San Jose State University

SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

1991

[nvestigating the motions and energies of ions
confined in a uniform magnetic field

Amara Lynn Graps
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd theses

Recommended Citation

Graps, Amara Lynn, "Investigating the motions and energies of ions confined in a uniform magnetic field" (1991). Master’s Theses. 196.
DOI: https://doi.org/10.31979/etd.vy9s-vSbb
https://scholarworks.sjsu.edu/etd_theses/196

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for

inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/196?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F196&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfiims international
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor, Mi 48106-1346 USA
313.761-4700 800.521-C60C0

Order Number 1345803

Investigating the motions and energies of ions confined in a
uniform magnetic field

Graps, Amara Lynn, M.S.

San Jose State University, 1991

U-M-]

300 N. Zeeb Rd.
Ann Arbor, MI 48106

INVESTIGATING THE MOTIONS AND ENERGIES

OF IONS CONFINED IN A UNIFORM MAGNETIC FIELD

A Thesis
Presented to
The Faculty of the Department of Physics

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By
Amara Lynn Graps

August, 1991

APPROVED FOR THE DEPARTMENT OF PHYSICS

S Ao

». Patrick Hamill

Tsed D Coam

-. Fred Witteborn

M%%

Dr. Afejandro Garcia

APPROVED FOR THE UNIVERSITY

7 / i

ABSTRACT

INVESTIGATING THE MOTIONS AND ENERGIES

OF IONS CONFINED IN A UNIFORM MAGNETIC FIELD

by Amara Lynn Graps

The research described in this thesis is aimed at understanding the motion and en-
ergies of charged particles trapped in a constant magnetic field B. The study entailed
writing a computer simulation of the motion of three ions confined in a constant, ver-
tical B-field. While the simulation is general enough to allow n charged particles of
any charge and mass, the cases constructed were only for hydrogen ions. Computed

quantities for the ions included positions, velocities, kinetic and total energies.

The calculated positions and velocities elucidate how a system of three charged
particles behave under the classical assumption of the Lorentz force. We were espe-
cially interested in the variation with particle density of the kinetic energy exchange
{coupling) between the encrgy related to motion parallel to and orthogonal to the
confining magnetic field. It is found that as the density of the three particle system

decreases, the coupling decreases.

ACKNOWLEDGMENTS

This manuscript is dedicated to my father Alexander Graps. I am grateful for

his love-of-life philosophy because he has shown me that the universe is ultimately a

benevolent place.

There are several others that I could not have completed this thesis without their
support. To Fred Witteborn, who gave me the topic of the thesis and a great deal
of insight on the ions’ dynamics. To Forrest Bennett who never failed to give me
encouragement and a listening ear throughout my years in graduate school. To all
three of my thesis advisors, who have had to endure reading this manuscript on very
short notice. And, finally, to my best friend Vince Kerchner who never doubted that
I would complete this and gave me a balance and perspective that I could not have

gotten anywhere else.

v

TABLE OF CONTENTS

Page
Acknowledgments ... vi
List of Tables ..o vil
List of Figures ... viii
Chapter
1. Introduction............oooviiiiii L 1
2. Physical Theoryc.ocoiiiiiil. 5
Force Equations........................ 5
Gyroscopic Radius..................... 6
Gyroscopic PeriodL 8
Relationship between KE and B-field 8
Relationship between T, and tpma 12
Cooling of Accelerating Particles..... 15
3. Integration Algorithms........................ 18
Setting up the Equations of Motion 18
The Verlet Algorithm 19
The Runge-Kutta 4 Algorithm....... 20
The Bulirsch-Stoer Algorithm........ 21

Comparison of Integration Methods. 24

v

7.
Appendixes
A.

B.

C.
Bibliography

Variable Time Step Algorthms

The Program: Colliding Ions.................
Results

Motionoovvvveiiiiiiiiiiiiiiiia,
Gyroscopic Radius.....................
Gyroscopic Period
Rotational Kinetic Energy............

Vertical Kinetic Energy
Conclusions

Verlet Derivation.........oooooiiiiiiiiiin.

Source Program Colliding Ions...............

Example Input File CollidinglonsIn.text

vi

26
29
31
34
35
51
54
55
56

57
60
88
89

Table

LIST OF TABLES

Comparison of Integration Methods. ..
Initial Positions for Ten Sample Cases

Initial Velocities for Ten Sample Cases

vil

Page
25

33

Figure

N S Y o T

LIST OF FIGURES

Los Alamos’ design for their TOF Experiment............................ 3

Circular Motion of Point Charge in Uniform B-Field.................... 10
Plane Filamentary Current............ccooiiiiiiiiiiiiii .. 11
Recursion Elements in the Bulirsch-Stoer Algorithm..................... 23
Initial Dynamics for Three-Particle Cases.......................o..oi 32
Three-dimensional paths and v, for initial |z} =0........................ 36
Three-dimensional paths and v, for initial |z] =3 x 10" m 37
Three-dimensional paths and v, for initial jz] =1 x 10~ m............. 38
Three-dimensional paths and v, for initial j] =3 x 10~ m............. 39
Three-dimensional paths and v, for initial |zj =1 x 10" m............. 40
Three-dimensional paths and v, for initial jzj =3 x 103 m............. 41
Three-dimensional paths and v, for initial |z} =6 x 10=* m............. 42
Three-dimensional paths and v, for initial |z] =1 x 10~* m......... .. 43
Three-dimensional paths and v, for initial jz} =5 x 10=* m............. 44
Three-dimensional paths and v, for initial |z] =1 x 103 m............. 45
Rotational Radius R vs. Initial z Separationof Ion 1.................... 46
Rotational Radius R vs. Initial z Separationof lon 3.................... 46
Rotational Radius R vs. Time for Ions on the Same Field Line......... 48

viii

19.
20.
21.
22.
23.
24.

Rotational Radius R vs. Time for Ions on Nearby Field Lines.......... 49
Rotational Radius R vs. Time for Ions on Distant Field Lines.......... 50
Rotational Radius R vs. Time for Ion 2 on the Same Field Line 51
Gyroscopic Motion from a Fixed Time-Step Scheme..................... 52
Gyroscopic Motion from a Variable Time-Step Scheme.................. 53

Change in Rotational Kinetic Energy vs. Separation of the Quter Ions 54

1x

CHAPTER 1

Introduction

The equivalence principle of the general theory of relativity states that the ratio
of gravitational mass to inertial mass is unity for all materials, even antimatter. The
cquivalence principle has been verified to better than one part in 10" for neutral

matter (1), but has not been fully verified for the charge constituents of neutral

matter. It is not expected that a different gravitational force would be exerted on
ions, but if a difference is found, then the equivalence principle would be violated,

and the general theory of relativity would have to be re-examined.

An experiment is currently being conducted at Los Alamos (with collaborators at
the NASA Ames Research Center) that measures the Earth’s gravitational effect on
antiprotons in a uniform magnetic field. Since the force of gravity on charged particles
is much less than the clectromagnetic forces, a clever method must be devised to
measure the gravitational acceleration. The clever method was devised by W. M.
Fairbank and F. C. Witteborn (3) and is called the time-of-flight (TOF) method.
In this method, ions are emitted from the bottom of a vertical metal tube (“drift
tube”), they are guided along the axis by a very uniform, time-constant magnetic
ficld maintained by a superconducting solenoid, and then are detected at the top of
the drift tube by an ion multiplier detector. The Los Alamos experiment uses this
method, and their experimental design is shown in Figure (1). The time between the

1

2
emission and the detection determine the TOF of each ion in the original pulse. Since
the ions have a spread in energy AT, (= (1/2)moAv?), some will have short flight times
and some will have long flight times and a distribution in arrival time will result (4).

If we assume that a constant vertical force F acts on the particles, then the maximum

TOF is given by:

2hmo
tmax = F

where h is the height of the particles’ path and m, is the mass of the ion. The
slowest ions to reach the detector are those for which the total energy is equal to the
gravitational potential energy mogh (i.e. the kinetic energy, and therefore the vertical
velocity v,, is zero). At some cut-off time tyax = \/2R/g, no more ions will be detected;

consequently, the gravitational constant can be determined from max.

Although the ions are prevented from leaving the axis of the tube by the magnetic
field, the magnetic moment induced by the ions’ spin and orbital motion interacts with
small magnetic field gradients (10-° in the free-fall experiment) to produce vertical
forces much larger than gravity. Therefore, the potential energy will no longer be just

mogh. It will have additional components due to the rotational motion of the ions.

TIME-OF-FLIGHT DETECTOR

2T SUPERCONDUCTING SOLENOID MAGNET — |

DRIFT TUBE —

LAUNCHING TRAP —]
STORAGE AND COOLING TRAP |

6T SUPERCONDUCTING
SOLENOID MAGNET

CATCHING TRAP N

ENERGY-
DEGRADING
FOIL

ANTIPROTON
BEAM
FROM LEAR

= Cr—— p——
CARYLAY AT

R TR 7%

WA
i

XN

{

LT Ry
LIl eedry

PPV Ll 110

&L

[

Figure 1. Los Alamos’ design for their TOF experiment (2).

4
The research for this thesis is intended to help the Los Alamos and NASA Ames

investigators by illustrating the coupling between different degrees of freedom follow-
ing the release of a burst of charged particles in a magnetic field. The thesis describes
a three-dimensional simulation of the interaction of three charged particles trapped
in a constant B-field. When the charged particles interact, they exchange energy;
specifically, the vertical z kinetic energy T, will be transferred to rotational zy kinetic
energy Ty(= (1/2)mev§). The amount transferred will depend on the proximity of the
charged particles and possibly other parameters. The result of the analysis will be a
measure of the dependence of the change in T; with respect to the separation of the
ions on the magnetic field lines. The distribution of these values will determine the
requirement on the magnetic field homogeneity needed to insure that mgh is much
greater than the change in potential energy experienced by an ion of velocity v as the
lon moves through small B-field inhomogeneities expected in the free-fall experiment.

And the distribution of T, values will determine the number of pulses required to

measure ty.y.

CHAPTER 2
Physical Theory

This section explains the theory used in the computer simulation of the interact-
ing charged particles. Additional physical concepts are presented that will aid in the
understanding of how the kinetic energy relates to the B-field and to the TOF mea-
surement. And, finally, we answer a question of interest to the TOF experimenters on
the cooling of accelerating particles. The physical theory in this section is a classical
treatment, and because the simulation considers slow-moving ions, a nonrelativistic

treatment.

Force Equations

The physical theory is based on the electromagnetic interaction of n ions of charge
gn- The Coulomb force acting on one charged particle ¢; due to all of the other charges

(qn;él) iS

n —
r q1 qiT1i
= 4me rd

Y '¢1 13

]

where 7; = (7, — 7;) is their separation and ¢ is the electrical permittivity of free
space. If magnetic fields are present, then the force generated on the particle ¢, is the

Lorentz force

n ~
- ¢ : - -
Fi=gq (24;;03;—+v1x3) :
i#1

L5
where #; is the velocity of particle 1, and B is the value of the magnetic induction at
the location of the charge (i.e. the magnetic field strength).

The first term inside the parenthesis is the electric field strength Eiz at g4,. Since

the Lorentz force obeys the superposition principle, the total force for n particles is,

accordingly,

-

F:qo(ﬁ+ax§) , (1)

where E and B are due to to charges other than go, and the total force 7 is the sum

of the forces due to each particle that interacts with gq.

Gyroscopic Radius

The motion of an individual ion is a helix of constant pitch around the magnetic
field lines (5). This path is caused by combining the two motions of: 1) velocity
parallel to B and 2) velocity perpendicular to B. To determine the radius of a particle’s
orbit, we look along the z-axis of the ion’s motion so that its path projected on the
zy plane is a circle. The radius of the circle can then be calculated by equating the

magnitude of the magnetic force with the magnitude of the centripetal force

7

where g is the charge of the ion, 7 is its velocity, mg is its mass, and R, is its gyroscopic

radius. Since # is perpendicular to B and, for circular motion, is equal to vy = | /v + v?
then,

2
mpv,
quB = ——= ,
R.‘l
Mmovs
= . 2

We can also associate the gyroscepic radius with the temperature T of the ion by
using the thermal kinetic energy E,. This relationship is useful because we often know
the temperature of the ions when they are released in the experiment (6). For two

degrees of freedom (we do not consider the vertical velocity component), the kinetic

energy in terms of temperature is

Ek = kBT y

oo —

= —mo(vz + vg) ,

mo(v3)

N

where kg i1s the Boltzmann constant. We can now solve for v, and it is

_ [2k5T
Vg = ™o . (3)

Upon substituting Equation (3) into Equation (2), the root-mean-squared gyroscopic

radius in terms of temperature is

R, = qLB\/zmokBT . (4)

Gyroscopic Period

To ascertain whether the time steps in the computer simulation are small enough
to accurately reproduce the helical motion of the ions, one can use the gyroscopic
period P;. The product of the period of an ion and its velocity is 27R,, where R, is

the gyroscopic radius (5). However, we know R, from Equation (2). Therefore,

_2mmg
P==g 5)

Relationship between T, and B-field

In this section I return to the central idea and purpose of the free-fall experi-
ments remarked upon in the Introduction. One of the important problems in the ion
free-fall experiments is to obtain ions with low enough energies to have flight times as
long as tmax- A pulse of ions is emitted at the beginning of each TOF measurement.
The pulse expands as a result of space charge repulsion. Energy is exchanged be-
tween the central particles and the outer ones with the outer ones carrying away the
most kinetic-energy-per-particie. The particles are constrained by a strong vertically-
directed magnetic field (B;). It is clear that collisions in the z-direction will exchange
z-directed kinetic energy between particles and that the resulting energy distribution
for the slowest particles can be determined from the TOF distribution. What is not
so evident is how strongly the orbital kinetic energy (zy plane motion) is coupled
to the z-motion. It is important that the zy energy be low because of the interac-
tion of the orbital magnetic moment of the ions and gradients in the magnetic field.

Therefore, we will explore the relationship between the orbital kinetic energy 7j, the

9

magnetic moment m, and the magnetic induction B. For a system of charged particles
under the influence of electric and other forces, the relationship between Ty, m, and
B is complicated and cannot be solved analytically. Therefore, numerical solutions,
such as those provided by the computer simulation written for this study, are neces-
sary. However, for a single particle in a uniform, homogeneous magnetic field with

no electric fields present, the following discussion is valid.

First, we prove that the total kinetic energy is constant. We can do so by examin-
ing the vertical velocity v, and the rotational velocity vs. The total kinetic energy KE

is the sum of the kinetic motion parallel to B and the kinetic motion perpendicular

to B. In other words,

1 1
KE = 5"10113 + §mgv§

The vertical velocity component v, is unaffected by B because #, x B = 0. Since

we have a uniform magnetic induction, v, is constant, and so for a charge ¢ > 0, it

moves in the same direction as B (5).

The rotational velocity component vs is composed of two parts: 1) a constant
speed v and 2) a drift velocity v, = v+ vp (5). The constant speed v gives the
circular motion about the center of the orbit (or “guiding center”). The drift velocity
vp = (E x B)/B? is perpendicular to B and is constant also. (Note: the magnitude of
vp is independent of charge and mass of the particle.) Since v, and v, are constant,

and the mass of the ion is constant, then the total kinetic energy is constant.

