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ABSTRACT

COMPUTATIONAL INVESTIGATION OF THE LOW SPEED S1223 AIRFOIL
WITH AND WITHOUT A GURNEY FLAP

by Edward Tejnil

A numerical investigation was performed to evaluate the high-lift performance of
the S1223 low-speed airfoil. The effects of adding a 1% of chord Gurney flap to this
airfoil was also examined. The low-speed, viscous, turbulent flow calculations were
carried out by solving the incompressible Navier-Stokes equations with the INS2D code.
Three turbulence models were used: a) the Baldwin and Barth (BB), b) the one-equation
Spalart-Allmaras (SA) and c) the two-equation &-o (SST) model. The solution presented
includes lift, drag, moment, pressure, skin friction coefficients, sample velocity profiles and
detailed flow structures with comparison made to experimental (wind-tunnel) data
wherever possible. Good convergence was obtained only for the BB and SA turbulence
models, with good agreement with experimental data in a limited range of angle of attack.
Furthermore, the addition of the Gurney flap produced a significant lift increase with only

a moderate drag penalty.
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constant, a, = 0.31 (SST)

argument of blending function F;, used by turbulence model (SST)
argument of function F, , used by turbulence model (SST)
Jacobian matrix & /Jq

Jacobian matrices

matrix used in the flux difference Af*
constant, 4* =26 (BB)
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matrix used in the flux difference Af *

airfoil chord (c)

scaled artificial speed of sound
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constant, ¢, = 1.0 (SA)
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constant, ¢, =12 (SA)
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constant, ¢, =03 (SA)
constant, ¢,, =2.0 (SA)
constant, ¢, =12 (BB)
constant, ¢, =2.0 (BB)
constant, ¢, = 0.09 (BB)

airfoil drag coefficient (Cs), D/(q..c)
uncorrected airfoil drag coefficient
wing drag coefficient, D/(q.,S)

skin friction coefficient (Cy)

airfoil lift coefficient (Cy), //(q..c)
uncorrected airfoil lift coefficient
wing lift coefficient, L/(q..S)
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C, = airfoil moment coefficient (Cn), M., /(4. 5)

C,.s = airfoil pitching moment coefficient about the quarter chord point
C, = Pressure coefficient, (P- P,)/q,,

CD,, = positive component of the cross-diffusion term (SST)
AC,, = change in lift coefficient due to streamline curvature
d = distance to the closest wall, ft. (SA)

d, = distance from the field point to the trip point (located on a wall), (SA)
D = Wingdrag, Ibfor N

D = Flow variable array

e,/ = Navier-Stokes eq. convective terms

e,.f, = Navier-Stokes eq. viscous fluxes

e, = viscous flux

E,F = Navier-Stokes eq. and continuity convective terms
L,,I,= Navier-Stokes eq. and continuity viscous fluxes

Ej',. = generalized flux vectors, 1:3,. = E, F fori=1,2
f = flux vector, (used in Upwind Differencing)

f:, = viscous flux

Ja = function involved in the transition terms (SA)

f., = function involved in the transition terms (SA)

f,, = function (SA), 1, = Z’/(l’ + c“’)

] = numerical flux, (used in Upwind Differencing)

Af* = flux difference across positive or negative traveling waves

I1 = blending function used in turbulence model (SST)

F, function used by turbulence model (SST)

f. = function given in the destruction terms (SA)

h, = testsection height

1 = Identity matrix

I, = modified identity matrix

I,. = diagonal matrix

Im = modified identity matrix with a zero in the first diagonal entry

J = Jacobian of the coordinate transformation

k = Kinetic energy

k. = normalized metrics, i = 1,2

k, = normalized metrics, / = 1,2

K, = wind-tunnel correction constant for solid blockage effects (0.74)
K, = nratio of upstream velocity to velocity at model quarter chord point
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1. INTRODUCTION

Many challenges lie ahead in the design of effective high-lift/low-drag systems in
low-speed aerodynamics. Payload, range and endurance of low speed civilian/military
transports are dictated and often limited by the performance of their high lift systems.'! To
be efficient, a high lift system must allow large payload capacity (for a given wing section),
long range/endurance for a given gross weight and at the same time be economically
feasible. Generation of increased lift has other potential benefits, including steeper take-
off ascent (to reduce noise in the area surrounding the airport), increase in the climb lift-
to-drag ratio, L/D (to attain cruise altitude faster) and the desirable increase in fuel
economy. These objectives are best achieved through the use of efficient high-lift low
Reynolds number (LRN) wing systems.” Increased understanding of such systems will
surely play an important role in designing the next generation of low-speed transport
aircraft, whether for civilian or military applications.

To improve current designs of low-speed, high-lift wing sections, there is a strong
need to have an increased knowledge of the flow physics involved. Further, understanding
of the flow physics will without a doubt require both computational and experimental
efforts. With the computer advances of recent years, computational fluid dynamics (CFD)
is playing more than ever a large role in this effort. The motivation for this study is to use

computational tools that are currently available to accurately predict the lift, drag and
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moment coefficients at various angles of a high lift airfoil section, and to examine factors
involved in boundary layer separation. To this day, the low-speed (low Reynolds number)
regime is still not completely understood, making this task very formidable. In such
situations the laminar boundary-layer first separates, then becomes unstable, transitions to
turbulent flow and reattaches to the airfoil surface forming a bubble (usually on the suction
side of the airfoil).” Principal cause of the high drag produced is the separation bubble at
the low Reynold numbers. Among other problems, turbulent boundary layer separation,
Reynolds number effects, boundary-layer transition for even single-element geometries all
present a challenge to numerical investigators. Although some of these problems are
inherently three-dimensional, much remains to be learned from examining two-dimensional
models.

The choice of a wing section (or airfoil) is one of the most important
considerations in the design of high lift transport aircraft, as is the choice of high-lift
devices. Although the existing library of low Reynolds number airfoils is extensive, to this
date only a few are suitable for low speed applications. Wind-tunnel tests have confirmed
some 15% more lift on the “S1223” airfoil’ (than other comparable high-lift LRN airfoils),
which satisfies the design criteria by efficiently generating high-lift at a design Reynolds
number of 2x10°. This very efficient high-lift LRN airfoil is especially suited for small
unmanned-aerial-vehicles (UAVs) that need to carry heavy payloads for long periods of
time. Unlike very complex and often cumbersome multi-element high-lift devices, one

mechanically very simple device is the Gurney flap. On the order of 1% of the airfoil
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chord length in size, the Gurney flap in this study is an elbow-like structure placed on the
pressure side of the airfoil at the trailing edge. Simple, but yet very effective, this small
flap has the potential to further enhance the lift capability with only a small increase in
drag.

The objective of the present study is to provide qualitative/quantitative data on the
performance of the “S1223”, high-lift, low Reynolds number airfoil (in free stream
conditions, Re=2x10°) and to make a close examination of the flowfield. The computed
lift, drag, moment, pressure, skin-friction coefficients and velocity profiles on the suction
side of the airfoil are presented. In addition to the baseline S1223 airfoil, the effects of
adding a 1% chord Gurney flap to the pressure side of the airfoil are investigated. The
results are compared to experimental wind-tunnel data wherever possible. Experimental
data® come from an open-return, 2.8 x 4 x 8 ft. low-turbulence wind tunnel. Furthermore,
a comparison is made between the “true” S1223 as originally designed (with a sharp,
cusp-like trailing edge, TE) and the slightly altered “tested” airfoil having a finite width TE
(coordinates of both the true and tested airfoils are included in Appendix B).

A two-dimensional numerical investigation of the incompressible, viscous,
turbulent flow is performed by solving the incompressible Navier-Stokes (INS) equations
with the INS2D code. The solution algorithm employs the method of
pseudocompressibility and utilizes an upwind differencing scheme for the convective
fluxes and an implicit line relaxation. Three different turbulence models are used to

calculate the high-lift, turbulent, airfoil flow. The turbulence models include the one-
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equation Baldwin and Barth’ (BB), Spalart-Allmaras® (SA) and the two-equation k-
(SST) model.® It is noted that, numerous investigators have studied airfoil flows using
various turbulence models. For example, a computational multi and single element airfoil
study was performed by Rogers.*’ Also, the NACA4412 with a Gurney flap was studied
by Cummings et al.® The fully turbulent and laminar-to-turbulent boundary layer flows are
compared. Employing a structured grid with a single zone in generalized curvilinear
coordinates, the hyperbolic grid generator HYPGEN’ is used to generate the necessary
computational meshes. The development, implementation, and the solution of the INS
equations using pseudo-compressibility, upwind differencing and an implicit scheme in the

solution algorithm are discussed in the following chapters.



2. THEORETICAL BACKGROUND & METHOD OF SOLUTION OVERVIEW

This section briefly discusses the governing equations of the high-lift, viscous,
turbulent flow and the numerical algorithm employed in its solution.®’ Detailed

study/development of the method used in the solution is given in Sections 3 through 5.

2.1 Governing Equations/Numerical Algorithm

The flow physics of a low-speed, incompressible Newtonian fluid is governed by
the incompressible Navier-Stokes equations, which result from applying the laws of
conservation of mass and momentum to an infinitesimal, fixed control volume. When
transformed to generalized (body-fitted) curvilinear coordinates, Reynold’s averaged, and

non-dimesionalized, the Navier Stokes'® equations can be expressed as follows:

2020
%’f:__o,%(a_e‘v)_&_f]-(j_jv):-; @2)

where J is the Jacobian of the transformation (to body fitted coordinates &, 77), U and V

are the contravariant velocities, e and f are the convective terms; and év and f, are the
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viscous fluxes. The solution of these equations is accomplished by the method of artificial
compressibility of Chorin.!' In this method, a pseudo-time derivative of pressure is added
to the continuity equation, forming a hyperbolic system of equations, that can be marched
in pseudo-time to a steady state solution. The pseudo-time derivative of pressure has the

form:
—=-pV-u (2.3)

where 7 represents pseudo-time and £ is the artificial compressibility parameter. With the

added pseudo-time term, the Navier-Stokes equations take on the following form:

oD (s n (s =
—=——|E-E, |-—|F- 24
Dz—j u E=7 E.P+uU+¢,u (2.5)
v E, P+vU+E v
" -
~ ] A - vy 0 ~ vyl 0
F=—in P+uV+nu = F,=—1 » (2.6)
J Jle, J| £,
n,P+vV+n,v|

Capable of solving both steady-state and time-dependent flow problems, the
implicit numerical scheme used in this work is the INS2D code of Rogers.'> The
algorithm uses an upwind-biased flux-difference splitting technique for the convective
terms and central differencing for the viscous terms. The upwind differencing gives a

natural dissipation to the algorithm, with no further need for generating dissipation
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artificially. Accuracy in the code is obtained in the numerical solution by subiterating the
solution in pseudo-time for each physical time step. In the solution procedure, equations
are solved using an implicit line relaxation scheme which allows the use of very large
pseudo-time steps, leading to fast convergence for the steady state, as well as for the
subiterations of time-dependent problems. In short, the scheme can be written in delta

form as:

A R -D")=-R" @.7)
JAT D

where D is the array containing the flow variables, / is the identity matrix and R is the
right hand side. The superscript n denotes the know quantities at the n-th time step and

n+1 the unknowns at the n+1 pseudo-time step.



3. GOVERNING EQUATIONS AND ARTIFICIAL COMPRESSIBILITY

In this section, governing equations for flow of an incompressible (constant
density), viscous, Newtonian fluid are presented (Rogers'®). The artificial compressibility
concept along with the generalized coordinate transformation is also introduced. Details
of the formulation for the solution for both steady and unsteady (time-dependent)
problems are given in two dimensions (2-D). The 2-D formulation is an obvious subset of
the 3-D system, with differences in the viscous fluxes and the eigensystem of the Jacobian

of the convective flux vectors.

3.1 Incompressible Navier-Stokes Equations

Based on the universal laws of conservation of mass and momentum, the
fundamental equations of fluid dynamics are as follows. The time-dependent (unsteady),
two-dimensional (2-D), viscous, incompressible (constant density) flow of a Newtonian
fluid applied to an infinitesimal, fixed control volume is governed by the Navier-Stokes
equations. The equations to be presented are first nondimensionalized using the following

relations:



~ u. ~ X ~ lu
u, =— X,=—, 1=—"L,
unf xrcf xnf
~ p—prcf ~ Tl’j ~ | 4 -1 (3])
pP=—7F—, T;=—5—, v=——=Re
PU  res PU rer xref unf

where, for / = 1, and 2 respectively, u; = u, v are the two Cartesian velocity components, x,
= x, y are the Cartesian spatial coordinates, p represents the pressure, p the density, ¢

represents time, v is the kinematic viscosity, Re is the Reynolds number, 7, represents

the viscous stress tensor, and the subscript "ref “ stands for the reference quantities. For
external flows in general, reference quantities are chosen to be the free stream quantities.
The 2-D Navier-Stokes equations which govern incompressible (constant density) flow,

written in conservative form are (the tildes are dropped for convenience)

ou Ov
_+ -

—=0 3.2
ox Jy @2

+—(f-1,)=0 (3.3)

where

3.4
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When modeling turbulent flow, the above equations represent the Reynolds averaged
quantities. Using the Boussinesq approximation for the Reynolds stress, the viscous stress

tensor 7, can be written in the following form:

Ju, Ju,
r, =(v+v, )(5—%4r o_,x: J (3.5)

where v, is the turbulent eddy viscosity. Note, various turbulence models included in the

INS2D code are to be discussed in the following sections.

