
San Jose State University
SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2008

Competition effects of mycorrhizae on two
California grasses and B. hordeaceus
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ABSTRACT 

COMPETITION EFFECTS OF MYCORRHIZAE 
ON TWO CALIFORNIA GRASSES AND B. HORDEACEUS 

By Noelle Marie Antolin 

Restoring native grasses is key to reestablishing healthy ecosystems, and 

land managers need species-specific information to determine whether or not to 

incorporate mycorrhizae into restoration plans. This thesis provides specific 

information regarding the effects of mycorrhizae collected from a California 

coastal prairie on two native perennial grasses, California brome (Bromus 

carinatus) and purple needle grass (Nassella pulchra), and one non-native 

annual grass, soft chess {Bromus hordeaceus). 

Competition experiments were set up between seedlings growing in the 

presence or absence of mycorrhizal inoculum in native soils under relatively 

controlled conditions within a greenhouse. Mycorrhizal inoculation caused 

greater and faster seedling emergence in all three grasses. Only Nassella 

pulchra demonstrated a significant positive growth response to inoculation, which 

persisted when in competition with and at the expense of Bromus hordeaceus. 

Inoculated Bromus hordeaceus plants, however, produced significantly more 

seed and more viable seed when grown alone and in competition. 
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INTRODUCTION 

Mycorrhizal - Plant Interactions 

Restoration ecologists often face the challenge of speeding up succession 

and reestablishing populations of native plants on soils that are highly disturbed 

and dominated by non-native plant species. These disturbed soils often lack 

mycorrhizal fungi, which develop positive symbiotic relationships with plant roots 

and are essential to the establishment of many plant species (Boerner et al. 

1996). 

Mycorrhizal fungi are widespread (Fitter et al. 2004), and approximately 

70% of plant species examined have exhibited associations with them (St. John 

1997). They form a network of hyphae in and/or around plant roots that extends 

far into the surrounding substrate. They play a role in shaping plant community 

structure by increasing the mineral supply to plants, reducing the uptake of heavy 

metals, and improving water uptake and retention and thus drought tolerance 

(Lapointe and Molard 1997). Mycorrhizal fungi can produce phytohormones and 

increase plant tolerance to pathogens through the production of secondary 

metabolites, such as antibiotics (Allen 2003), some of which protect plants from 

herbivory (Wilson and Hartnett 1998). Mycorrhizae can influence shoot and root 

architecture, leading to heightened vegetative reproduction (Jones and Smith 

2004), and have also been found to boost stolon branching and length (Wilson 

and Hartnett 1998). 
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There are two general types of mycorrhizae: vesicular arbuscular 

mycorrhizae (AM), which penetrate internal root cells to develop an elaborate, 

extensive, and highly ramified network, and ectomycorrhizae (EcM), which 

extend only between root cells and to a limited degree. Usually the 

ectomycorrhizal hyphae form a sheath over the surface of the root. 

Mutualism and Symbiosis 

Scientists have debated the existence of mutualisms.and their function in 

nature for over a century. More recently, the topic has surfaced in the literature 

of restoration ecology as scientists face the challenge of restoring disturbed 

habitats. Although the relationship between mycorrhizal fungi and plants is 

generally understood, the role of mycorrhizae in the management and restoration 

of damaged ecosystems is unclear. 

In the late 1800s, de Bary (1879, cited in Sapp 2004) introduced the 

concept of symbiosis (Greek for "living together") after discovering that lichens 

are double organisms consisting of both algae and fungi (Sapp 2004). Around 

the same time, Frank (1877, cited in Sapp 2004) encountered a symbiosis 

between the roots of forest trees and fungi, which he called mykorrhizen, 

meaning fungus root. His work with mycorrhizae is recognized by many as the 

most significant in mycorrhizal science. He was the first to differentiate between 

ectotrophic mycorrhizae, which form a mantle around the root, and endotrophic 

mycorrhizae, which penetrate the root tissue (Jones and Smith 2004). 
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Many have erroneously used the terms symbiosis and mutualism 

interchangeably. Whereas a mutualism refers to a positive association between 

two organisms where both individuals are benefiting, a symbiotic association 

does not necessarily benefit both organisms. Some have questioned the 

existence of mutualisms altogether. Pound (1893), for example, believed that 

mycorrhizal associations only appear to be mutualistic, but, in reality, one 

organism always dominates over the other and in some way harms the other. 

