m)! (—-l)""l (m-1)F (n-m)! |

n*(n+m)! n (n+m-1)!

Thus (2.2.9) becomes

s “(n+=m)! - w(n+=m-1)!

(2.2.10) 1 +i(—l)mm!: (n=1-m)t (=1)"" (m-1)¢(n-m)
m=l n-(
The only ditference between the first fraction and the second in the summation is that

m in the first has been replaced with m — 1 in the second and therefore if these two

fractions are summed from 1 to 4 they will telescope giving

(1) k¥ (n—k -1)! (=) () kE(n-k-1) 1

n*(n+k)! ntont n(n+k)! n

Substituting in (2.2.10) gives

(-1 kE(n-k -1)!
n*(n+k)! B

Cok ~Casik =

LEMMA 24, If 5, = (:)‘[";AJ then from earlier ,
B, =4(2n- l)(k (2k+1)-(2n+ 1):)b,,k. Using this and the previous definition of ¢, .

thatis. ¢,, =) —+D_



(2.2.11) (Bn.k -B,.. )cn.k + (n + [)3 L (Cn-l.k ~Cax ) —nsbn—l.k (Cn.k —Colik ) =d,, A,

2+ _ k—lk ok
where -'1.1.': - Bn Coy* 5( n 1)( l) (n][x.kJ.
: &5, n(n+1) AN

Proof. The left side of the identity (2.2.11) is expanded term by term. The first term

becomes
(Bn.k -B... )Cn.k =B, Coi =B o
]
_ . | - i
B,.c., Bn.kq? Cosy ™ -,kif"}f"*k‘; |
i_ =il ok J
=B, Cok ~ BriiCoss
R NG 2T on ekl (—I)H
(_212) —4(2[11-1)‘(/{—1)(2/(—l)—(?.n*[) J[‘:[J ;nk-l , W
ke

: . k-1
; ) i 27 on )V (nek-1Y -1
Now. (=) (k)2 -0)~(an-1y] - [ L

- g 4 zk:“

. . <7, “-:(H--‘: _lk—i
= —4(211+1)L2k‘ —Jk~:—l—4n'—4n—l_j{kiu| 'k: l} _:/:%;ﬂ
<K l

. .- H(n-kNkintnt(n+k-1)"
(-1)"" (—2)(2)I+I)[2k' =3k -dn’ —dn | — ki —k)lk no ( k, 1) —
Skent(ns k) (k-1)"(n-k+1)F (k-1 nr



N (n+k-1)
Il o oy o s sy

Finally, after substituting in (2.2.12) the first term becomes

B,.c..~-B

ni nx-l“n.k—l

(n-k-1)
k(n+=k)(k=-1)"(n-k+1)(n-k+1)!

(1) " (-2)(2n -+ 1)1:2/(: =3k —4n° —411]

Using Lemma 23 the second term of the identity (2.2.11) becomes

(n_?_l)si'le-l\;zz"lx.ok—l\?:. (-l)k{(!:(n—k)!
k)L ok (n+l)'(n~k—:—l)!

) (=) (n=D)(n+1)(n=k =) k" (n-k)!
k= (n=1-k)CkE (n+=1)F (n+k-1)

) (—l)k (n=1)(n+k+1)
(n=1-k)!(n=1-k)k"

Using Lemma 23 the third term of the identity (2.2.11) becomes

L (me U ket (S RE (k- 1)
kS k) n(n+k)

_ (-1)° (=n)(n=1)F (n+k-1)F kV (n-k-1)
kP (n-1-k)FkE (n=1)F (n+k)!

_ (—l)k (=n)(n+k-1)

- (n=1-k)(n+k)k"

Putting all three terms of the left hand side of (2.2.11) together this becomes

(=1) " (2)(2n+1)[ 26° = 3k — 40" —4n](n+k-1)!

B, i =B Crpoi —

k(n+k)(k-1)F(n-k+1)(n-k+1)

(PP
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I
(9%)

- (‘[)k()1+l)(ll+k+1)! ) (—I)kfl(’l+k—[)!
(n+1=k)l(n+1=k)k®  (n=1-k)(n+k)k!*

Taking out common factors from the last three terms this becomes

-1 ¢ +1 +k_l '
B,iCoi =By o - (-1) (n+1)(n )
K . (n‘rl—k)!(nq_l_k)k'_

{2(211 - I)[Zk: -3k -4 —411:|‘k +(n+k)(n+)(n+k+1)(n+k)
-n(n=1-k)(n=+1 —k)(n—k)} .
Simplitying the inside of the braces using Mathematica or by hand this expression is
10nk® - 10nk™ =100’k — 1 50°k + 5k* = Sk* - Snk
= Sk[?.nk: =2nk =20 =307 + kT -k - n]
=5k(2n + l)(lc: —k-n —n)
=Sk(2n+1)(n+k)(n-k+1)(-1).
The left hand side of (2.2.11) now becomes

_ ] (—l)k(n+k—l)! o= DNk Mo ko
B,k = Boi Cosi (n+1—/c)!(n+l—k)k!: (Il-f'-/f) (_l)(Sk)("" ' 1)( ' k)( k l)

(—I)H (sk)(2n+1)(n+k-1)!
—Bn_k~lcn.k—l - e ’
F(n+1-k)!

(2.2.13) =B ¢

N
nxoak

Looking at the right hand side of (2.2.11) the following is produced

g L Oy S E frc
LTk II(II+I) I\kj k J nk-1"ni-t ' n(n+[) I\A"ljl k-l /J



B B o _(-1)"“5(2(z+1)[ki/n}[n+k) (k_l), }[mk IJ]

nx-nk ak-1"nk-l n (n + 1) \I(
SB e B . - (—l)"_l 5(2n+l)[ kni(n+k)! . (k-D)n!(n+k-1)! ]
o e n(n+1) ki (n=k)kint (k-0 (n-k+1)(k-1)n!

o o (E)Ts@u ) k(nek) (k=1)(nek —1)
=B, = B n(n+1) [/f"("-k)' (k-1)F(n-k )']

5 5 (1) s(2n+1)(n+k-1
= [ T A

aclae "B Cain n(”’-l)k!:("ﬁ-[_k)!)![('l‘:'l—/f)k(”'f‘k)'?'k:(k"l)]

‘:B . "B .C —'( I) (7"*[)(,,* —l ["k k)l]
nen i nx oAk -l Il(ﬂ“l)k’-(N"'l— )

¥ e Y .
=B ¢ -8B ¢ _( ) 3(-"-1)()1./: l)./m(n‘l)

Pl T e Cae n(n+1)kP(n+1-k)
~1)" sk (2= 1) (n+k - 1)!

= Bn l'""‘l\' - Bn k-lcnk'-l —( ) - ‘( - )('1 )

o o kG (n+1-k)
LENMA 25. Using the previous definitions of a, and ¢, , if a, = ZF"} [":"} Cok -

k=0 /
(—l)m~l ) .

where ¢, = T—+Z—, then a, satisfies the recurrence relation

m=1 M m=1 7m ( ".H"\
m

m )
wu,+(n-1u, . = (34m* =510* =270 = 5)u,,, n 22

Proof. From Lemma 21



wu, ~(n=1) u, . = (34’ -S1n* +27n~5)u,_,, n22
is equivalent to
(n=1) u,, =(341° =510’ +27n + S)u,' +nu,_, =0, n>1.

Substituting «, for u, in the above identity produces

nei n n-1

(2214) (=135, 0 -P(m)Y b+ b, =0, n2l,

L c=t} k=1

n :‘ n+k =

0 and P(n) = 340 =5n" +27n +5

1l

where b, .

Using the convention that (") =0 for r>n, (2.2.14) can be rewritten as
r

(2215) Z{(nfl) BriiCni —P(n)b, . +n b,,A‘_,‘c,H_k}:O,nzl .
Equation (2.2 13) will now be proved. which will prove the lemma.

From Lemma 22

B,.-B ,-(n-l) —P(n)b, ~nb

-1k

where B, =4(2n -~ 1)[/((2/: +1)-(2n+ l): ]b”, and therefore

~P(n)b,.c,. =(B,. =B, )coe —(n+1)b -n'h_,

nlcnk :.nx’

Substituting in (2.2.15) produces

Z{(Bnk - ) e (1 ) n-u:( Coti “Cnx)—’zsbn—u (Cru't T Caii )}= 0.n21.

From Lemma 24 this becomes



k=1
S(2n+ D)=k () nak ol
where .-1“ = Bn_.‘cn‘t + ( "(”)E_ l)) [;](nk J Now, ;{ nk 1}: '4n,n-l - ‘4n.—[

._5(2n+1)( (n-l /,, ,( ,,-1\!A The

Using the definition above A, , , = B !
: Il(nw-l \n-‘-l Ln+l ]

an-{"nn-1 °
first term in this expression has, as a factor,

B, .. :4(2n~:-l)lp(n+l)(2n+3)—(2n+l):qi[ 8 \!-?/2""{\?-
L AN

which is zero as (") =0for r >n. The second term in the expression has the factor
r

i nel
which is also zero as (") =0 for r > n. Therefore Z{Au s } =0

£=0

n-

LEMNMA 26. Letting b, = Z{J L":k ank , then b, satisties the recurrence

=) ! d €=1)

relation

3 3 44,3 2.2
wu, +(n=1)u, .= (J4n’ ~3ln +27n- S)u,,_l, nx2.