3.2 Curvilinear Coordinate Transformation

For convenience in the numerical calculations and in order to facilitate the use of
time-varying, body fitted coordinates for any particular type of geometry, the equations

are transformed into generalized coordinates' using:

E=¢x, ,1)
3.6
n=x, 1) (3.6)

The curvilinear coordinate transformation when applied to the governing equations (3.2-3)

results in the following set of equations:

aORIOR
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Su_ Dy AN D[ 3 .
E=-a_§(e-e,)-a—ﬂ(f— )=-7 (38)

where r is the right-hand side of the momentum equation (eq. 3.8), J is the Jacobian of

the transformation and all other parameters are defined as:

~ 1[u

=30

. 1[EP+uU+E u

ez?_gyP+vU+§,v]

~ 1{n.pruV+nu

/= 7[r]yp+vV+r7, v] (3.9)
U=§,u+é,v

V=r7,u+7]yv

The quantities ¢ and f represent the convective terms, U/ and V are the contravarient

velocity components and the metrics of the coordinate transformation are represented as
o o
5. = ——6, ¢, =—§, etc.
ox oy

The degree of complexity of the differential form of the viscous fluxes varies depending on
two assumptions: 1) whether the flow computations are taking place on an orthogonal

mesh; and 2) whether the viscosity is spatially constant (Newtonian fluid in laminar flow).

The form of the viscous fluxes in generalized coordinates, e, and f, for the four

possibilities (nonconstant viscosity on a nonorthogonal mesh, nonconstant viscosity on an
orthogonal mesh, constant viscosity on a nonorthogonal mesh, and constant viscosity on

an orthogonal mesh) are given in Appendix A.
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3.3 Artificial Compressibility/Pseudocompressible Formulation

There are a number of approaches to solving the INS equations some of which
include the velocity-vorticity method (non-primitive variable formulation) of Fasel'’, the
vector potential-vorticity method (VPVM) of Aziz and Hellums'® and the VPVM with a
direct solver implementation by Hafez.'” Methods formulated in “primitive variables” fall
into three groups. First of these is the pressure Poisson method (first introduced by
Harlow and Welch'®), second group is the fractional-step method (initially introduced by
Chorin'' and used by Kim & Moin'® and Rosenfeld et al.®). For a complete
description/discussion of all the mentioned methods, ref. 13 may be consulted. The third,
primitive variable method is known as the artificial compressibility method. It was first
introduced/implemented in obtaining steady-state solutions to the incompressible Navier-
Stokes equations by Chorin® and successfully used by Kwak et al.,”? for solving complex
incompressible flow in generalized coordinates. Also, this method was recently used by
several authors in computing time-accurate problems. The artificial compressibility
method to be presented here for the solution of the incompressible Navier-Stokes
equations in generalized coordinates was presented and used by Rogers.'® In this artificial
compressibility formulation, a pseudo-time derivative of pressure is added to the
continuity equation (eq. 3.7), directly coupling the pressure and velocity. When combined

with the momentum equations (eq. 3.8), this forms a hyperbolic system of equations which
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can be marched in pseudo-time to a steady state solution. The equations are advanced in
physical time by iterating until a divergent-free velocity is obtained at the new physical
time level. Not limited to steady state, the method can also be extended to solve time-
dependent problems, by using subiterations in pseudo-time at every physical time step.”
As mentioned by Rogers, if only the steady-state solution is desired, the artificial
compressibility method can be very efficient, because it does not require the divergence-
free velocity field to be obtained at each iteration.” The artificial mechanism by which this
corrects the flow field to satisfy the momentum equation is quite simple. If in a
computational cell the net flux of mass becomes greater than zero (thus making the
divergence of velocity positive), the pressure in that cell is decreased and through the
action of the pressure gradient increases the force drawing the fluid toward the cell. On
the other hand, if the divergence of the velocity is negative, the pressure increases also
increasing the pressure force pushing the fluid away. In this way, the pressure and
velocity fields are directly coupled and the addition of the time derivative of pressure to
the continuity creates a hyperbolic system of equations complete with artificial pressure

waves of finite speed.
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4. SOLUTION OF THE INCOMPRESSIBLE NAVIER STOKES EQUATIONS

In the flow solver INS2D," the time derivatives in the momentum equation are
differenced using a second-order three-point implicit formula

) o+l “n 0 “n -1 .
154 2:1 +05u opn @1

where the superscript # denotes the quantities at time ¢ = nAf and r is the residual given in
eq. (3.8). To solve eq. (4.1) for a divergence free velocity at the n+1 time level, a pseudo-

time level is introduced and is denoted by a superscript m. The implicit nature of the

“n+lom o+

equations requires an iterative solution such that u approaches the new velocity

n+lm+1

u" "', as the divergence of u approaches zero. To drive the divergence of this
velocity to zero, the following artificial compressibility relation is introduced:

_g_gz_ﬂvol"‘n+l,m +1 (42)

where 7 represents the pseudo-time and where S s the artificial compressibility parameter.
Applying implicit Euler time differencing to eq. (4.2) and rewriting eq. (4.1) with the

pseudo-time subscripts yields

“n+lm+) _hn+lm n+lm+l
p prm_ ﬂ[i(ﬁj N ﬁ(l’_)] 43)
At xZ\J/) onp\J
“n+l,m+1_ “n+lm . “n+l.m_ “n “n -1
1LSu LSu =_r,H,_,,H,_l.Su 2u" +05u (4.4)

At At
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where p = p/J. Inthis partially discretized form of the first equation, fand Az are not

independent. However, both are kept separate at this point, because in the final discrete
form, B will be independent of Az (due to a nonlinear coupling between the continuity
equation and momentum equations due to the upwind differencing). The details of this
will be discussed later in the upwind-differencing section. Note a pseudo-time derivative
of pressure was added to the continuity equation (eq. 3.7), which directly coupled the
pressure and velocity. When combined with the momentum equation (eq. 3.8), this
formed a hyperbolic system of equations which can be marched in pseudo-time to a steady
state solution.

Combining the two previous equations (egs. 4.3 and 4.4) into one system of

equations in delta form gives

IH(D“n tlm+l _ fyn +l.m)=__ién slm o+l -2—2(1'55" ‘hm _apPm 405D —1) (4.5)
where
15:-}- : , D=JD
v
R 2(f-i)o(f- i)

1 AU
E=—& P+ul +&,u
§,P+vU +&v

<
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1 i
F=-‘-]— n.P+uV+nu
n,P+vV+nyv

and where /,_ is a diagonal matrix, and /_ is a modified identity matrix given as

1 15 15
I, =diag| —, =, 2
‘e lag[At At AIJ
1, = diag|0,1,1]

Finally, the residual term at the m+1 pseudo-time level is linearized giving the following

equation in delta form

E

a\n +lm
(3] J‘DD)
(4.6)

Z=(1sD " -2D" +0sD" ")

~ B

_R?n thm

Note that the flux vectors E; are identical to what would be obtained from a

steady-formulation of the artificial compressibility method, except for the presence of the
time-varying metric terms, which will be non-zero only for a mesh which changes with

time. Consequently, any differencing method which works well for the steady-state
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formulation will be suitable for the current application. Although the use of upwind
schemes based on flux-difference splitting is more costly than the use of central
differencing, the upwind schemes have the advantage of adding dissipation to the system
naturally, whereas the central differencing requires the use of artificial dissipation. It is for
this reason the current work uses a flux-difference splitting scheme for the spatial
discretization of the convective terms in eq. (4.6).

The Eigensystem of the Jacobian matrix of the flux vectors is required for the
formation of the upwind differencing numerical fluxes. The 2-D eigensystem is presented
here for the current formulation (for the 3-D formulation of the equations, consult
Rogers™ et al., or Hartwich and Hsu?). It should be noted that the transformation given
by the latter can become singular for certain values of the metrics.

The generalized flux vector for the 2-D system of equations is given by:

R pOo
E =\k.p+uQ+ku 4.7)
k,p+vQ+kyv

where 17?,. = E, F for i = 1,2 respectively, and the normalized metrics are represented with

%,i=l,2 (4.8)
%,i:l,z (4.9)

and the scaled contravarient velocity is

Q=k u+k,v
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The Jacobian matrices for this system are given by

. & 0 Bk, Bk,
A =-5= k, k. u+Q+k, k,u (4.10)
k, k. v k,v+Q+k,

A similarity transformation for the Jacobian matrix is introduced

jizxi A X @.11)

where

A, =diag().l,/12,,13)
A, =0+k,

12=Q+c+%k, 4.12)

A,zQ—c+%k,

in addition, c is the scaled artificial speed of sound given by the following

_ LY a2y

c—\[(Q+5k,) + Ak, +k,}) (4.13)

The matrix of the right eigenvectors is given by

o Ae-l) el
4 4

X = I -2k, (ud, +/ik,)(c + -;—k,) (ud, +ﬂk,)(c - %k,) (4.14)

1 1
2pck,  (vA,+ ,aey)(c + Ek,) (va, + Bk, )(c - Ek,)




19

and its inverse is given by

Xi—l = —4; P, B, 4.15)

4.1 Upwind Differencing

Upwind differencing is used in the INS2D solution scheme as a means of following
the propagation of the artificial waves introduced by the artificial compressibility. The
upwind differencing thus provides a dissipative scheme, which automatically suppresses
any oscillations caused by the nonlinear main diagonal of the Jacobian of the residual,
whereas a central-differenced flux vector would not. This helps to make the implicit
scheme nearly diagonally dominant and contributes greatly to the robustness of the INS2D
code. Even though the upwind flux differences are more costly to form, the speed-up in
convergence can result in a significant savings in the required computing-time.

The flux-difference split form of upwind differencing used is represented for a one-
dimensional (1-D) system. In its application to multi-dimensional problems, it is applied to
each coordinate direction separately. The 1-D representation of a hyperbolic system of

equations in conservation law form is given by
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al.*.?i:O

4.16
ot 0Ox ( )

where q is the vector of dependent variables and f is the flux vector. A semi-discrete

approximation to this equation is given by

~ ~

a"q) f j*2 "fj—l/z
b & =0 4.17
(51 ; * Ax #17)

where f is a numerical flux and j is a spatial index.

A flux resulting in a first-order scheme is defined by
~ 1 1 . i
S = ‘2‘[f(‘l,'+1) +f(qj)]— E[Af mp—=Af j»u/z] (4.18)

where A f* is the flux difference across positive or negative traveling waves. The flux

difference is taken as

Af*ian = A*(q)Aq,., . 4.19)
where A represents the Jacobian matrix J /d7. The A" and 4~ matrices are computed
first by forming a diagonal matrix of the positive eigenvalues, and multiplying through by
the similarity transform. Since the 4® matrix plus the A~ matrix equals the original
Jacobian matrix, we have

A =XN X

(4.20)
A =4-4
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where X is the matrix of right eigenvectors of 4, and X' is its inverse. The flux

difference is evaluated at the mid-point by using the average of ¢

The Aq term is given by

Aqjp =Aq;0 — g,
A scheme of arbitrary order may be derived using these flux differences. Implementation
of higher-order accurate schemes on the right-hand side of the equations does not require
significantly more computational time if the flux differences A f* are all computed at

once for a single line. A third-order upwind flux is defined by

;m/z = %[f(‘l,-u)*’f(‘l;)]*%[Af+f-l/z —Af o +A S ap ~ Af—j+3/2] (4.21)

where the flux differences are the same as in the first-order difference given by eq. (4.19).
The primary problem with using schemes of accuracy greater that second-order occurs at
the boundaries. Large stencils require special treatment at the boundaries, and a reduction
of order is necessary. Therefore, when going to a higher-order accurate scheme,
compactness is desirable. Such a compact scheme was used by Ra* using a fifth-order
accurate upwind-biased stencil. A fifth-order fully upwind difference would require 11

points, but this upwind-biased scheme requires only 7 points. The form of this scheme is
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From =511a:n)+ 1a))]
+$[-2Af+j—3/2 +11f " jap =6f " jup - 3f+’“‘3’2] (4.22)

1 - R . -
+36[2Af s =11 f jap +6 f ,ap+3f ,--1/2]

At points adjacent to the boundary, the high-order stencils cannot be maintained,
and the order of the scheme must be reduced. However, it is not necessary to reduce the

accuracy to first-order. The following flux is used at points next to the boundary
=~ 1 £ N -
Sinp = '2'[f(qj+|)+f(q,)]— E[Af e —Af J+l/2] (4.23)

For £=0, this flux leads to a second-order central difference. For £=1, this is the same
as the first-oder upwind difference given by eq. (4.18). By including the delta-flux terms
with a small value for the coefficient £, near second-order accuracy is maintained, and the
added dissipation ensures that no oscillations occur at the boundary. This boundary
treatment has been found to work well for very small values of &

The right and left matrices given by equations (4.14 and 4.15) clearly show that the
artificial compressibility parameter S will affect not only the continuity equations, but the
momentum equations as well. An analysis for the Cartesian coordinate case shows that
the dissipation terms added to the momentum equations will grow as the square root of 5.
This indicates that the value of S should be chosen with care when using the upwind-

differencing of the momentum equations.
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4.2 Implicit Scheme

This section describes a method for numerically representing and solving eq. (4.6).

The first consideration is the formulation of the Jacobian matrix of the residual vector R
required for the implicit side of the equation. Applying the semi-discrete formula given in
eq. (4.17) to the flux vectors and a second-order central difference formula to the viscous

terms, the residual at a discrete point x, ; , y, ; is given by

Ei+l/2,j - Ei—I/Z,j Fi+|/z,j - 1;;-1/2,1‘
R. .= +

’ 4 an (4.24)
3 (Ev)i+l,j —(Ev)i—l,j B (F"). ol —(Fv), -1 |
2A¢ 2An

where /i and j are indices for the & and # directions, respectively. The generalized
coordinates are chosen so that A and Anare equal to one. Applying the first-order
upwind numerical flux in eq. (4.18) gives

.j [ i+ ] x J 1 j+| ]—;

~AE p; +AE ap, +AE ip -AE ip,
~AF i op +AF i jop +AF i jop —AF o

_(Ev)iﬂ,j +(l§v)i—l.j —(ﬁ;)i,jﬂ +(l?:')i.j-1:|

The Jacobian matrix of the residual vector will form a banded matrix of the form:

(4.25)
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OR _pl Ry o o PRy OR,
oD "|oD,, oD, oD,
(4.26)
R, R,
- 70,""0’ -
oD, oD, ;.