Next, we investigate the ion’s dipole moment and its relation to its kinetic energy

and the B ficld. A point charge traveling around the circle illustrated in Figure 2 is

10
equivalent to a current element: Ids = quvs (5). It will therefore have a magnetic dipole
moment 7i. The dipole moment points in the direction of the vector angular velocity

@y = ~(g/mo)B, so, in Figure 2, is directed into the page.

q>0

Figure 2. Circular motion of a point charge in a uniform induction B pointing
out of the paper. The position G refers to the guiding center. The length R, refers
to the gyroscopic radius. The rotational velocity is indicated by v,.

The dipole moment of a plane filamentary current, illustrated in Figure 3, is

P I B

m_—i%crxds y

ﬁi:é/d&' s

. 1z

m_.§S 3

ﬁi:éSﬁ , (6)

where S is the total vector area enclosed by the current, I is the equivalent current, and
#t is the normal to its surface. The magnitude of the dipole moment is just the product
of the encircling current and the area enclosed by it. The result is independent of the
shape of the circuit. For a circular current path, the area S = 7R?, then 7 = IxRZA

(5). Substituting R, from Equation (2),

11

m=Ir TMovs 21"1
= 4B ,

" m ~
= 27:13@"—2%7; . (7N

The equivalent current I is simply the charge divided by the gyroscopic period P,.
Since we know P, from Equation (5), we can substitute for I into Equation (7). The

result gives us a relationship between magnetic dipole moment, rotational kinetic

energy and the magnetic induction:

Figure 3. Plane Filamentary Current. The element of area da = dan, C is the
current loop, I is the equivalent current, and # and ds are the sides of the shaded area
to compute half the area of a parallelogram ((1/2)7 x d5 = dd).

Next, we show that the magnetic moment is approximately constant. The mag-

nitude of the flux enclosed by the circular orbit is

12

¢ = BrR? (9)

and is constant. Upon substituting R, from Equation (4) into Equation (9), we learn

that the flux can be expressed as

&= wm3v?
¢*B
Since Ty = (1/2)mvZ, the flux is also
o= 3’—’5};—% , (10)

which is still constant. Therefore, one consequence is that if 7, increases, and all other
values are fixed except B, then B must increase to keep ® constant. From Equation
(8), Te = mB where m is the magnitude of the magnetic moment. So we can substitute

this expression and get a new relation for the flux

P = . (11)

Since & is constant, this means that the particle moves in such a way that its magnetic

dipole is approximately a constant (5).

Relationship between 7% and ¢,

This section explains the relationship between the vertical kinetic energy 7, and

the maximum flight times tmax in the TOF experiment. Denote the number of ions

13

arriving at the detector after time ¢ as N(t). The fraction of ions is a function of

vertical kinetic energy T. which is, in turn, a function of time (7)

dN dN dT,
@ AL At (12)

Let us assume that the distribution dN/dT; is a constant (7). This first approxi-
mation can be made for the following reasons. We know that the number of ions N(t)
reaching the detector and the vertical kinetic energy T, of the ions are both decreas-
ing functions of time, so that dN/dt < 0 and dT;/dt < 0. Therefore, dN/dT. > 0. So,
the simplest distribution N(T), such that dN/dT; > 0, is a line with a positive slope,

l.e., dN(T;)/dT; = C where C is a constant. Under this assumption, we can rewrite

Equation (12) as

dN dT.
@ =% - (13)

Denote the total energy by W and the potential energy by PE. The rotational
kinetic energy is coupled to the potential energy because as the ion moves through the
external magnetic field, its own induced magnetic moment interacts with variations
in the B-field to produce time-varying forces that, in turn, cause a change in the
electromagnetic potential energy. Accordingly, if we absorb the rotational kinetic
energy quantity into the potential energy term, then, by definition, W = 7, + PE,
where T; = (1/2)mgv2. We wish to find tp.,, which can be derived from wv.. So, by

rewriting the definition of total energy,

14

%movf =W - PE

’

v? = .r:_o(w - PE)

Then the vertical velocity is

v, = ,/mlo(W—PE)

The velocity v, by definition, is dz/dt. Consequently, the previous equation can

be expressed as a function of time (7),

dt _ my 1
& V2 /w-pPE) ’

which can be integrated,

where h is the length of the drift tube. Equation (14) is the most general relationship
between ¢ and the energies. We can simplify the relationship by considering only the
case PE = 0 (7). Therefore, W = T, = (1/2)mgv2. After solving for ¢ in this case, the
vertical velocity of the ion in a (force-free) tube is h/t. We use Equations (13) and

(14) to finally arrive the expressions that give us the simplest relationship between

T, and tmax

15

myp h z
T, = — y 15
2 (tmax> ()
dN _ —m0h2
To(Fm) 1o

Cooling of Accelerating Particles

In this section we ask a peripheral question: Since an ion radiates when it is
accelerating, how long does it take to cool from 1000K to 10K? This question is of
interest because, in the experiment, we want ions whose final kinetic energies are close
to zero, and therefore of low temperature. The ion source emits ions with a roughly
thermal distribution characteristic of 1000K. If we could reduce this temperature to
10K, we could get 1 ion (in this case, an antiproton) with an energy of 10-7 eV out
of about 102-10* ions. Typically, many hours of data are collected to get a suitable
distribuiton of ion flight times. The total rate of radiation of a charge moving in a

circle of radius R with constant angular velocity « = Rw is (8)

aw g?u? 1
dt T 6meec® (1 - u?/c?)’ (17)
2.2 4
g (W
- 67!’5003 (Wo) ' (18)

where W is the relativistic energy: W = Wy/\/T=u2/c? and W, is the rest cnergy:
Wo = moc®. For slow-moving ions (u/c « 1), we can approximate the relativistic
term with a binomial expansion (8). After neglecting terms higher than +?/¢2, the

relativistic term becomes

16

The relativistic energy is now

wew, (142
= (+2—2) !

1’72()‘(12

o (19)

~

= moc2 +

Since u = Rw, then
4 2 9\ 4
VN o (14 B
Wo 2c2

Therefore, rate of energy change from Equation (18) is

2,,2\% 2 2
W _ (1 By C(Re) (20)
dt 2c? 6megcd

The temperature is introduced by equating the ion’s average velocity to R?/w? =

2kpT/mo where kg is the Boltzman constant, T is the ion’s temperature, and myq is its

m : o 1 .
mass. The rate of energy 1oss 1s now

.dﬂ—_. 1+kBT 4‘12(1&4)2
di mpc? 6meqcd

Since the cyclotron frequency for this physical situation is w = ¢B/mg, we can finally

derive an expression for the rate of energy loss in terms of temperature

aw (1 kBT>" q¢*B%ksT

= . 2
dt moc?) 3megcPm 1)

17

However, we want the change in temperature over tirne d7/dt (9). From Equation

(19),

dw _ . dT
d ~ Ba

keT * ¢*B?kpT _, dT

B (l + mocz) 3meocdm3 kBTit—

So our desired result is

4 anp?2
dT__<l+kBT) ¢*B*T (22)

dt moc? /] 3mepctmy

If we let A = —(¢q*B?)/(3meoc®m)?) and B = kg/(moc?), then the differential equation

to solve is

dT
- =AT(1+ BT)* . (23)

The Macintosh symbolic math software Maple (10), provided a numerical solution
to Equation (23) using the appropriate A’s and B’s for protons and electrons. For
protons, A = -2.50 x 10-1% and B = 9.17 x 10-14_ The time for them tc cecl from
1000K to 10K is 1.85 x 10'° seconds which is approximately 600 years (!). For

electrons, A = -1.54 and B = 1.68 x 10~!°, The time for them to cool from 1000K to
10K is 3.0 seconds.

CHAPTER 3
Integration Algorithms

Setting Up the Equations of Motion

Newton’s second law describes the kinematics of each ion’s motion as

il
3 l._-
o
~
It}
=
b
g
i

a0= B o (24)

where @ is the ion’s acceleration, ¢ is the time, F is the net force, 7 is the ion’s position,
7 is its velocity, and m, is its inertial mass. Since Newton’s differential equation is
second-order in position, it is usually separated into two coupled first-order equations

to apply computer integration algorithms to solve for each ion’s motion

iy = £

n=20 (25)
and
q(l) = d’;ﬁ’) . (26)

Because the acceleration is known from Equation (24), and the force from Equa-
tion (1), we substitute these into Equations (25) and (26) to construct the equations

of motion

19

din (t) _ .

— =M (27)
di, (1) _ Gn I 5
T—m—m(“”"xB) : (28)

Consequently, each ion’s position and velocity can be calculated by applying
integration algorithms to Equations (27) and (28). Note that since the motion is
calculated for three dimensions (z, y, z), we have six first-order equations for each
ion. This study is concerned with the motion of three particles; therefore, eighteen

first-order equations must be integrated for each time step.

The Verlet Algorithm

The first attempt at integrating the equations of motion: Equation (27, 28) was
with the Verlet algorithm. This algorithm is commonly used in molecular dynamics
simulations. The positions and velocities at each timestep are computed using the

following iteration scheme (11)

1
Tyl =Ty + vth + -2-a¢h2 (29)

1
V41 = U+ §h (ac +aeg1) (30)

where h (= At) is the size of the integration time step. The derivation for the Verlet
algorithm is described in Appendix A. The scheme works by first calculating the
new position, then updating the acceleration using this new position, and finally the
velocity is calculated using both the old and the new acceleration. The following

pseudo-code illustrates these steps.

20

SUB Verlet (z, v, a, aca, h)
Define (force) function f.
ze—z+vsh+rage*h?
a — f(z,v)
v4—v+-§-*(a+a°|d)*h

END Verlet

Since the new position z,4; is computed using the acceleration a; and the velocity
v;, the Verlet algorithm is higher order in A than the more commonly-known Euler and
Euler-Cromer algorithms. The global truncation error for Verlet is of order 3 for the
position and of order h? for the velocity. A better way to implement this algorithm to
handle situations when the forces between the particles are very large and the time
steps very small is to partially update the velocity using the old acceleration (11).

The following pseudo-code illustrates this idea.

SUB Verlet (z, v, a, aqa, k)
Define (force) function f.
z—z+vrh+] xang*h?
ve—v+Sragaxh
a — f(z,v)
vev+ixaxh

END Verlet

The Runge-Kutta 4 Algorithm

Computer integration schemes are usually applied to first-order equations of the
form

dr -
E - g(f’,t))

for which the solution of # as a function of t is desired.

21
The best-known Runge-Kutta integration scheme is the fourth-order Runge-Kutta
method (RK4). In this scheme, the function g (,) is computed four times within each
time step to produce four intermediate values ki, k2, k3, and k;. These values are then

weighted and summed to complete the integration step (12):

kl = hg (tn, Fn)

ko=nh i+lhi’ +lk

2 = hg n 9 1in 2 1

ks=nh t+lh"+lk

3= NG {in 5 1 Tn 22
1, |

ks = hg (tn+'2‘hrrn+k3)

. . 1
1 =Tntg (ky 4 2k2 + 2k3 + kg) . (31)

The global truncation error for RK4 is of order h* and the local truncation error is of

order h®.

The Bulirsch-Stoer Algorithm

Again, we wish to solve the general function

d7
—_= r 1
it A

for 7. The Bulirsch-Stoer (B-S) method is based on a Richard Extrapolation scheme
in which the step size H is divided into n smaller and smaller sub-steps h (= H/n).
Each integration step is performed several, perhaps many, times in an iterative fashion
by probing g (7,t) with different values of h as h goes to zero. The modificd midpoint

method is used to calculate dF/dt within the subintervals of H to solve for the area

22

under the curve of the function and to estimate 7, the value of 7 at t + H. Next, H
is subdivided into additional smaller regions, and the integration is performed again
to get a second estimate for 71 7. As n is increased, H is divided into even smaller
regions to provide more accurate values #,. When enough estimates are available,
an extrapolation rule is used to estimate what 7., (i.e. the value of 7 for an infinite
number of sub-steps) would have been had h been permitted to go to zero. This 7,
is our final “true” 7. At this point, the algorithm has completed one step forward
in time and is now ready to begin the process all over again during the next time
interval (13). The modified midpoint rule is used for integration during each sub-step
because its error terms contain only even powers of h. This means that we can gain

two orders of magnitude in accuracy by only halving the current time step (14).

The extrapolation rule used to estimate #, fits the function g (7,t) to a particular
analytic form. Bulirsch and Stoer use a rational function of two polynomials of &,

e.g.,

AR P6+P’1h2+P'2h4+...+p;h2"
T = o o ipon
o+ aih?+ ki 4+t qhh

where i denotes the sequence of different (smaller) sub-step sizes, and p and ¢ are the
coeflicients of the two polynomials. The advantage of using rational functions is that
such extrapolations can remain good approximations to analytic functions even after
the various terms of powers of h all have comparable magnitudes. In other words, h
can be so large as to make the whole notion of the “order” of the method meaningless,

and the method can still work superbly (14). Bulirsch and Stoer (15) recommend the

23
following set of recurrence formulae to compute the rational function extrapolation

values

i, =0
T3 =T (hi,7)

k>1 2
_mhen T S 2
TR

—~
e
F
»
N’
N
——

where k indicates the number of terms desired in the rational function. The elements
Ti can be arranged in a table, illustrated in Figure 4, in which the first column is used
to get the recurrence started, the second column contains the values of the function
calculated by the midpoint rule for different h’s, and the third and subsequent

columns are calculated by the recurrence relation (Equation (32)).

“G) w(®
S B
iy “ omE
T:;« M LR
i w(z) w(E)

Used to get recurrence started

SR

=g(7 k,?) from Midpt.Rule __; .
g, R) P =T.7 by recurrence relation

Figure 4. Recursion Elements in the Bulirsch-Stoer Algorithm.

We work through this table by trying a set of k’s in column two, calculating the T’s by

the midpoint rule, and then extrapolating. The extrapolation returns error estimates,

24

and if the errors are not satisfactory we try a new h by stepping down one row in the
second column and repeating the previous step. In effect, each new result from the
sequence of midpoint integrations extends the table by adding one diagonal. Since
the extrapolation gives us the closest approximation to 7, the error estimates can be
calculated by comparing two successive approximations of T' within the same time
step (i.e. in the same row). The process is stopped (and the current value of 4 is
accepted as a sub-step size), when the two approximations are within a user-defined

value eps which is input to the integration program.

The utility of this method depends upon its computational cost. Each forward
step of size H is much more complicated to perform than that of the classical Runge-
Kutta, Verlet or Euler-Cromer integration methods. In addition, each step requires
many more evaluations of each differential equation. Therefore, use of the B-S method

can only be justified when it takes significantly fewer steps to produce the desired

results.

Comparison of Integration Methods

The three integration methods mentioned above were compared by insertion into
the computer program Colliding Ions (introduced in Chapter 5) in which the interac-
tion of three charged particles moving within a constant magnetic field is simulated.
The initial conditions were those for “Case 1,” listed in Table 2 of Chapter 6, and
the stopping criterion was when the outer ions were at 1.1 times their initial separa-
tion. The simulation was performed once for each of the Verlet, Runge-Kutta 4, and
Bulirsch-Stoer methods, and the relevant differences between each run of the program

are presented in Table 1.