While showing that fungi improved seed germination in orchids, Bernard (1902, 

cited in Sapp 2004) suggested that the two organisms were not experiencing a 

mutualism, but rather were in an ongoing conflict or competition. He believed 

that a mutualism could rarely exist and that these relationships were various 

stages of infection. Johnson et al. (1997) argued that this notion was too 

simplistic and that a generalization concerning all mycorrhizae and plant species 

could not be made because the associations are species specific. A fungus 

beneficial to a woody plant, for example, may be harmful to an orchid. 

By the end of the 191h century, it became widely accepted that microbial 

symbioses were basic components of life. Supporting evidence came in the form 

of the dual nature of lichens, of nitrogen-fixing bacteria in the roots of legumes, 

and of the association between mycorrhizal fungi and forest tree roots. 

Mycorrhizae were also presumed to play an essential role in the colonization of 

land by prehistoric plants over 450 million years ago (Sapp 2004, Gifford and 
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Foster, 1989). Scientists of the early 1930s who studied mycorrhizae concurred 

in that in nutrient-limited soils seedlings grew faster in the company of 

mycorrhizae (Jones and Smith 2004). Because mycorrhizae are species 

specific, their interactions vary greatly with environmental conditions. Mycorrhizal 

associations are now recognized to range from parasitic to mutualistic and vary 

depending on the environmental setting (Sanders 2002). Mutualism is 

considered a key characteristic of mycorrhizae (Allen 1991). 

Functions of Mycorrhizae 

Mycorrhizae may perform beneficial functions that their host would be 

unable to complete alone (Sapp 2004). Relationships between mycorrhizae and 

plants occur when there is a deficiency in soil minerals, especially phosphorus 

and nitrogen. When an association occurs, plants may allocate more carbon to 

their roots (sometimes up to 20% additional carbon), making it available to the 

mycorrhizae (Sapp 2004). Sophisticated fungal networks then develop and 

acquire phosphorus and nitrogen a great distance from the roots, transport it to 

the plant, and absorb the plant's excess carbon (Allen et al. 2003). It is not 

uncommon for mycorrhizae to obtain other minerals (e.g., magnesium, zinc, 

copper, and iron) for plants as well (Jones and Smith 2004). 

Conflicting findings have characterized mycorrhizal research with respect 

to the effect on plant growth, due at least in part to inconsistent or inappropriate 

experimental factors, such as the use of inappropriate fungi, varying nutrient 
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content of the soil, and unsuitable inocula (Pattinson et al. 2004). However, 

mycorrhizal fungi have been found by many to improve plant growth in varied 

substrates and growing conditions but especially in soils low in phosphorus and 

nitrogen. As long as there is a deficiency in phosphorus or nitrogen in the soil, 

the symbiotic exchange will most likely continue (Allen et al. 2003). Under high 

phosphorus conditions, mycorrhizae often depress plant growth (Koide 1985). In 

these cases, phosphorus obtained by the mycorrhizae augments that by the 

plant, resulting in phosphorus toxicity (Koide 1985). 

Plant growth depressions can also be caused by competition for carbon 

between the plant and fungus (Koide 1985). The effect is most commonly 

observed in seedlings where the young plant allocates more of its limited supply 

of stored photosynthate to the fungus than it can spare while not yet fully 

benefiting from the mycorrhizal mineral uptake (Richter and Stutz 2002). 

Phosphorus is not limiting in these circumstances; rather, light is deficient, 

impeding photosynthesis. Should the seedling survive the carbon competition, 

the subsequent effect is minimal or advantageous to the plant (Koide 1985). 

Early successional plants are generally assumed to be non-mycorrhizal; 

however, a unique study by Gange et al. (1990) showed the effects of 

mycorrhizal fungi on the early succession of plants when he applied the 

fungicide, iprodione, to early serai plant communities in degraded soil. As a 

result, there was a noticeable reduction in mycorrhizal infection in annual forbs 
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and one perennial grass, and there was a significant depression in plant growth. 