However, the exact Jacobians of the flux differences can be very costly to form. Instead,
approximate Jacobians of the flux differences as derived and analyzed by Barth?’ and

Yee® are used:

OR . 1, = . B

ﬁDi.jj_l N 5(—8""" ~ B+ B i'j—'/2)+(}'3)i.f-l
R, _1( 4 . ;

0"D,-_|J_,- ~ E(_AH" - A ip; +A i—lﬁ.i) +(7'l).~-|.j
SR, 1

ag"] =~ 5(A+i+1/2,j +A%iop; — A iap — Aoy

", (4.27)
B'ijop +B ijy2 ~ B ijap — B ijap

R, 1/~ ) )
o"DMJJ = E(AMJ —Aiap,; + A4 i+]/2.j) _(71):’”.1
OR 1/~ . )
ﬁD,.‘jil = E(Bi'j+| -B'iop +B i,j+l/2) --(}’2),_‘!’I

where only the orthogonal mesh terms are retained for the implicit viscous terms giving

: =§(§; +4‘§)’"’§5 (4.28)
ra=={n. + ni)lmg:;

where /m is a modified identity matrix with a zero in the first diagonal entry.
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The matrix equation is solved using a line-relaxation method. The entire numerical

matrix equation is formed from values at the previous time level. Then, the domain is
swept in one or both of the two coordinate directions, once forward and once backward
for each sweep. At each line perpendicular to the sweep direction, a tridiagonal matrix is
formed. For the points not on this line, the implicit matrices are multiplied by the latest
known AD vector, and the resulting vector is shifted to the right-hand side of the

equations.

4.2.1 Implicit Scheme Selection in the Flow Solver INS2D

In this section, the choice and rationale for the choice of an implicit scheme used in
the INS2D flow solver is given. A brief introduction/description is given for each of the
algorithms. For a complete discussion/development, consult: “4 Comparison of Implicit
Schemes for the Incompressible Navier-Stokes Equations with Artificial Compressibility”
by Rogers.” The schemes include Point-Jacobi relaxation (PR), Gauss-Seidel line-
relaxation (LR), incomplete lower-upper decompositions (ILU), and the generalized
minimum residual (GMRES) method, preconditioned with the PR, LR, and ILU schemes.
As mentioned earlier, the INS2D flow solver uses a third-order, upwind-differencing
scheme to discretize the convective terms, and the viscous terms are differenced using

second-order central differences. The system of equations is integrated in pseudo-time
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using an implicit Euler time discretization. The resulting discrete system of equations is of

the following form

Qn+l _Qn el
VRS R (4.29)

where Q is the vector of dependent variables (of pressure -p, -u and -v velocity
components), At is the pseudo time-step size, superscript » is the iteration number and R
is the residual (composed of the convective and viscous terms). This system is linearized

about pseudo-time level n, resulting in

—+

(1 SR"
At A0

)AQ =—R" (4.30)

where AQ=0""' -Q". Eq. (4.30) is iterated until a steady-state solution is obtained at

which time, R" ~ 0. In the INS2D code, the Jacobian of R on the left-hand side (LHS) of
eq. (4.30) is formed using a residual, based on first-order differencing of the convective
terms, whereas third-order differencing is used on the right-hand side (RHS). Further,
approximate Jacobians of flux differences from the upwind differencing scheme are used,
because the exact Jacobians of these terms would require the formation of a tensor (more
details can be found in ref. 30). The first order LHS matrix is used to reduce the
bandwidth of the resulting LHS matrix, resulting in lower memory and computational
requirements. However, as already mentioned, the use of approximate Jacobians can also

slow down the convergence.
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For turbulent flow calculations, the INS2D code employs a turbulence model of
Baldwin and Barth® (BB). Note, in different run scenarios, two other turbulence models
are used, the one-equation Spalari-Allmaras® (SA), and the two-equation k- **'*? (SST)
model. The BB requires the solution of a single convective-diffusive partial-differential
equation. This equation is uncoupled from the mean flow equations during the solution
process. The convective terms in the turbulence model are discretized using a first-order
upwind-differencing scheme. The resulting equation for the turbulence model is discrete
and of the form of eq. (4.30), with the exception that Q now represents a single variable at
each grid point instead of three variables. The LHS of eq. (4.30) is a banded matrix
composed of five diagonals, each containing scalar entries. In all cases being solved, the
turbulent model equation is solved using the same implicit scheme as the mean-flow
equations.
If the LHS of eq. (4.30) were composed of the exact Jacobians and solved exactly
at each time step with an infinite time step, this would be a Newton iteration. In this case,

quadratic convergence could be obtained if the " was close to the exact solution. But

the LHS is composed of an approximate Jacobian of the RHS and the turbulence model is
uncoupled from the mean-flow equations, so the solution procedure is not a Newton
iteration. Thus, the goal is to obtain an approximate solution to eq. (4.30) in an efficient
manner, and attempts are made to accomplish this task using several different methods.

The discrete form of the matrix from the LHS of eq. (4.30) is a pentadiagonal banded
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matrix, where each entry on the diagonal consists of 3x3 blocks. Equation (4.30) can be
written as

[D......0,4,B,C.0,...,0, E]JAQ = -R" (431)
where 4, B, C, D and E are the block diagonals. In the implementation of all of the
implicit schemes, the code first computes and stores all the terms in eq. (4.31), and then it
proceeds with the solution procedure. The storage requires 48N words, where V is the
total number of grid points. In the following, subscript i refers to a single grid-point
index, when one can consider all of the grid points in a single vector of length N. The
subscripts j and k are indices in the two computational-space directions & and 7,
respectively. Whenever the data is stored in a single index vector, it is done so that j is the

fastest changing (inner) index.

4.2.2 Incomplete Lower-upper Factorization (ILU)

In the ILU formulation, the matrix on the LHS of eq. (4.31) is replaced with the
following factors:
[D9,..0,4,B[B']'[B',C,0....0,E]

B,-' = Bi - AiCil_l - DE'

P 7i- jmax

Cl= [Bi']_l G (4.32)
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E =[B]'E,

Multiplying these factors together, one can observe that a matrix of the same structure as
the original LHS is obtained, with the exception that there are additional diagonals of
nonzero entries created just above the D diagonal and just below the I diagonal. These
new entries are ignored in the approximation. This operation is known as ILU with the
zero additional fill, or ILU(0) (for further details on implementing ILU schemes with
additional fill consult ref. 33).

The ILU solver requires some significant initialization work; namely, the
computation and storage of the B’ diagonal. This requires 9N extra storage locations.
When used as a preconditioner, this is done once at the beginning of the GMRES solution
process, and then used repeatedly during the GMRES iteration cycle. The solution can be
vectorized by setting up an inner loop operating on all points on a diagonal line defined by

J+k = constant.

4.2.3 Point Relaxation (PR)

The PR algorithm iteratively solves a block diagonal system formed by multiplying
all the non-main block diagonals by the current estimate for AQ and moving this to the
RHS. This is done for each point, sweeping sequentially through the mesh. A forward

sweep is composed of
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[B]AQ’*' =-R" —[D,O,...,O, A]AQ’*' —[C,O,...,O, E]AQ', (4.33)

and a backward sweep is performed by solving
[B]A0™ = -R" -[D,0,...,0, 4]AQ" -[C,0,...,0, E]AQ"" (4.34)
In the current computations, a forward sweep plus a backward sweep count as one sweep,
denoted as PR(1). The solution process is initialized by setting AQ to zero. Then a

lower-upper (LU) factorization of the B block is formed. Thus, the number of operations
to solve this equation is minimized during the repeated sweeping process. This process
can be vectorized by setting up an inner loop to compute AQ for all points on a diagonal

line through the mesh given by j+& = constant.

4.2.4 Line Relaxation (LR)

The LR process is similar to the PR method, except that more terms are kept on
the LHS and a block tridiagonal system of equations is solved for an entire grid line at
once. The algorithm is implemented so that either computational direction can be selected
to be the sweep direction. For solving lines of constant &, a forward sweep is composed
of

[4.B.CJaQ"" = -R" -[D]AQ™ -[E]AQ', (4.35)

and a backward sweep is performed by solving
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[A,B,C]A M =R -[D]AQ' —[E]A e (4.36)
A forward-plus-backward sweep counts as two sweeps and is denoted by LR(2). This

process is also initialized by setting AQ to zero. Then, an LU factorization of the

tridiagonal system is formed to minimize the number of operations during the sweeping
process. The sweeping process is recursive and can’t be vectorized. It should be noted
that the LR and PR schemes each require the same number of operations per point per
sweep, because whereas the PR only has to solve a block diagonal system instead of a
block tridiagonal system (it has additional block vector multiply operations for the RHS
terms). The PR terms scheme will run faster on a vector computer because it can be
vectorized. In practice, the PR routine runs about twice as fast as the LR routine (consult
ref. 29 for further details).

In both the PR and LR algorithms, zonal boundary conditions are enforced during
the sweeping process. Typically, multiple sweeps are performed during each iteration.
When computing a multiple zone grid, all zones are swept once before moving onto a

! is passed to all other zones that

second sweep. After each zone is swept, this new AQ
use this zone for their boundary conditions. In this fashion, information is propagated

across zonal boundaries implicitly.
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4.2.5 Generalized Minimum Residual Method (GMRES)

The GMRES algorithm of Saad and Schultz* is an iterative procedure for solving
the linear system of equations of the form
Mx~b=0 4.37)
or, in the left preconditioned form
PMx—-Pb=0 (4.38)
where P is the preconditioner which is an approximation to AM/~'. The preconditioner
matrix PM will have a smaller spectral radius than M, resulting in faster convergence for
the GMRES procedure. This procedure performed in the £ search directions, known as
GMRES(£), forms an approximation to the solution vector x is given by
X, =X, +yv+. +y.v,, (4.39)
where x, is an initial guess to the solution x, and the v, terms are orthonormal vectors

formed from the process

r, = PMx, - Pb, v, == (4.40)

Iterate: For j=12,...k,:
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hy=(PMv,v,), i=12,..j
W =PMv, _hl.jvl "hz.j"z —.=h; v,

hj+l.j =|wj+l
_ wj+l

Via =57
"wj+l

The y, coefficients are computed so that the norm of the residual |Mx, -5 is

minimized. An estimate for this norm is available during each iteration of the solution

process as a function of the 4, ; variables. The process requires approximately (4 +k)3N

words of memory to apply to the mean-flow equations (therefore it’s not practical to use
large values of k). Because of memory usage, the flow solver is limited to & being no
more than ten (4~10). A restart capability of the GMRES algorithm allows the iteration
process to continue beyond 4=10 in this case. This is done simply by setting x,=;o, and
restarting from the beginning. If a total of 30 GMRES search directions is specified to the
code, then two restarts are used. This is designated as GMRES(30).

The GMRES algorithm is implemented here so that the iterations can be stopped
based on either of two criteria. The first is simply to specify the maximum number of
search directions to be used. The second is to specify a tolerance for the error. One
advantage of the GMRES process is that an accurate estimate of the norm of the residual
is computed as part of the solution process. Using numerical tests, it was found that it

was generally more efficient (in terms of obtaining a converged steady-state flow solution)
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to specify a set number of search directions for GMRES than it was to specify a tolerance
for the norm of the residual. Because the preconditioner must be utilized once for each
GMRES search direction, it needs to be relatively cheap. Thus, when the PR and LR
schemes are used as a preconditioner for GMRES, only two sweep of the relaxation
process are used.

The choice of the implicit scheme for the solution of the Incompressible Navier-
Stokes equations with the artificial compressibility method is based on
empirical/experimental data from Rogers.”’ When conducting computer experiments, the
efficiency of the schemes was measured in terms of computing time required to obtain a
steady-state solution. Furthermore, Rogers compared a number of different implicit
schemes (including the LR, PR, ILU and GMRES method preconditioned with the PR. LR
and ILU schemes) in solving several two-dimensional flow problems. Two such problem
included the 2-D flow over a NACA4412 airfoil and the flow over a three-element airfoil
using overset grids. For each geometry/method, calculations were run to determine the
optimal time-step size (hence the Az), optimal value of £, and optimum number of
relaxation sweeps or GMRES search directions. Most cases were found to run best using
an infinite time step, which was implemented by setting A7 =10'?, so that 1/Ar was on
the order of machine zero. In some cases, this large step resulted in an instability, and the
time step had to be reduced. In other cases, a large time step calculation remained stable,
but a smaller time step run resulted in better efficiency. These calculations determined the

best possible performance of each method for a particular case. In calculating the flow
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over the NACA4412 airfoil at a Reynolds number of 1.5 million and an angle of attack of
13.87 degrees, the resultant calculations were also compared to experimental data of
Coles and Wadcock.”® To see the effects of grid refinement and to find the convergence
rates, different size grids 119x31, 237x61, 473x121 and 945x241 were compared. Using
the same flow solver INS2D, results showed the GMRES method preconditioned with the
ILU scheme outperformed all other method by at least a factor of two. Examining the
convergence rate trends using the various grid sizes, all of the methods required a
reduction in the time-step size, and an increase in the amplification factor and cost per
point as the grid density increased. Based on these resuits, the GMRES method
preconditioned with the ILU (GMRES(10)+ILU(0), B =1, di=A7=0.1) scheme was
chosen for the current calculations, after performing a choice of parameters (8 d¢ and
Ar) study. In addition, the GMRES+ILU method had an optimum convergence with the

same value of g for all grid levels.
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4.3 Boundary Conditions

Implicit boundary condjtions are used for all boundaries, making it possible to use
large time steps. At a no-slip surface, the velocity is specified to be zero, and the pressure
at the boundary is obtained by specifying the pressure gradient normal to the wall to be
zero. The boundary conditions used for inflow and outflow region are based on the
method of characteristics. Although the implementation is slightly different, formulation
of these boundary conditions is similar to that given by Merkle and Tsai.** The finite-
speed waves which arise with the use of artificial compressibility are governed by the

following relations

oD OE SPEAD  ~éD D
————:—:———-——:—A—:—XAX—]—
ér o0& 6D & O &
then
oD D
X' —=-AX"— 441
or o& (441)

If one were to move the X' matrix inside the spatial and time derivative, then it can be
noted that this would be a system of scalar equations (each of the form of a wave
equation). The sign of the eigenvalue in the A matrix determines the direction of travel
of the wave. For each positive (or negative) eigenvalue, there is a wave propagating

information in the positive (or negative) £ direction. The number of characteristic waves
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propagating information from the interior of the computational domain to the boundary
depends on the number of positive or negative eigenvalues. At the boundary,
characteristics which bring information from the interior computational domain are used as
part of the boundary conditions. The rest of the information should come from outside the
computational domain, and consequently we’re free to specify some variables.