Proof. From earlier, B, -4(711-1)(k(7k¢1) (2n+1) )( /"kl“ From Lemma 22

B . ‘B,,‘k (”__ l)z '(n*l\! (n*-l*l;

3 ATy .~ n«»/\ : _:"n-l]:v/n—l\»k\:
" Lk h -(34n* +51n° +27n+ J)| ) -n L ‘) | J

ko ‘A} Lk

Let G,, equal the expression on the right of this equation then



B=C+B,, =G, +G,  +B,, .=

Continuing in this way and using B, , =0 for r<0 the following is derived

i
B.,=YG,,.

=

- - ~ e

s .= 320, == (1 (e (e

tn+l) | n+l ) n n

r=t}

N s =t 0 (n :/Zn T n :’Zn-H: n' Vn\.:f
-(3411’+>ln-~'-27n+3)“ ] 1 ! - } ! S
' g otn n=l) U n | O ;o

: : V2 V2 N o1

0 ‘n—l] ]'Zn-.'! n-1} |ln—3! fn=1" (=117

L‘ n=1) 1t n-1 n=2) in-2] RO A

=(n+1)s,, - (341° +510° +2Tn +5)b, = 0'b,
Now. B,, =0forr>n so
0=(n+1)b,, - (34n° =51n° +2Tn = 5)b, = n'b,

and thus by Lemma 21, b, satisties the recurrence relation.

LEMMIA 27. Given that a, and b, satisfy the recurrence relation
wu, ~(n=1) u,,=(39° =510° =270 -5)u,_,, n22
then

ab

nn-l

1
—an-lbn = n_z(albo —av)bx) .

| S |



For a, and b, as defined previously, a6, —a,b, =6.
Proof. Letting P(n-1)=34n’ -=51n° +27n -5 and substituting a,and 4, in the above
recurrence relation we get

IrnSa" +(n-1Ya,.=P(n-)a,,

ir:sbn ~(n-1)b,.=P(n-1)b

n-i

which gives

Multiplying the first equation by b, _,, the second by a, , and subtracting gives

w(ap,, -a, b,)=(n-1) (a,.b,.-a,.b,.).

Theretore

anbn—! —an—lbn = (" ~ l) (an—lbn-: _an—:bn—l)

n

_ (n—l)3 ‘ (n —2).

- ~(a,.b, . -a, b, .
'1—‘ (’I _ l)_’ (‘ n—-. n-: 3 _)

_ (n —31)3 - (n- 2): _ (n —-3):: (@b .-a
n (n-1y (n-2)

n—an-S )

_ (n—(n—-l))3

- ni (an—m—l'vb"-n —‘In—nbn_.,,-;))

1
== [a,b, -a,b].



From betore by simple calculation it can be seen that a,b; -a,b =6 <1-0<3=6 and

theretore
ab,_ —a, b, -i -
n
n l < (_l)m !
LEMMA 28, If ¢, =Y —+) ————  k<n, then
Ll PR
tm m

¢, =< (3) asn— < unitormly in &

Proof. This lemma is proved directly as follows

1
\m:n*i m :

~m l

im

Z y|.
Jr T m n 'n?m‘

r

Now, since » — is convergent, it follows that given & > 0, for all n > V.
e '

m-=|

- i, .
12 —: <€’ Therefore
m’!

mans

‘ £ 1
2217) 'Y <2 forall n> N,

imznel }

;o
. - 3 i i
[t is necessary to find the smallest value of 2m’| "J(" - ; form<ks<n.
\m)\{ m

) n
Case (1) ms;, m21.
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. - A 3
Using the fact that ( g } increases from m =1 then the lowest value of 2m ("} occurs
\m/ '\‘I"

. . n+m n+
when m = 1. this value being 22 For m < —— the smallest value of & '"] occurs
2 L om
. fn) n .
when m =1 Therefore the smallest value of 2m’[ " J["m] for m < s
mj{ m

2(”(":12 =n(n+1).

.. 7
Case (1) m 2, mz2 1.

n

; N\ .
The smallest value of |~ | occurs when m = n this value being 1. The smallest value of

m)
nem rll’i lfn-v»m x . B—"-] .
occurs when m =3 ' as | increases for 5 <m<n. The smallest value of
n : \ n
Lo ' [
L “n .
2m” occurs when m = =i Thus the smallest value of
Pl
B N -~y
nl| L
- . ]'- Bt {Il+[— o) 3|n°v T
2m3[n][n-bm!22|£ l‘ :l[z-ni 20
imj\ m ) ! 2 }'n'l ‘ 8 l ]'n]
2 3]

w

+1 - n - ~
"I J and for n >3, ; >n. Thus, for # > 3 the smallest value of

= s
For n>2 | 3
! {
|
' )

2m3{"]["+m} >2n(n+1).
m m

Thus
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|
£ 1 I n i 1
2.2.18 <k < = So-<&
( ) }; st’{n](me 2n(n+1) 2n(n+1) 2(n+1) 2n =€
: \mj\ m

. 1
for all n>—.
le

l . - -
Let V. = P and let N =max{¥,,¥.}. then, for n> N it follows that, combining
2e

(2.2.16),(2.2.17) and (2.2.18),

Letting ¢ = 3¢’ produces

which is the required result. Note that the convergence is independent of & so the

convergence is uniform.

LEMMA 29. [f x,, and y,, arereal numbers and y,, converges uniformly innto a

limit L then

Z xn_k)
f=——— converges uniformly in 2 to the same limit L.

n

Z xru':

&)

.
ni



Proof. As y

J ok

converges uniformly in 2 to a limit L then, given ¢ > 0 there exists NV

such that for all n >V and for all £

Vi —L4<8.

Thus tor this set of

‘-Vnk - -Vn,l)
and therefore
Yan =26 <Y, <V,, T2

Thus

: n
Z xn.i’ Z xn.k Z xn.k

€ €=t =0

and similarly <=

Y xn rS

=

> y,., — 2& . Putting these two statements together produces

\

n
Z xn.k-vn,k

k=t)

Yoy — 26 <<y, +2

n . nt
DI

&=t

—_—
9
9
el

~—

Now, there exists V' such that E Yy —L‘ <¢ forall n>N'. Thus

L-e<y, <L~¢€.

Substituting tn (2.2.19) gives



n
Z xn.l:-vn,k

L-2c-e<&—c[+2c+¢

Z xn.k

€=

tor n > max{.V..V'}. Thususing & =3¢ the result follows.

LEMMA 30. If ab, -ua, b, = © then
n
T & Z 6
Ql\2)——= <
- (3) b, ,‘;l/‘:’bkb.‘_l
X 6 . .
Proof. Fromlemma 27 a b, , -a, b, = — implies
n
{2.220) o _dai :6
bn bn i ’rbnbn 1
Let 5 (3)-—==x, then
\- v~ an-| P -f~ ‘Jn-l I a’l‘l aﬂ 6
Ky =X Tie )7 -5 0)— - -7 = 3
==t ) bl L G) bn-l_' b,. b, (n-1)b,.b
and therefore
ray 6
S\2)—7— 7 R
-} ( ) bn (n-&l)l bn-[bn
Using a similar argument it follows that
6
tn~l —xn-- = 3

ne2%n~1



Repeating this process m times

,(,)_u" _ 6 _ 6 o 6 -y
T b (n-1)'bb, (n-2)b,b. (m-mYb,_ b T

Now = 7(3) (from Lemmas 28 and 29 ) which means that limx, = 0 and therefore

()2 = > L
b, = khb

n

- . . LA, : .
“ and the tact that A_is positive - 1s increasing and theretore

Fromi(Z 22

- LI"_,,_i
J3)=3E=I0)- 3

LEMMA 3L Given b, =S " "™ thenb >=" forn>7.
f:\&' X n

<

Proof. This is a proof by induction. For n =38 .

< =)
('3"'(’3\,‘ 8V 191 ./3‘,'([0“!' 370 T2 83T 8 T 14T % s
= ! [ Lo - 1 - N - - . - - -
i) Tuy by Ty bad Taps e ey Tsits s Tl
= 16367912430 (using a calculator).
Now,

28°
P 737894328
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4Qn

<

Thus b, > forn=8.

3

n

n

Again. using a calculator it is easily shown that b, > for n =9

3

n

n

Now, it is assumed that b, > forn=j-1andforn=,-2.

3

n

Using the recurrence relation

n>2

n-iv = L,

wu, = (n=1)u,_, = (340" =51n* +27n - 5)u
that A, satisties . by Lemma 26, and substituting ; for n and 4 for u. dividing by ;°. and

then rearranging it follows that

i

bo=(34=-517 #2777 =57)b, = (1-3,7+3j7 = )b =0, j22.