25

Table 1. Comparison of Integration Methods.

Test Verlet Runge-Kutta 4 Bulirsch-Stoer
Run time (min) 42 43 37
Simulation time (sec) 5.53x10-¢ 1.10x10-® 1.09x10-°
Step size (sec) 5.00x10-1° 1.00x10-° 1.83x10-8
Number of steps 11,060 11,000 738
Energy change (percent) 1.17x108 -0.36 0.28

All simulations were performed on a Macintosh Ilcx computer, which includes a
floating point hardware chip. The Verlet simulation could not be completed, as it
exhibited numerical instability during the first third of the run, so that the values in
this column of the table are extrapolated from the run prior to the onset of instability.
The step size for the Verlet and Runge-Kutta 4 methods was a constant, while that
reported for the Bulirsch-Stoer is the average value of the variable step size chosen by
the routine. Note that while the run time and accuracy of the RK4 and B-S methods
are almost equivalent, the RK4 method performed almost 15 times as many iterations.
Also, an order of magnitude difference in step size was required so that the RK4
method produced roughly the same accuracy as the B-S method. The Verlet method
was unsuitable for this simulation, as an additional order of magnitude reduction in
step size (and consequent increase in number of steps and run time) would have been
required to eliminate the numerical instability. The energy change indicates how well
the total energy was conserved during the run, and is calculated as the difference in

total cnergy over the run divided by the initial total energy.

CHAPTER 4
Variable Time Step Methods

As discussed in Chapter 3, two other integration methods (Verlet and RK4) were
attempted before the B-S method was used. Both of these methods use a fixed time
step, so that computing all of the z, y and z particle positions and velocities using the
small time step required for accuracy within the closest region of interaction would
have taken an inordinate amount of computing time. Therefore, a variable time step
method was needed to economize on the computational resources. In the first of such
methods, only the ions’ z motion was computed until some physical quantity indicated
that the ions were close enough to strongly interact. At that point, the full z, y and =
motions would be calculated. The physical quantities used to indicate when to begin
calculating all three coordinate positions and velocities were 1) the relative particle

velocity changes and 2) the magnitudes of the electric and magnetic forces between

particles.

The scheme for using the relative velocity changes of the ions to alter the step
size was: if the velocity change for any of the ions was less than one one-hundredth
of a percent, then the time increment was increased by a factor of ten (At $10-° sec),
and the zy motion was not calculated. Alternatively, if the change was greater than
a percent, then the time increment was decreased by a factor of ten (At £10-!2 sec),
the simulation was backed up by a single time step, and the z and y positions and

26

27

velocities were calculated. This scheme, unfortunately, did not allow the particles to
approach very closely to one another before beginning the z and y motion calculations,

so that a large amount of unnecessary computation was almost always performed, and

this method proved unsatisfactory.

The second variable time step scheme was sensitive to the magnitudes of the
electric and magnetic forces between particles. In this scheme, three conditions de-
termined the value of the time step. If the electric force magnitude was greater than
or equal to a constant (“K”) times the magnetic force magnitude, then the simulation
would revert by one time step, would set At to a small value such as 10-° sec, and
then calculate all three cartesian positions and velocities. If this condition was not
true, then the time step was increased by a factor of ten (At $#10-% sec), and only
the z positions and velocities were calculated. Finally, if the ions repelled or passed
by one another, the simulaticn would go back a time step, set At to a value such as
10-° sec, and then calculate all three cartesian positions and velocities until the par-
ticles were farther apart than their initial separation. One difficulty with this scheme
was that the two forces were often different by many orders of magnitude, and that
these differences were directly related to the initial velocities of the ions. It therefore
became necessary to empirically determine an appropriate value for K based on the
initial velocities, so that all of the z, y, and z motions could be computed when the

particles were near to one another. With this caveat, this scheme proved to be too

cumbersome to be effective.

The beauty of the variable time step algorithm embedded in the B-S method is
that it can automatically make fine adjustments to the time steps (by 5-20 percent)

based on the strength of the forces between the ions. The two previous attempts at a

28

variable time step method provided only crude adjustments of an order of magnitude.

CHAPTER 5
The Program Colliding Ions

The ions’ motions were numerically simulated with a computer program I wrote
called Colliding Ions. This program was written with the compiler Think Pascal (16)
and runs on a Macintosh computer. Appendix B contains the listing for the main
procedure in Colliding Ions. This program calculates the positions and velocities for
n charged particles trapped in a constant magnetic field. The positions and velocities
are computed by integrating Equations (27, 28) which are, in turn, derived from the

Lorentz force: F = ¢(E + 7 x B). The electric field is calculated from Coulomb’s Law,

E‘(,-,): 1 % g (F_ Fﬂ)
47!'80 =1 IF—ﬁIa

Since the Lorentz Force satisfies the superposition principle, all of the forces are
added for each charged particle. In addition, since Colliding lons computes cartesian
position coordinates: z, y, and z and the cartesian velocities: v,, vy, and v,, eighteen
first-order equations are integrated for the three charged particles. The first-order
equations are integrated using the Bulirsch-Stoer integration scheme described in
Chapter 3. Colliding lons reads the necessary initial values from an external file
called CollidinglonsIn.text. The file contains necessary parameters for the three-
dimensional graphics such as look angles, pitch, yaw, roll, focus, size of the axes,

magnification for the points, pen patterns for the points and screen background, plus

29

30

the necessary parameters for the Bulirsch-Stoer scheme such as time, time step, eps,
the maximum number of columns to use in the extrapolation table, and the maximum
number of time steps to try for each step. And, above all, this input file contains
the physical parameters for the charged particles such as initial position, velocity,
charge and mass. The output of the program is to the screen in the form of a three-
dimensional plot, and to three files that contain the computed positions, velocities,
and energies for each time step. Appendix C furnishes the CollidinglonsIn.text file
for one set of initial conditions, Case 1 listed in Table 2, as an example. The program
interface is a fully implemented Macintosh interface with a special borderless window

and menu commands that tell the program when to start, stop, or resize the window.

CHAPTER 6

Results

Sixty-three cases with different initial values were run using the Colliding Ions
program. All of the cases tested the dynamics of an ion moving up a magnetic field
line (particle 1), an ion moving down a field line (particle 3), and a third ion (particle
2) placed in the middle given a slight velocity downward. Figure 5 illustrates the
initial dynamics. All three jons had the same mass and charge of 1.673 x 10-27 kg
and 1.60 x 10-'® coulombs, respectively, to simulate proton interactions. I varied the
initial = separation of particles 1 and 3 so that it ranged from 10-3-10-° meters in

order to learn how the resulting motions and kinetic energies changed as a function

of particle density.

The initial values for the cases in this study were designed to test the dynamics of
relatively siow-moving ions. Their initial z separations and v, velocities were chosen
to illustrate a close interaction between the three ions without too much computation
time. Each case took 45~75 minutes on a Mac IIx computer. If the ions were given
a fast velocity towards each other, then they would have been more likely to slip by
each other with very little interaction. If the ions were given a much slower velocity
toward: each other, then the computation time would have taken at least an order
of magnitude longer. The initial z separation between particles 1 and 3 of only 10-3
meters allowed the interaction between the three particles to happen fairly quickly.

31

32
If we placed the particles further apart at > 0.1 meters, then the computation would
easily have taken days or weeks for each case. If, on the other hand, we placed them
closer together, then we would have run into the danger of failing to determine the

full exchange between the rotational and z-directed kinetic energy.

From the sixty-three cases, ten cases were sufficient to demonstrate all of the
interesting dynamics. The ten cases were selected so that the z initial positions of
the outer two particles (Ions 1 and 3), were symmetric about 0. We only varied =z
because, by symmetry, changes in initial z and y should produce equivalent results.
This assumption was tested and proved correct with thirteen out of the original sixty-

three cases. Tables 2 and 3 list the initial positions and velocities of the ten sample

cases.
z
Particle 3
Particle 2 ?
y \
Particle 1
X
Figure 5. Initial Dynamics for Three-Particle Cases. The magnetic induction

B is constant and equal to 2 tesla in the z >0 direction. Particles 1 and 3 are each
given a v, of 100 m/s towards each other. And to start the dynamics with an initial
rotational velocity, particle 1 is given »,=100 m/s, and particle 3 is given v, = 100
m/s. Particle 2 is only given a v, = 1 m/s downward. All three have the same
mass and charge of 1.673 x 10-27 kg and 1.60 x 10-1° C, respectively. The initial =
separations of particles 1 and 3, the v, velocity of particle 1, and the v, velocity of

particle 2 (middle one) were varied to learn how the resulting motions and kinetic
energies changed.

33

Each of the sixty-three cases ran until the separation between the outer particles
was 1.1 times their initial separation. The conservation of total energy for all cases
was excellent, ranging from 0.0008 percent to 0.8 percent. The average relative total

energy change was 0.00281 % 1.47x10-5.

Table 2. Initial Positions for Ten Sample Cases.
Run Jon 1 Ion 2 Ion 3
Label (z,y,2) m (2,9,2) m (z,y,2) m
Case 1 (0,0, 0) (0,0, 5.0 x 10~*) (0,0, 1.0 x 1073)
Case 58 (-3.0 x 10-7,0,0) (0,0,5.0 x 10-*) (3.0 x 10-7, 0, 1.0 x 10-3)
Case 59 (-1.0 x 10-5,0,0) (0,0,5.0 x 10-*) (1.0 x 10-5, 0, 1.0 x 10-3)
Case 60 (-3.0 x 10-5,0,0) (0,0,5.0 x 10-%) (3.0 x 10-5, 0, 1.0 x 10-3)
Case 61 (-1.0 x 10~%,0,0) (0,0,5.0 x 10-*) (1.0 x 10-5,0, 1.0 x 10-3)
Case 62 (-3.0 x 10-%,0,0) (0,0,5.0 x 10-%) (3.0 x 10-5, 0, 1.0 x 10-3)
Case 63 (-6.0 x 10-%,0,0) (0,0,5.0 x 10-%) (6.0 x 10-%, 0, 1.0 x 10-3)
Case 50 (-1.0 x 10-4,0,0) (0,0,5.0 x 10-%) (1.0 x 10-%, 0, 1.0 x 10-3)
Case 51 (-5.0 x 10-%,0,0) (0,0,5.0 x 10-%) (5.0 x 104, 0, 1.0 x 10-3)
Case 52 (-1.0 x 1073, 0,0) (0,0,5.0 x 10-7) (1.0 x 10-3, 0, 1.0 x 10-3)
Table 3. Initial Velocities for Ten Sample Cases.
Run Ion1 Ion 2 Ion 3
Label (vesvy,v:) Mfs (vzyvyyv:) m/s (vzyvy,v:) m/fs
(All Ten Cases) (100, 0, 100) (0,0, -1) (0, 100, -100)

34

Motion

The ten sample cases demonstrate how the particles interact with each other when
the outer two ions (particles 1 and 3) are initially placed along the same field line,
and then, symmetrically in z, moved gradually further apart. The outer two ions
have the helical motion described in Chapter 2. The middle particle initially has no

cyclical motion, but the torques imparted by the outer two gives it one after a few

iterations.

The ten cases can be classed into two kinds of behavior. The first five (Cases
1, 58, 59, 60, and 61 listed in Table 2) show the first kind of behavior. In this,
particles 1 and 3 move towards each other, gradually slow down, then repel. The
middle particle, like the top ﬁarticle, also moves towards the bottom ion (particle 1)

and repels. However, it then picks up speed and repels from the top ion.

The last four cases (Cases 63, 50, 51 and 52 listed in Table 2) demonstrate the
second kind of behavior. In this result, the outer particles do not repel from each
other. They only slow down and then continue on their original path. The middle
ion in Cases 63 and 50 still repels from the bottom and top ion as before, but then

in the last two cases (Cases 51 and 52) it also continues on its original path without

repelling.

One case has not yet been discussed, and that is Case 62. Its behavior falls
appropriately in the middle of the two classes described above. In this result, Ion
3 and the middle particle, Ion 2, switch places, so that Ion 3 becomes the middle
particle. All three particles repel with Jons 1 and 2 repelling from the middle Ton 3,

and the middle Ion 3 repelling from the two outer ions.

35

Figures 6 through 15 illustrate the three-dimensional paths and z-direction veloci-
ties for the ten sample cases. I chose to plot the outer Ions 1 and 3 on the same graph,
so as their initial separation increased, the z and y axes in the subsequent cases had to
be stretched to accommodate the two ions. This is the reason the three-dimensional

paths for the last several cases do not show the ions’ gyroscopic motion.

Gyroscopic Radius

We utilize the computed zy positions of all three particles to check the theoretical
R, value of Equation 2 by first examining the gyroscopic radius of the outer ions:
particles 1 and 3. The theoretical value for both Ions 1 and 3 is 5.228 x 10~7 meters.
Since the R, was derived based on the dynamics of a single ion spiralling along a field
line, we would expect the theoretical value to hold initially, and then, perhaps much

later, when no other interactions are occurring,.

For the ten sample cases, a rotational radius r(t) for each particle was calculated
for each (z(2),y(t)). The average of those r(t)’s (=R) is illustrated in Figures 16 and
17 for Ions 1 and 3, respectively. The first few points of R = 5.19 x 10-° m are
reasonably close to the theoretical value. They are slightly less, perhaps due to the
interaction with the middle particle. Then the radius values, as a function of |z
separation between the outer ions, traverse through a regime where large excursions
in the radius occur, resulting in large error bars. A plausible explanation for this
is discussed below. Then, finally, the radius values stabilize at R = 5.226 x 10-°* m

which is almost exactly the theoretical gyroscopic radius.

36
Particles 1&3 Case i Particle 2

~
§
N
=
100 150,
]]
lon 1] : fon3
504 1004
G o] @ 50l
E] E
N 503 N]
> 50‘ > 0
1003 503
150 -100.]
Time fime
lon 2 5
42
@]
E o
~N :___,_.._..'-/
> 5]
-4
o]
time
Figure 6. The three-dimensional paths and :x-direction velocities for Case 1,

where initial |z| = 0. The upper left plot show the paths of lon 1 (white) and Ion 3
(black), while the upper right plot shows the path of lon 2. The bottom three graphs
illustrate the z-direction velocities for Tons 1, 3 and 2 respectively.

37

Case 58

Particle 2

Particles 1&3 %
2. 0005
0.0005 1. 0.00g a5
Songg ot Q0g°
' 0 =~
{ 2009, 0 w25 Foos &
0 005002 007
0.%3 0! 5 0.00015 N
&2 g o:ggm o301
: N 008 0005
0 o0
s 2 o S
S5 el %.-.b%;q;ro S e o
s i e ~
100 150,
lon1 *%3 1993 lon3
@ n: @ 50.5
E E
5 = 3 o
-1C04 -50..
- : -100.
10 Time " 1ime
I3
.
4.4
on2 7“3
E o]
~ }———
> _2_:
]
Time

Figure 7. The three-dimensional paths and z-direction velocities for Case 58,
where initial {z] = 3.0 x 107 m. The upper left plot show the paths of Jon 1 (white)
and lon 3 (black), while the upper right plot shows the path of Ion 2. The bottom
three graphs illustrate the z-direction velocities for Ions 1, 3 and 2 respectively.