There will either be one or two characteristics traveling toward the boundary from
the interior, because there is always at least one positive eigenvalue and one negative
eigenvalue. In order to select the proper characteristic waves, eq. (4.41) is multiplied by a
diagonal selection matrix L one entry of which is the position of the eigenvalue we wish to

select; /. has zeros at all other locations. As a result

x 2 _jax 92 (4.42)
or 74
Replacing the time derivative with an implicit Euler time step gives
-1 n
(LX + LAX ﬁJ(D“' ~D")=LAX"' ob (4.43)
JAT o o¢

This gives either one or two relations, depending on the number of non-zero
elements in L. To complete the set of equations, some variables must be specified to be

constant. Defined here is a vector Q of the variables to be held constant, such that
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x XD

X
—=0>——=0>—(D"'-D")=0 444
or - oD or - ﬁD( ) (@.49)
Combining eqs. (4.43) and (4.44) gives
Lx™ . o'Qj , L, oD"
LAX" —+— (D" = D" )=~LAX~ — 4.45
( JAr o2 oD ( ) € (4.45)

eq. (4.45) can be used to update the variables implicitly at any of the inflow or outflow

boundaries with the proper choice of L and £2.

4.3.1 Inflow Boundary

At the inflow, there will be one characteristic wave traveling out of the
computational domain since fluid is traveling into the domain. If the incoming fluid is

traveling in the positive & direction, then

0>0
Q+c>0 (4.46)

Q-c<0
This third eigenvalue will be the one we wish to select, and so . will have a one for the

third diagonal entry. If the incoming fluid is traveling in the negative £ direction, then

0<0
Q+c>0 (4.47)

Q-c<0
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and the second eigenvalue is the one corresponding to the wave propagation out of the
computational domain. This requires a “1” in the second diagonal entry of /.. Two
different sets of specified variables have been used successfully for inflow boundaries.
One set consists of the total pressure and the cross-flow velocity. This set is useful for

problems in which the inflow velocity profile is not known. For this set, the Q vector is

S © 2

14
0 (4.48)
1

The second possible set of specified variables consists of the velocity components. This is
useful for problems in which a specific velocity profile is desired at the inflow. The Q

vector for this case is

00
10 (4.49)
0 1

4.3.8 Outflow Boundary

At the outflow boundary there are two characteristic waves traveling out of the
computational domain since fluid is also leaving the domain. If the fluid is traveling along

the positive & direction then,
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0>0
Q+c>0 (4.50)

Q-c<0
and ones are required in the first two diagonal entries of the L matrix. If the fluid is

traveling in the negative £ direction then,

0<0
Q+c>0 4.51)

Q-c<0
and we require ones in the first and third diagonal entries of the L matrix. For all of the

problems presented, the static pressure is specified at the outflow boundary, resulting in

p 1 00
N
0 00
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S. TURBULENCE MODELS

Three different turbulence models are used to calculate the high-lift, turbulent,
airfoil flow. This section gives a short description/implementation of each of the models
(for complete details see “A4 comparison of Turbulence Models in Computing Multi-
Element Airfoil Flows™ ). The turbulence models included are models of: /) Baldwin and
Barih® (BB), 2) one-equation Spalart-Allmaras* (SA) and 3) two-equation k- (SST)
model. The last model was developed by Menter,**'** based on the k-w model of
Wilcox’’ and the standard k-¢ model. Models are implemented in the flow code in a

modular, uncoupled fashion with the ability to handle multiple grid flows.

5.1 Baldwin Barth Model (BB)

Derived from a simplified form of the k-£ model equations, the BB model solves
one transport equation for the turbulent Reynolds number ﬁ, , which is related to eddy
viscosity v,. Transition from laminar to turbulent flow is introduced by multiplying the

turbulence production term P in the equation, by a function whose range is from zero to

one. In addition, the function is zero upstream of a user defined transition point, at which
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the function is exponentially increased to a value of one, over two or three grid points.

The transport equation used by the BB model is given by

"D(_ﬂfr—)z (c:,fz —cq) VE,P

D
(o 2o ()5

(5.1

where v is the kinematic viscosity, D/Dt is the substantial derivative, and the other

parameters are defined by the following:

1ot o)L
vV, = C,,(Vﬁr )DI D, (5.2)
D, =1—em(——y*/A“)
D, = l-—exp(—y*/Az‘)
oU, U, aU,
pP= V‘[ax, + ax,.lj o (5.3)

.fz(.)’+)=z£l ‘*{ _'Zi]("&]T'*'DIDz)( DD,
" o (5.4)

+ y+ l+ em(—y*/A*)Dz +_1+'ex —y"/AZ*)DI
JD,D, \ 4 A

where x;= x, y and U;=u, v (the Cartesian velocity components) for i =1, 2 respectively.

The y* wall coordinate is given by

y (5.5)
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where 1, is the shear stress at the nearest wall grid point and y is the distance from that

same grid point. The constants used in the model are as follows

k=041, ¢, =12, ¢
A" =26, A4, =10

=20, c,=009

£y

(5.6)

At a no-slip wall boundary, ﬁ, is set to zero. At an outflow boundary and at slip-wall

boundaries, the normal derivative is set to zero.

5.2 Spalart-Allmaras Model (SA)

One transport equation for a non-dimensional eddy viscosity variable y is solved by
the SA model. Similar to the BB model, the SA equation is different by the addition of a
non-viscous destruction term that depends on the distance to the wall. SA also includes a
more sophisticated transition model which provides a smooth laminar to turbulent

transition at points specified by the user. The eddy viscosity is given by

Vl = Vval (57)
ZB
fvl = 3 3 (58)
l +cvl

The transport equation for y is given by
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D
Df = cbl[l f:z]SZ'*' —[V (1 + J.')VZ) +Cbz(vl) ]
c 2 £ (5.9)
AT
where Vs the gradient operator,
§ E 2 2 va
d (5.10)
=1-
fv2 1 +”V|

§ is the magnitude of vorticity and d is the distance to the closest wall. The function f,

in the destruction terms is given by

1. g{l+cw3 ]
gt+c

g= r+cw2 r —r (5.11)
r=%
Sk’d’

The functions f, and f,, involved in the transition terms are given by

+g,’d,2])

frz = c:sexP(—cmZz) (5.12)
= min(0.,AU/w, Ax,)

fn = cngrexp(_crz

where d, is the distance from the field point to the trip point (located on a wall); , is the

vorticity at the trip; AU is the difference between the velocity at the field point and that at
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the trip and Ax, is the grid spacing along the wall at the trip. The constants in this model

are given by

0=2/3, k=041
¢, =01355, ¢,, =0622

¢y =Cy [k +(1+¢,,) /0

¢,=03 c¢,;=20 (5.13)
¢, =71, ¢, =10

¢, =20, ¢c,;=12

¢, =05

At a no-slip wall boundary, ¥y =0. At an outflow boundary and at slip wall boundaries,

the normal derivative of yis set to zero.

53 k- (SST) Model

The SST model is a two-equation k-£ model developed by Menter’; it is based on
the earlier k&-cwmodel of Wilcox.”” The Wilcox model was found to perform quite well in a
study of various adverse pressure gradient flows performed by Menter.?' However,
Menter* also showed that this model is very sensitive to the specification of freestream
values for @ The formulation of the model’ removes the freestream dependency with a
zonal approach, which automatically switches from the Wilcox model in the mean wall
region, to an equivalent of the £-& model®® away from the wall and in free shear layers. In

order to improve the sensitivity of the model to adverse pressure gradients, Menter
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introduced a modification to the definition of the eddy-viscosity that accounts for the
transport of the principal turbulent shear stress.” This modification is based on
Bradshaw’s assumption that the principal shear stress is proportional to the turbulent
kinetic energy over most of the boundary layer. Transition is implemented in the same
manner as the BB model.

The transport equations for k£ and ware given by

Dk
Ezl’,,—ﬂ‘mk+V-[(l+a,,v,)Vk] (5.14)

29:713, - fw? +2(I—FI)0',”2%Vk-Va)

Dt (5.15)

+V-[(l+a,,v,)Vw]

P, =vQ?
P, =Q

where Q is the magnitude of the vorticity. The constants in the model are blended using
the following, where ¢ represents one of the constants given by

¢=Fe¢ +(1-F)¢, (5.16)
where the @, constants are from the Wilcox k- model, with an adjustment to G, :

o, =085 o, =05
B, =00828, A =009

k=041, y,=041, y,=8,/B -c.x*/ B

The blending function is defined as



F = tanh(arg,‘)

. ( N3 500v] 4o .k
arg, = min| max ,
0.09ay

,Ckayz
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(5.17)

where y is the distance to the closest no-slip surface and CD, is the positive component

of the cross-diffusion term in eq. (5.2):
CD,, = max(2o-m2 —]-Vk -Vo,1x 10’20)
@

The eddy-viscosity is defined as

V= ak
* max(a,0,QF,)

where a, = 0.31 and F3is given by

F = tanh(argzz)
vk SOOVJ

009y’ y'w

arg, = max(Z

At a no-slip wall, the boundary conditions are £ = 0 and

6v

w=10 5
B(&)

(5.18)

(5.19)

where Ay is the distance to the next grid point away from the wall. At outflow boundaries

the gradient is equal to zero.
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6. GEOMETRY MODELING AND GRID GENERATION

6.1 Geometry Modeling (Airfoil Discussion)

In this study, the geometry is a S1223 (11.93% thick, 8.67% camber,

C

s = —0.290) airfoil® in free stream conditions. Especially designed for heavy lift cargo
planes and unmanned aerial vehicles (UAV’s), this airfoil has both civilian (e.g., scientific,
meteorology and mapping) and military (e.g., electronic warfare and reconnaissance)
applications. As mentioned by Folch,*** small UAV’s are sometimes driven by the need
to carry relatively heavy payloads for long periods of time. Typical mission of such
aircraft may include a 24 hour endurance at an altitude of 100 ft. (mean sea level), with
flight speeds ranging from 25-40 kts. and payload requirements varying from 10-25 lbs.*
Example of a UAV currently being used by the US-Navy for reconnaissance is shown in
fig. 6.0. Called the “Predator”, this UAV provides “near real-time” infrared and color
video to its mother-ship during flight and is capable of 50 hours of non-stop flight.
Operated remotely by a detachment consisting of military pilots/technicians and with an
average speed of approximately 70 knots, it has a wingspan of 48.4 feet, a length of 26.7

feet and weighs approximately 1500 lb., when fully fueled (cost around 3.2 million

dollars). With potential to be used in many civilian/military applications, the S$1223
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satisfies the design criterion by efficiently generating high lift at low Reynolds number.
The S1223 airfoil design philosophy* was to combine the favorable effects of concave
pressure recovery and aft loading to achieve maximum lift at design Reynolds number of
2x10°. The original characteristics of this airfoil were achieved through the use of a suite
of computational tools. In particular, several low-speed airfoil design and analysis codes
were used, such as PROFOIL,*"* Eppler*** and either the ISES*** or XFOIL* codes.
From a performance standpoint, the S1223 has a design C, of about 2.11, which is one of
the highest lift coefficients of any airfoil designed for Reynolds numbers of the order of
2x10°. Others of the same class include the CH10-48-13, FX63-137, FX74-CL5-
140MOD, MO06-13-128 and S1210 airfoils (for further details consult Selig?). Even
though the existing “library” of low Reynolds number airfoils is extensive, to date only a
few airfoils are suitable for high lift low Reynolds applications.

Included in this work is the true S1223 (true airfoil coordinates having a sharp,
cusp-like trailing edge) as originally designed, and the wind tunnel tested S1223 (actual
model coordinates). The average difference between these two airfoils is approximately
.0099 inches (or .083% for a 12 in. chord). The plot of the true, the tested S1223 and the
difference between the two airfoils is shown in figures 6.1 through 6.4. In addition, the
effect of adding a Gurney flap to both the true and the tested airfoil section geometries

was examined (see discussion on the Gurney flap).
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Figure 6.1. Plot of the True and Tested S1223 Airfoil Coordinates
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Figure 6.2. Close-up of the True and Tested S1223 Airfoils Near the Leading Edge
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Figure 6.3. Close-up of the True and Tested S1223 Airfoils near the Trailing Edge
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Figure 6.4. Plot of the Difference between True and Tested S1223 Airfoil Coordinates.