[Astde. An approximate solution to this recursion could be found from the solution of

h.~34b. . ~h . =0 whichis : r/ where r* -34r +1 =0 which vields

. 34 =347 -4 . :
solutions r = ;/:—— However a lower bound is needed on the solution. ]
Theretore

b =b_(34-51"+277-57) b (137 +3,7 - ;7). j22

Using the induction hypotheses and eliminating positive terms it follows that

287 3 ot gt
G-2 7 (-2 S (-

[§]
)
t
=
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Q-1 1=t
For j>9 ﬂ 'f8 +<(5.2) 8 5
J (-1 (j-1)
Q7! Y Iad
2 < (006)2¥
;G- (j-1)
287 .2y (j—1]3 1 28" (3\3
G- w2 By
’/‘_/—1\';3. . .
as — | is decreasing as j increases. Thus
\‘_/_"'/’
o) J=2 9 -t s 3 o) 7-i
78 3<L' -78 3L§\ <('06)' ._-8 3
-2y 8 (j-1)\7 (/-1)
Similarly,
2 1R/ R/
(o)
J(J-2) (j-1)
and
28/ 287!
) —8 3 <(002) -8 3
VAN VESY (j-1)
Thus (2.2.21) now becomes
7R/ .21 28/ 28/ 28/
h > ."8 3*6“8 5= (5.2+.006+ 06 +.04 +.002)- '_8 > 3>“i
- U=y -y (-1 -1 J

Thus, the lemma has been proved for ;> 8. Z
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. - 6 o
LEMMA 32. Given 0<¢(3) s > = then ¢ (3) is irrational.
bn k=n+1 k bkbk-l
Proof. From Lemma 30
a - 6
0<4(3)-—==
g ( ) bn "zz'l’l ksbkbk-l

< —bl— ', where T is the constant 6 (3).

n

Multiplying by b, it follows that

(2.2.22) O<b"g"(3)—a"<bi

n
[t is known that a, is a fraction whose denominator divides «,” where d, isthe L.C.M.
of the first 7 integers. The following substitutions are made:

A
" g,

3 .
a and r,q, =d,” where p,, ¢, r,are all integers.

Thus (2.2.22) now becomes

0 <b"g'(3)-% <—T—.
d’ b,
Multiplying by .’ gives
d,

0<d b, (3)-p.r, < b"

n

From Corollary 17 dn3 <27" and d,f is an integer so the inequality now becomes
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~4qn
0<X,£(3)-7, < T‘b'7 , where .Y and ¥, are integers.

n

n

3 A
n

forn>2. Thusfor n>2

From Lemma 31 4, >

r27'n’

0<X,(3)-7, < T

which for large enough n gives
0<X,5(3)-7, <¢.

By Theorem 6 this proves ¢ (3) is irrational. _

: T | . I
Note that the stronger condition ¢ (3) -b—" >0 is not needed. Ifit is just known that

n

<(3)- % >0 the lemma would be proved.

"

2.3. Unraveling Some of the Mysteries

There are several mysteries to Apéry’s proof. Firstly, where does c,, come from?

Secondly, where does a, and 4, come from? Thirdly, where did that recurrence relation
come trom? In this section an attempt is made at providing some answers.

Here are two lemmas which will help with ¢, .
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LEMMA 33. The following identity holds

aaaq;---a,, 1 aa.a,---a,

Z(r+a (r+a,) (t+a) x x(x+al)(x+a:)~~(x~:-ax)

Proof. Let

. aaa,--a,
I r(t al)(r+a,) (x+a,)’
then
. aa.a,---a, _ aaa;---a,
U x(xva)(x+a)(x+a,) x(x+a)(x+a)(x+a.)’
_(x+a)(aaa;---a,)-aa.a;-a,
T x(x+a)(r+a))-(x+a,)
- (aa.a,--a.,)
C(x+a)(x+a))-(x+a,)
Thus

X

(aa.a,- a,.,) _ )
Z(r‘a1)( )...('r‘:-ak)—kzzl(Ak—[ Ak),

=(dy-A)+ (A4 -A)+ (A -A)+. . (A, - 4),

= d, - A,

1 aa.a,---a, -~

- (x+a)(x+a.)(x+a.)

LEMMA 34. The following is an alternative series for J (3)



Proof. First, the substitutions x =n°, a, = —k° are made in

aa.a, - --a,

x(x-a)(x+a,)(x+a,)

and taking £ =n -1 gives

(-1 (n-1)F .
nl(n: —l:)(n: _2:)._.(,1: —(n- I))

n-i N s
(2.3.1) = (-1)" 20 (n-1)!

RS (n=-1)(n+1)(n-2)(n+2)---()(2n-1)

Rearranging, the denominator becomes
2t (n=1)(n=2)(n=3)---(1)(2n-1)(2n=2)---(n+1)
=2 (2n-1)(2n=2)---(n+)n(n-1)(n-2)---1
=n*(2n)!.
Thus the expressionin (2.3.1) is

(—l)'H 2n* (n-1)F
n*(2n)!

_ 2(—1)"_[ nl-
- n*(2n)!




Using this result and again using x = n~,

=—k” and K =n -1 then the identity

ad.d, ---a,
. - J <

K
S aa.a,---a,, l

; [(-""‘(I:)(.Yé-(]:)...

(x+a,) x

in Lemma 33 becomes

) x(x +aq )(r "a:) . '(x "'a?-’)

—1)7 (k-1) 2(-1)""
(23.2) Y — ~(,). (/f ),. .=L.—(.l) :
T?(n‘—1')()1'—2')---(»;1'—-k') no
Let & -]éL—)-then
2k (n~k)'
Y kT (= kY EERATE
(_1)‘”(5’“_5”:*):( 1) {zk_ é(n k) (n-1 k).:
' 2k (n=k) (n-l-k)

l) nk'(n-1- —k)!-

(n k)-(n -k):

26 (n+k)!
(=) nk¥(n- I—
- 2k (n+k [ 2]
k-
= l ‘
nn-k-1)(n-k-2)---1

(n=k)(n+=k=1)---(n+1)n(n -1)-

(n -k =1)(n =k)(n -k -1)---1

(1) (k-1)F

T Tn-k)(n—k)]
(- (k-1)7

[(n-z-k—l)(n—/w—l)j---z

(n: —1:)(n: —2:)---(11: -k°)

(n-1)(n —I)j'



and theretore (~1) n(e,, -£,.,.) =

(-0 (k-1)F

Substituting in (2.3.2) gives

n-1 ‘ 1
DYCHICINETE
and thus
n-1 ¢ l
¢ l(—l) (g“ En-lk)—”_s_
and
N -l ~ l Al 2 -l )
(2.33) )3 (-l)k(gn‘k-e'n-l.k)=zn—s‘z ( )
=i k=i = -

N .
Now, D > (-1)" (&, ~€,..¢) can be rewritten as

el k=1

(2.3.4) =Y ) Y (e

12k N1 k-l<noN

Writing in full the inner sum becomes
(gk-l,k - gk,k) + (gk-'.'.k &k ) +o+

=€k "€k -

(n: - l:)(n: —21)-

(k)

2(-1)"
i

n

3!
n=! ”'I
n o

- gn—l.k) .

(E.\'.k —€vak )

1



Thus (2.3.4) becomes

which is

_\Z( D) kNN -k)N
) NN <) 25 ik

JIE G ey
2klk3("\"°k‘1[\} -?-k:l k;[:/{l
[ & Nk k|

[
[OF]
ta
~

wh

(V3

Extending the summations on the left to include the Nth terms does not alter the right side

of the equation because the Nth term of the first sum equals

l (_l).\'- ~ _l (_l).\'
2 Ns‘(z.v\ 2 1\"3[[2.\,;\1
v v

Thus (2.3.5) becomes



v k v _ k-1 v voaf_ n-t
1 ) 1) s 20D
23 \-k\i(.\"]l 24 k,[zk"} =n = e
\ /}kl l. k /" "
Rearranging, it tollows that
« - n-1i
AN 12 (-1 s5&(-1)
Sy 24 51 .\,',lcj’{ V24 n;;lnz
Cokoglk ) n
which becomes
. B C NS N )
-2 ryiaatid =—
vl ] A 3 N <kN D= ::ln
— ==tk i : -l gt T
Lk k] n
Now, 1t is easily seen that
‘N-kINY
i - l<k<V

3 6)is less than%.

50 the absolute value of each term in the second sum in (2

Thus
:ly ) ‘<1YL:—‘=_I-_.)O as.V - x
QmFH%WW’ZgN'ZN'zN

\ ok xlxk/!l

Therefore this series converges absolutely. Taking the limit as .V — x in equation

(2.3.6) produces




wh
wn

[t can be seen that the left hand side of (2.3.6) with k replaced with m, n with m and ¥

withnis ¢, from Lemma 19.

Unfortunately ¢, is not a sufficiently fast approximate to prove the irrationality of ¢ (3)
by itself, whatever is done with &. It has too large a denominator relative to its closeness
to 5 (3). The convergence has to be “accelerated”. Van der Poorten describes Apery’s

process whereby he comes up with a a rational expression that will do the trick. He says

to consider two intinite triangular arrays (defined for 1 < k < n ) with entries

A . -
, respectively. Each array undergoes a sequence of

transtormations as tollows:

! \
Firstly, d,‘, ) c, ki‘"zk! is transformed as follows
(0) {0) (1) = 2n-k i 2n-k
{ _>dnn- —dn.k nn-&} -L)l nn—n’:l n r
W () g g (n\(2n-k
d )dn n-< dn.k =¢, n—k“_)( n !