38

Particles 1&3

Case 59 Particle 2

p 0.
0.0W B ooms
Ll g
A - 0.00¢
oo -
00002 P § %2 g
00001 0.0001 N
o B 0
07
<% <%
- -
J—% q?qb‘bna% -~
100 150
lon 1 50 100.]
]] llon 3
w o0d w» s0d
E] E
3 50 NS
100-% -50-:
150 - -100J -
Time Time
p A
4
fon 2]
2]
(-
Ec'
N :_.__-—/
= 2]
<]
Time

Figure 8. The three-dimensional paths and z-direction velocities for Case 59,
where initial [z] = 1.0 x 10~¢ m. The upper left plot show the paths of Ion 1 (white)
and Ion 3 (black), while the upper right plot shows the path of Ion 2. The bottom
three graphs illustrate the z-direction velocities for Ions 1, 3 and 2 respectively.

39

- Case 60
Particles 183 ‘tinlg> Particle 2

3 0.0g
o.odﬁ 0 %
oow4 ge 3 0.0004
oy | %oy
00% S0, R
o,owz ™0 2 \E"
0001 ‘0001 N
0. 0 0
S5
S
@6"6"‘,
T S
100 150
: b
- 1004
font % ; lon 3
o n: @ 50":
E] E]
5 =] S
-100.: -so-:
150 Time @ Time
6
3 .
4.
fon2 A
/\2-
@]
E o]
n —
> 2_3
N Time

Figure 9. The three-dimensional paths and z-direction velocities for Case 60,
where initial |z] = 3.0 x 10~ m. The upper left plot show the paths of lon 1 (white)
and Ion 3 (black), while the upper right plot shows the path of Ion 2. The bottom
three graphs illustrate the z-direction velocities for Ions 1, 3 and 2 respectively.

40

Case 61

Particles 1&3

100 150
:]
lon1 50 100 lon3
Té? 0 ’g 50.]
N .50 N .
> 507 S 9
1003 50-:
-1503 -100
Time Time
6
.- 3
ion 2]
4.
2]
2
E o]
~ -
>~2_'_
4]
5 -
Time

Figure 10. The three-dimensional paths and z-direction velocities for Case 61,
where 1nitial |z} = 1.0 x 10~% m. The upper left plot show the paths of lIon 1 (white)
and Ion 3 (black), while the upper right plot shows the path of Ion 2. The bottom
three graphs illustrate the z-direction velocities for Ions 1, 3 and 2 respectively.

41

Particles 1&3 Case 62

Particle 2

100 0
: -10 3
lont] lon3
] -20 3
50.] o
g] B 403
E‘ 0 E -50 3
N] N .god
> J > 50‘
] -703
-850 3
; 80
1 be
-100 r -100 3 _
Time Time
120
on 2]
100 3
803
2 o
N 403
>]
20
[4]
203
Time

Figure 11. The three-dimensional paths and z-direction velocities for Case 62,
where 1nitial |z| = 3.0 x 10-% m. The upper left plot show the paths of Jon 1 (black-
right side) and Ion 3 (black- left side), while the upper right plot shows the path of
Ion 2. The bottom three graphs illustrate the z-direction velocities for Ions 1, 3 and
2 respectively.

42

Case 63
Particles 1&3
Particle 2
g 0.00
! 3. ~00g
O%g : : 0.00025
005004] - 0300
%00’5 o 035
00203] 0003
g 0%sf o025 &
N °'°882°2 oole N
N 0015 Q0935 N
X oo
0. 009
0.00005 = 05
‘o, o,‘."b%% a” o QQ'@@fg Q':PQ z\d”
TR e TR
-4
[+}
o lon3
s
@]
E w04
~]
p > -80] A
203 -100.3
0.1 120 h
Time ! Time
1
lon2 |
o] o
@ :__’/
E]
N
>]
2]
- Time
Figure 12. The three-dimensional paths and :z-direction velocities for Case 63,
g P

where initial |z] = 6.0 x 10~ m. The upper left plot show the paths of Ion 1 (white)
and Ion 3 (black), while the upper right plot shows the path of Ion 2. The bottom
three graphs illustrate the z-direction velocities for Ions 1, 3 and 2 respectively.

43

Case 50

Particle 2

%

<

R

e

0
204 lon3
]
7 7 = 7
~ -~ :
E o0 é 60
N 4 N 4
2 403 > .s0]
20-: -1w.:’__-__‘—-//\‘~~
o]
- -120. -
Tzrnoe Time
0.2
lam D 3
INJEN & _04_:
0863
® 3
E 0.8
— p
N VS
= 123
1.4
163
1.8 -
Time

Figure 13. The three-dimensional paths and z-direction velocities for Case 50,
where initial |z] = 1.0 x 10-* m. The upper left plot show the paths of lon 1 (dark-
grey right) and Ion 3 (black left), while the upper right plot shows the path of lon
9. The bottom three graphs illustrate the z-direction velocities for Ions 1, 3 and 2
respectively.

44

Case 51

Particles 1&3

Particle 2

4

.op_op.cgfgg.cgp
e

g
e

FEE,
B(ms
U\%

1
&2 ogg?,m
l !
- 000
a5
<X
3>
P
- R
120 0
< E
lon1 100 -20 3 lon3
. 804 403
] p ® 3
E 60 E -60-:
N] N]
> a0 > 0]
204 1 _‘
-120. .
0 Time Time
0
lon 2
0.2
__0.4]
]]
Eo 63
N
> o8]
R
1.2 -
Time

Figure 14. The three-dimensional paths and :-direction velocities for Case 51,
where initial |z| = 5.0 x 10-* m. The upper left plot show the paths of lon 1 (dark-
grey right) and Ton 3 (black left), while the upper right plot shows the path of Ion
2. The bottom three graphs illustrate the z-direction velocities for lons 1, 3 and 2
respectively.

45

Case 52

Particles 1&3

Particle 2

o
T YT I VR AR DAY
1000, 209 W R 1022 A

-~

2,
F=Saair=Y

....ooo*'.o.,

\) N
NEARN

o*’o’

Time

(]
| =4
o
[+
E
=
e § ¢ 8 8§ 8 &
(snw) ZA
[~
[+]
E
=
A
g 8 8 8 ¢ & °©
{snu) zA

lon 1

lon 2

direction velocities for Case 52,

(dark-

ht plot shows the path of lon

lot show the paths of Ion 1

Ions 1, 3 and 2

direction velocities for

o0
X =
] b=
g >
S A
n g
= &
588
A e 2
e
aune
neht
Lazg
& £ el
&g I w
U . 3
EERE
o9 x4
ga g
r.lhmw
S xE 8
OO
EELE
-3
nes
g
sEEE
l.lﬂmauw
0SS0
e TS0
UD‘W.O
LY gD
i
& >
=g .
2 B0

respectively.

46

6.6 |0'7 TSI | PEEENETY | L sxaanl sz sazanyl

4 L
6410 -

6.2 1073 -
6.0 1077 -
581074 1 -

56107 -
54107]

5210‘7{ $ % ¢ * {*

5010'7:I et —T—T—rrrr

1077 06 107 0.0001 0.001 0

R of fon 1| (meters)

o Frrrrr

Initial log IX| (meters)

Figure 16. Rotational Radius R vs. Initial |z| Separation of Ion 1 for Sample
Cases. The last R = 5.226 + 0.0846 x 10~-"m is very close to the theoretical R, =
5.228 x 10-"m.

8.0 10-74 NI BRSSPI B R ISPy |
70107 s
i] [
2] [
E 60107 -
2} L [
§ sont ¢ @ % € a
s] ;

401071 u

3.0 1077 ST e P

10 10 10 0.0001 0001 0.01

initial log IXI (meters)

Figure 17. Rotational Radius R vs. Initial |z| Separation of Ion 3 for Sample
Cases. The last R = 5.226 + 0.0848 x 10~"m is very close to the theoretical R, =
5.228 x 10-"m.

47

We explored the variation of r(t) by examining three cases: 1) where the outer
particles were on the same field line (Case 1); 2) where the outer particles were on
nearby field lines (Case 61); and 3) where the outer particles were on distant field lines
(Case 52). These cases are represented in Figures (18, 19, 20). For Figure 18, Ions 1
and 3 were spiraling along the same field line. They interacted by smoothly repelling.
Ion 1’s gyroscopic radius was, however, permanently altered by its encounter with the
middle and/or top particle. Its orbital radius for the first 200 iterations was 5.2261

+ 0.0578 x 107 m. For the last 200 iterations its orBita,l radius was 5.1622 + 0.0348

x 107 m.

Figure 19 represents another scenario. They were on nearby field lines, separated
by 10-% m. They also repelled each other, but at closest approach, they started
greatly perturbing Ion 2’s and each other’s orbit before moving apart. For the first
100 iterations, Jon 1’s orbital radius was 5.2506 + 0.862 x 10-7 m. During the middle
30 points, its orbital radius was 5.1959 + 0.264 x 10-7 m. And during the last 100
iterations, lon 1’s orbital radius was 5.2158 + 0.786 x 10~7 m. So the net effect was

during Ion 1’s encounter with particles 2 and 3 was to only slightly reduce its orbital

radius.

Figure 20 represents the other extreme from Figure 18. In this figure, Ions 1 and
3 were initially on field lines far from each other: 10~ m. None of the three particles
was repelled from each other and they continued on their original path. Ion 1 only
interacted enough with lon 2 to have its own orbital radius slightly decreased. Its
orbital radius for the first 200 iterations was 5.1339 + 0.687 x 10~7 m. And during

the last 200 iterations, Ion 1's orbital radius was 5.1337 + 0.688 x 10-7 m.

The gyroscopic radius of the middle particle was the least interesting because its

48
theoretical value is 0. In a few iterations, the outer particles started imparting a
torque on it and the middle ion began a circular trajectory. We illustrate this with
Case 1 in Figure 21 when the initial positions for all three ions were along the same
B-field line. In the simulation the orbital radius was 0 until ~ 8 x 10-° sec. Its radius

of orbital motion then gradually increased until it stabilized at ~ 2 x 10-8 m.
5.50x107
5.45x107

g 5.40x107

@ 5.35x1073

1<

7 5.30x107

% 5.25x10°7

E 5.20x107

Q- 5.15x107

O L. 7

o 5-10x10
5.05x107
5.00x1077=
8.00x107
7.50x107

@ 7.00x107

)]

T 6.50x107

E 6.00x107 3

o

o 550x107 3

© L

£ 5.00x10

3.00x107 4
o
o

Time (seconds)

1.097E-05

Figure 18. Rotational Radius R vs.Time for lons 1 and 3 on the Same Field
Line (Case 1).

49

6.50x107
__6.00x107

5.50x1077

L

1 (meters

5.00x1077

£ 4.50x107 -4l

4.00x107

R of Particle

3.50x107

3.00x107
7.00x107

6.50x107 3

—

e .
@ 6.00x107 3

QO
E 5.50x107
o
2 500x107
_O

LS T v B e - n

Time (seconds)

1.097E-05

Figure 19. Rotational Radius R vs.Time for lons 1 and 3 on Nearby Field Lines
(Case 61). The initial |z| separation between those ions is 10-5 m.

50

5.50x107
5.45x1077
5.40x107 3
5.35x1077
~ 5.30x107
5.25x107
5.20x107
5.15x1077 il |
5.10x10-7 g a{eT SR st IR
5.05x1077

5. 00x10 73
5.50x1077

5.45x107 3
@ 5.40x107
S
@ 5.35x1077
£ 7
P 5.30x10
9 525x107
S

5 20x107 1

5 15x1077
GE 5.10x10”7 ii's

5.05x10”7

5.00x1077

meters)

R of Particle 1

n “"”"” m"“r ” v T it L T R A G

S Time (seconds)

1.291E-05

ure 20. Rotational Radius R vs.Time for Ions 1 and 3 on Distant Field
Lines % Case 52). The initial |z| separation between those ions is 103 m

51

2.50x108

-

-
-
o

2.00x10°8

= 8]
~ 1.50%10° -

meters

1.00x108

5.00x10°

R of Particle

Time (seconds)

0.00x10°

0.0
2.42E-05

Figure 21. Rotational Radius R vs.Time for Ion 2 on the Same Field Line
(Case 1).

Gyroscopic Period

We again utilized the computed zy positions of the particles, but this time to check
the theoretical P, value of Equation (5). Since the equation assumes no dependence
on velocity and contains quantities that are all constants in this simulation, the
gyroscopic period for all three particles is 3.285 x 10-2 seconds. The periods were
empirically found from the data by noting when the zy positions of the particles have
gone through a complete cycle. This proved to be somewhat difficult because the
B-S method employs a variable time step. So the oscillatory path of each particle is
sampled at uneven times, and it is up to the experimenter to decide which zy valucs

show a complete cycle. Figures 22 and 23 illustrate the difficulty. Figure 22 shows

52
the gyroscopic cycle when the motion is computed with a fixed time-step scheme:
the Verlet algorithm. The motion is smooth and it is very straightforward to find
the completion of one cycle. Figure 23 shows the gyroscopic motion with a variable
time-step scheme: the B-S algorithm. The graph demonstrates that each cycle is

sampled, at most, three times.

0001000012 T
000100001
09001000000 <+
0001000006

0001000004

Position (M)

0001000002 -+

0.001

0000992930 t t t

0 -] 10 15 20 25 30 k=3
Iteration Number

Figure 22. Gyroscopic Motion from a Fixed Time-Step Scheme: the Verlet
Algorithm. The cycle here is sampled many times for the experimenter to empirically
compute the gyroscopic period.

With this caveat, the periods were empirically checked for the same ion and cases
illustrated in Figures (18, 19, 20). For Case 1 (Figure 18), the period was computed
at the beginning and at the end of the run. At the beginning, the period was 3.2900
+ 0.0267 x 10-8 s, and at the end of the run it was 3.37200 + 0.123 x 10-8 s. So the
period has increased. Physically this makes sense because conservation of angular

momentum would require that when the period increases, the radius decreases.

53

0.0000112 T

0.000011 +

0.0000108 4

0.0040106 T

Posttion (M)

0.0000104 +

0.0000102 +

0.00001 ' : : ' : ' i
o 5 10 15 20 25 3 3B
iteration Number

Figure 23. Gyroscopic Motion from a Variable Time-Step Scheme: the B-S
Algorithm. The cycle here is sampled, at most, three times for the experimenter to
empirically compute the gyroscopic period.

For Case 61 (Figure 19), the periods were checked at the beginning, middle and
end of the run. At the beginning, the gyroscopic period was 3.155 + 0.254 x 10-8
s. In the middle of the run, the gyroscopic period was 3.141 + 0.495 x 10-8 s. And
at the end of the run, the gyroscopic period was 3.274 + 0.410 x 10-2 s. So for this

case, the data slightly supports an increase in the period.

And finally, for Case 52 (Figure 20), the periods were checked at the beginning
and at the end. At the beginning of the run, the gyroscopic period was 3.218 + 0.0974
x 108 5. At the end, the gyroscopic period was 3.309 + 0.394 x 10-8 s. Here, also,
the period seems to have increased, although the gyroscopic radius has only slightly

decreased.