6.2 Grid Generation

The grid was constructed using the hyperbolic grid generation code HYPGEN, of
Chan® et al. The Hypgen program is used to generate a 3-D volume grid over a user
specified single block surface grid by marching away from the initial surface, with the step
size given by a stretching function in the normal direction. The grid generation® is

accomplished by solving the 3-D hyperbolic grid generation equations (two orthogonality
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relations and one cell volume constraint). As an option, a 2-D grid can also be generated
by specifying appropriate boundary conditions.

As an input file for HYPGEN, surface grids for both the S1223 and S1223 with a
Gurney flap were generated (true and tested airfoil coordinates). These variable spacing
surface grids included the coordinates of the airfoils, plus the upper and lower coordinates
of the wake. Subsequently, all the grids generated with HYPGEN were C-meshes of
different sizes. In addition, HYPGEN allowed to control the initial spacing (in the surface
normal direction) and far field along the wake cut as well as having multiple L-regions
(regions of specified initial and final spacing and distances to march out). The reason
behind employing two separate L-regions was to reduce grid skewness. For all the grids,
two L-regions were employed with a variable far field distance in the first L-region, to
limit the growth of the grid in the normal direction. If this limit was absent the grid lines
(especially at the trailing edge) would tend to bend too far forward resulting in an
unsatisfactory skewed grid. Another advantage of employing two L-regions was the fact
that both the far field distance and the initial normal grid spacing along the wake cut, in
the region close to the body surface were made to increase linearly with distances
downstream, resulting in fanning of the grid points in the wake. Note, to enhance the
convergence/stability, elliptic smoothing was also performed across the wake region. The
different C-mesh grids and their respective sizes used to model the true and the tested
$1223 airfoil with and without the Gurney flap are summarized in Table 6.1 (grid No. I is

shown in figures 6.5-6). Note the grids are numbered I, II, III and IV respectively and
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will be referred to as such. Further, note that only the grids giving the best overall results
were selected from two or three grids for each configuration, with the finer meshes
generally yielding better results and accuracy at the expense of increased grid size. For all
the grids, the far field distance (distance to the outer boundary of the C-mesh) was kept
constant and only the number of points along the airfoil and its wake was varied. The
initial spacing in the normal direction to capture the viscosity effects in the boundary layer

was 0.20E-4 or 0.002% of the chord.

Grid No. L 1L 1]/ Iv.
C-mesh size 248 x 61 268 x 61 301 x 61 317 x 61

Type of True S1223 | True S1223 w. | Tested S1223 | Tested S1223
Coordinates Gurney Flap w. Gurney Flap

Table 6.1. Grid Size Summary of C-meshes and their Applications
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Figure 6.5. Grid No. I C-mesh (248x61)
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Figure 6.6. Close-up of Grid No. I. C-mesh (248x61)
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7. THE GURNEY FLAP

7.1 Concept and Description of the Gurney Flap

One mechanically simple device for enhancing the lift (C.) is the Gurney flap.
From a geometry point of view, a Gurney flap is usually a small flat plate (the length of
which is of the order of 1% of chord), located perpendicular to the pressure side of an

! Gurney flaps were first used on the inverted wings of race

airfoil at the trailing edge.
cars to provide a “down-force” to increase the adhesion of tires during acceleration,
braking and cornering. Taking measurements by comparing corner and straightaway
speeds with and without the flap, it was found that increasing the size of the flap (beyond
approximately 2%) offered an increased down-force, but also increased the drag. Liebeck
tested a 1.25% Gurney flap on a Newman airfoil, which is an airfoil defined by an elliptical
nose on a straight line wedge. For this particular configuration, an increase in the lift
coefficient and a small decrease in the drag coefficient was observed. Liebeck also
hypothesized on the changes in the trailing edge flow-field due to the presence of a
Gurney flap. Figure 7.1 shows the flow near the trailing edge of a conventional airfoil

with a Gurney flap (at moderate lift coefficient) with an upstream separation bubble and

two counter-rotating vortices. Basing his assumptions on the earlier explanation of the



57
flow mechanism by Khodadoust™ using a tufted probe, Liebeck observed a significant
turning of the flow over the back side of the flap.

From results obtained thus far, one of the applications and virtues of the Gurney
flap maybe that of lift enhancement, while reducing the drag on both the single and multi-
element airfoil configurations. Other investigators have considered this concept
experimentally (Duddy,” Jang™) and computationally (Cummings®). An experimental
wind tunnel investigation of the Gurney flap used on multi element race-car-wing was
conducted by Largman and Katz*’ and Dykstra® on a four element car-wing. In the last
two investigations, the Gurney flap was located on the trailing edge of the most aft wing.
Largman and Katz reported that, using a 5% chord Gurney flap increased the lift
coefficient of the wing by as much as 50% over that of the clean wing. However, as
pointed out, the drag also increased to such an extent that the resulting L/D ratio was
decreased at the design range of angle of attack (between 2 to 12 degrees). Similarly,
Dykstra found that adding Gurney flap (on the order of 2% chord), increased the wing lift
coefficient as well as the drag coefficient. Wing L/D with the Gurney flap was again
slightly lower than the clean configuration.

Further studies of Roesch and Vuillet’” from an Aerospatiale wind tunnel test,
involved the use of the Gurney flap mounted on horizontal tails and vertical fins of
helicopter models. Horizontal stabilizer (aspect ratio of 5, 0.375 m chord) was tested with
Gurney flap size of 1.25% and 5% chord, which employed a NACA5414 airfoil section.

Comparing the lift characteristics from tests showed the increase in lift coefficient as the
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Gurney flap size increased. According to Roesch,”’ the 5% chord flap increased the lift
coefficient by 40%, raised the lift curve slope by 6%, and shifted the angle of attack for
zero lift by -6 degrees. Drag polars, on the other hand, seemed to indicate that large
Gurney flap sizes caused a large increase in drag coefficient (Cp) at moderate and low C;..
In the case of the 5% chord flap at C,=0.5, the drag coefficient was almost doubled. For
the 1.25% chord flap considerable improvement was observed, the C. doubled, while
there was no significant drag penalty. Although the drag reduction stated by Liebeck was
not seen in the Aerospatiale tests, Roesch reported general agreement between the two
studies.

To closely examine the flowfield, a water tunnel study of various Gurney flap
configurations was also undertaken on a NACA 0012 wing. Neuhart*® and Pendergraft’s
dye flow results showed, that the Liebeck’s hypothesized flowfield caused by the Gurney
flap was generally correct. Neuhart, et al. stated that the effect of the Gurney flap was to
increase the local camber of the trailing edge. This hypothesis was further strengthened by

,” that looked at the effects of increasing the

the results of a wind tunnel study by Sewa
local trailing edge camber of a EA-6B wing. The C.-a curve shifted upwards from the
base-line, giving higher maximum lift and more negative zero lift angle of attack. Similar

to the 1.25% Gurney flap, no significant drag penalty was attributed to the Gurney flap at

low to moderate lift coefficients.
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Figure 7.1. Hypothesized Trailing Edge Flow Conditions of an Airfoil with a Gurney
Flap

7.2 Gurney Flap as Applied and Tested

The Gurney flap used on the S$1223 in this study is shown in figure 7.2. Instead of
being a simple flat plate perpendicular to the chord line, this Gurney flap is an elbow like
structure positioned on the pressure side of the airfoil at the trailing edge. The dimensions
of this flap are 1/8” in length and 1/64” in thickness respectively (for a 12 in. chord),
making this a 1.04% chord Gurney flap. Easy to build and attach, the S1223 was wind-
tunnel tested in this configuration (tested coordinates), with the results of this study
compared to those experimental results (see Section 8). To capture changes in the trailing

edge flow-field, due to the presence of the Gurney flap, the C-mesh shown in figs. 7.3



60
through 7.4 was used. Other investigators have computationally studied the NACA 4412
airfoil with a flat-plate Gurney flap, but used a coarse mesh insufficient to correctly

capture the flow physics generated by the Gurney flap.®

Figure 7.2. Close-up of the S1223 with a Gurney Flap (h =1/8", t = 1/64", ¢ = 12")
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Figure 7.3. Grid Used for the Gurney Flap, (Grid No. IV: C-mesh 317x61)
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Figure 7.4. Close-up of Gurney Flap at the Trailing Edge (268 x 61) C-mesh
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8. EXPERIMENTAL DATA & CORRECTIONS

This section discusses the experimental data, measurement techniques (freestream,
lit and drag force), experimental set-up, data acquisition/reduction, corrections,
calibration and uncertainty analyses (for complete details consult: “Summary of Low-
Speed Airfoil Data, Volume-17?). In addition, for validation purposes, experimental data

is compared with data from other test facilities.

8.1 Experimental Data, Measurement Techniques

All of the experimental data used in this work comes from research conducted at
the UIUC low-turbulence wind tunnel.> The wind tunnel used was an open-return type
with a 7.5:1 contraction ratio. Test section was rectangular, 2.8 x 4.0 fi. in cross section
and 8 ft. in length. To account for boundary layer growth along the wind tunnel side
walls, the width of the cross-section was made to increase by approximately 0.5 in.
Variable test section speeds up to 160 mph were made possible via 125 horsepower
alternating current electric motor, connected to a five-bladed fan. For comparison

purposes, the test section speed of 80 ft/sec (55 mph), corresponded to Reynolds number
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of 500,000 based on the airfoil chord (see fig 8.1 for a schematic of the low-speed wind

tunnel and overall dimensions).

Open Circuit Low-Speed Wind Tunnel

Test Section Dimensions: 3ft x4ft xS ft

Honeycomb Flow Silencer
/— Anti-Turbulence Screens Silencer
. Diffuscr Fan }]
Test Scction
Inlet Py |

AR T T T T E T T { E N R SESSS Y
60 fi. —

Figure 8.1. Schematic of the Low-Speed Wind Tunnel Used to Obtain Experimental
Data

In retrospect, the low Reynolds number airfoil performance was found to be highly
dependent on the laminar boundary layer. > In order to ensure good test section flow
quality, low-turbulence levels and to avoid premature transition from laminar to turbulent
flow over the airfoil surface, wind tunnel settling chamber contained a 4 in. thick
honeycomb and four anti-turbulence screens. The resultant turbulence intensity has been
measured to be less that 0.1%, which is said to be sufficient for low Reynolds number

airfoil measurements.”> Mounted horizontally between two 3/8 in thick, 6 ft. long end-
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plates (0.05 in gap between model), the model airfoil spanned the entire wind tunnel cross-
section with nominal 12 in chord and 33 5/8 in span (+ 1/64 in tolerances). Using a linear
transformer on one side of the test section, the angle of attack was measured at the pivot
point of the model. Other side of the airfoil model was connected to a lift carriage which
was free to move vertically on a precision ground shaft (restricted from any rotation).
Feedback-controlled force balance restricted the motion of the model.  Velocity
measurements were taken via two-axis traverser system, with two side-by-side pitot tubes,
connected to a center post that extended vertically through the tunnel test section floor.
The resolution and set-ability of the traverser were less than 0.001 and 0.005 in
respectively in both spanwise and vertical directions. Readout accuracy in the vertical and
spanwise directions were 0.002 and 0.020 in respectively.

Measurement techniques, consisted of recording analog data on an AT&T-386
computer having an analog-to-digital acquisition board. During the low speed (low
Reynolds number) testing, small time-dependent fluctuations in tunnel speed existed (due
to inertia of both the drive system and the air). Consequently, all of the measured
quantities (total/dynamic pressure, lift, angle of attack, temperature and x-y position) were

measured simultaneously by computer controlled (fully automated) acquisition system.
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8.1.1 Lift & Drag Measurements

Measuring lift was accomplished with a lift balance (force transducer-servo)
connected to the wind tunnel model. Similar to a standard beam balance, the weight of
the airfoil and the support structure were counter-balanced with weights. The remaining
forces (lift and residual imbalance) were then offset by torque, produced by a DC-torque
motor mounted on the beam axis. Any angular displacement from the reference value of
zero was sensed by a linear transformer. Error signal from the transformer was used to
drive the torque motor until any error was removed.

Unlike the lift force, which is measured quite easily and accurately at low Reynolds
numbers through a lift-balance, drag measurement is sometimes less accurate by as much
as an order of magnitude.”> To obtain profile drag experimentally, the momentum method
of Schlichting® and the pitot-traverse method developed by Jones®' was used. Applying
the two-dimensional momentum and continuity equations to a control volume having an

upstream and downstream velocities, ¥, and u, respectively, the drag force per unit span

is calculated from
d= | u(V,-u)dy (8.1)

Making the assumption that the location at which measurements are taken is located
sufficiently far enough behind the airfoil, such that the static pressure has returned to

upstream static pressure (P, = P, = P,), with no losses associated with downstream
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flow outside the airfoil wake, the total pressure can be calculated from the Bernoulli’s

equation

1
P.r +§pu12 = PO,I (82)

PoI=R, #3)

Applying the above two relations to eq. (8.1) and simplifying yields

d=["{JP - Pa.—P. - (PP 34)
R)'l—R'zl)()'l—R'—R)-m+1)(’.m=qm_A1)(J (85)

The resultant drag is calculated from

d={" Ja.-AR(q. - Vq. - AR, )y (8.6)

Wake measurements were taken 14.8 in (~1.25 chord lengths) downstream of the trailing
edge of the airfoil, to ensure the wake had relaxed to tunnel static pressure. Each vertical
traverse in the wake consisted of approximately 20 to 80 total head pressure
measurements, with points nominally spaced 0.08 in apart. Measurements were made
using a variable-capacitance differential pressure transducers (full scale range of 1 mm,
resolution of 0.01% of full scale reading, and an accuracy of 0.15% of reading).