1( ) \ ( 1(2) 113) ['k\‘ n\[ln—k"‘a
[4 = i C -
Z A' K Z k'J k' Lo ‘jcn.n—c

&'=0\ ‘ e=0\

YA Ve (k) V2n-k
R

=0

=t

LN TERE AP



. . ; v-l\; .
Now j‘m:'"k lis transformed:
: i

.

B Rk (k][ n ) 2mky
/“—)Z;Jk,zoi\k:/'ll*lh,kl).kz) n !_f"‘k‘

Clearly the two expressions Z i \:}{:J(" J(" \‘[2";“;{ and

=0 £°=0 \

-k . s ‘8 N ,
" '| in the 2 arrays df,g and j,:) are identical. Apéry
/

DI b

£=204=0"

nifn
kl,,';l\/\',/'

detines a “diagonal” ot each of these arrays to be a set of entries {n,k(n)}. He then
defines a “quotient” of the arrays to be the set of quotients of corresponding elements of

two “diagonals” of 2 arrays diz and f,f:’ Using Lemmas 28 and 29 it is clear that all

possible “quotients” converge to ¢ (3). If the obvious diagonal. {n,n}, is taken. then

Lok N, " "
the expression Z Z [ : [in(:J[ : J[znn L‘J changes to
: DA VALS



l\J

n—kl

el

Simplifying the notation of this expression and rearranging produces

Wid v

-0 1—1) /

IR A AT ol

<=0 4,=0

The tollowing 2 lemmas show that this expression is 5, .

LENMMA 35. The tollowing identity holds

produces

A= AVZ 3 n v N
~a (n\"ir _ (n|n{n—L\=n (nfn—k?
(237 ) k) ,LrJ[k)[r—kJ (kJ;.i\r)[r—k)'
Now Vandermonde's convolution formula [Riordan, page 8] is used:

(0"

L J =il

A

L4
-k’J k)

(n'—-

Substitutions can be made for any of these variables as long as n’.m’, p’ .k’ are positive

—~———

integers. n'>m’ and p’ > k’. The expression n" - p’ will be greater than m’ -k’ because

n'>m'and p’ > k"



The substitutions r -k = 4" and 2n-k =n' are made to get

k=p \
(238) (Zn—,kJ _ f 2n—k-p ){ P
L m m'-r+k | r-kJ

r=k

The maximum value of k" is p'so r—k<p' sor<p' +k=n = p'=n-k.

Substituting in (2.3.8) gives

k’: ', N
(2.39) E(Z)z—k]: Zp ?_n—k—m‘-k)l n-k'
Com | | m'-r+k | r—k’
N ’ r=k / 7

Let m' =2n -k -n=n-k. This substitution is well defined because
HW=n-k>n-k=m

Thus (2.3 9) become

(k) N on Y-k
(:j lO) ! = i | I
’ | n—k J ;Ln—r r-k |
: -k i | 2n-k ) [2n-k) ) )
Now, 7 ,k =t n-k ':( n k! and | " i=(")| 50 (2.3.10) becomes
n-k \2n—/c-—n+/c} L ; n-r) \r)
(2n—k'_ (Y n—k)
n ,'—r ~ r)(r—/c','
Substituting in (2.3.7) gives
n (n\l




wn
O

LENMMA 36. The following identity holds

L n“ﬁ{n\k 2m-1) _ <o (ny(2n=k Y
e) Lol ) L

k=0 I:()(

W1 2 NI .
n\l'(n O(Zn n) n)(l\ 2n\_[n}(n”l;(2n—l.
0/ Lo ) n T\IJ ‘))“)J\","\U SUITIOay
‘()23 20y [n\ (n)(2) n-1) n n(2)(2n-2
I R R RN R EaR
2 oflofta )Tl Lyl a mla) il g
i ini3 ) n) () 3][2,:-1‘ (n‘;:fn‘[q -2 0¥ n(30 -3
~ + -~ l h *I i "1‘ “‘ - s
sPlojon s LWL T3 ’2J 2jl n J J/LJ)\ n
{'n‘;z{'n} n\(2n) "n\,:(n]{n“g"ln—l\, ;'n"i:fn';‘{'n‘i’n
: : HE P b | Lo i H
\()‘,' ()J ) Ln) 4\1} lJ\ n ,E ) oonfin;in’
. .2 2 2
n Zn) n'(()\ﬂsn)" l‘&n\"'?.}_‘ . <in -
“lotn) (n l\oJ‘HJ [o”z}to, 0
n [Zn—-l}' n‘l'l\(n\z('l‘]_’n 2'3)+ JmTiny
+ -+ - [
IJ n ,J[ IJ [1] l\Z/I Lt [3 FERNTIREV]
n /n“i"n‘]z(n\é
*\n Ln}ln' ’n}:

(2.3.11) =Z[ZJ(M"—AJZ(:JM*

-

~—

)
TN
Earalii |
[—
L}

n
. - e n
Now, trom Lemma 35, Z[_
r=k \'



Replacing & with n - £’ in Zf:)-(zn_k\)- gives

e=0" n
=0 W2, 2 2, 2
Z()[( n J |n+k') _ z ln) |n+k'] -b
! T - ¥ [ e
L A~ LSS

As for the recurrence relation the only thing that will be stated about it is that if

P(n)=34n" =5in" =27n+35 then P(n-1)=-P(-n) which turns out to be useful.

60
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III. Detailed Description of Beukers’ paper

A Note on the Irrationality of £(2) and ¢(3)

3.1. Introduction

[n this chapter Beukers’ paper is examined in detail. The proofs involve many double
and triple integrals, the shape of which were motivated by Apéry’s proof . Some of the

mystery of where these integrals came from can be removed by the formulas

j’j——dl_n Ydy = (2) and - —-—ddx— S (3).

9 n ') 0

The crux of the proofs are very similar to the Apéry proof because it is attempted by

devious means, using the aforementioned integrals, to end up with

0<|4, +B,,§(2)|<{£L or 0<|d, +B,<(3) << BL
q) 19
for all sufficiently large n where A, , B, are integers and £ s a rational number less than
q
l. As n increases { E}z gets arbitrarily close to 0. As discussed in Chapter [ it is not
q

possible to get arbitrarily close to an integer if you take an integer multiple of a rational

number. [t will either “hit” an integer exactly or it will be at least a distance of % from



. e : . . a _ ..
any integer if the rational number in lowest terms is 3 The respective inequalities

prove the irrationality of £ (2)or ¢ (3).

Beukers™ paper could be divided into 3 main sections. The first section contains a

lemma ("Lemma 17) which connects 4 integrals to ¢ (2)and ¢ (3). The second section

proves the irrationality of ¢ (2) and the third section proves the irrationality of .~ (3).

The tirst 2 sections of this thesis deal with “Lemma 1, the first section dealing with the
interchange of the integration and differentiation processes which is used and the second

section describing the rest of “Lemma 1” in detail. Section 3 of this thesis describes in

detail Beukers’ “Theorem 17, that J'(2) is irrational. Section 4 of this thesis describes in

-

detail Beukers' “Theorem 2", that J'(3) is irrational.

3.2. Proving the Validity of Beukers’ Interchange of the Integration

and Differentiation Processes With the improper Integral

vy
Lo res 7

Iy



r-a '1'0

X%y

l—xy

LEMNMA 37. Differentiating with respect to o gives

l-xy | I-xy

clx v"”‘l _ X7y lnxy
co

-

. . ¢
Proof. Using the fact that —a” =a’ Ina
co

é f'xr.a},»aWI __Cq‘——-f"‘:(xy)d-i
co| l-xy | ccr[_ -
Xy ()
- I-xy
X7y Inxy -
l-xy

reae v;—rr

it
LEMMA 38. Let /(o) = ffr[——dvd» where o > 0and r and s are non-
-_— -r'v'

a0

. 1
rative integers. Then [ = . which is a convergent
resative fntege (@) ;(k~r+a+l)(k+s+a+l) s

series.