These results suggest that mycorrhizal fungi play a role in post-seedling plant 

development during habitat establishment through increased nutrient acquisition. 

Mycorrhizae and Habitat Restoration 

Although harsh growing conditions are typical of a disturbed site, the 

subterranean component of restoration sites is often overlooked (Salyards et al. 

2003). Soil is usually degraded in disturbed habitats, and mycorrhizae are 

lacking (Salyards et al. 2003). Mycorrhizae play a crucial role in many 

ecosystem functions, such as conferring overall sustainability, one of the main 

goals of restoration (St. John et al.1997). If introduced, mycorrhizae may have a 

significant impact on the restoration of habitats containing both mycorrhizal 

plants and non-mycorrhizal plants. Added moisture and nutrient uptake may 

allow the mycorrhizal species to out-compete the non-mycorrhizal species 

(Wilson and Hartnett 1998; Smith et al. 1998) and accelerate succession by 

recolonized plants (Allen and Allen 1988). 

The benefits of mycorrhizal inoculation to habitat restoration have been 

examined to some degree (Pattinson et al. 2004), but most of the studies 

employing inoculation have been conducted in environments of extreme 

degradation, such as abandoned mines (Walker et al. 2004) or sites of volcanic 

eruption (Smith et al. 1998). Mycorrhizae have been found to be beneficial under 

these circumstances (Richter and Stutz 2002). They have been shown to 
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colonize disturbed sites at an impressive rate; for example, in one trial, 

mycorrhizal volume in disturbed soil increased from 1 % to 90% in a single year 

following inoculation (Salyards et al. 2003). Few studies, however, have 

examined mycorrhizal inoculation in less degraded habitats, such as roadsides, 

and of those, only some have shown inoculation to be valuable to plants during 

restoration (White 2008). 

Still, mycorrhizal fungi are generally regarded as beneficial to restoration, 

but this is a broad generalization. Positive effects of AM inoculation have been 

documented for native plant seeds and seedlings. St. John and Evans (1990), 

for example, determined that the inoculation of mycorrhizae into disturbed soil 

aided the establishment of native grasses and subsequently gave the plants a 

competitive advantage against invasive species; but Richter and Stutz (2002) 

discovered AM colonization on the perennial grass, big sacaton (Sporobolus 

wrightii), to have no significant effect on plant growth after 8 weeks in a 

greenhouse study. Wilson and Hartnett (1998) found perennial warm-season, C4 

prairie grasses responded positively to AM colonization, whereas cool-season, 

C3 grasses did not. In another study in the Rocky Mountains, three late-

successional plants benefited from AM colonization, whereas three early-

successional plants did not (Rowe 2007). 

The use of mycorrhizal application in restoration projects is desirable, if it 

is effective, because, (a) it is relatively inexpensive (St. John and Evans 1990), 
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(b) can improve soil quality while avoiding the shortcomings of fertilizer and 

herbicide application, and (c) has the potential to produce a fully self-sustainable 

ecosystem within a short period of time. But to better evaluate inoculation as a 

viable management tool, the interactions between specific plant species and 

mycorrhizal species must be better understood. More information of this kind 

would be valuable to land managers because it allows them to assess the 

importance or relevance of these types of symbiotic relationships during habitat 

rehabilitation. 

Restoring California Coastal Prairies 

Before Europeans settled into the Monterey Bay area of California, the 

"low-lying" or "low-elevation" uplands and terraces of Elkhorn Slough were largely 

composed of coastal prairie (A. Woolfolk, personal communication). Due to 

grazing, agriculture, and urbanization, the soils of this and many other historic 

grasslands have been degraded and are now dominated by non-native annual 

grasses (ESNERR Final Management Plan 2006). In the Elkhorn Slough region 

it appears that hardy, invasive grasses out-compete native grasses such as 

Nassella pulchra and Bromus carinatus and inhibit their re-colonization because 

non-natives are fast-growing, shade out native seedlings, and consume a high 

proportion of the available minerals and moisture in the soil. 