To obtain an accurate value of the drag coefficient (C;), wake profile
measurements were taken at four different spanwise locations. Detailed vertical (y-
direction) surveys through the airfoil wake were nominally spaced 0.25 in apart at each

spanwise location. The resulting four drag coefficients were then averaged to obtain the
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C, at a given angle of attack. Note, no measurements were taken during stall, due to the

size and unsteadiness of the wake.

8.2 Experimental Data Corrections, Data Reduction

The presence of the wind-tunnel walls in a closed test section has the effect of
restricting the flow producing additional forces which must be subtracted out.
Extraneous aerodynamic forces occur mainly from the fact that the velocity of the air
increases as it flows over the model, due to the restraining effect of the wind-tunnel
boundaries combined with the presence of the model and wake.> The following presents
an overview of the two-dimensional wind tunnel correction presented in Selig? (more

detailed discussion can be found in Giguére®).

8.2.1 Wind Tunnel Boundary Corrections

Presence of the tunnel walls cause an increase in the measured lift, drag and
pitching moment due to an increase in velocity at the model. In a two-dimensional testing
context, lateral boundaries are known to cause: 1) Buoyancy, 2) Solid Blockage, 3) Wake
Blockage and 4) Streamline Curvature. Buoyancy 1), is an additional drag force that

results from a decrease in the static pressure along the section due to the growth of the
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boundary layer at the walls. Effect of buoyancy was taken into account directly in the
corrections of the free stream velocity (this effect is usually insignificant for airfoils tested
within test sections of constant area, consult Ref. 63). The physical presence of the model
in the test-section is known as: 2) solid blockage, and has the effect of reducing the
effective area. At a given angle of attack, velocity of the air must increase as it flows over
the model, increasing all forces and moments (from Bernoulli’s and continuity equations).
Solid blockage is a function of the model size and dimensions of the test section and is
given by the solid blockage correction factor

KIMV

855 = A3/2
a

(8.7)

where K is a constant, M, the model volume and 4, is the test section area. Another type
of blockage is known as: 3) wake blockage; and results from a lower velocity within the
airfoil wake compared to velocity in the freestream. To satisfy the continuity equation in a
closed test section, velocity at the model (outside of wake) must increase. The effect of
wake blockage is proportional to the wake size and thus to the measured drag force on the

model. The wake blockage correction factor is as follows,

£y = (ﬁ—)cm (8.8)

where the ¢ is the airfoil chord, A, and C,, are the test section height and the uncorrected

drag coefficient respectively. The last correction is: 4) streamline curvature and is due to

the physical constraints of the tunnel boundaries. The normal curvature of the free air as it



69
passes over a lifting body is altered, increasing the airfoil effective camber as the
streamlines are “squeezed” together. In a closed wind-tunnel sections, the increase in
camber results in an increase in lift, the pitching moment (about the quarter-chord) and
angle of attack, while the drag remains unaffected. Change in the lift coefficient due to
streamline curvature is

AC,, =oC, 8.9)
where C is the airfoil lift coefficient and o the wind tunnel correction parameter. Change

in the angle of attack due to streamline curvature is given by the relation

5730
Aa,, = —2”—(0, +4C, ) (8.10)
where
=)
=—| — 8.11
T8\, @10

8.2.2 Corrections to Measured Quantities

Corrections that must be applied to measured quantities can be subdivided into
two categories, namely stream and model quantities. The most important stream quantity
is the velocity at the model. Velocity at the model was attained from the freestream

velocity measurements, by applying pertinent corrections to account for solid and wake
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blockages as well as the boundary-layer growth. Combining velocity corrections into a
single expression yields:

V.=V K, (1+¢e,+¢,,), 8.12)
where, V, is the uncorrected velocity and K, is a ratio of upstream to the model quarter
chord velocities. Other stream quantities, such as the dynamic pressure and the Reynolds
number were obtained using the value of the corrected velocity (V).

The model quantities of interest include lift, drag and angle of attack; they were
corrected in their non-dimensional form to account for both solid and wake blockage as

well as streamline curvature. Corrected expressions for the lift (C,), drag (C,)

coefficients and the angle of attack (a ) are as follows:

1-o
C=C, ——— 8.13
1-¢
C,=C, ——=— 8.14)
=Ty (
= u———57'3“(c,+4cm_c,4) (8.15)

It is important to note, that the drag coefficient data was necessary to correct the
model quantities, since the wake blockage is directly proportional to the measured drag
coefficient. In the case of measuring lift however, drag was not measured, which had an
effect on the lift data reduction. For the lift curves, the wake blockage correction factor

(&,,) was computed using a constant value of the drag coefficient of 0.04, which was
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representative for conditions of maximum lift. Although over-correcting the lift
coefficient in the linear lift-curve region, this method ensured more accurate values for the

maximum C;. By comparing lift and drag data from separate lift and drag runs, this

“over-correction” was found to be insignificant.

8.3 Calibrations & Uncertainty of Experimental Data

The uncertainty analysis in the current work was obtained using the method of
Coleman & Steele®* and presented by Selig.> Uncertainties in the velocity, lift and drag
coefficients were found in a straight forward manner; further details can be found in
Guglielmo %

In the case of measuring the upstream velocity, the highest uncertainty in the
pressure reading was 1% and was due to fluctuations in flow angle; this resulted in a
freestream-velocity uncertainty within 0.5%. Neglecting errors related to use of pressure
probes, the uncertainty in the pressure readings and velocity measurements were reduced
to less than 0.5% and 0.3% respectively. For lift measurements, the overall uncertainty in
the lift coefficient is estimated to be 1.5%, with the inaccuracy of the lift-balance
calibrations being the main contributor to this small error. Drag measurement error was
found to come from three sources: i) accuracy of the data-acqusition instruments; ii)

repeatability of the measurements; and iii) the selection of one of four drag profiles used to
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determine the drag coefficient. Partially based on the error analysis of McGhee®® and
Coleman & Steele,** the uncertainty due to measurement repeatability and the instrument
error were less than 1.5% and 1%, respectively. Based on statistical analysis (for a 95%
confidence interval) of the spanwise drag results for the E374 airfoil at a=4 deg
(representative of the middle range of drag polars), the uncertainties in the spanwise
variations were estimated at 1.5%. Based on the calibration results of the angle of attack
(taken at six different angles between 0 to 25 deg with a 5 deg increment), the overall

uncertainty in the angle of attack is estimated to be 0.08 degrees.

8.3.1 Comparison to Other Test Facilities

For purposes of comparing the test facility at UIUC? and test data validation, drag
results of the E387 airfoil were compared with test results performed at NASA-Langley
LTPT,* Delft®® and Stuttgart®’ at different Reynolds numbers. Although, the UIUC
model airfoil was slightly warped/decambered at the trailing edge, the agreement shown
was quite good at Reynolds number of 2x10°. For the sake of completeness, wind tunnel
tests on the same model were performed at Princeton,*® again confirming good overall

agreement and conforming validity of the test data.
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9. DISCUSSION & COMPUTED RESULTS

This section describes and discusses the results of the current computations on the
true and tested S1223 airfoils in free stream conditions at a Reynolds number of 2x10°.
Calculated lift (C,), drag (C;) and moment (C,) coefficients of the clean $1223 and 1%
chord Gurney flapped airfoil are compared with the experimental data of Selig.> Pressure
(C,) and skin friction (Cy) plots, location of separation as a function of angle of attack and
examples of calculated velocity profiles are presented. Results include comparison
between: (a) fully turbulent and (b) laminar-to-turbulent boundary layer transition flow
calculations. The turbulence models used include the one-equation Baldwin and Barth’®
(BB), Spalart-Allmaras* (SA) and the two-equation k- (SST) model.® Detailed flow
structures and changes in the flowfield due to the presence of the Gurney flap are
presented. Numerical solution, convergence and history between turbulence models for
fully-turbulent and transition flow are also included. Lastly, performance comparison is
made between the “true” (having a cusp-like trailing edge, TE) and the “tested” (slightly

altered finite width TE) S1223 airfoils.
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9.1 Laminar to Turbulent Boundary-Layer Transition

In the present study two cases were examined: (a) flow is assumed to be fully
turbulent or (b) transition from laminar to turbulent flow is assumed to occur somewhere
on the airfoil top and bottom surface. For the latter to be implemented by the turbulence
models (BB,SA and SST), transition points from laminar to turbulent flow had to be
specified for both the upper and lower airfoil surfaces. Similar to the SA model, the BB
model! sets the production terms to zero upstream of the transition location. Transition
usually occurs over a short, but finite distance in which the boundary layer changes
intermittently from laminar to turbulent. According to Schlichting,” free transition occurs
when a laminar boundary layer spontaneously becomes unstable, meaning that small
disturbances in the flow are amplified. Once the boundary layer becomes unstable,
transition to turbulence occurs some further distance downstream. As mentioned in Ref.
69, the point of instability and the following distance to the point of transition are highly
dependent on the Reynolds number, the amount of turbulence in the freestream, and the
external velocity distribution imposed on the boundary layer. Large Reynolds numbers,
turbulence in the freestream and adverse pressure gradients all tend to hasten the
transition, making the prediction of the transition difficult and inexact. ® Schlichting states
that the point of transition is generally near the point of minimum pressure (maximum

edge of the boundary layer velocity ¥.) for Reynolds numbers from 10° to 107.%°
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Although the exact region where transition takes place is uncertain, the assumption was
made, that the minimum pressure occurs at a single point for simplicity.

A plot of the assumed location of the (minimum pressure) transition point on both
the upper and lower airfoil surfaces is shown in figure 9.1. Note that the transition point
location is plotted as a function of the distance (x/c) from the leading edge for the Baldwin
and Barth (BB) and Spallart-Allmaras (SA) turbulence models. Transition point location
is also plotted for the S1223 airfoil with a Gurney flap (GF). Transition on the upper
surface shows movement toward the LE (x/c=0). Conversely, the minimum pressure point
on the lower surface shows a trend of moving toward the TE (x/c=1.0), with addition of

the Gurney flap causing the lower surface transition points to occur closer to the LE.
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Figure 9.1. Plot of the Assumed Location of Laminar to Turbulent Transition Point.

9.2 Lift, Drag, and Moment of the S1223 Airfoil with and without a 1%
Gurney Flap

Calculations were performed for the flow over the true and tested S1223 airfoils
with a 1% of chord Gurney flap in free stream conditions of Reynolds number 2x10°.
Four different C-grids having dimensions 248x61, 268x61, 301x61 and 317x61 were used
respectively (for a summary see Section 6.2), with the initial spacing in the normal
direction of 0.20E-4 (0.002% of the chord). All of the grids were computed using a
hyperbolic grid generator “HYPGEN” of Chan.” In order to compute flow quantities on

the computational boundary points in the “wake-cut” of the C-mesh, two lines of dummy
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points were added to coincide with the points on the other side of the wake. The first line
of dummy points is updated by injecting values from the coincident interior points on
which they lie.” Using this overlap procedure produced a smooth solution to the
equations across the computational boundary in the wake of the airfoil. By the same
token, dummy points are also added inside the airfoil itself, but are merely blanked out and
never used in the solution procedure. Computational solution of the high lift, turbulent
flow is only presented using two turbulence models, the one-equation Spalart-Allmaras
(SA) and Baldwin and Barth (BB) models. The third turbulence model, the two-equation
k- (SST) model of Menter,™*"*? did not produce a satisfactory converged solution on the
HP9000 computer platform (see Section 9.6 for details).

Computational results in this study are compared to experimental wind-tunnel data
of Selig.”> Plots of the lift (C;), drag (Cs) and moment (C.) coefficients, computed at
angles of attack between -7 and 22 degrees are shown in figures 9.2 through 9.4. The
plots show results of the SA and BB models for: (a) fully turbulent and (b) laminar and
turbulent (transition) flows. Additionally, numerical solutions are presented for the $1223
airfoil having a 1% chord Gurney flap (GF). On the plot of lift coefficient versus angle of
attack C, -a (fig. 9.2), it is apparent that neither the BB or the SA model were able to
match the experimental data exactly. Computational results seemed to agree with
experimental data in only a limited range of angle of attack for both the plain and Gurney

flapped airfoils.
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For the plain airfoil (fully turbulent and transition cases), the BB and SA models

give good results in the -1 to +1 deg. and -2 to +1 angle-of-attack range. Computational
results showed the presence of a laminar separation bubble on the pressure side of the
airfoil, occurring at the -2 deg for the BB and -2.78 deg. for the SA model, respectively.
Attributed to a sudden drop in lift in this range, this explains the difference between the
BB and SA models and the experimental data. It is not known whether a separation
bubble was present in the experiments, but the wind-tunnel data seemed to indicate the
bubble at -3.6 deg. Furthermore, none of the models was able to predict the zero-lift-
angle-of-attack and instead showed a leveling-off trend, when approaching the zero-lift
value. Outside the limited range of oo where agreement is shown, both the BB and SA
models over-predicted the lift coefficient considerably. Overall, the BB model was in
closer agreement, with the SA model predicting even higher values of C;. Although
occurring at a lower value of a (14 deg.), both models show the dramatic loss of lift
during stall, as the Cy,, value is approached. For the BB and SA models (fully-
turbulent/transition), a Cyy,,, of 2.09/2.14 and 2.23/2.19 was calculated. For comparison,

experiments recorded a Cy,,,, of 2.118 occurring at 16.87 degrees angle of attack.

The only notable difference between the BB and SA models in the fully turbulent
and laminar-to-turbulent transition (trx.) cases, is in the calculation of maximum lift. With
virtually identical results to about a. =10 deg (in BB and SA models), the BB model shows

a higher value of maximum lift (Ci . ) for the transition case. Conversely, a lower value
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of Ci max is shown by the SA model , with the fully turbulent boundary layer flow yielding a

higher value of Ci pax .