Proof. Substituting the geometric series

(-xy)' = (xy)k , for jxy| <1

k=t

in /(o )and writing in full produces
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1-0, t-0y o
[(c) = lim [Dlll})l J‘Zt ¥ (n)abc"d»

g0 0 k=1

Because geometric series are uniformly convergent within their radius of convergence the

series can be integrated term by term to obtain

e =0y

1-dy
[(o)= lim (lij_J' e ”’(n)dr}d»
]

Sy )" Lol-u
B =) )

l-o [ = e =% \5 :
. 1 - T -
=lim I lim cTE
g g | Cis il el o o 3 +k+1 ‘u / |
e regek-l "
O N
. i = )
= lim lim (1-4)) VU .
ki nm

Now,

(l_ ‘)'.a s Lr»rr—k
r+o+k+1-

<3 ((1-6,)y)

and thus using the series above

- )r-a-:-l

SUSN T (o

k=t

From above

<(1-8)y <(1-8,)(1~4.) <1

T

and thus 37> ((1-5,) y)k is a convergent geometric series.
k=)



~ \r-arke}
. = (1-6,)7° e
By the Weierstrass M-test Z(—‘)—y‘ ™ is uniformly convergent and
i r+ro+k+1

theretore the limiting process and the infinite summation process can be interchanged.

q
y.\'»a—k ldv

(l _(51 )r»cr-'x-l

r
Thus, /(o) = lim i G r+g+k+1
Lk:t) ! - h

= lim Hfi ! v""’kj{dv
- | &~ rsg+k+l” | -

e 1 ok - . C . ) .
Again, Y o y'""* is a power series which is dominated by the geometric
Sro k-

r y:-d’
series 377 Y pf =2

P l md

if [y{<1. For the integral above y < -d. <1 Thusby

uniform convergence integration can be done term by term to obtain

r

1-d,
- I .
lim j — "y
d:-“)’g; S r+o+k+1°

(o)

. . (l _o.‘)xoa-kvi
lim = .
s (r+o+k+1)(s+o+k+ 1)

As before,

(l_dz)s-owk’l . (]_(5 )k
(r+0'+k+l)(s+o'+lc—:~l) 2

~ . 1—(_): LR 2T S
and the series 3 (1-d.) = QL and therefore ( ) is

P X k:‘)(r+a+krl)(s+o—+k+1)

uniformly convergent by the Weierstrass M-test. Thus the limiting process and the

summation process can be interchanged.
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Thus,

(l _0: )x-a'vk—l

[(o) =§‘lim

moa(r+ro+k+1)(s+o+k+ 1)

- 1

- ;(r+o +k+1)(s+o+k+1)

{

THEOREM 39. For o 20,

‘ d U [Rasd Vx»a 1 & (xr-a V:-rf _}

3 —_ PO A = — ] ,
(3.2.1) [” ——dxdy J)‘j fdxd_x.

From Lemma 37,

and this is discontinuous in the square 0< x, y <1 when ¥y =0 or x =0and when

Xy .
x =y =1. The tunction l —— is discontinucus when x = y = 1. Thus the common
-xy

domain of these 2 functions in (x.y,0) is(0,1)x (0,1) x (0,:::) and these two integrals

are improper.  To emphasize this the upper limits will be written as 1™ instead of 1.

Similarly the lower limits will be written as 0~ instead of 0 when applicable. So

rewriting (3.2.1) more precisely it follows that

[0 rg see !
4 X2 ey | L L——l
do 070" - y i oo €O - AN
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Note that
d —lf- lf A B “ j___xw-vm ded ;
do L - xy ’ | - co Lo or 1- xy )_;

From Mattuck, pages 392-394 it is clear that in order to prove (3.2.2) three conditions

need to be satistied. First some definitions.

) xr—g v:-a— E | xr-fry:—a "i .
Let G(x,y,0) = ——  H(x,y.0) = — - where(x, y.0) is an element
l-xy i co| l-xy | ’

of the set (0,1) «(0.1)« (0,x) for both functions, [ (o) defined as in lemma 38,

L! LY i dxdy, where o is an element of (0. x)

Then the 3 conditions are:
() G(x.y.0)and H(x,y,o)have to be continuous:
(ii) /(o) has to be convergent for each & - in other words the integral has to exist for

each o ;

(ii) /(o) has to be uniformly convergent for each o .

The proofs of these are as follows:
(1) This is trivial.
(i1) See lemma 39.

(iii) [t will be shown that the improper integral defining ./ (o) is uniformly

convergent for all o .
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From lemma 37,

ylnxy

I-xy
This tunction is negative in (0,1) < (0.1) « (0, ) and therefore if it is proved that the

improper double integral defining o is bounded then the function will converge
umtormly in o by the Weierstrass M-test.

Now, tor D<x vy <l,

{ 5
X7 nxy| (Inxy] '[[f-, ihy<w
(323 ' gl — <y TV -
1-xy o l-xy i'zm’ n\\<£

: —T e I - l_ r-r,‘ D
AN AR TR clx x7y
XTI e = [T e - —]—-—-dl
JJ.ra [ - xy _( “ )J.(;'.éo! l~n _i v I;'.ca* I—xv ‘ay
i !
<3 o<y
=/ +1.
From the estimate (3.2.3) above
1= 1-0 4
i<l ”—l“—'-drd_
S -
=ln2c 1
t:l)(k':.l)-
=£(2)In2

by Lemma 39 with r =5 =0 =0.
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Using the estimate (3.2.3) from above, again, it follows that

1
[, < lim lim II—ZInxydrdv

‘)l —)” d —i)"

i

|
=-2lim lim J J’ (Inx +In y)ebedy

Y

=-4lim lim J'ln xux | d» (by symmetry)

AR e /
"u":

=-4 lim | Inxdx
d': )" .

=-4lim [rln x- r]_‘

.) )"

= —4 lim [rlnr—r]._

)ul

=—4( l—hmo lno)

L e
=4,

since by L 'Hospital's rule lim J,Ind. =0. The conclusion is that the improper integral

)-u)

defining ./ (o) is bounded. and therefore uniformly convergent to J (o).

This also proves Theorem 39. -
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3.3. Proving “Lemma 1” on Beukers’ Paper.

dxd» be equal to a rational
l—xy

LEMMA 40. Let r and s be integers, r > s, and let“’

. . .. <z . x'y? :
number whose denominator is a divisor of | then, for s > r, ”— I —dxdy 1sa
- xy

IRt}

rational number whose denominator is a divisor of &~

r,5

Proof. The expression is continuous for 0 < x,y < 1. Therefore the iterated

1-xy

integral

” lx-')‘ dxdy = JI

yH iy

dt x

ch e = II

aQ DO

So v has been interchanged with x in the original integral I I claly so it s > r then

-f¥

this integral is a rational number whose denominator is a divisor of ~ -

1

LEMMIA 41. Differentiating J' j————cbcd_y with respect to o gives
D] W
[ 7V In
f [ ety
. - xy

)

Proof. Because of Theorem 39,
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11 5 T S Y -o'[ ,.,,
= J:_[ lr— e In ydxdy + ” : ad dedy

J'J- 'd“’lntvtm -

0 1-xy
LENMMA 42, The following is true:
é‘ l = lJ l + .- ! v
Tk=rro+)k+s+o~1) r-sis-l-o r-o!

4 I l

‘ V‘
Proof. The lefi-hand side becomes Zﬁl " —r=3 T e ! » by partial
+~r+g -+ TyY-O *~

tractions.

Z 1 _ l

S —sik s-o+l k+s+o+1_

Letting r - s =t produces

2

s+o+2 r+o+




N
s+o+i-1 r+oc-1-1
1 _ 1
r+-oc r-oc-+t
. l l
r+g-l r+o+t-l
L[ P
= < - >
r—.\'{‘S'f-l-,-O’ r+o

-
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Proof. Since lem{a, b} l—[ max(4 8 \here a = [[p®* and b= np_,b' and a,b >0,

then lemia® b7y =[] p I [Icm{a,b}]: . Similarly it can be seen that
2

lem{1".2°, 0"} = I_[p,zm““"z"“”k””"" where k=[] p* k=1.n, k20 Clearly

= A

l—[ [):Zrnnx(l,:,.....k,, ") _ [IC"I{I,Z',,_‘N}]: :(_1":. :

2,

COROLLARY 44. Using the definition of «,, above, d,’ = Icm{l;,Zj,,..,n:'

Proof. See Lemma 43, above. -

THEOREM 45. Let r and s be non-negative integers.

(a) j J‘ clrdy i1s a rational number whose denominator is a divisor of « - ifr>s
- xy

3o

dxc{v is a rational number whose denominator is a divisor of " if

Note: ”

s> r (see Lemma 40).

ot logxy | . . . : .. .3
(b) J J~ f—'x ¥’dxdy is a rational number whose denominator is a divisor of d,” if
—-xy

[
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11

logxy , . . . .

r>s . Note: ”—Tg—‘x y'dxdy is a rational number whose denominator is

P x_}"
1)

a divisor of ¢ ’if s> r (see Lemma 40).

(¢ dedy = S(2)-=-—=~-.-— ifr=s
] e Nttt
-+ logxy ' Lol I
(d) -—x "y dxdy =2+' -5 ifr=y
'J | - xv ‘ l»‘:() l’ 2J r‘}
Remark. In case r =0 the following sums, 17 +27 + +r7and 1 7 =27« <7,

vanish.
Proof. Throughout this proof » > 5 unless otherwise stated. Let o be any non-negative

number Consider the integral

Ll req  sea

[(o) =”%;—y—d\'dy,

o
Developing (1 -xy) "into a geometric series and then integrating term by term the

resulting power series it follows that

(331) l(o—)zi l

Sk+rvo+1)(k+s=c~1)

For details of the derivation of (3.3.1) please see lemma 38. Using Lemma 42 this

becomes
{ 1 M
(33.2) LQ—I—Q.» .
r-sis+l+o r+o |

and putting ¢ =0 this becomes



I(c)=— { L, ! +4.,+l}.

r-s| s+l s+2 r
Using lemma 43 this equals a fraction whose denominator divides the lcm of

{l:.Z: ,,,,, r* =d’ So part (a) of our theorem is proved.

Returning to (3.3.2) it follows that

L e i ,
pex Ty 1 1 1
J. dtd;- {————— =~ ;
H l—n r-s s+l+o r<~o .