This project had three main goals. The first was to identify the 

mycorrhizal fungi that occupy healthy coastal prairie ecosystems in the Monterey 
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Bay area in California. The second was to test their effects on two native 

perennial grasses, California brome (Bromus carinatus) and purple needle grass 

(Nassella pulchra). The tests were designed to determine whether inoculating 

seeds of these grass plants with AM would enable the seeds or seedlings to (1) 

emerge faster, (2) grow at a greater rate and to a larger ultimate size, and (3) 

achieve a higher state of vigor than plants whose seeds were not inoculated. 

The third goal was to determine how competition with a non-native annual grass, 

soft chess (Bromus hordeaceus), would affect those qualities. Experiments were 

set up with seedlings growing in the presence or absence of mycorrhizal 

inoculum in native soils under relatively controlled conditions within a 

greenhouse. 
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METHODS 

Reference Site 

A 0.5-acre portion of a coastal prairie at the Elkhorn Slough National 

Estuarine Research Reserve (ESNERR) (36° 49' 10"N, -121° 44' 17"E) served as 

the indirect study site for this investigation. In October of 2006, field soil from the 

site was collected to create a growth medium, and mycorrhizal fungal species 

were isolated and identified in soil samples from this location. Seeds were 

collected: 500 B. carinatus and 500 N. pulchra. It is considered harmless to plant 

survival to harvest no more than 10 percent of the seeds found on each plant 

(Guerrant et al. 2004), and care was taken to ensure that this percentage was not 

exceeded. Non-native soft chess seeds were purchased online from B and T 

World Seeds (Aigues-Vives, France). 

Identification of AM Species on Study Site 

In October of 2006, four root samples (from B. carinatus, N. pulchra and 

Danthonia californica) and soil samples were collected from the ESNERR site 

and examined for the presence of AM fungi. The roots were carefully rinsed, 

cleared in lactic acid, and stained in trypan blue, chlorazol black E, or lactophenol 

blue (Brundrett 1994). All stains produced AM visibility under brightfield optics 

with a Zeiss compound research microscope, but resolution was highest with 

0.03% chlorazol black E in 1 part lactic acid, 1 part glycerol, and 1 part water. 

Fungal spores were extracted from the soil by the method of Allen (1979). 
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Soil samples were dry sieved and centrifuged in distilled water at 2,500 rpm for 

10 min. The organic matter-containing water was then poured off, a 2 M 

sucrose-calgon solution was added, and the samples were centrifuged again at 

2,500 rpm for 20 min. The solution was filtered through Whatman no. 1 filter 

paper, leaving the AM spores on the filter paper, and then identified to genus via 

the Manual for the Identification of VA Mycorrhizal Fungi (Schenck and Perez 

1988). 

Experimental Design 

Five experimental blocks were set up in a greenhouse where each block 

contained twenty 410 ml Deepots (Stuewe & Sons, Inc., Corvallis, OR). Of the 

20 pots, 10 were inoculated with mycorrhizal fungi and 10 served as uninoculated 

controls. One block contained two N. pulchra (native) plants, the second 

contained two B. carinatus (native) plants, the third contained two B. hordeaceus 

(non-native) plants, the fourth contained a combination of one B. hordeaceus 

plant and one N. pulchra plant, and the last contained a combination of one B. 

hordeaceus plant and one B. carinatus plant. A greenhouse study was chosen 

over a field study to avoid contamination of the controls with mycorrhizal spores 

(Salyards et al. 2003) and to minimize variability. 

The greenhouse experiment was begun on January 7, 2008, and the 

duration was 18 weeks. Temperatures in the greenhouse ranged from 11-27°C, 

and plants received constant light of 190 ^imoles/m2/s. The potting mixture was 
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composed of equal parts sterilized sand and sterilized field soil from ESNERR 

plus 4 g "Terra-Sorb" to maintain even moisture. Mycorrhizal inoculum was 

added as a 40 ml layer over the potting mix, and seeds were placed at this level. 

Every pot (inoculated and uninoculated) was then covered with a final 1 cm layer 

of potting mix. 