54

Rotational Kinetic Energy

In this and the following section, we explore how the orbital kinetic energy (7y) is
coupled to the z-motion. For each of the ten sample cases, a Ty (total) was computed
for the three-ion system. Denote ATy = Ty(start) — To(end). Using this notation, if the
final Ty is less than the beginning Ty, then AT, > 0 (and vice versa). Since the ten
sample cases demonstrate initial conditions in which the outer ions are successively
further and further apart, we are interested in how the total rotational kinetic energy
changes as the separation between the ions increases. Figure 24 illustrates ATy versus

distance apart of the two outer ions. These results indicate that ATy — 0 as the ions

get further apart.

0.005

0.004

0.003

AT,

0.002]

0.001]

1

-0.00H—rrm

0.0000001
0.000001 4
0.00001 3

fog |X] meters

Figure 24. Change in Rotational Kinetic Energy versus Separation of the Outer
Ions.

59

Vertical Kinetic Energy

In the last section, it was demonstrated that the change in orbital kinetic energy
decreases as the ions’ initial paths are separated. In this section we will describe
results on the relationship between the z-motion kinetic energy (7;) of the inner ion
and the two outer ions. Figures 6 through 15 illustrate the z-directed velocity of
the middle ion. We can ask the question: does the vertical kinetic energy (which
equals (1/2)mqv?) of the middle ion decrease after the ions repelled from each other in
these cases? The answer upon examination of the figures is “Yes.” This would imply
that the middle ion loses vertical kinetic energy to the outer ions after their closest
encounter. This result has implications in the TOF experiment on the number of

slow-moving ions that remain after the initial pulse of ions.

CHAPTER 7

Conclusions

The purpose of this computer simulation was to explore the dynamics of a small
system (three) of charged particles confined in a constant magnetic field under the
classical assumption of the Lorentz force. Numerical simulations were necessary to
show the motions and energies because the system could not be solved analytically.
The TOF experiment at Los Alamos provided motivation to specifically investigate

the exchange of rotational and vertical kinetic energies between the ions.

Our goals were accomplished with my Colliding lons program. It was demon-
strated that the ions moved in a helical path, and interacted in ways that were phys-
ically plausible. I demonstrated that the gyroscopic radii and periods of the ions’
motion could be calculated from the data generated. And finally I demonstrated
that the change in rotational kinetic energy decreased as the separation of the ions’
trajectories increased, and that the outer ions in this system carried away some of

the z-directed kinetic energy from the inner ion.

56

APPENDIX

A. Verlet Algorithm Derivation (Velocity form)

Because this derivation may be useful to the reader, I will detail the steps for the

Verlet algorithm here.

The Euler-Cromer (“last-point approximation”) is

{ Upn+1 = Vn + an At
Tn4t = Zn + vn+1At

Note that these came from expanding the v,41 (= v{ts + At)) and z,41 (= z(tn + At)) in

a Taylor series,

Unti = Un + an AL+ 0 [(At)Z]
T4l = Tn + Ua AL+ %a,, (At +0 [(At)a] , (33)

2ot (2 2(tn — AL)) = 20 — va Al + %a,. @ty o] . (34)

Adding the forward (Equation 33) and the reverse (Equation 34) terms give us

Tpp1 =22, — Ty + 8y (At)2 . (35)

Subtracting the forward (Equation 33) and the reverse (Equation 34) terms give us

37

38

_ ZTpyl — Tp-1

Ky v (36)
or
I —_Z
vt = O 37)

Equations (35) and (37) are the “Verlet Algorithm.” However this is not self-
starting and it has a round-off problem. Whenever the computer subtracts two quan-
tities of the same order of magnitude, the result loses some numerical precision and

it may lead to serious round-off error (11). So we want to derive a form of the Verlet

algorithm that is self-starting and minimizes round-off error.

From Equation (35), we add and subtract 1z, from both sides. We get
1 1 ,
Tat1 =2n+ 3 (Zn+1— Zn—1) — 3 (Zn—1 + Zn41) + 2o + an (AL)" . (38)
Then, from Equation (37):
2Atv, = (Zp41 = Zn-1)
Substitute into Equation (38)
1 1 2
Tp4l = T + 3 (2Atv,) — 3 (Zn-1+ Ta41 — 22,) + ap, (Al) . (39)

From Equation (35)

Qn (At)2 = (3n+1 +ZTn-1— 217n))

Substitute the above into Equation (39)

1
Zn41 = Zn + v (A1) + 5an (A1) (40)

59

Equation (40) the position iteration for the velocity form of the Verlet algorithm.

To derive the velocity iteration we go back to Equations (35) and (36). Substitute
Equation (35) into Equation (36). We get

Tpgr — T -+ é‘an (At)z
Unt1 = At

But we know z,4, from Equation (40). Substituting into the above,

vnAt+ 3 (a,, (A1) + angs (At)z)
Unt1 = At ’

or

1
Unt1 = tn + oA (an +any1) . (41)

Equation (41) the velocity iteration for the velocity form of the Verlet algorithm.

60

B. Source Program Colliding lons

unit UParticle;

{PURPOSE: This program (Pascal unit) calculates the positions and valocities for n charged }
{particles trapped in a magnetic field. The positions and velocities are found from the Lorentz }
{force: F = q(E + v x B) where E is the Electric field and B is the magnetic fisld at the location }
{of the charge. The elactric field is calculated from Coulomb's Law: E{r) = (1/(4 pi eps_0)) * }
{tar ¥ (R)*(3) . Boththe Lorentz Force and Coulomb's Law satisfy the suparposition principle }
{so all of the E fields and the Forces are addod for each charged particle. | calculate cartesian }
{position coordinates: ¥, y, and z for each patticle, and sinca the force equation is 2nd order, }
{we have 6 first order equations to solve for each charged particle. The first order equations }
{are integrated using the Bulirsch-Stoer integration scheme which uses a variable time-step. }
{The scheme works on the Richardson extrapolation principle where an initial dt is used to }
{sclve the equations. Then dt is split and we integrate the function with a smaller time step. }
{We continua this process for up to 10 different time steps. When the answer 1o the }
{integration for the current time step changes from the answer for the previous time step}

{by less than a number: "eps"®, we consider that integration done and an extrapolation using }
{rational fractions is used to extend what the integration values ought to be if dt went to zer0.}

{INPUT}
{file: 'Collidinglons!n.text’ which contains graphics variables, Bulirsch-Stoer variables, and }

{positions, velocities, charges, and masses of the ions.}

{OUTPUT}}

{The foliowing filas will be written to:}
{filaname1 := 'lons _positions.txt(BS)’}
{filename2 = 'lons_velocities.txt(BS)}
{filoname3 := ‘lons_energies.txt(BS)}

——

{
{AmaraGraps 3-17-91 Updated: 6-4-91}

{For Masters thesis in Physics, San Jose State University, Spring 1891}
{ }

interface

uses
Memtypes, QuickDraw, OSintt, Toolintf, FixMath, Grat3D, UReai3D, Sane;

procedura Particlelnit;
procaedure ParticleAxis;
procedure ParticieRun;

procedure ParticlaStop;

Nt

{

Implementation

const
kMaxParticles = 3; {Max number of particies}
KMax_n6 = 18; {=KMaxParticles*6 = number of particles * number of 1st order }
{equations = total number of 1st order equations}
pi = 3.141592760;

FPE = 1.1126266-10; { 4 pieps_0}

type
vece = array[1..kMaxParticles] of Extended;

veci = array[1..kMaxParticles] of Integer;
vacp = array[1..kMaxParticles] of pattern;

{for Bulirsch-Stoer integration schems}

vecn611 = array[1..kMax_n6, 1..11] of Extended;
vecn612 = array[1..kMax_n6, 1..12] of Extended;
quotetype = array[1..11, 1..2] of Extended;
vecn6 = array[i..kMax_n6] of Extended;

var
{for graphics}

gMyPort3D: Port3D;

vplLeft, vpTop, vpRight, vpBottom: Extendad;

myPitch, myYaw, myRoll: Extended;

scaleFactor, focusLen, axisLen, labelSpace, size: Extended;
x_offset, y_offset, z_offset: Extended;

background: pattern;
ParticleDelay: veci;
axesP: Integer;
ParticlePat: vecp;

{keeping track of steps}
gStepsTotal, gStepsSoFar, start_tick: Longint;

{tor physics calculations}
NumpParticies, n6: Integer;

X, ¥, Z. VX, VY, VZ, V: Vece; .
Q, M, T_per, Elsc_x, Elec_y, Elac_z, vtheta, Electheta, KEnergy_z, KEnergy_theta, KEnergy: vece;

PEnergy, KE, KE_{iista, TolEnsigy, old_TotE, Del_TotE, B, Stant_E: Extended;
Ex, Ey, Ez, i, 1y, 1z, R, R3, R_start, R_min, R_end, dist_frac: Extended;

{for BS integrator}

bsy, bsdy, error, ymax: vecn6;

t, dt, eps, hmin: extended;

mt, jstart, maxord, maxpts, kilag: Integer;

{for reading input and writing output}
write_count: Integer;

write_on, write_always: Boolean;

filaout1, fileout2, filacut3, lonsin: text;
filsname1, filaname2, filaname3: string[40];
tick_frac: Longint;

{misc}
gDummy: EventRecord;

{.'..'t.".""'.."'.""'.'...QQ..."."....0."'.&"...}

function Int2Pattern (i: integer): Pattern;
{PURPOSE: This function assigns pen pattsrns based on the input integer values. The user}

{can use different pen patterns to distinguish the different ions as thair positions are being}

{plotted.}
{ }

61

{F. Bennett 3-90}
{

S

begin
case i of
1:
int2Pattern := white;
2:
nt2Pattern := ltgray;
3:
Int2Pattern := gray;
4:
int2Pattern := dkgray;
5.
Int2Pattern := black;
otherwise
Int2Pattern := white;
end;

end; {function Int2Pattern}

{."..‘.0"'.'.I"'"".'"'t'...'."""""""'.."...'}

procedure InitFiles;
{PURPOSE: This program sets up the 3 output files that we will write the results to. All filenames}

{are global variables.}

{
{Amara Graps 3-30-91}

{

1
J

1
J

begin
filaname1 := 'lons_positions.txt(BS);
filsname2 := 'lons_velocities.txt(BS)';
filaname3 := 'lons_energies.ixt(BS)';
Openfilecut1, filename1); {fileout! now equals output data file}
Rewrite(fileout1); {placs cursor at beginning of file}
Writeln(fileout1, ' *);
Open(fileout2, filename2);
Rewrite(fileout2};
Wiriteln(fileout2, * *);
Open(fileout3, filename3);
Rewrite(filaout3);
Wiriteln(fileout3, * °);

aend; {procedure initFiles}

{.".".i.."t"""".."‘..'.".' SRACVENANERPECLIO IO RS '}

procedure GetVars;
{PURPOSE: This procedure reads from afila in the currant folder cailed "Collidinglonsin.text”}

{and assigns values for the graphics, the Bulirsh-Stoer integrator, and the positions, velocities, }
{charges, and massas for ths ions. All of the variables being assigned in this precedure are}

{global variables.}
1

{ }
{Amara Graps, F.Bennett 3-90 Updated: 3-29-91}
{ }

var
i: Integer;

LocParticlePat, locbackround: integer;

begin
open(lonsin, ‘Collidinglonsin.text');

{graphics parameters}
readin(lonsln, vpLeft, vpTop, vpRight, vpBottom);
readin(lonsin, myPitch, myYaw, myRoll);
readin(lonsin, scaleFactor);
readin(lonsin, focusLen);
readin(lonsin, locbackround);
background := Int2Pattern(locbackround);
readin(lonsin, axesP, axisLen, labelSpace);
readin(lonsin, size);
readIn(lonsin, x_offset, y_offset, z_offset);
readin(lonsin, gStepsTotal);
readin(lonsin, NumParticles);
for i := 1 to NumParticles do
begin
readin(lonsin, ParticleDelay[i}, LocParticlePat);
ParticloPati] := Int2Pattern(LocParticlePat);

end;

{Bulirsch-Stoer initial parameters}
readin(lonsin, hmin);
readin(lonsla, 1);

readin(lonsin, dt);

readin(lonsin, eps);
readin(lonsin, mf);

readin(lonsin, jstart);
readin(lonsin, maxord);
readin(lonsln, maxpts);

{physical variables and misc}
readin(lonsin, B);{magnstic field}
readin(lonsin, write_always);
readln{lonsin, tick_frac);
readin(lonsin, dist_frac);
for i := 1 to NumParticles do
begin
{initial positions and velccities of the charged particles}
readin(lonsin, x{il, yiil. 2, vx{il. vyil, vz{il. QI M{iD;

end;

n6 := NumParticles * 6; {gives number of ist order differential egn’s}

close(lonsin);

end; {procedure GetVars}

{"...I'.'li.'.'..'..".."l"-".'...'.'."'....."t."l'}-

procedure BS_SetUp;
{PURPOSE: This procedure stuffs the initial positions and velocities from the GetVars procedure}

{into the Bulirsch-Stoer "bsy” array so that the Difsub procedure can calculate a new timestep }

{and the next positions and velocities. All variables here are global variables.}
1
1

{
{Amara Graps 3-15-91 }
{

1
3

63

var
i: integer;

begin

for i ;= 0 to (NumParticles - 1) do

begin
bsy[6 " i+ 1] = x[i+1];
bsy[6 ™ i+ 2] = vx{i + 1];
bsy(6 *i+3]=yli+1]);
bsy[6 * i+ 4] = wyli + 1};
bsy[6 " i+5] = 2fi+ 1};
bsy[6 " i + 6] = v2[i + 1];

end: ({fori:=0to (numberof particlas)-1}

fori:=1ton6do

begin
{Max value of dependent variable = 1 for initial only. ymax is needed for the BS integrator}

ymax[i} := 1.0;
end; {for i = 1 to the number of differential equations.}

end; {procedure BS_SetUp}

{"."..l"'""'"'B".l""'.""'.."'.'.'.".'...".'.}

function Minimum (a, b: extended): extended;
{PURPOSE: This function finds the minimum of a and b.}
A

’

{
{Amara Graps 4-3-91 }
{

A
L

beain

If 2 <= b then
Minimum =a
fen

~
e~

Minimum = b;

end; {function Minimum}

{..'.'.'..'......"'.".'.".....".".'...l..""'....'..}

procedure Calc_Energies;
{PURPOSE: This subroutine calculates the important physical quantities from the current}
{positions and velacities of the ions. The quantities calculated for each particle are: velccity, }
{magnitude, rotational velocity (xy direction only), total kinetic energy, total kinetic energy in }
{the xy direction, kinetic energy in the z direction, rotation period, and electric field in the xyz }
{diractions. The potential energy, total energy and distance between the particles are also }
{calculated. All variables are global variables.}

gt

{
{Amara Graps 11-00 Updated: 4-3-91 }
{

s

var
i, j, pt integer;
R_prev: Extended;

begin

64

PEnergy := 0.0;
KE :=0.0;
KE_theta := 0.0;
R_prev := R_min;

for p := 1 to NumParticles do
begin
{initialize Electric field vectors}
Elec_x[p} := 0.0;
Elec_y[p] := 0.0;
Elec_z[p] := 0.0;
end;
for i := 1 to NumParticles do
begin

v(i] := sart(sar(vx(il) + sar(vy(i]) + sar(vz{i);
vthetali] := sart(sqr(vx[]) + sar(vy[i));