Using Lemma 41 both sides are differentiated with respect to o to give

” Iy X7y dedy = l f—(s—:-l+o~)': “(-D)(s+2+0) " - =(=)(r+ 0') ‘ ’

1 -xy r-st

Putting ¢ =0 and multiplying both sides of the equation by -1 gives

- ’ [ r - - .

f]- (5-1)7 = (s-2) = =ir)”

|
{ :
o I—xy r—s- -

This is a rational number whose denominator divides .’ (see corollarv 44). So part (b)

of the theorem is proved.

Assume r = sthenby (3.3.1)

Pl reqg  reg o
vt a Xy - 1
(3.3.3) — by =Y ——————
J:J: l-xy o (k-r+o=1)

Substituting o = 0 produces
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This proves part (c).

Equation (3.3.3) is now differentiated with respect to . By lemma 41 this gives

J‘J‘ In xy X7 y"dedy on the lett side of the equation. Now, Z———l—
o l-xy w(k+r+o+1)

is a

uniformly convergent series in o by the Weierstrass M-test as

=1 = 1. .
! < Z - forall o 20 and Z—— is convergent. Thus the series can be
k=0

. E—

I-—T(k~r*0'*'-l)' b0 K

ditferentiated term by term giving Z—————"—— Thus
=0 (k r+c+ l)

-

l r < red 2 T~
J‘I Ogr} g drdv—z(lu-r'o' 1)
0 + -

30
Putting o =0 gives

logrv oy d
J"[ Xy ) b= Z(lH-r 1)

90 k=1

Therefore
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i logyy , L, oL
H—l—_—x;x yidedy =2 14() (—*— Se=is

DI}

This proves part (d). _

3.4. Proving the Irrationality of ¢'(2).

LEMMA 46. The tollowing holds

(T2 B g

(A, ~BS(2)]d,”.
4 l-xy - < ()1,
! d : .
where 2 (x) = —- - x"(1-x)", 4,,B, are integers, and d, is the lowest common
! N Y
multiple of the first »# integers.
Proof. First it is claimed that
(341) Pn(x)=z{':j'(-1)'x’(1-x)""
o\

\ t

RO . o L n no :
The proof of this is as follows. First, it is clear that — ' —} x"(1-x)", i<n, has i+l
n!

terms of the form x" (1-x)"""*, 0< j <i. Thisis because the lowest exponent for
either x or (1-x) will be n -/ and the sum of the two exponents will be 21— so the

exponents for x and (1 - x) will be as follows:
n-1in n-—i+=ln-1, n-i+2n-2; Lo om—i+in—-i=nn-—I
Clearly there are / +1 terms.

Then it can be shown that



N/ A\

(3.4.2) QLEJ x (l—r) —Z( 1)' : L,", (’—r)'('rl)lr'r"l r(l_r)n ,

Equation (3.4.2) shall be proved by inductionon i. For i=1

;
1' E_} x"(1-x)" =™ (1-x)" +ne" (=1)(1-x)"
\LLY J

The first term in the summation on the right side of (3.4.2),i.e. r =0, is

[\(g]('{](l)!{\;JO!x"-l (-x) =" (1-x)".

The second term in the summation on the right side ot (3.4.2), i.e. r=1,is

[ |("JO!{-” e (1-x)" = (~1)mx" (1-x)""

/

So (3 4.2)istrue tor 1 =1. It shall be assumed to be true for i =&, i.e.

i{_ x"(1-x) = ’(‘J(k ). )[ j’r!x”‘*"(l—x)""

r=t)

(3.43) =Y ax""(1-x)"", where a, = (—l)'g ‘J[

r=t) k-r’ ‘r}

¢

el
Now it is necessary to prove that {Z} x"(1-x)" satisfies (3.4.2) with j =k - 1.

k-l
The r” term of I—L x" (1~ x)" will be of the form &,x" """ (1-x)""  This term

~ . .. h . . ~
comes from differentiating the r* and (r ~1)" terms in the expansion of

v

e

" I(/c r)| I

<i1-} x"(1-x)". The (r-1)"termis a, ,x"*""(1-x)""". The r”term s given in

78

(3.4.3) Ditferentiating these 2 terms and tinding the 2 out of the 4 terms which will give

k-l

the +" term of ﬁL;—;J} x"(1-x)" produces
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b (l=x)" = (n—k+r)ax" (1 ) +(n-r+a,_x" (1= )7 (-1).

,

Thus b, =(n—k~r)a, —(n-r+1)a,_.

Now it is necessary to show that

r}lL-r

(n-k-r)(-1y 1] " }(k —r)l j)r| (n 1)"':

(n r=l)rig

: (n—k,—r)(k*[—r) r) (n r"l) Pl

"'";r "‘ - ri(k?l“ )!!‘/'

r s

.o . . ’k‘! ko
Using the identity . il

e x‘r_lr

:@l":l} this simplifies to (—l);

. - [d ™ .
From the fact that there are k4 -2 terms in { d—JL x"(I-x)" and the lowest exponent of
Ldx

xor (I-x)is n—-k-1(3.4.2)is proved. Thus

o 0 = ey

\‘ J r‘x); - -

Substituting » for i :

<5;> 1-x) =Y (- 1)"’:][,"’r}i(n )!(:}r!x’(l—x)"_'

[§ J =0

—Z( 'r"n'x (1-x)""

r=i

Thus
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n ~

p)= L ey 3] ) -

r=1)

and (3 4.1) is proved. ThusP,(x)is a polynomial in x of degree n with integer

coetlicients. The fact that they are integers is crucial to making the rest of the proof work.

n
For simplicity the expression P, (x)is written as Za,x‘ :

=)

1 n
: L l-y) P (x
The next stage of the proof'is to work on the onginal integral J' I (—y)ﬁ

DI

dedy .
I-xy

n
Writing (1 - v)" as > B,y produces
vt

(L-y)'B(x)= X 7(i )y

I, pn

te(l-y)' P
Substituting this expression in ”(——K)—"—(ﬂdrdx gives

a0 - Xy

1 Z 7(1,j)x‘_v"

J‘J' 0t gen — dxdy .

Splitting this integral up into (n + l)z integrals and using Theorem 45 parts (a) and (c) this

integral becomes

<. %n 1=}

Y #0.0)26.0) - OO[E @] T () £ ()]

where ¢(i. /) is a rational number whose denominator is a divisor of d,” or d

depending on whether i > j orj >, respectively. Rewrting produces
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(3.4.4) > —(,—jk—(lj—) Z/(l ¢ (2)- ZZ— where

des, gia iz g, r=maxin, gt d 1=t 1= =t ./

k(i,j) are integers . From earlier lemmas /lcm {d!:,d::,...,dn:} 1s dn: and
lem {11.2:,...,n:} is °. So the lowest common denominator of the fractions in (3.4.4)

is /" So now (3.4.4) becomes

| — ]

n

%[En “-;(2)8" - F

where £ B, [, are integers. Letting £, + F, = A, it follows that

1 - - i
—— ‘4n+Bn5 (:)J
7L

and the lemma is proved. -

LENMA 47. The integral

n~|

1=” (=5) £09) gy = (1) ” (l y ‘(l ) ey

)

where n' P, (x) = {i}n x"(1-x)"

x|

P .
Proof. Integrating by parts [ = ”(f—)(—zdxdy it follows that
20 -y

n-| 7

([ ] o

00



”L{i} (e )00 ()

(1-x)
Differentiating x" (1-x)",n~1 times, will always produce an expression with x and

I - xas factors and consequently the first integral in the above expression will equal 0.

Theretore

n! dx (1-x

[F IV}

N - n N
U d ’ -y} v
[=0- “.——<—} i " ( "-(——) |c£\*d_v.
] _V) /
Integrating by parts in a similar way this gives

el [d)
[ = O”TW'LJ

\

n-2

i’l-x_v)’ 0-(1-¥) (v)-2(1-w)(-
L (1-x)

) d\d\

since the first term in the integration by parts process evaluates to O again as now

x"(1-x)" has been differentiated - 2 times. Thus

AN CA _r"ﬂJ
[_I.,n!{dxf =l ')[ (1-xyy |

This integration by parts process is repeated a further » -1 times and each time the first

integral will evaluate to 0, and the end result is

e G e R G
n! ([_xy)




LENMMA 48. The following inequality holds

l—xy

y(i-y)x(l-x) (J’

] for 0<x,y<1.

Proof. Calculus is used to find the maximum of the function above in 0< x, )y <1.

Let g=' y(1-y)x(l-x) ( y-Jy )(-Y—-’C:)=(y_v:)[x—x:}

1-xy I-xy T l-xy

then

) (1-2x)(1-xy)=(x-x*)(-¥)
| 2

R lr;‘

-

(y=»)(1-2x+xy)

(1-x)

: c .
The maximum occurs when—= =0 so either y=1 or y=0 or
cx

-1+2x

_—
|9%)
+
tn

~—

I -2x+x"y =0 which implies y =

,x=0

But the first 2 possibilities produce minimums as g > 0 so the only critical point that

needs to be considered is

-1+2x
y= —,x=0
e
: cg . .
As x and y are symmetric, from —= the following is derived
v
1-2y+yx=0.

Substituting trom (3.4.5) produces




84

C+2x-4x +1+4x” -4x

=2 +1

=(x—1)(x: ~:-x—l).