Inoculum 

Initially, inoculum was prepared with field soil from ESNERR, according to 

the method of Miyasaka et al. (2003). This process involved layering a small 

amount of field soil between two layers of 1 part sterilized peat moss and 3 parts 

perlite in 87 six-inch pots. Two known live hosts (Triticum aestivum and Trifolium 

incarnatum) were added followed by a low P fertilizer (Apex 19-5-12). After three 

months, water was withheld and the vegetative portions of the hosts were 

removed, triggering AM sporulation. The resulting inoculum was composed of 

roots, spores, and hyphae. The final product was unsuitable for use, because 

sterilization of the peat moss during soil preparation resulted in the release of 

humic acid (J. Morton, personal communication), which in turn killed all AM fungi 

present. A more appropriate method substitutes sand for peat moss (Brundrett 

1994; Richter and Stutz 2002). The inoculum used in this study was a mixture of 

Glomus deserticola, G. etunicatum, G. intraradices, G. clarum, and Acaulospora 

delicata, purchased from the University of West Virginia International Culture 
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Collection of (Vesicular) Arbuscular Mycorrhizal Fungi, chosen on the basis of my 

earlier identification of the composition of fungi in ESNERR soil. 

Data Collection 

After seedling emergence, various parameters of plant size and vigor 

were measured weekly for 13 weeks. Growth was determined by the length of 

the longest leaf and the number of tillers (Richter and Stutz 2002). At week 8, 

percent AM root tip colonization was measured by means of the Gridline Intersect 

Method (McGonigle et al. 1990) under a compound microscope at 200X. Root 

segments 1.0 cm in length were placed on microscope slides and, using a 

hairline graticule as a line of intersection, the presence or absence of 

mycorrhizae was recorded at 150 intersection points where p = no fungal 

structures, q = arbuscules, r = vesicles, s = arbuscules and vesicles, u = 

mycorrhizal hyphae (observed at arbuscules or vesicles), and v = hyphae not 

seen to be connected to arbuscules or vesicles. Percent root infection was then 

calculated by: 100[(q+r+s+t+u+v2)/G] where G= p+q+r+s+u+v. 

Total moisture content was determined by comparison to dry weight after 

complete oven drying. The Agricultural Analytical Services Laboratory at 

Pennsylvania State University (University Park, PA) analyzed phosphorus, 

nitrogen, and other mineral levels. 
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Statistics 

Unpaired t-tests were used to identify differences between treatments. 

GLM Repeated Measures ANOVA was applied to measure the effects of 

treatments over time, and a two-way ANOVA was used to compare effects 

between plants grown independently and plants grown in competition (Zar 1999). 
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RESULTS 

Mycorrhizal Identification 

Mycorrhizae were identified in the field samples of all of the grasses by the 

method of Schenck and Perez (1988). Glomus and Acaulospora were observed 

in the samples (Figure 1) with Glomus being the more abundant. Colonization in 

the field appeared as in (Figure 2), indicating that the grasses found in ESNERR 

did have a mycorrhizal association and with the morphological features expected 

of a healthy, fully functional mycorrhizal population. 

A 

,... m. 

B 

Figure 1. Spores of Glomus (A) and Acaulospora (B) mycorrhizal species identified in ESNERR 
field sample. Bar = 100 um. 
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Figure 2: Arbuscular mycorrhizal vesicles and attached hyphae. This colony of mycorrhizae was 
observed in the roots of Nassella pulchra in a ESNERR field sample. 

Soil Fertility 

A soil nutrient analysis (by A & L Western Laboratories, Inc.) of collected 

field soils for use in the trial revealed very low mean levels of P, moderate levels 

of NaHCOa'P, and low levels of NO3N (Table 1). Soils with low P have been 

determined to be ideal for the occurrence of AM-plant interactions (Allen et al. 

2003). 
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Table 1. Soil nutrient analysis of ESNERR field samples collected in a coastal prairie to assess 
existing mineral content, primarily P and N. Mycorrhizal-plant interactions are more likely to occur 
where soil P and N are low. 