KEnergy[i] := 0.5 * (M[i}) * sar(v[il);
KE := KE + KEnergy(il;

KEnergy_z{i] = 0.5 * (M[]) * sar(vz[i;
KEnergy_thetali] := 0.5 * (M[i]) * sqr(vtheta(i});
KE_theta := KE_theta + KEnergy_thetalil;

T_per(i] := (2.060 * pi * M[i]) /Q]*

for j := 1 to NumParticles do
begin
ifi < jthen
begin
mx = x[1} - x{j};
ry = y[i - y{il
rz := 2[i] - Z{j};

R := sqri(sqr(rx) + sqr(ry) + sqr(r2));

R_min := Minimum(R_prev, R);
R_prev = R;
R3:=sgr(R)* R;

PEnergy := PEnergy + ((Qfi] * Qfil) /R)* (1/(2° FPE);

Ex := (x/R3) * (Q[/ FPE);
Ey := (ry / R3) * (Q[j] / FPE);
Ez := (rz/R3) * (Q[] / FPE);
Elac_x{i] := Elec_x(i] + Ex;
Elsc_y[i] := Elec_y[i] + Ey;
Elec_z[i] := Elec_2[i} + Ez;
end; (icj
end; {i == 1 to NumParticles}

Electhatafi] := sqrt(sqr(Elec_xli]) +
end; {i:= 1 to NumParticles}

KE_theta := KE_theta * 1.0E+22;

TotEnergy := (KE + PEnergy) * 1.0E+27;

ond;

{"'t'ttt"tttttt'tttttatlt.t...t.'th..'

procedure RSetUp;
{This procedure sets an RAminvalue sot

{=mv_avg for ea particle}
{=v in xy direction only}

{TOTAL Kinetic Energy}
{z diraction Kinetic Energy}
{xy direction Kinetic Energy}
{total xy direction Kinstic Energy}
8); {period of rotation around B line}

{distance bstween particles}
{set minimum R value}

{to check R_min next time around}

{div by 2 for double }
{counting}

{electric field in x direction}
{ = " vl
(- =z

sqr(Elec_y(i})); {electric field in xy direction only}

{total rotational kinetic energy}
{total energy}

{procedure Calc_Energies}

!tntalt"'-"'t"t)

hat all subsequent R calculations will have a value o compare}

65

{to.} 66

S

{
{Amara Graps ~ 4-3-91}
{

L)

begin

rx = x[1] - x{2};
ry := y[1] - y2);
rz ;= 2[1] - Z[2];
R_min := sqrt(sar(rx) + sar(ry) + sqr(rz)); {distance bstween particles}

end; {procadure RSetUp}

{.".."'.."l"'...."""'...ﬁ'..""..0'.'."'t'.'. .ttt}

procedure OpenPort3D;
{PURPOSE: This procedure sets up the 3D graphics port. Since it is more convenient to }
{work with plotting real (extended) values, many of the 2D, 3D routines have baen rewritten}

{and are in the unit: UReal3D}

1
]

{
{F.Bennett 3-90}
{

1
)

begin
OpenaDPonR(@gMyPortBD);

identityR;

LookAtR(vpLeft, vpTop, vpRight, vpBottom);
PitchR(myPitch);

YawR(myYaw);

RollR(myRoll);

ScaleR(scaleFactor, scaleFactor, scaleFactor);
ViewAngleR(focusLen);
BackPat(background);

ErasoRect(thePort? portRect);

A Ao

end;

{1st scaling.. will scale again later}

{.l'.'l.."".‘t..".."'.'"."..'.."'.".".".l'.."'.}

procedure Axss;
{PURPOSE: This procedure draws the xyz axes inthe 3D graphics port. It also uses ths}

{3D routines in the unit UReal3D.}

l
)

{
{(F.Bennett 3-90}
{

\
3

bsagin
PenPat(black);
PenMade(patXor);
TextMods(srcXor),

If axesP < 0 then
begin
moveto3dR(0, 0, 0);
lineto3dR({axisLen, 0, 0);

moveto3dR(axisLen + labselSpacs, 0, 0);
DrawChar('x');

moveto3dR(0, 0, 0);

lineto3dR(0, axisLen, 0);

moveto3dR(0, axisLen + labeiSpace, 0);
DrawChar(y');

moveto3dR(0, 0, 0);
lineto3dR(0, O, axisLen);
moveto3dR(0, 0, axisLen + labelSpace);
DrawChar('z');
end;
PenMode(patCopy);

end; {procadure Axes}

{."."Q""'t"..'l'...'t'..".Q.'..".."."'."."".Qt}

procedure [nitWrite;

{PURPQSE: This procedure write the header" information to the 3 output files that contain}

{the important information for the thesis.}
{INPUT: All of the global position,velocity vecters, and energies}
{OUTPUT: Writes the initial parameters and other useful information.}
{The following files will be written to:}
{ filaname1 :a 'lons _positions.txt(BS)}
{filename2 := "lons_velocities.txt(BS)}
{fileoname3 := ‘lons_energies.xt(BS)}

—

{
{Amara Graps 5-90 Updated: 4-3-91 }
{

o

const
SPosx = The x positions of particles are: ';
SPosy = ‘The y positions of particles are: ';
SPosz = Tha z positions of particles are: ’;
SVelx = 'The x velocities of patticias ars: '}
SVely = ‘The y velocities of particles are: ’;
SVelz = The z velocities of particles are: *;
SRstring = The distance betwaen the particles are: ’;
SKE = ‘The total kinetic energies of particles are: ’;
SKEz = ‘The z kinetic energies of particles are: ',
SKEt = The total rotational kinetic energy®1E+22 of particles is: ";
STotE = ‘The total energy®1E+27 of particles is: *;
SPer = "The periods of particles are:;
Sp20 =' » {20 spaces}
spi5=’ % {15 spacss}
fw=16; ({fieldwidth}
dp=14; {decimal places}

var
s: DecStr;
f: decform;
i: Integer;

begin

67

{set up number to string conversion}
f.style = FixedDecimal;
f.digits := O;

{FILE: lons_positions.txt(BS)' }
Wiriteln(fileoutt, ' ');
Wiriteln(fileout, ‘Results file: ', filenamet, ’ using BS algorithm’);
Writeln(fileout1, ' ');
Write(fileout1, SPasx);
for i := 1 to NumParticles - 1 do
write(fileoutt, x(il, ' *);
Wiriteln(fileout1, x{NumParticles}]);
Write(filsout1, SPosy);
for i := 1 to NumParticles - 1 do
write{fileoutt, y[i], ');
Writeln(fileout1, y[NumParticles]);
Write(fileout1, SPosz);
fori:= 1 to NumParticles - 1 do
writa(fileout1, 2[i], ' *);
Writein(fileout1, z[NumParticles]);
Writeln{fileout1, SRstring, R);
Writeln(fileoutt, ' *);

68

Wiriteln(fileoutt, '
Wiite(fileoutt, 't dt %
for i := 1 to NumParticles do
begin
{write out x titles}
write (fileout1, 'x’);
num2str(f, i, s); {convert integer i to string s using format f}
write(fileout1, s);
write(fileout1, sp15);
end;
for i ;= 1 to NumParticles do
begin
{write out y titlas}
write(filaout1, 'y');
num2strli, i, s);
write(fileout1, s);
write(fileout1, sp15);
end;
for i := 1 to NumParticles do
begin
{write out z titlas}
write (fileout1, 'z');
num2str(f, i, s);
write(fileout1, s);
write{fileoutt, sp15);
end;
writeln(fileoutt, ’ RY);

Writeln(fileoutt,

{FILE: lons_velocities.txt(BS)' }

Writaln(fileout2, ' *);

Writeln(filaout2, ‘Resuits file: *, filename2, ' using BS algorithm');
Writaln{fileout2, ' *);

Write(fileout2, SVelx);

fori:= 1 to NumParticles - 1 do

write(fileout2, vx{il, ')
Writeln(fileout2, vx{NumParticles});
Write(fileout2, SVely);

fori := 1to NumParticles - 1 do
write(fileout2, wy[il, ')
Writeln(fileout2, vy[NumParticles]);
Write(fileout2, SVelz);

for i := 1 to NumParticles - 1 do
write(fileout2, vz[i], ' ')
Writein(fileout2, vz[NumParticles]);
Writeln(fileout2, ' ');

69

Writein(fileout2,
-..-_..-_...-_......-‘) ;
Write(filsout2, ' t %
for i := 1 to NumParticles do
begin

{write out vz titles}
write(fileout2, 'vz');
num2str(f, i, s);
write(filaout2, s);
write(fileout2, sp15);

end;
for i := 1 to NumParticles do
begin

{write out vtheta titles}
write(fileout2, 'vtheta’);
num2str(f, i, s);
write(fileout2, s);
write(fileout2, sp15);

end;
writein(fileout2, * %;
Wiritein(fileout2,

Y

{FILE: lons_energies.ixt(BS)' }
Wiriteln(fileout3, ' ');

Wiriteln(fileout3, 'Results file: ', filename3, * using BS algorithm');

Writeln(fileout3, ' *);

Write(fileout3, SKEz);

for i := 1 to NumParticles - 1 do
write(fileout3, KEnergy_2[i}, *)
Wiriteln(fileout3, KEnergy_z{NumParticles]);
Write(filsout3, SKE);

fori:= 1tc NumParticles - 1 do
write(fileout3, KEnergy[il, * °);
Writeln(fileout3, KEnergy[NumParticles]);
Writeln(fileout3, SKEt, KE_theta : {w : dp);
Wiriteln(fileout3, STotE, TotEnergy : fw : dp);

Write(fileout3, SPer);

fori:= 1to NumParticles - 1 do
write(filaout3, T_per(i}, *)

Writeln(fileout3, T_per{NumParticles]);

Writeln(fileout3, ' *);

Writeln(fileout3, '
Write(fileout3, 't %

for i := 1 to NumParticles do
begin
{write out KE_2z titles}
write(fileout3, '(1E+22)"KE_2');
num2str(f, i, s);
write(fileout3, s);
writa(fileout3, sp15);
end;
for i := 1 to NumParticles do
begin
{write out KE titles}
write(fileout3, '(1E+22)'KE_");
num2str(f, i, s);
write(filaout3, s);
writa(fileout3, sp15);
end;

Writeln(fileout3, ‘Tot xy KE*1E+22 TotE*1E+27 Del_TotE");
Writein(fileout3, ’
end; {procedure InitWrite}

..."'.'.'."i....".l'.'.".l....\..'.'.".'."""'.""}

procedure WriteResults;

{PURPOSE: This procedure writes the current calculated physical values for the ions}

{into 3 output files.} .
{INPUT: All of the global position vectors.}

{OUTPUT: Writes results of position variables in the user-specified file.}

{The following files will be written to:}

{ filename1 := 'lons, _positions.txt(BS)}
{filaname?2 := 'lons_velocities.txt(BS)}
{tilename3 := lons_energies.txt(BS)}

o

{
{Amara Graps 5-80 Updatsd: 4-3-31
{ }
const
tab = Chr(9);
ret = Chr(13);
fw=16; {fieldwidth}
dp = 14; {decimal places}
var
i: Intaeger;
begin

{FILE: lons_positions.txt(BS)' }
Writa(filoout1, t : fw : dp, tab, dt : fw, tab);
{ori:= 1 io NumParticles do
begin
{write out x positions}
write(fileout1, x{i] : fw : dp, tab);
end;
fori = 1 to NumParticles do
begin
{writs cut y positions}

70

writa(fileout1, y[i} : fw : dp, tab);
end;
for i := 1 to NumParticles do
begin
{write out z positions}
write(filsout1, 2[i] : fw : dp, tab);
end;
Wiriteln(fileout1, R : fw : dp);

{FILE: lons_velocities.txt(BSY }
Write(fileout2, t : fw : dp, tab);
for i ;= 1 to NumParticles do
begin
{write out vz }
write(fileout2, vz{i] : fw : dp, tab);
end;
for i := 1 to NumParticles - 1 do
begin
{write out vtheta}
write(fileout2, vthetali] : fw : dp, tab);
end;
Writein(fileout2, vtheta[NumParticles] : fw : dp); ({last value in row}

{FILE: lons_energies.ixt(BS)' }
Wiite(fileout3, t : fw : dp, tab);
for i := 1 to NumParticles do
begin
{write out KEnergy_z }
writa(fileout3, (1E+22) * KEnergy_z[i] : fw : dp, tab);
end;
for i := 1 to NumParticles do
begin
{write aut KEnergy}
write(filwout3, (1E+22) * KEnergy(i] : fw : dp, tab);

end;
Writein(fileout3, KE_theta : fw : dp, tab, TotEnergy : fw : dp, tab, Del_TotE : fw : dp);

end; {procedure WriteResults}

{i'tt'..'.'.t't"'."".'.'tt.."...'."l".'.'"'t"..'t.'}

procedure funder (bs_y: vecn6; var bs_dy: vecn6);
{PURPOSE: This procedure is used in the BS integration schama to orovids the 1st order differential}
{equations.}

{INPUT: }
bs_y|}: BS vector which hoids both the current pasitions and velocities of}

tha n charged particles}
(global) Elec_x{l, Elec_y{], Elec_z{]: Electric fisld vectors for each of the charged paiticles}

(globat) Qj: vector containing charge values for each of the particles.}
(global) M{J: vector containing masses for each of the particles}
(global) NumParticles: the number of charged particles}

{
{
E
{OUTPUT:}
{
{
{
{
{

—~— ——

bs_dy [] the velocities and accslerations using Lorentz 's force law of each of}

the charged particles}
A}
i

Amara Graps ~ 3-19-91 }
}

71

var
Q_M: vecs; 72
i: integer;

begin {procedure funder}

{Note: The bs_y indices contain the pasitions and velocities in the following manner:}
{bs_y{1] = x[1}}

{bs_y[2] = vx[1]}

{bs_y[3] = ¥[1}}

{bs_y[4] = vy[1]}

{bs_y[s] = 2[1}}

{bs_y[6] = vz[1]}
{Then for particle 2 etc we continue the bsy[] with the next index, e.g. bs_y[7] = x([2]...}

for i := 0 to (NumParticles - 1) do
begin

{velocities}
bs_dy[6 * i+ 1] :=bs_y[6 " 1+2]; {"vx"}
bs_dy[6*i+3]=bs_y[6°i+ 4] {'wy'}
bs_dy[6*i+5]:=bs_y[6"i+ 6; {wvz7}

{accelerations}
Q_Mi+1]:=Qfi+1]/M[i+1];
bs_dy[6 " i+2]:=Q Mi+1]" (Elec_x[i+ 1]+ bs_y[6~ i+4]°8B); {"ax}
bs_dy[6 "i+4]=Q Mi+1]* (Elec_y[i + 1}-bs_y[6° i+2]*B)y {ay’}
bs_dy[6*i+6]:=Q _Mi+1]* {Elec_zli + 1)), {"az’}

end; {fori:= 0to (number of particies)-1}

end; {procedure funder}

{..w‘.ﬁﬁ\DﬁGﬁGﬂQQQ899!"'I""'.Q.Q.Q.‘..‘.".'."...'."..'}

procedure assign_quot (var quot: quotetype);
{PURPOSE: This procedure assigns the quot matrix for the difsub procedure (BS aigorithm), the }