Fig. 9.2 also shows how the lift coefficient increases with the addition of a 1%
chord Gurney flap (GF). For the airfoil with a GF, both the BB and SA models initially
agree with results for the tested GF airfoil (the difference in the BB model was again due
to the occurrence of the separation bubble). The Gurney flap shifted the Ci-a curve by
more than 4 or 5%, thereby increasing the Ci m,, (fully-turbulent/transition) from 2.09/2.14
to 2.21/2.28 (5.7/6.5 %) and 2.23/2.19 to 2.32/2.28 (4.0/4.1%) for the BB and SA
models, respectively. Similar to computational results, experimental data show an
increase in Ci mx from 2.12 to 2.21 which amounts to 4.3 % increase in Ci . . Also
evident from the experimental data on the GF, the decrease in angle of attack for Ci .« is
shown best by the BB and SA (trx.) models. Although the numerical solutions for this
low Reynolds number airfoil are not exact, they do capture significant lift benefits
attributed to the Gurney flap. Overall, better initial agreement is seen for the BB model,
with differences in the fully-turbulent/transition flows being very similar to airfoils without

a GF.

The drag coeficient as a function of angle of attack (C,-a) curve for the BB and
SA models and with the Gurney flap is shown in fig. 9.3. Experimental data are also

presented for the tested S1223 and 1% GF airfoils. Unlike the results for the lift
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coefficient (Cy), closer agreement is seen for the drag coefficient (Cy). It appears that
especially the BB (trx.) and BB models give the best results for the C,, with the SA and
SA (trx.) models yielding slightly lower values. Good agreement is seen up to 10 deg.
especially for BB (trx.) model. Similar to the effect of the laminar-to-turbulent transition
(vs. fully turbulent flow) in the C, prediction, the BB (trx.) gives a lower value of Cg4 than
the fully turbulent BB model case. Conversely, the SA (trx.) model predicts a slightly
higher value than its fully turbulent (SA) counterpart. All of the models except the BB
and BB (trx.) show an earlier (lower o) and substantial drag increase. This is mainly due
to the presence of the separation bubble, which occurred further downstream for the BB
and BB (trx.) models. Even though the increase in the drag coefficient with angle of
attack is captured by all the models, it is evident from the experimental data that the drag

is over-predicted at higher values of angle of attack.

In the drag estimation of the Gurney flap, a slight increase in the Cq4 is shown for
both models and the experimental data. SA and SA (trx.) both predicted lower values of
Cs . The BB and BB (trx.) models on the other hand, slightly overpredicted the C, in
comparison to experimantal results. In distinguishing between the fully turbulent and
transition cases, all model predictions seemed to agree initially with the largest
discrepancies occurring at higher angle of attacks with an increase in drag due to the
differences in lift. Plot of the calculated and experimental lift to drag ratio (L/D) with

increasing C, are shown in fig. 9.4, for both the plain and with a GF airfoils. In terms of
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performance, the GF decreases the calculated L/D. The same kind of trend is apparent
from the experimental data in the low angle of attack range. Further, experimental data

show virtually no decrease in the L/D at higher values of the lift coefficient.

Figure 9.5 shows the computed moment coefficient (C,,) plotted as a function of
angle of attack. No experimental results were available for this case, so comparison
between the BB, BB (trx.), SA and SA (trx.) models is made solely between the calculated
results. The effect of the separation bubble at lower angles of attack shows a considerable
decrease in the pitching moment. Over the moderate a-range, the pitching moment
gradually decreases, all the way to the point of maximum lift (Ci ). In post-stall, the
calculated rise in drag causes a subtle C, increase. The addition of the Gurney flap

increases (lowers Cy,), shifting down the entire C,-a curve.
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Figure 9.5 Moment Coefficient (C.,) vs. Angle of Attack Plot
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9.3 Pressure, Skin-Friction, Velocity-Profiles, Separation Locations

Computational results for the pressure (C,) and skin-friction (C;) coefficients
versus the chord-position (x/c) are plotted in figures 9.6 through 9.13, for all turbulence
models (SA and BB), transition (trx.) flows and with a 1% chord Gurney flap (GF). The
pressure and skin friction plots are shown for -2, 4, 8 and 14 degrees angle of attack, to
cover the complete range of angles of attack of up to the maximum lift value (C,_,,.).

As previously mentioned, computational results showed the presence of a laminar
separation bubble on the pressure side of the airfoil, occurring at the -2 deg for the BB/BB
(trx.) and -2.78 deg for the SA/SA(trx.) models. The effect of the bubble on the C, and C;¢
at -2 deg for the BB model, can be seen in figures 9.6 and 9.10 respectively. It is evident,
that the bubble increases the C, on the suction side, but at the same time it decreases the
C, on the pressure side of the airfoil. Consequently, the decreased area between the
suction and pressure side, leads to a substantial loss of lift. The concave, “Stratford-like”
pressure recovery of this high lift airfoil can be observed, especially at higher values of o.
The higher suction (decreased pressure) computed for the SA and SA (trx.) models in
comparison to the BB and BB (trx.), provides a good explanation for the higher lift @)
values. At the higher angles of attack (8 and 14 deg) the effect of transition between the
models can be observed. The transition SA (trx.) model shows a slightly higher C, (more

positive) than its fully turbulent SA counterpart. Conversely, the BB (trx.) exhibits a
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lower (more negative) C, than the BB model, accounting for the differences in the C, at
higher values of a..

On closer examination of the C, versus x/c plots (figs. 9.6-9.10), the effect of
adding a 1% chord GF, at the airfoil trailing edge can also be seen. For all the angles of
attack shown (-2°, 4°, 8°, 14°), the presence of the GF considerably increases the aft
loading on the pressure side of the airfoil. On the other hand, the C, decreases (more
negative C,) over the entire upper surface, shifting-up the C,-x/c curve. Compared to the
plain $1223 airfoil, the pressure difference between the upper and lower airfoil surfaces is
increased due to the GF, leading to increased lift and also increased pitching moment.
Note that, although no experimental C, data were available for the $1223 with a GF,
increases in trailing edge loading was also observed experimentally by Jang and Bruce'
(NACA 4412) and on an advanced airfoil by Neuhart and Pendergraft.®® Computational
results for the GF between the BB and SA models having a laminar-to-turbulent boundary
layer transition, show similar trends (at higher o) as the base airfoil.

Plots of the skin friction coefficient (C) versus x/c (see figs. 9.11 through 9.13)
show an increase in Cr for the airfoil with the GF. In addition to differences in the
calculated pressure for this low Reynolds number airfoil, the C; rise is most likely
responsible for the drag increase. Note, the sudden decrease in C; due to the GF

geometry. The drag component due to friction is known to be a function of r_sind

(where 6 is measured counterclockwise for the freestream velocity vector), and is a

maximum when the flow is aligned to the freestream and zero when it is perpendicular to
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the free stream. The flow in the vicinity of the GF has to negotiate a sudden 90 degree
turn, causing the Cr to decrease, with majority of the generated drag coming from the
pressure difference ahead and behind the flap.

The effect of flow-separation on the upper surface of the airfoil is of particular
interest. Figure 9.14 shows a plot of the separation location (x/c) on the suction side of
the airfoil, as a function of angle-of-attack (a), for the SA/SA (trx.), BB/BB (trx.) and
with a GF models. The separation location (point), was obtained by examining the
calculated flowfield and checking surface-grid-point locations for signs of flow reversal. It
is apparent, that the differences in lift/drag between the SA and BB models are due mainly
to the separation location. For the SA/SA (trx.) models, the transition occurs
considerably more aft, compared to the BB/BB (trx.) models at all values of Alpha. The
delayed flow separation may help explain the differences in lift/drag between the two
models. In the moderate a-range, the addition of the 1% chord GF appears to move the
onset of separation slightly aft, compared to the clean airfoil case. Models having a
laminar-to-turbulent boundary layer transition also show this trend.

The computed velocity profiles from the suction surface boundary layer are plotted
in fig. 9.15. Velocity profiles at streamwise stations of: x= 0.082, 0.228, 0.438, 0.613,
0.715, 0.878, 0.940 and 0.981 are shown, using the streamwise component of velocity in
boundary layer coordinates (i.e. component tangential to the local airfoil surface).
Velocity profiles are plotted for the SA and BB models at the maximum lift angle of attack

of 14 degrees. Even though, both the SA/SA(trx.) and BB/BB(trx.) models initially agree
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(at first two stations), differences in computed u/U, velocity component is more apparent
at the downstream x/c stations. As mentioned previously, the location of separation
occurred farther aft (x/c = 0.692, 0.668) for the SA/SA (trx.) models compared to the
BB/BB (trx.) models (x/c = 0.319, 0.319). Boundary layer growth as well as the
difference in the location of separation (flow reversal) can clearly be seen on the velocity

profiles.
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9.4 Detailed Flow-Structures

This section presents some detailed flow structures obtained from the computed
flow field around the S$1223 airfoil, using the Baldwin and Barth (BB) and Spalart-
Allmaras (SA) turbulence models. Additionally, changes in the flow field due to the
presence of the Gurney flap (GF) at the trailing edge are examined. Results presented
include the leading edge laminar separation bubble, trailing edge flow field of the plain and
with GF airfoils and flow structures at maximum lift.

As mentioned previously, calculation using both the BB and SA models have
indicated flow separation at -2 and -2.78 deg. angle of attack respectively. The massive
leading edge separation bubble on the pressure side of the airfoil from the BB model is
shown in fig. 9.16. All plots presented include pressure contours with stream traces as
well as the values of lift (C,), drag (Cs) and pitching moment (C,,) at various angles of
attack. From fig. 9.16, the leading edge laminar separation, stagnation point and the
pressure distribution around the airfoil can clearly be seen. For the same conditions of a=-
2 deg., results from the SA model are shown in fig. 9.17. For this case, the flow stays
attached, giving higher and lower pressures on the pressure and suction sides respectively,
generating thus a much higher value of C, (see C, vs. x/c plot, fig. 9.6). As can be inferred
from figs 9.16 and 9.17, the bubble has the effect of decreasing the pressure on the lower

surface (hence the C,), and at the same time it causes an increase in the C4 and C,,..
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To closely examine changes in the flowfield due to the addition of 1% chord GF,
figures 9.18 through 9.26 show results for the clean and with GF airfoils. Furthermore, to
see changes in the trailing edge (TE) flowfield as a function of the angle of attack, velocity
vector and stream trace (streamline) plots with pressure contours are presented for 2 and
10 deg. Examining the clean airfoil at 2 and 10 degrees angle of attack, flow separation
(reversal) at the TE can be observed, with separation becoming more pronounced (moving
toward the LE) with increasing a.. For the airfoil with GF, two recirculation regions in
front of the flap can be seen as well as the separation on the suction side of the airfoil (see
close-up in fig. 9.26). Although the separation vortex at the TE for the GF flap is
comparable in size, it stretches further downstream into the wake. The increase in
pressure/loading at the TE due to the GF can be noticed from the pressure contours,
especially for a=10 deg. The general features of the GF flow structure illustrate only two
definable regions: the counter-rotating vortex in front of the flap (not counting the small
recirculation at the beginning of the flap) and the separation region on the suction side.
The lack of two counter-rotating vortices on the back side of the flap contradicts the
hypothesized trailing edge flow conditions of Liebeck®' (see sec. 7). The computed GF
flowfield of this high-lift airfoil is considerably different than that of conventional airfoils
(with the GF nearly perpendicular to free stream) reported by other authors. A
computational study by Cummings® on the NACA 4412 with 1.25% chord GF reported

three clearly defined separation regions: i) on the suction side of the airfoil near the trailing
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edge, ii) in front, and iii) behind the flap. In addition, the separation region on the suction
side of the GF airfoil, was considerably smaller than on the clean airfoil.

The computed flowfield of the GF $1223 airfoil in the vicinity of the TE also
shows considerable down-turning of the flow. This down-turning tendency is most likely
due to a decreased pressure as the flow leaves the TE, accompanied by an increase in the
downward momentum of the fluid above the TE. As a result, more of the fluid is able to
overcome the adverse pressure gradient encountered at the TE® The flow turning
tendency caused by the GF was also reported in water-tunnel experiments by Neuhart.*®
The separation region having approximately the same size, but moved slightly
downstream, increases velocity, causing increased lift counteracting the drag produced by
the GF. The positive pressure coefficient ahead of the flap and negative pressure behind it
result in the net drag produced by the flap. Looking at the velocity vectors at 2 and 10
deg. angle of attack, differences in velocity profiles and deficit in the airfoil wake are

clearly evident. Lastly, the airfoil at maximum lift conditions (C; , =2.3) at 14 deg. angle
of attack is shown in fig 9.27. A separation region at the trailing edge can be seen, as is

the flow reversal in the airfoil wake.
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16. Leading Edge Separation Bubble Predicted by the BB Model (Alpha=-2°)
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Figure 9.21. Plot of Vaocity Vectors with Pressure Contours (S1223 w. GF: Alpha=2°)
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Figure 9.27. Plot of Stream Traces with Pressure Contours at Max. Liit Conditions
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9.5 Calculation Convergence History

The convergence and solution history using the incompressible Navier-Stokes
equations with the pseudo-compressibility method are shown in figures 9.28 through 9.30.
The results of the SA and BB models are presented for the tested clean and 1% Gurney
flap (GF) S1223 airfoils at a=10°. In general, convergence was found to be highly
dependent on the input parameters and choice of turbulence-model (SA or BB) as well as
the computational C-grid.