Since x =1 1is a minimum value, the local maximum must come trom the solutions of
xC-x-1=0
Thus

-1-v3. -1+V5. .
M is the only solution and

is not in the domain it can be seen that x =

As

this must be the absolute maximum because the boundary of the region is the absolute
minimum.

Because of symmetry at this maximum y = x.

Substituting in g it follows that

x(l-x)x(1-x)

g§= 2

e (l-x)

l-x

x:(l—x).

l+x



—1+\/§

Substituting x = n

in this expression it follows that

(346) =2 4

Now,

and thus 3—\/§=2-;

Substituting in (3.4.6) gives

LEMMA 49. It is true that, for sufficiently large n

85
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= 8043 - 176.

So the lett-hand side now vecomes

-n

805 1761 ——
9-{V———:z,"/'~_ (2), :

32

/ -

- =~ 1.
) = 1 as it is known that Z—.ls convergent and greater than 1.
i

Asn— e HJ(2

: . 180V5-1761 5 . .
[t 13 sutficient to show that 9+ — < 5 Using a calculator this is clearly shown
| Jz

2

to be true. The inequality is more elegantly proved as follows:

< 302°  which implies 135V

Uﬂ
A
(O3]
(=]
to

91125 < 91204, or in other words (135v5)

Subtracting 297 from both sides gives 135 J5-297 < 302-297 or 13545
. 2755 -1
and factoring the left gives c

135v5-297 5
_ < -
6

Dividing by 6 gives
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o(Vs-11) 5 . 9(80vs-176) s ~
which simplifies to ——= < 5 which finally implies ———~ < . -
THEOREM 50. ¢ (2) is irrational.
Proof. For a positive integer n consider the integral
ce(1-¥)P
e ”( ARG
'S 1-xy
. . . ( (1 ]. " n
where £, (x) is the Legendre-type polynomial given by n!P,(x) =+ Tr x"(1-x)".
Ldx |

From lemma 46, T is equal to j'_-A,, B g (2)](1"‘: for some integers 4, and B,. Doing an

n-fold partial integration on T it follows that

=) ey

(3.47) r=(-1) J'j" (1

00

n*l

Lemma 47 describes the details of doing this. From lemma 48 it follows that

y(1-y)x(1-x) S{‘JE—I 5

} forall 0sx<l], 0<y<l.
l-xy

Substituting in (3.4.7) produces

<[] B 1

L2 ) o

R/T_l-f"”
1 32 ] [J:UT:F‘MV
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{v‘i—lJ ().

ce(t=»)'P.( .
using Theorem 45, part (c) with r =0. Now, T= J.f(—'lv)—"(t—)dtdy is positive for
— x'v

3y

M cannot be negative as

0<y<1. Thisis because the function 1
- Xy

0<x<l,
none of its components can be: (1-y)" 20; 1-x¥ 20; P,(x)>0 because this is a sum

of terms each one containing 1- x and/or x as a tactor and no other factors involving x.

And the tunction is continuous and positive at some point for example at | %%Jt So
T>0 Using the results we have found it follows that
NG
sBo()Nd L S(2
O<!An ' Bné! ("')dn s‘ﬁ 2 ;} ‘E(")
\ ]
which implies
G-
(3.4.8) 0<|d, ~B,S(2)|2d, {5 f < (2)
L2
The less than or equal symbol in the preceding is actually a strict inequality as
\ 3
y(l-y)x(l-x e
y(1=y)x( ) and as this function is

L is a local maximum for the function :
— n'

continuous and/or constant in the interior of the square 0< x < 1. 0<y < then there

{
.. . .. l
must be a measurable set inside this square where the function is less than 5 } .
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( Sn
. : . 5-1 ..
Theretore the integral must be strictly less than }l\/—" |l £(2). However, this is not

necessary for the proof': it is just put in for interest. From (3.4.8), Corollary 17 (in

Chapter 2) and Lemma 49 it follows that given £ >0,

—_—

n

e B e O R RO

tor suthiciently large n.

By Theorem 6 from Chapter | this proves that ' (2) is irrational. —

3.4. Proving the irrationality of £'(3).

LENMMA S1. The following holds

] ]'%’ D p (<) P, (y)dxdy =[ 4, = B (3)]d,” . 4,.B, are integers.
—— _r'L' -

()

Proof. From (3.4.1) P,(x)and P,(y) are polynomials in x and y, respectively, with

integer coefficients. Let £,(x)=) ax andlet P,(y)=> @)’ then

1=t} 1=1)

P(x)P(¥)= D »(i,j)x'y’ where ¥ (i, j)are integers. Substituting in

diegon

[ (5)2, ()bt

DI
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it tollows that

(2220 5 s o

00 l— X.'}' 0 gn

Spiitting up into several integrals and using Theorem 45 (parts b and d) this then becomes

2 7()ali i)+

dergen
-( cray L PP SR S !
(3.4.9) 2'/_‘,{'5 (J)}-:-Z'/Il{g (J)—F}r...+2'/m{g J)-—,—ﬁ—s—?-...——s}
L )

Now, ¢(./)is a divisor of « or d_,:‘ depending on whether / > j orj > . respectively.

Then (3.4.9) can be written as

! n |

Simplifying it follows that

%[An +§(3)B"], for some integer A, . -



1
LEMDMA 52, [tis true that I——dz = ar Inxy.

Proof. The left-hand side is

LEMDMA 53. The tollowing holds

L= (1-xy): )

N TG AT P (B IC

where

Proof.  (Integration by parts)

= j’l&{i(i)l X (1-x)" |

= (l-xy)z | n!dx

Integrating by parts gives:

P(¥) 1(dY"

|
(-gznila, 070 |

91



L AT (-2 B0 -0 9)2) e

Now, n - r differentiations of x" (1 - x)" will produce an expression where every term

will have a common factor of x”(1-x) . Using this fact and integrating by parts again in

the above integral gives

o

f.
:;,Q_...«

~ {3
—~

1,
P ~
ST b
H

ta
1
TN
v
3
ll
[

dY .
x"(1-x)" |
N\ dx r( )

x"(1=x)"|

i

P (v)y: L(_‘i_)

- (1-(1-xy)z) n!\dx

Ld )™ 7 )
‘,IlfkdtJ | r (l—t) JP"('L')y:(_z)(l'(l“x}’)l) yadx

After n -3 more partial integrations it follows that

j‘ P(¥)y=" 2.3.4.m

— x"(1-x) dx
[ (1-%)

n!

I(xy)(l- SNAON _

b (1=(1-xy)2) B - )



93

oz) (1-x )P(V)

l—(l—ry) )

LEMMASY, If /= J. dedyd= whereJ. denotes the triple integral

J.(l_r (Lw) Ay )irdvdu where w_—l—:—-
1-( l—m) I-(1-xy)=

Proof.  Ditlerentiating w with respect to = produces

dw _ (1-(1-xp)z)(-1) = (1-2)(1 - %)
“ (1-(1-x)z)

_(l-ze ) (-) 1l -2+ 0z

i (1-(1-xp)z)

- x'y'

(l—(l—xy):):'

and hence
P Ul U9 L2 I
—x'y' -
If w = ]_(i:;): then w—w*(l—n): |-z
-wz(l-xy)+z = -w+l,
A(1-w(l-9)) = L-w,
. [—w
) l-w(l—-xy)’

and hence
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[ - J.x"_v"(1““’)"(1_-")"})’:(—")(1_(1—xy):):‘irdwm
(l—w(l—xy))"(l—(l--\'y)z)n‘l(‘-"}’) )

B x""‘y"“(I-W)"(l'x)npn()’)dr v

J.(l—w(l—xy))"(l-(l‘x}’):)n-‘ ¥

(1-xy)(1-w)
(1-w)(1-xv)

Now, I-(l-x)z = 1-

l-w+ogw-(1-xy+0w-w)
I=w(l-xp)

xy

l—w(l—xy)'

and, [ becomes

_ J.x" Y I(l_“/)"(l""f)n P, (_v)(l—w(l—.\‘y))".llrdwm
(1 —w(l —x}'))ﬂ(-\’}')n_I )

_ J-(l—$v)"(1—.r)"Pn(,v)¢rdy‘MA ~

(1-w(1-x))

l-w) P
( W) (-} )J}' where J. stands for the triple

1-
LEMMA 55. j ( 1

[
integration ”‘J. then

DRI

= x"(1-x)"y "(1-y)'w (l-u)
- (1= (1-xy)w)™ v



Proof. Rearranging the above integral it follows that
_ J-(l—x)"(l—w)"id d\” (i _)J
I-(1-xy)w n! dv) - ’ |
[ntegrating by parts gives
‘(1-r (l—w L\ |
Il el n 1=y nl _
J-J.\ l—(l yw n'[dy) ¥(1-7) w
jI J y" (1-y) "((1“) (L-w) 1 ﬂmm

dyl 1=(1-xy)w a! )

n-i
o : o {d) " :
Pertorming the ditferentiation i d— Loy (1-y)" will produce an expression where

every term will have common factors of y and (1-y). Using this in the above triple

integral gives

!;é// . d \\n-l . . d (l_x)n(l_‘v)n l \ \
(4 a4 .
‘”! ° ,[dtjl ¥ (1-») dy{ I-(1-xy)w n jdvjdrd»

/

=rlx(ijn—l . n([_x) (l—w) —t\t v
J-I'[k i V) (l—(l—r_v)‘) n! Ay

[ntegrating by parts again it follows that

J'(l_r (l_ ) d{(i
\&y

(1-(1- ry)w) n!