Allne Al mpntmean ara naodod

{values that "h" (timestep) will be divided by wien smailar timastsps are nesact. }
{Gear's Fortran difsub subroutine (in Numerical Initial Value Problems in }
{Ordinary Diferential Equations, P-H, (1971).) assigned these values in a DATA statement}

{instead of what | have below.}

{INPUT: }
quot: blank matrix. }
{OUTPUT}}
{ quot: The values below are assigned.}
{ }
{Amara Graps ~ 3-12-91 }
{ }
begin

quot(t, 1] = 1.0;
quot[2, 1] 1= 2.25;
quotf3, 1] = 4.0;
quot[4, 1] 1= 9.0;
quot(s, 1] := 16.0;
quot[6, 1] := 36.0;
quot[7, 1] 1= 64.0;

quot(8, 1] = 144.0; 73

quot(9, 1] = 256.0;
quot{10, 1] = 576.0;
quot[11, 1] := 1024.0;
quot(1, 2] = 1.0;
quot(2, 2) = V7777777777777,
quot(3, 2] := 4.0;

quot{4, 2] := 7.1111111111111111;
quot(5, 2] := 16.0;

quot(B, 2] '= 28.4444444444444444;
quot({7, 2] := 64.0;

quot(8, 2] := NM3.7777777T7T7TII1;
quot{9, 2] := 256.0;

quot(10, 2] := 455.1111111111111111;
quot{11, 2] := 1024.0;

end; {procedure assign_quot}

{"ﬁ"'."t'"I'.'.""'ﬁ"'"..IQ"...O'..""'.'"..".'0}

procedure do_integrate (var jhvsv, m2: integer; j, jhvsv1, m, nn: integer; var dyn, ymaxsv, ysave, dy, ymax, yn,
ynm1: vecn6; var tu, u, b, g, t: extended; var ymaxhv, ynhv, yam1hv: vecn612);

{PURPOSE:This subroutine integrates by the midpoint method over the range H by 2°M steps.}
{This awful-looking procedure came from Gear's Fortran difsub subroutine in Numerical Initial Value }
{Problems in Ordinary Differential Equations, P-H, (1971). }
{ INPUT:}
YSAVE: The initial values of Y are saved for a restart.}
G: (1/2) HM to use in midpoint calculation}
B}
DYN: The initial value of the derivative of Y.}

YMAXSV: The saved values of YMAX at the initial point.}

M: The number of pairs of sub steps which make up the step H. M takes the sequence }

1,2,3,4,6,8,12,16 eic.} T

T: independent variable for each Y}

NN: The numbar of first order diiierential equations}

JHVSV: The number of substep sizes for which half-way information has been saved.}

JHVSV1: The value of JHVSV from the previous cycis}
QUTPUT :}

U: the integrated Y by tha midpoint rule (?)}

YNM1: Y(N-1), The previous value of Y inthe midpoint method.}

YN: Y(N), The current value of Y in the midoint method.}

YMAX: The maximum values of the dependent variables are saved in this array.}

M2: SUM OF M's}

TU: temporary independent variable}

DY: An array of 10 locations which will contain the values derivatives on exit}

YNM1HV: The values of YNM1 at the midpoint of the basic interval if the number of sub steps}

is divisible by 4. This information is used to avoid redding the integrationin case the step is halved.}

YNHV: The similar values of YN.}
YMAXHV: and the same for YMAX.}

———

Amara Graps 3-9-91 Updataed: 3-27-91}

P ey oy, o gy g P gy g G i I i §ry Py Gy iy e P, g, e, gy ey, Gy, gaany

——

var
i, k: integer;

begin {procedure for_integ}

it (j > jhvsvi) then

begin

{Integrate over the range H by 2"M steps of 2 midpoint method}

fori:=1tonndo

begin
ynmi[i] := ysave[il;
yn(i} := ysave(i] + g * dyn{i};
ymax(i] := ymaxsv{i];

snd; f{fori}

m2 =m+m,
tu=at;

for k := 2tom2do
begin
tu:=tu+g;

funder(yn, dy);

fori:=1tonndo
begin
u = ynmi[ij + b * dy[i};
ynmi(i] := yn{i};
yn[i] = u;
u := abs(u);
If (u > ymax(i]) then
ymax[i] := u;
end; f{fori:=1tonn}

if (((k = m) and (ihvsvi = 0)) and (k < 3)) then

begin
jhvsv = jhvsv + 1;

for i = 1tonndo
begin
ynhv(i, jhvsv] := yn[i];
ynm1hvii, jhvsv] i= ynm1[i);
ymaxhv[i, jhvsv] = ymax(i];
end; {fori:=110nn}

end;{if ((k = m) and (jhvsv = 0)) and (k < 3))}
end; {fork:=2tom2}
end {ifj>jhvsvi}

olse
begin

{The values of the midpoint integration were saved at the half way point in the previous integration. }

{Use them.}

fori:=1tonndo
begin
yn{i] := ynhv[i, [
ynm1(i] := ynmthv[i, j];
ymax[i] = ymaxhv(i, jl;

end; {fori:=1tonn} 75

end; {else}

end: {of procedure do_integrate}

"t"n.'"'.".t"""Q."'.'t".."...t""!"'.l.'

{

procedure do_extrap (var ta, v, b, b1,

quotetypse);

o-.'.'.ntt")

¢, u: extendad; i, jodd, |, mi: integer; var extrap: vecn611; var quot:

3

{
{PURPOSE: This subroutin
{tunctions for the Bulirsch-

3
e performs extrapolation by either polynomial functions or rational }
Stoer integration scheme. The extrapolation estimates what the }

{integrated y would have been had the stepsize h been allowsd to go to zero.}

{This awful-looking procedure came from Gear's Fo

rtran difsub subroutine in Numerical Initial }

{Value Problems in Ordinary Differential Equations, P-H, (1971).}

{ INPUT}

V: The first extrapolated
C: saved TA variable}
QUTPUT}

TA}
Vi

MF: The method indicator. The following are allowed:}
0: Bulirsch-Stoer rational extrapolation}
1: Polynomial extrapolation}
L: The order of extrapolation}
EXTRAP(,): the most recent extrapolated values of Y}
QUOTY{(,): The quotients (H(YH(1+M))**2 used in the extrapolation.}
TA: the final value to be used in extrapolation process}
U: the integrated Y by the midpaint rule ()}

value}

EXTRAP(,): the most recant extrapolated values of Y}

1

Amara Graps 3-10-91

S oy i iy, gy R G G Gy Py, o P P e p—

J
Updated: 3-27-91}
1

var
k: integer;

J

begin {procedure do_extrap}

If (mi > 0) then
begin

{Periorm the extrapolation by polynomial functions on the seco

fork:=2tolde
begin

nd and subsequent integrals.}

ta := ta + (ta - v) / (quotfk, jodd} - 1.0);

v 1= extrap(i, Kl;
extrap[i, k] := ta;
end; (k=21

end {if mf> 0}

eise
begin

{Perform the extrapolation by rational functions on the second and s

ubssquent integrals.}

for k :=2toldo 76

begin
bt := v * quotlk, jodd};
b:=bl-c;
U=V,

If (b < 0) then
begin
b:=(c-v)/b;
u:=c"b;
c:=bl"b;
end;{ifb< 0}

v := extrap[i, kl;
extrapfi, k] == u;
ta:=ta+u;

end; (k:i=2t0ol}
end; {if mf not> 0}

end; {of procedure do_extrap}

{Qt."l".."...'Q"l.'".'.....'."..".'...'...'."'.."...'."}

procedure difsub (nn: integer; var t: extendad; var y, dy: vecn6; var h: extended; hmin, eps: extended; mi: integer;
var ymax, arror: vecn§; var kflag: integer; jstart, maxord, maxpts: integsr);
{[PURPOSE: This procedure integrates a set of nn differential equations using a variable timestep }
{schema. The scheme works on the Richardson extrapolation principle where an jnitial h is used to }
{solve the equations. Then h is split and we integrate the function with a smaller time step. We }
{continua this process for up to 10 different time steps. When the answer to the integration from }

{the current time step changes from the answer for the previous time step by less than a number: }

"aps", we consider that integration done and an extrapolation using rational fractions is used to }
{extend what the integration values ought to be if dt went to zero.}

{
{ From C.W. Gear, Numerical Initial Value Problems in Ordinary Differential Equations, P-H, (1971)}

{ Modified by Amara Graps to be a Pascal program and to have all calculations in extended precision.}

{3-5-91 Updated: 3-17-91}

3
7

{
INPUT}
nn: The number of first order differential equations.}

t: The independent variable}
y: The dependent variables which usually contain both position and velocity.}

{
{
{
{
{ dy: An array which will contain the derivatives on exit}

{ h: The step size that should ba attempted. it may be increased or decreased by this subroutine}
{ hmin: The minimum step size that should be allowed on this step.}

{ eps: The errortest constant. The estimated errors are required to be less than eps‘ymax in }
{ each component. If ymax is originally set to +1 in each component, the error test will be }

{ relative for those components greater than 1 and absolute for the others.}

{ mf: The method indicator. The foliowing are allowed:}
{ 0:Bulirsch-Stoer rational exirapolation}
{

{

{

{

{

{

{

1: Polynomial extrapolation}
ymax: The maximum values of the dependent variables are saved in this array. It should be set }

to +1 before the first entry. (See the description of eps.)}
arror: The estimated single step error in gach component.}
kilag: A completion {ode with the following meanings:}
-1: The step was taken with h= hmin, but the requested error was not achisvad.}
+1: The step was succassful.}

{ jstart: An initialization indicator with the meaning:}

{ -1:Repeat the last step, restoring the values of y and ymax that were used the last time.}

{ +1:Take anew step.}

{ maxord: The maximum order of extrapolation allowed. it must be less than 11.}

{ maxpts: The maximum number of different sub step sized used in the extrapolation process.}
{

{

{

QUTPUT}
t:, y, dy, h, ymax, error, kilag, jstart}

—~

label
11, 16;

const

{Note: FMAX is a number smaller than the first integer that cannot be reprasented exactly in }
{floating point.}

fmax = 10000000.0;

var
ysave, ynm1, yn, dyn, ymaxsv: vacn6;
quot: quotstype;
extrap: vecn611;
ynm1hv, ynhv, ymaxhv: vecn612;
a, b, g, tu, u, v, ta, c, b1, quotsv, hchnge: extended;
i, j jodd, jhvsv, jhvsvi, konv, |, m, mnext, mtwo, m2, k: integer;
exit_sub: boolean;

begin {procedurs difsub}
assign_quot(quot); {assign value to matrix quot}

If (jstart < 0) then
{restore the values of y and ymax for a restart}
fori:=1tonndo
begin
y[i] := ysave(il;
ymax(i] := ymaxsv(i];
end [fori}

else
begin
{save the values of y and ymax in case a restart is necessary}

fori:=1tonndo
begin
ysaveli] := y[i};
ymaxsv(i] := ymax[i);
end; {fori}

funder(y, dyn);
end; {else.)

11:

{The foliowing counters and switches are used)}
{ J: The count through the different sub steps G used}

{ JODD:1ifJisodd, 2itJis aven}
{ JHVSV: The number of substep sizes for which half-way information has been saved.}

{ JHVSV1: The value of JHVSV from the previous cycle}
{ MNEXT: The next value of M}

77

MTWO: The next but one value of M} 8

{

{ QUOTSV: The last value of QUOT is irregular due to the fact that the sequence by the muitiples 9/4,}
{ 16/9 (odd) or 16/9, 9/4 (even until the final muitiple of 4). However (H(O)H(M))**2 is }

{ always M*"2. The regular value of QUOT is saved in QUOTSV, and replaced by M*"2.}

{ KONV: Set to +1 initially, and reset to -1 if the error test fails.}

jhvsvl = 0;
16:

kilag = 1;
axit_sub := {alse;
jhvsv := 0;
a=h+t

jodd = 1;

m:=1;

mnext ;= 2;

mtwo = 3;

for j := 1 to maxpts do
begin

quotsv := quot(j, jodd];

quot(j, jodd] :=m * m;

konv := 1;

If (j <= (maxord / 2)) then
kenv = -1;

I£ (j <= (maxord + 1)) then
begin
L= j;
hchnge := 1.0 + Num2Extended(maxord + 1 - j) / 6.0;
end

else
begin
| ;= maxord + 13
hehngs := 0.70710€8 * hehnge;
ond; {else}

b := h / Num2Extended(m);
g:i=b*05;

do_integrate(jhvsv, m2, j, jhvsvi, m, nn, dyn, ymaxsv, ysave, dy, ymax, yn, ynmi, tu, u, b, g, t, ymaxhv, ynhv,
ynm1ihv);
funder{yn, dy);

fori:= 1tonndo
begin

v = extrap(i, 1}; .
{Calculate the 2nd and subsequent columns in the extrapolation process.}

ta := {ynli] + ynm1{i] + g * dy[i}) * 0.5;
c:=1ta;

{Insert the integral as the 1st extrapolated value}
extrap[i, 1] :=ta;

if (| >= 2) then
begin

if ((abs(v) * fmax) < abs(c)) then
begin
quotj, jodd] := quotsv;

if (abs(h) <= hmin) then
begin
kflag :=-1; {exit from subroutine}
h := h * hchnge;
ti=a;
exit_sub = true;
{ writeln(First exit from difsub’);}
Exit(difsub);
end; {if abs(h) .le. hmin}

end; {if abs(v)*fmax < abs(c)}

{Perform the extrapolaticn}
do_extrap(ta, v, b, b1, ¢, u, i, jodd, |, mf, extrap, quot);
end;{if | >= 2}

u := abs(ta);

If (u > ymax(i]) then
ymax[i] := u;

arror[i] ;= abs(y{i] - ta);

ylil = ta;

If (error(i] > eps * ymax{i]) then
konv ia -1;

end; {i=1tonn}
quotli, jodd] := quotsv;

if (konv > 0) then

begin

{Set flag for convergence and exit from subroutine}
kflag := 1;
h := h * hchnge;
t:=a;
exit_sub := true;