Phosphorus 
(Weak 

Bray) ppm 

61 

Nitrogen 
(N03"N) 

53 

Phosphorus 
(NaHC03"P) 

(Olsen 
Method) 

PPm 
l l 2 

Sulfur 
(SO4-S) 

ppm 
1 

Potassium 
ppm 

29 

Zinc 
ppm 

1 

Magnesium 
ppm 

132 

Manganese 
ppm 

23 

Calcium 
ppm 

680 

Iron 
ppm 

43 

Sodium 
ppm 

12 

Copper 
ppm 

0.4 

Soil 
PH 

6.7 

Boron 
ppm 

0.6 
1TJe^eT>l50nDpl^^ 
2 Level > 15 ppm is preferred for top production in most crops (A & L Western Laboratories, Inc.) 
3 Level > 21 ppm is preferred for top production in most crops (Brown et al. 1991) 

Seedling Emergence 

All inoculated grasses emerged significantly more quickly and in greater 

numbers in the presence of AM in comparison to grasses that were not planted 

with inoculum (Table 2). A repeated-measures analysis of variance showed the 

between-subjects p values to be less than 0.05 for all grasses (Table 3). 

Competition had no effect on seedling emergence in the presence or absence of 

AM. 
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Table 2. Cumulative mean number of seedlings per pot that emerged from inoculated and 
uninoculated soils. 

Weekl 
+ AM 

Weekl 
-AM 

Week 2 
+ AM 

Week 2 
-AM 

Week 3 
+ AM 

Week 3 
-AM 

N. 
pulchra 

3 

1 

6 

1 

6 

3 

N. pulchra 
in 

competition 

6 

0 

6 

2 

6 

6 

8. 
carinatus 

3 

0 

5 

4 

6 

5 

S. carinatus 
in 

competition 

2 

0 

5 

2 

6 

2 

B. 
hordeaceus 

6 

2 

7 

4 

8 

4 

B. hordeaceus 
(with S. 

carinatus) 

7 

1 

8 

3 

9 

5 

B. hordeaceus 
(with /V. 
pulchra) 

7 

3 

8 

3 

9 

5 

Table 3. Comparison of inoculated and control seedling emergence using a repeated measures 
general linear model with sphericity assumed. 

Between-subjects Effects (inoculated vs. control) 

N. pulchra 

N. pulchra (With B. hordeaceus) 

B. carinatus 

B. carinatus (With B. hordeaceus) 

B. hordeaceus 

B. hordeaceus (With N. pulchra) 

B. hordeaceus (With B. carinatus) 

Df Mean Square 

1 194.400 

1 173.400 

1 52.267 

1 147.267 

1 211.250 

1 380.017 

1 281.667 

F 

39.376 

21.437 

5.513 

25.988 

15.146 

75.196 

39.734 

Sig. 

0.000 

0.000 

0.031 

0.000 

0.001 

0.000 

0.000 

Mycorrhizal Colonization and Dependency 
At eight weeks, percent colonization of three grasses was measured from 

each treatment group using the grid-intersect method (McGonicle et al. 1990). In 

plants grown independently (multiple plants but one species/pot), the mean 

percentage of root length colonized by mycorrhizal hyphae was 47.66% for B. 

carinatus, 48.23% for N. pulchra, and 49.57% for B. hordeaceus. When grown in 

competition, mean percent colonization was 47.97% for B. carinatus, 47.04% for 
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N. pulchra, 48.12% for B. hordeaceuswith B. carinatus, and 47.64% for B. 

hordeaceus with N. pulchra. These infection levels, compared by standard t-test, 

were not significantly different. 

Mycorrhizal dependency (MD) was measured by the following equation, as 

formulated by Plenchette et al. (1983): 

mean dry mass of mycorrhizal treatment - mean dry mass of control 

mean dry mass mycorrhizal treatment *100 

Only N. pulchra demonstrated dependency (Table 4). 