}n y(1-y)

;
-

(1-x)"(1-w) -‘7 a\"” A\
J. {d—/l y(i-y).

(- m)w)

[ntegrating by parts again it follows that
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n n r
- - 7 |
J'(l x) (1 w)ix:wzldii(ii v (1-y)
(1-(1-xy)w) n! L\“f"/ |
-/ \!”_’ n
TR y(1-y)

(I-x)"(1-w) 2(_3)x3w‘] — |
\&v)

—I(l-(n-xy)w)‘ n!

Continuing this integration by parts n -3 times the result is

- n I__ ”l .
(X () e

n-l

J-(l—(l -xy)w)

noa _.n’,,l_'n
S (s )

l

(1-(1-xy)w)

LENIMA 56. The function

I-x)y(l-))w
I-(l-xy)w

(I—W) S(\/E_I)4 forall O<x.yw<l.

f(w,x,_y) = x(

cf ¢ .
=€i=.i=0501t15
v

. : c
Proof  The relative maximums of f (w. x, y)occur when .i
cw  Cx

necessary to tind each of these partial derivatives. Rewriting f(w.x. v) it follows that

(r— ":)(}'-y:)(w— w:)(l W x}w)’

Differentiating with respect to x it follows that
' (x—x:)(—l)(l -w = xpw) : wy:

[

¢ N — w2\ (1 TR
g—(}—) )(H W )"(l 2e)(l-w+xyw)

Putting ch: =0 and simplifying gives
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X - .r) wy - .
Y=y =0andw-w"=0.

0=(1-2) (
( r)+l—w+xyw

Theretore
O=l-w-xw-2x+2xw-2x 3w+ x'wy - xwy

(34 10) =l-w-2x+2xw-x")w.

=0

: . c o
As xand v are symmetric then from = =0 it follows that
&y
x-x =0and w-w’

O=1-w-2y+2yw-yxw,

(3410
Now,
g_ =(x-x )y -y )!_(l =2w)(l-w= xyw)_‘ '?‘(‘V - w:)(—l)(l -w *.\'_VW)V: (- l).;
(W - -

" -0 and simplitving gives

. 4
Putting =
W

cow)(xy =1
(v -w)(o ) x-x"=0andy-)" =0,

0 :(I —2W)+ l-w+xw

and therefore
0 =l-w+xw-2w+2w - 29w +wxy-w - WXy + W

=1=-2w+w —xyw" .

Rearranging gives
wo=2w+1
x= -
yw”
fw=1Y1
vy



Substituting in (3.4.11) gives

y(w-1y

]

O=1l-w-2y+2yw-
w
and theretore

~ - - i
O=w-w"=2yw+2yw” ~ [_vw' +y=2wy |

=w-w s w -y

Thus,
H/: - W
V= —
. wo~1
_ow(w- 1)
- (w+ 1)(w - l)
(G4 12) =
[+w
Because of the symmetry of x and y
W
x= .
l+w

Substituting in (3.4.10) gives

2w 2wt o N
O=1l-w- + - Jx lw |
I+w l+w \l+w kl%—w}

and theretore

():(I—:-w)3 —w(l~:—w)3 —2w(l~:-w): :«.’Zw:(l*:-w):—w4

- 2 3 2 2 2, , 3
=1=3w 3w +w —w=3w” =30’ —w' —2w—=2w — A’ + 2t =2t 4w’ -yt

=1-2w

98
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Thus,

but 0gsw<l, so wz?or—.

From (3.4.12) it follows that

Similarly,
y= \/5 -1
Now, inspecting f (w,x, y) it is clear that it is a non-negative valued, continuous function

for 0<x,y,w <1 and it is O along the boundary of the region 0< x, y,w < 1. From

4 [
turther inspection the function f (w, x, y) is greater than 0 at { V2-142- 1U;—W so this
\ </

point on the curve must be a maximum for if it were a minimum or a point of inflexion
another critical point would be required the domain of which must be internal to the

region 0 < x,y,w <1 and the only other possibilities for critical points for 0< x, y,w < |

occur when w ~w” =y~ y* = x—x* =0, but these possibilities occur when (w, x, y’)is
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on the boundary 0<x, y,w<1.

LY. . .
j is calculated. To get the required result it

Now the function value f(ﬁ - l,x/i - 1,?

1s useful to write 1 —x and 1- y in the following way:

-x=1-(V2-1)=2+2=(V2-1)V2.

I V2-1

v=|l-—m==

Also note that 1 —w = \/5 —-\/5—

x(1=x)y(1-y)w(l-
So now using (! \’l)y((ll y))w( w) for f(w,x, y) the value of the function at this
—(I-xy)w

critical point is

VO AV () (ay

N
)
C2-(2-2)V2

l—_ n K . noon 1_ n
LEMMA 57. If / = | ( ”() -‘( { -‘)) ;,.-1( v) dedyedw where | denotes the
I-(1-xy)w
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triple integration Ijj then / >0.

Q00

. : .
Proof. Clearly for 0<x,y,w<1, /20. Putting x=y=w= 3 into

e (Lx) (1= ) w (=)’

(l—(l—.vc_v)w)"’l

gives a value which is not zero. Because the function is continuous for 0< x, y,w < |

there must be a set of values of the function, of measure greater than 0, where all the
values are greater than 0.

Theretore / =0 so [ >0. _

LEMDMA 58. The tollowing holds:
= i (4Y ‘
3;(3)27"(\/2 - l) <| g) for sufficiently large 7.
\

Proof. The left-hand side of the above inequality is

-

tcfi:/g(3)-27(«/5-[) J |
So it is just necessary to show that there exists # such that
Iy + 4
Y2:ic (3)-27(V2 -1) <2,
¢ 0)-27(v2-1) <3
This will give the required result as the left side of this inequality is positive.

Rearranging it can be seen that nis required such that



Now., if

then

4

(V2-1)

n> ln(2[(3))+ln|{
5027

)

and the proot'is complete as 2¢'(3)> 1. So it is necessary to show that

This can be proved on a calculator, of course, but more elegantly it is proved as follows.

- . 4 . -
First the expressnon(ﬁ - l) Is rewritten:

5

(v2- 1)‘ =(\/5)4*4(\/5)3(—1)+6(\/5) (-1) +4(~2)(=1) = (1)’
=4-8Y2 +12-42 +1
=17-12V2.

Now,
5248800 > 5248681

which on taking the square root of both sides gives

162042 > 2291.



Rearranging it follows that
2295-16204/2 < 4

and then factoring and dividing by 5 produces

z7(17-12ﬁ)<i

5

which is the same as

or

THEOREM 59. The number ¢ (3) is irrational.

Proof. Consider the integral

11
_[nxy
1= [ A WA ()

33

where P,(x)= L'% —%
niic¢

integers A4, and B,. From Lemma 52. which states that

} x"(1-x)". From Lemma 51. /= [A,, +B.< (S)Jdn'; for some



[ can be rewritten as j dxdyd= where J. denotes the triple integration

B (x)A(y)
I=(1-x):

J J J Atfter an n-fold partial integration with respect to x our integral changes into

J-(xy l—r"P:lgy)dnl}d—_
1= (1-x¥)z)

The details ot this are given in Lemma 53. A substitution is now made

I-z
L-(1-x):z

W=

which gives

R

The details of this are given in Lemma 54. After another n-fold partial integration with

respect to v it tollows that (see Lemma 335 for details)

J. < (1-x) ¥y (1-y) u:.'l(l ) dedycby .
(1-(1-xy)w)

—_—
o
)
N
~—

From Lemma 356 it can be seen that the maximum of

x(1-x)y(1-y)w(t-w)(1-(1-xy)w)"

occurs for x = 3 and then
x(1-x)y(1-y)w(l-w)(l —(l—xy)w).i < (\/5— l)J

forall 0<x,y,w<l. As _t is positive for 0 < x, y.w <1 then [/ is bounded
I-(1-xy)w

104
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above by

(T e —

I-(1-xy)w

1 . . . . .
As ﬁ—) is continuous for 0< x, y,w < |, the order of iteration of the integral
— — .r-v ‘t’

can be changed at will. Note that it is not necessary to consider continuity at x =0,w =1

orat v =0.w =1 as the integral is undefined at these points. So then

in 1
1<(v2-1) jwdu-da/y

(-

-

J dxdy ,

‘—\

l—(l—t’v)n

tir
0ol ~log)
(1) [ 5 ‘y} dedy
Using Theorem 45 part (d) it follows that
1<2(N2-1)"¢(3).
Using (3.5.5) in Lemma 57 it can be seen that / > 0. So now the following holds
0<[4,+B¢(3)]d,” =1<2(V2-1)" £ (3).
Rearranging, using Corollary 17 (in Chapter 2) and then Lemma 58 it follows that
0<[ 4, +B<(3)]<2 (\/5—1)“<2§(3)27"(\/5—1)‘"<(ﬂ_
\5)

So, finally it can be seen that, for sufficiently large n,



0< 4,-BI(3) <

Byv Theorem 6 this proves the irrationality of [ (3).

| 4

AY

/

1
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