As previously mentioned (Sec 6.2), elliptical smoothing was applied in the wake of
the airfoil, leading to a considerable improvement in the convergence. The input
parameters which had the most profound influence on convergence were: 1) 8 (the
artificial compressibility parameter), 2) df (time step in real-time) and 3) d’r (time step in
pseudo-time). The time-step df was in real-time during time-accurate calculations and
corresponded to a time-step used by the turbulence models, during steady-state (SS)
calculations. To ensure the best possible convergence, as many as twenty possible
combinations of the B, df and dz parameters were examined. Dependent on the turbulence

models and angle of attack (before or after stall), #=1,df=dr=0.1 showed the best
overall results, and were thus selected. In the case of the two-equation k- (SST) model,

the solution diverged for all angles of attack, regardless of the choice of S, dr and dr.



103
This was found to be true only on the HP9000 computer platform (used in all
calculations), while the SGI/CRAY computers showed excellent convergence.

Computing time and convergence varied somewhat from one turbulence model to
another. Figure 9.28 shows the maximum residual of the mean flow equations, versus
iteration number of the various turbulence models with and without transition. The SA/SA
(trx.) showed best convergence than the BB/BB (trx.) models, with the maximum residual
decreasing more quickly (even for the Gurney flap). In general, the solutions were
considered converged, when the maximum residual dropped at least four-five orders of
magnitude and the lift coefficient has converged to 3-4 significant digits. For steady-state
calculations, good overall convergence in the lift coefficient is seen (see fig. 9.29).
Conversely, the drag coefficient required as many as 1000 iterations to converge (fig.
9.30). The computing (CPU) time for the steady-state cases (single angle of attack,
301x61 C-mesh), on the HP9000 workstation was on the order of 136/137 and 132/132
minutes for the SA/SA (trx.) and BB/BB (trx.) models, respectively. For the S$1223
airfoil having a 1% chord GF, the CPU time was longer, due to the flow physics and
increased grid size (C-mesh size 317x61).

For all cases/models the flow tended toward unsteadiness, as the maximum lift
value was approached and from the leading edge separation bubble in the low a-range. In
other words for some cases, the steady state computations did not completely converge,
which for the artificial compressibility formulation means that the results do not satisfy the

continuity equation.” In the majority of these cases, the INS2D code was then run in the
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time-accurate (unsteady) mode. Especially in the post-stall angle-of-attack range,
calculations showed a periodic behavior in the lift and drag. Subiterations in pseudo-time
for the time-accurate calculations required many more iterations, and caused a substantial

increase in CPU time.

9.6 True vs. Tested S1223 Performance Comparison

This section makes a performance comparison between the “true” $1223 (as
originally designed) and the wind tunnel “tested” S1223 airfoils with and without a 1%
chord Gumey flap (GF). Performance plots of the true and the tested, and the difference
between the two airfoils are given in Section 6, figures 6.1 through 6.3. With an average
geometry dissidence of approximately 0.0099 in. (or 0.083% for a 12 in. chord), the main
difference between these two airfoils is at the trailing edge. Unlike the tested airfoil, the
true S1223 has a sharp, cusp-like trailing edge. Whether or not this has any effect on the
lift, drag and pitching moment is of particular interest.

The calculated lift (C,), drag (Cs) and pitching moment (C,,) for the true, tested
and with 1% GF airfoils, is shown in fig. 9.31 through 9.33 respectively. Results are again
presented between -7 and 22 degrees angle of attack, for both the BB and SA models.
Comparison is made between the BB and SA models, making the turbulent flow

assumption throughout. From the Ci-a curve, relatively close agreement can be seen
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between the airfoils, with the tested airfoil generating slightly more lift. The computed
value of Cy,,, and angle for maximum lift (a,,,) are virtually identical. As can be seen for
the plot at the low a-range, the laminar leading edge separation bubble was again present,
accounting for the small-incremental lift with increasing o. From the plot of the drag
coefficient (Cy) versus angle of attack shown in fig. 9.32, it is evident that the higher lift
produced by the “tested” airfoil also produces higher drag. Differences in pitching
moment about the quarter chord (C») between the two airfoils are shown in fig. 9.33.
Both the SA and BB models predict a slightly lower nose-down pitching moment for the
true airfoil. The addition of the GF on the true S1223 airfoil has almost identical effects,
compared to the tested GF airfoil, in producing more lift at the expense of a moderate
increase in drag. Evaluating the performance of the true and tested airfoils overall, there’s
little or no benefit in having a sharp (cusp-like) trailing edge, although the lift-to-drag ratio

is slightly higher for the true airfoil (fig. 9.34).
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9.7 Sources of Error in Computations

Based on the results obtained thus far, it is evident that none of the models provide
exact agreement to experimental results. At negative angles of attack, discrepancy in the
lift and drag is due to the leading edge separation bubble on the pressure side of the
airfoil. Close agreement was observed only for a limited a-range (sec. 9.2) at higher
angles of attack, largely due to fact that the flow is undergoing 3D effects. The 2D flow
assumption no longer holds at high angles of attack and can not be considered valid. The
experimental study of the airfoil with a Gurney flap measured the extent of two-
dimensional flow by examining the span-variation in pressure with increasing angle of
attack (Storms et al.’*). Results of this study have confirmed and the pressure
distributions have indicated that the flow was essentially two-dimensional at lower angles
of attack, while some three dimensionality was apparent near maximum lift. However, at
angles of incidence beyond maximum lift, strong three dimensional effects were observed.
By measuring chordwise (airfoil model) pressure distributions at different spanwise
stations of the tunnel, three dimensional flow was indicated for the stalled condition.

Although high angle-of-attack cases include three-dimensional effects, much can
be learned by studying a two-dimensional flow field, provided that the methods of solution
are accurate. In the computations, the lift was computed from the calculated pressure

distribution on the surface of the airfoil (area between the lower and upper C, curves).
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Similarly the drag is computed by integrating the pressure and skin friction forces on the
surface. The latter method has been shown by van Dam™ to be less accurate than other
methods (such as wake integration), and may be attributed to errors in the drag. As van
Dam mentions, the additional problem is the inherent numerical viscosity, which effects
the surface pressure especially in the stagnation region near the leading edge and the
recovery region near the trailing edge. Errors in the surface pressure calculations in these
two regions, do not have much of an affect in the lift predictions, but significantly affect

the drag prediction.
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10. CONCLUSIONS

A numerical investigation has been completed for the low speed S1223, high lift
(and with a 1% chord Gurney flap) airfoil. The two-dimensional flow was calculated by
efficiently solving the incompressible Navier-Stokes (INS) equations with the INS2D
code. After presenting the artificial compressibility method and the solution of the INS
equations, results of the one-equation Baldwin and Barth (BB), Spalart-Allmaras (SA) and
the two-equation k-@ (SST) turbulence models were compared. Results indicated good
convergence for the BB and SA turbulence models. Two cases were examined: 1) flow is
assumed fully turbulent and 2) transition from laminar to turbulent flow is assumed to
occur on the upper and lower airfoil surfaces. The calculated velocity profiles, lift, drag,
moment, pressure and skin friction coefficients were presented. Two-dimensional
calculations were found to agree only in a limited range of angle of attack, when compared
to experimental wind-tunnel data. The transition flow gave comparable results, to the
fully turbulent case, with the main difference in the prediction of maximum lift. Both
models were unable to predict the zero-lift-value and corresponding angle and
overpredicted the lift with increasing angle of attack. Conversely, both models showed a
precipitous decrease in lift and a large increase in drag in the stall region. Compared to
experimental data, the calculated value of the maximum lift coefficient (C, ,, of 2.2) was

consistent, but occurred at a lower angle of attack. Differences between the BB and SA
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models were found to be in the calculated location of separation, on the suction side
boundary layer. Computations showed expected pitching moment trends, with increasing
angle of attack. Overall, calculations of lift and drag using the one-equation BB model
were in closer agreement with experimental data.

In comparison to the clean S1223 airfoil, the addition of a 1% chord Gurney flap
increased the lift and pitching moment with only moderate increase in drag. The
calculated pressure distribution showed a large increase in loading on the pressure side of
the airfoil at the trailing edge. The increased loading (increased suction) over the entire-
upper surface shifted the entire Cj-o curve, and was responsible for generating the
majority of the extra lift. Detailed flow structures presented changes in the flow field due
to the GF. The computed GF flow field was found to be different from that of other
computational studies. At moderate angles of attack, the separation point was found to
move slightly farther aft over the clean airfoil case. Mechanically simple, with the
potential to considerably boost the lift, and only slightly increase in drag, the Gurney flap
was found to be a very intriguing device for high-lift, low-speed airfoils. Lastly,
performance comparison made between the “true” (as originally designed - cusp-like
trailing edge) and “tested” (slightly altered finite width trailing edge) S1223, yielded no

significant differences.
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APPENDIX A. Viscous FLUXES

The differential formulas for the viscous fluxes in 2-D generalized coordinates are
presented in this appendix (Rogers"). The viscous fluxes are characteristic of the
following sets of conditions: nonconstant viscosity on a nonorthogonal mesh; nonconstant
viscosity on an orthogonal mesh; constant viscosity on an nonorthogonal mesh and
constant viscosity on an orthogonal mesh. In the equation given, the velocity gradients in

the viscous fluxes are written as:

=ug, etc.

27
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APPENDIX B. TRUE AND TESTED S1223 AIRFOIL COORDINATES

This appendix includes the true (as originally designed) and tested $1223, high lift

airfoil coordinates used in the calculations (for detailed discussion consult Selig?).

Tested - S1223 True - S1223
x/c y/c x/c y/c x/c y/c x/c y/c

1.060000 -0.00178 0.01989 0.04487 1.00000 0.00000 0.01718 -0.01550
1.00000 0.00000 0.01503 0.03884 0.99838 0.00126 0.03006 -0.01584
1.00000 0.00013 0.01082 0.03257 0.99417 0.00494 0.04627 -0.01532
0.99720 0.00333 0.00706 0.02587 0.98825 0.01037 0.06561 -0.01404
0.99187 0.00839 0.00482 0.02100 0.98075 0.01646 0.08787 -0.01202
0.98689 0.01260 0.00221 0.01365 097111 0.02250 0.11282 -0.00925
0.98075 0.01692 0.00080 0.00745 0.95884 0.02853 0.14020 -0.00563
0.97339 0.02127 0.00019 0.00286 0.94389 0.03476 0.17006 -0.00075
0.96293 0.02660 0.00005 -0.00138 0.92639 0.04116 0.20278 0.00535
0.95370 0.03080 0.00083 -0.00593 0.90641 0.04768 0.23840 0.01213
0.94176 0.03581 0.00139 -0.00690 0.88406 0.05427 0.27673 0.01928
0.92548 0.04204 0.00312 -0.00872 0.85947 0.06089 0.31750 0.02652
0.91053 0.04728 0.00790 -0.01068 0.83277 0.06749 0.36044 0.03358
0.88969 0.05399 0.01449 -0.01150 0.80412 0.07402 0.40519 0.04021
0.87178 0.05924 0.02138 -0.01185 0.77369 0.08044 045139 0.04618
0.84496 0.06638 0.03330 001196 0.74166 0.08671 0.49860 0.05129
081744 0.07305 0.04627 -0.01153 0.70823 0.09277 0.54639 0.05534
0.78334 0.08061 0.06389 -0.01040 0.67360 0.09859 0.59428 0.05820
0.74802 0.08779 0.08117 -0.00888 0.63798 0.10412 0.64176 0.05976
0.71868 0.09328 0.10354 -0.00663 0.60158 0.10935 0.68832 0.0599%4
0.68153 0.09976 0.12948 -0.00369 0.56465 0.11425 0.73344 0.05872
0.65038 0.10483 0.16404 0.00134 0.52744 0.11881 0.77660 0.05612
0.61072 0.11087 0.20100 0.00781 0.49025 0.12303 081729 0.05219
0.59071 0.11368 0.25115 0.01690 0.45340 0.12683 0.85500 0.04706
0.56407 0.11720 0.29610 0.02479 0.41721 0.13011 0.88928 0.04088
0.53542 0.12074 0.33392 0.03100 0.38193 0.13271 0.91966 0.03387
0.50578 0.12419 0.38160 0.03816 0.34777 0.13447 0.94573 0.02624
0.47863 0.12718 0.43006 0.04455 0.31488 0.13526 0.96693 0.01822
0.44641 0.13039 0.47940 0.05004 0.28347 0.13505 0.98255 0.01060
041610 0.13304 0.52654 0.05432 0.25370 0.13346 0.99268 0.00468
0.38752 0.13509 0.57684 0.05747 0.22541 0.13037 0.99825 0.00115
0.35962 0.13665 0.63172 0.05939 0.19846 0.12594 1.00000 0.00000
0.32854 0.13771 0.67649 0.05980 0.17286 0.12026




0.29648
0.26356
0.23263
0.21233
0.19561
0.17473
0.15733
0.14032
0.12497
0.11009
0.09550
0.08018
0.06800
0.04897
0.03568
0.02846

0.13794
0.13679
0.13393
0.13114
0.12802
0.12336
0.11868
0.11348
0.10819
0.10247
0.09613
0.08863
0.08199
0.07000
0.05999
0.05369

0.71559
0.73675
0.76333
0.78942
0.80947
0.83028
0.86994
0.89924
0.92149
0.94479
0.95707
0.97177
0.98900
0.99231
0.99800
1.00000

0.05921
0.05844
0.05703
0.05506
0.05310
0.05062
0.04446
0.03838
0.03274
0.02561
0.02117
0.01493
0.00570
0.00363
-0.00013
-0.00178

0.14863
0.12591
0.10482
0.08545
0.06789
0.05223
0.03855
0.02694
0.01755
0.01028
0.00495
0.00155
0.00005
0.00044
0.00264
0.00789

0.11355
0.10598
0.09770
0.08879
0.07940
0.06965
0.05968
0.04966
0.03961
0.02954
0.01969
0.01033
0.00178
-0.00561
-0.01120
-0.01427
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