Table 4. Height and dried shoot biomass in grasses grown alone or in competition and in the 
presence or absence of mycorrhizae. 

x Biomass 
+ AM 

(g) 
0.21 ± 0.083 

0.07 ± 0.02 

0.14 ± 0.043 

0.06 ± 0.03 

0.11 ±0.033 

0.05 ± 0.01 

0.12 ± 0.06 

x Biomass 
-AM 

(g) 
012 + 003^3 

0.04 ± 0.002 

0.15 ± 0.043 

0.09 ± 0.052 

0.12 ± 0.043 

0.12 ± 0.032 

0.15 ± 0.05 

x Height 
+ AM 
(cm) 

36.10 ± 6.26 

25.90 ±10.13 

30.80 ± 2.66 

25.70 ± 2.41 

28.60 ± 1.643 

24.80 ± 3.29 

24.00 ± 1.25 

x 

45.50 

31.30 

36.20 

27.40 

31.40 

29.60 

29.40 

Height 
-AM 
(cm) 

± 6.24^'6 

±4.00 

± 2.822 

± 6.36 

± 2.912 

± 3.132 

± 10.85 

MD1 

40% 

49% 

-4% 

-52% 

-7% 

140% 

-23% 

MD = mycorrhizal dependency 
2 Significantly different from treated (+ AM) quantity (previous column of table) at P< 0.05 
3 Significantly different from species in competition (row beneath in table) at P< 0.05 

Height and Biomass 

After 18 weeks, plants colonized by AM were generally shorter than plants 

without AM, as measured by the length of the longest tiller of each plant. The 

exceptions were N. pulchra grown in competition, B. carinatus grown in 

N. pulchra 40 
N. pulchra (with „ ? 

B. hordeaceus) 

B. carinatus 40 
B. carinatus (with Q 
B. hordeaceus) 

B. hordeaceus 40 
B. hordeaceus „ „ 40 (with N. pulchra) 
B. hordeaceus ._ 
(with B. carinatus) 
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competition, and B. hordeaceus grown with B. carinatus, for which there were no 

significant differences between treatments (Table 4). 

However, where AM colonization produced shorter plants or where no 

height effects were observed, significant differences between mean dry 

aboveground biomass were noted only with N. pulchra and not the others. Thus 

N. pulchra produced greater biomass with AM when grown independently (F = 

14.341, P = 0.000) and in competition (F= 4.061, P = 0.000), while plant height 

decreased or showed no statistical difference at all. In the other species, as plant 

height decreased, biomass remained constant or declined. Thus when the 

grasses were grown independently, mycorrhizal colonization had no significant 

effect on the shoot biomass of B. carinatus or B. hordeaceus but had a significant 

negative effect on their heights (F = 0.083, P= 0.000; F = 9.383, P= 0.019, 

respectively). Mycorrhizal colonization also had a significant negative effect on 

the biomass of B. hordeaceus when grown in competition with N. pulchra (F = 

6.733, P = 0.000) but a positive effect on height (F= 0.078, P = 0.004). 

A two-way ANOVA revealed that plants of N. pulchra produced more 

biomass when growing among their own species than in competition, with and 

without mycorrhizal colonization (F= 5.028, P= 0.028). The same result 

occurred for B. carinatus (F= 66.059, P= 0.000) and B. hordeaceus when 

compared to the mean biomass of B. hordeaceus in competition with N. pulchra 

(F= 20.82, P= 0.000). Results from another two-way ANOVA similarly showed 
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that all three plants grew taller when grown on their own. Adding mycorrhizae to 

N. pulchra and B. carinatus in competition produced shorter plants (F= 14.83, 

P= 0.000; F= 6.78, P = 0.013, respectively). When mycorrhizae were added to 

B. hordeaceus, plant heights decreased when in competition with both N. pulchra 

and B. carinatus, but plant height was significantly different only with B. 

carinatus. 

Seed Production and Viability 

By the end of the trial, only B. hordeaceus had produced seed. Nassella 

pulchra and B. carinatus require a longer period to flower than the duration of my 

experiment. Flowering of B. hordeaceus began at Week 5 for inoculated plants 

and at Week 8 for the controls. In the presence of mycorrhizae, B. hordeaceus 

produced a significantly larger number of seeds when grown alone and in 

competition (Figure 2). Competition, however, significantly reduced seed 

production in the absence of mycorrhizal fungi. Adding AM lessened this effect; 

that is, seed production was reduced during competition, but not as dramatically 

as in the absence of mycorrhizae. 