{writaln{'Second exit from difsub’);}

Exit(difsub);

end; {if (konv >0}
jodd := 3 - jodd;
m := mnext;
mnext := mtwo;
Mwo = m+ m;
end; {forj := 1 to maxpts}

jhvsvi = jhvsy;

it (abs(h) <= hmin) then
begin
{his at its floor value, so set
kflag := -1;
h := h * hchnge;
ti=a;
exit_sub := true;
{writeln("Third exit from difsub’);}
Exit(difsub);
end; {if (dabs(h) <= hmin}

kflag to "did not converge” and exit from subroutine}

{h is not at its floor value, so try again with smaller h}
h:=h"0S5;
if (abs(h) > hmin) then
goto 16;
h := CopySign(h, hmin);
goto 11;

end; {procedure difsub}

{..'.""""'.."..""".".'.'.'0'.'..""'.'..'...""}

procedure ShowTime (ticks: longint);
{PURPOSE: This procedure shows (in the corner of the plott
{plotting tock. I'm (AG) not currently using this routine but I
Y
4

ing window) how much time the current }
m keaping it around in case | need it.}

{
{F. Bennett 3-90}
{

\|
)

var
s: DecStr;
i: dacform;

begin

PenPat(black);
ToxtMode(srcXor);
f.style := FixedDecimal;
f.digits := 2;

num2str(f, ticks / €0, s);
moveto(10, 15);
drawstring(s);
drawstring(* secs’);

end; {procedure ShowTime}

{.'.t.Q"'.l"".""'i.'t‘.‘ﬁ‘.'.'.ﬂ.n..""""'."'..Q.}

procedure ShowDelE (DelE: axtended);
{PURPQOSE: This procedure shows (in the corner of the ploiting window) what the relative}

{total energy difference is from the initial time to the time the plot was stopped.}
1

{ }

{Amara Graps ~ 3-27-91}

{ }
var

s: DacStr;

80

f: dacform;

begin

PenPat(black);
TextMode(srcXor);
f.style := FixedDecimal;
f.digits = 10;
num2sti(f, DelE, s);
moveto(10, 15);
drawstring(Del E=");
drawstring(s);

end; {procedure ShowDelE}
{.'t"t..'.I'Q"'t"..'l.it..'.'t."".'Q".'."'..'."...)

procedure Assign_BSvar;
{PURPOSE: This procedure assigns new p

{From these we can calculate further quantities, plot the points,
1
)

ositions and velocities from the BS array (output from difsub).}
and store calculated physical resuits.}

{
{Amara Graps 3-25-91}
{

1
)

var
i: Integer;

begin
for i := 0 to (NumParticles - 1) do
begin
xfi + 1] 1= bsy[6 " i+ 1};
vx[i + 1] ;= bsy[6 " 1 +2];
yli + 1] ;= bsy[6 * i+ 3];
wyii + 1] := bsy[6 * i + 4];
z[i + 1] == bsy[6 " i+ 5];
vz[i + 1] 1= bsy[6 * i+ 6};
end; {fori:=0to (number of particlas)-1}
and;

.'.""'""t".."'.'lt."'.'."ﬁ'.."..l.'.‘t""'.."t}

procedure Do_write (var start_tick, k: Longint);
{PURPOSE: This prozedure figures out i the current calculated results should ba written to}
{the 3 output files. If it is, then it calls the procedure: WriteResults that doas it. The criteria}
{for writing to the output files are contained in the boolsan variable write_always. If write_always}
{is true then we will always right to the output file, however if write_always is false, then we check}
{how much time has passed (by using start_tick), and if one hour has passed, then we write the next }
{100 staps of the integration. In addition | want to write out the 1st 100 steps, so these are checked}
{at the same time. The 100 iterations are counted using the boolean variable ‘write_on' and the}

{integer variable: ‘write_count.}

{INPUT: }
{ start_tick: integer value containing the time for the start of the integrations. }

(in Mac tick units).}
k: The current iteration number (step) for the integrations.}
(global) Write_always: boolean variable that is true if we are supposed to write all results }
for ths integrations and false if we are only to write after an hour }
has passed.}
(global) Write_on: boolean variabla is true if we are in

where wae only write several times every hour.}
(global) write_count: integar that kaaps track of how many steps we have w

the middle of writing results for the case}

rittan out for the }

s s by oy oy g gy gy

82

{ case where write_on is true.}
{ (global) tick_frac: number of minutes between writing to the autput files }

{OUTPUT:}
{ (global) Write_on: (see above for criteria how this is set)}
{ (global) Write_count: incremented by 1 if we are to continue writing to output files.}

{ Calls WriteResults}
1
¥

{
{Amara Graps 3-20-91 Updated: 4-3-91 }
{ }

var
ticks: Longint;

begin

If (write_always) then
{always write results}
begin
WriteRasults;
end

else
begin
ticks := tickcount - start_tick; {tickcount = system variable}

If (ticks >= 36000 * tick_frac) then
{Mac lix clock = 36000 ticks/min...Mac + clock 3600 ticks/min?...Mac llcx is what?}
begin
{write in files several times an hour}
write_on := true;
write_count := 0;
Writeln(fileout1, *fteration: *, k);
Writeln(fileout2, ‘fteration: *, k);
Wiritein(fileout3, *tteration: *, K);
start_tick := tickcount; {Setthe tickcount to check the next time we want to write }
{out values.}
and; {if time has passed}
if (k = 1) then
begin
{Write the 1st 50 points}
write_on = true;
write_count := 0;
end; {if we're within the 1st 50 integrations}
it (write_on) then
{write the next S0 vaiues}
begin
writa_count := write_count + 1;
If write_count <= 50 then
WriteResults
alse
beglin
wiite_on := false;
end; {else we've exceeded writing S0 values}
end; {if write_on..writing the next 50 values}

end; ({else...write in files only specified times an hour}

ond: {procedure Do_write}

-tatt'-co"tt-'.t".t'ttt"-a-tt-'a'-ot-t't"'ttttt'..ont} 83

{

procedure ParticlePlot;
{PURPOSE: This procedure handles the fine details of the calculations. It integrates the differential }

{equations by calling the BS integrator (difsub), assigns the resulting positions and velocities }
{(AssignBSvar), calculates the electric fields and energies (Calc_Energies), handles the writing }
{to the output files (Do_write), and then plots, in 3D, the resuits.}

{INPUT}
{OUTPUT:}

——

{
{Amara Graps ~ 3-20-91 Updated: 3-31-91 }
{ }

var
i: Integer;
j: Longint;
old_x, old_y, old_z: vece;

begin

PanMode(patCopy);
pensize(2, 2);

for i := 1 to NumParticles do
{save particles’ position if we want to plot with lines connecting the points.}
begin
old_x(i] := x{i};
old_y{i] == ¥{il
old_z[i] := 2[i];
end;

old_TotE := TotEnergy;

{Integrate ditferential squations}
difsub(n§, t, bsy, bsdy, dt, hmin, eps, mf, ymax, error, kflag, jstart, maxord, maxpts);
if (kilag = 1) then

begin
{we have achieved convergence w/BS algorithm. }
Assign_BSvar; {Assign new pas, vel's}
Calc_Energies; {Calculate enaergies, Elsc fields}
Del_TotE := abs(TotEnergy - old_TotE) / old_TotE;

{ t=t+ dt;}
mf:=0; ({set extrapolation to rational functions}
end
eise
mf:=1; {set extrapolation o polynomial functions and try again}

Do_write(start_tick, gStepsSoFar); {write out resuits into output files if conditions }
{are right} '

for i ;= 1 to NumParticles do
begin
MoveTo3DR(size * x[i] + x_offset, size * y[i] + y_offset, size * 2[i] + z_offset);
{MoveTo3DR(old_x[i] + x_offset, old_y[i] + y_offset, old_z{i] + z_ctisat);}
PanPat(ParticlePat(i]);
LineTo3DR(size * x[i] + x_offset, size * y[i] + y_offset, size * Z[i] + z_ofisst);

and;

pensize(1, 1);

end; {of procedure ParticlePlot}

{'.'t'."..l"..ll...'l.""l"l".'..'l..."""'

t'-tttn'}

procedure Particlelnit;

{PURPOSE: This
{calls can be mad

initializes the 3D graphport as defined in the UReai3D unit, i.e. plotting}

g in extended precision.}
1
14

{
{F. Bennett 3-890}

1
L]

begin
InitGri3DR;

end; {procedure Particlelnit}

{

.'cw"t"tttt"t.aot.ttt'c"tt..-'n't"t.t.tt.ttttt"n

."}

procedure ParticleRun;

{PURPOSE: This

procedure handles the overall procedures for how the ion calculations are }

{started and stopped. (whereas ParticlePlot handles the fine datails) . }
1

{Amara Graps

)

3-28-91 Updated: 3-30-91 }

1
’

{

var
ticks: longint;

begin

InitFiles; {open the output filas}

GetVars;
BS_SetUp;

{get initial vaiues for all variablas)
{stuff positions and valocities into BS vector}

RSetUp; {set R minvalue}
Calc_Energies; {calculate energies and Elec fields}

start_E := TotEnergy;

InitWrite;
QpenPort3D;

{write preliminary info into output files}
{set up the 3D graphics port}

gStepsSoFar = 1;
start_tick := tickcount; {tickcount = system variable}

HideCursor;

Axes; {draw axes again}

case GStepsTotal of

0: {step until mouse-click}

begin

ShowCursor;

repeat

ParticlePlot;
gStepsSoFar = gStepsSoFar + 1;
untll EventAvail(everyEvent, gDummy);
ShowDelE((TotEnergy - start_E) / start_E); {shows conservation of energy during }

sysbeep(1);
end;

{this time}

84

-1: {step until R_end} 85
begin
R_start := R_min; {set the starting R value}
R_end := dist_frac * R_start; {setthe ending R value }
while R_min <= R_end do
begin
ParticlePlot;
gStepsSoFar := gStepsSoFar + 1;
end;
ShowDelE((TotEnergy - start_E) / start_E);
sysbeep(1):
ShowCursor;
end;

otherwise
{ step until gStepsTotal (gStepsTotal > 0) }
begin
while gStepsSoFar <= gStepsTotal do
begin
{keep calculating until the number of steps: gStepsTotal is reached}
ParticlePlot;
gStepsSoFar := gStepsSoFar + 1;
end;
ShowDelE((TotEnergy - start_E) / start_E); {shows conservation of energy during this time}
sysbeep(1);
ShowCursor;
end;

and; {case gStepsTotal}

end; {of procedure ParticleRun}

PeSPPrerereeerTTI I DITIDITTE AL LA A LA

procedure ParticieAxis;
{PURPOSE: This subroutine just draws the axis for the startup of the Colliding ions program.}

{After this point the user can then rasiza the window or ieave it as it is wihsn salscting "Run”}
{or "Shrink" from the Control menu.}

{
{Amara Graps 3-28-91 }

{ }

begin
GetVars;
OpenPon3D;
HideCursor;
Axes;
ShowCursor;

't'tt.t"t-t".t.}

A |
3

end; {procedure ParticleAxis}

{'.'.'..".'l."".."'."'Q.".Q"IQ".l"..."'."".t..}

procedure ParticleStop;
{PURPOSE: This procedure occurs when the user selects "Stop” from the Control manu. It }

{stops the writing to the output files by simply closing them. | would like this routine to eventually }
{stop the particle plotting whan "Stop” is selected, but it doesn't do that yet. }

——

{
{Amara Graps ~ 3-29-91 }

——

{

begin
close(fileout1);
close(fileout2);
close(fileout3);

end; {procedure ParticleStop}

{e'...-"'t'-c'tt-tttttttt"ct..'tt'ﬁt't'tttttt'tt"'.-..'}

and.

86

87

C. Example Input File Collidinglonsln.text

75 100 -40 vpLeft, vpTop, vpRight, vpBottom (3D look angles) <graphics>
135 -30 myPitch(X), myYaw(Y), myRoll(2) <graphics>

scaleFactor: scales port before axes are drawn <graphics>

focusLen <graphics>

BackPat (1-5) <graphics>

20 5 axesP (0,1), axislen, labelSpace <graphics>
size (magnification for points)
25.0 20.0 x_offset, y_offset, z offset <graphics>

steps (0=infinity, -1= R_end)

Number of Particles

delay, PenPat{1-5) <graphics>

delay, PenPat(1-5) <graphics>

delay, PenPat(1-5) <graphics>
hmin (sec): smallest timestep <BS integrator>
t: beginning time <BS integrator>
dt (sec): timestep <BS integrator>
eps: error test constant <BS integrator>
mf: 0 = rational extrap 1 = polynomial extrap <BS integrator>
jstart: start with taking a new step <BS integrator>
maxord: max # of columns in extrapolation table (order).. Up to 10. <BS integrator>
maxpts: # of H's (=H/2, H/4, etc) to use in extrapolation. Gear reccmmends 10 <BS integrator>
Magnetic field strength (teslas)
true=write to output files at each step, false=write only every hour
ticks fraction: # of minutes between file writes
fractional distance of starting R min = R end
0.0 100.0 0.0 100.0 1.6e-19 1.673e-27
5.0e-4 0.0 0.0 -1.0 1.6e-19 1.673e-27
1.0e-3 0.0 100.0 -100.0 1l.6e-19 1.673e-27
z vx (m/sec) vy vz Q (coul) M (kg)

Wb

M OoOoo
OO

BIBLIOGRAPHY
(1) P. G. Roll, R. Krotkov, and R. H. Dicke, Ann. Phys. 26, 442 (1964).

(2) R. E. Brown, J. Camp, T. Darling, P. Dyer, T. Goldman, D. B. Holtkamp, M.
H. Holzscheiter, R. J. Hughes, N. Jarmie, R. A. Kenefick, N. S. P. King, M.
M. Nieto, D. Oakley, R. Ristinen, and F C. Witteborn, “A Measurement of the
Gravitational Acceleration of the Antiproton: A Status Report,” Los Alamos
Internal Report, (1990 unpublished).

(3) Fred C. Witteborn, “Free Fall Experiments with Negative Ions and Electrons,”
Ph.D. thesis, Stanford University, 1965.

(4) Fred C. Witteborn and William M. Fairbank, “Apparatus for Measuring the Force
of Gravity on Freely Falling Electrons,” Rev. Sci. Instrum. 48, 6 (Jan 1977).

5) Roald K. Wangness, Electromagnetic Fields (Wiley, New York, 1979), pp. 577-
591 &

(6) Fred C. Witteborn (private communication), 26 April 1991.
(7) Fred C. Witteborn (private communication), 15 September 1989.

(8) Wolfgang K. H. Panofsky and Melba Phillips, Classical Electricity and Magnetism
(Addison-Wesley, Cambridge, 1955), pp. 307-308.

(9) Fred C. Witteborn (private communication), 2 November 1989.
(10) Computer software Maple, Version 4.2.1 (Brooks/Cole, Pacific Grove, CA, 1989).

(11) Harvey Gould and Jan Tobochnik, An Introduction to Computer Simulation Me-
thods, Part 1 (Addison-Wesley, Reading, 1988), pp. 108-110.

(12) Germund Dahlquist and Ake Bjérck, Numerical Methods (Prentice-Hall, Engle-
wood Cliffs, NJ, 1974), pp. 346-347.

(13) F. S. Acton, Numerical Methods that Work (Harper and Row, New York, 1970),
pp. 134-136.

(14) William H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
Numerical Recipes (Cambridge University Press, 1986), pp. 561-568.

(15) Roland Bulirsch and Josef Stoer, “Numerical Treatment of Ordinary Differential
Equations by Extrapolation Methods,” Numerische Mathematik 8, 1-13 (1966).

(16) Computer software Think Pascal, Version 3.0 (Symantec Corporation, Cuper-
tino, 1990).

38

	San Jose State University
	SJSU ScholarWorks
	1991

	Investigating the motions and energies of ions confined in a uniform magnetic field
	Amara Lynn Graps
	Recommended Citation

	tmp.1290447007.pdf.iSRtg