When tested for viability, the seeds from plants grown with AM were more 

successful when grown in competition than alone (Table 5). Competition 

reduced seed viability in the absence of mycorrhizae. Adding mycorrhizae did 

not simply lessen this effect; rather, it reversed it. 
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weeks week 8 week 11 week 13 week 18 

Figure 3. Total number of seeds produced by B. hordeaceus plants in a greenhouse over 
the course of 18 weeks. 

Table 5. Percent germination of B. hordeaceus after 13 days during seed viability trial. 
With AM 

(%) Without AM (%) 
B. hordeaceus 

B. hordeaceus (with N. puichra) 

B. hordeaceus (with B. carinatus) 

50 

60 

88 

58 

16 

42 

Plant Tissue Mineral Content 

A plant tissue analysis was performed (by the Agricultural Analytical 

Services Lab, Penn State University, University Park, PA) on all plants at the 

conclusion of the trial. Shaded results in Table 6 show significant differences in 
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mineral content between inoculated and uninoculated plants. Where results are 

shaded in gray, inoculated plants contained a significantly higher mineral content. 

Where results are shaded in black, inoculated plants contained a significantly 

lower mineral content. 
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Table 6. Post-experiment plant tissue analysis of N. pulchra, B. carinatus and B. hordeaceus leaves. _ _ _ _ _ _ _ _ _ 
Mn Fe Cu B Al Zn Na 

%N %P %K %Ca %Mg ppm ppm ppm ppm ppm ppm ppm 

B. carinatus + AM 

B. carinatus - AM 

N. pulchra + AM 

N. pulchra - AM 

B. hordeaceus + AM 

B. hordeaceus - AM 

B. carinatus + AM in competition 

B. carinatus - AM in competition 

N. Pulchra + AM in competition 

N. Pulchra - AM in competition 

B. hordeaceus + AM in 
competition with N. pulchra 
B. hordeaceus - AM in 
competition with N. pulchra 
B. hordeaceus + AM in 
competition with B. carinatus 
B. hordeaceus - AM in 
competition with B. carinatus 

0.97 

0.86 

0.98 

0.99 

1.20 

1.01 

1.20 

1.25 

1.21 

1.11 

1.00 

1.05 

1.03 

0.91 

0.17 

0.15 

0.27 

0.28 

0.21 

0.13 

0.21 

0.20 

0.28 

0.27 

0.32 

0.26 

0.29 

0.25 

2.48 

2.43 

1.37 

1.42 

3.192 

1.84 

2.49 

2.65 

1.71 

1.70 

2.62 

3.341 

2.50 

3.29 

0.612 

0.45 

0.31 

0.29 

0.63 

0.53 

0.58 

0.43 

0.33 

0.34 

0.792 

0.50 

0.62 

0.52 

0.27 

0.20 

0.19 

0.17 

0.332 

0.18 

0.26 

0.21 

0.19 

0.18 

0.46 

0.30 

0.38 

0.29 

Untreated (- AM) plants significantly greater than treated (+ AM) cell above at P 

399 

340 

82 

102 

333 

382 

335 

355 

72 

1301 

281 

4691 

299 

4541 

<0.05 

17402 

326 

4022 

191 

454 

665 

6442 

246 

195 

195 

5412 

183 

282 

4011 

6 

4 

4 

5 

6 

6 

102 

6 

7 

6 

5 

7 

7 

7 

1162 

45 

712 

29 

71 

74 

53 

54 

492 

36 

922 

67 

65 

961 

29512 

585 

7422 

262 

778 

10211 

11172 

409 

230 

274 

9302 

261 

486 

7251 

322 

20 

28 

401 

34 

43 

30 

26 

27 

26 

33 

31 

372 

26 

1253 

1262 

174 

5491 

39932 

2814 

11472 

697 

206 

247 

4495 

4651 

3131 

3749 

2 Treated (+ AM) plants significantly greater than untreated (-AM) cell below at P< 0.05 



DISCUSSION 

AM inoculation of all three grasses resulted in greater and faster seedling 

emergence. This result concurs with that of Richter and Stutz (2002), who found 

that Sporobolus wrightii emerged more quickly in the presence of AM, and with 

that of Salyards et al. (2003), who observed more rapid emergence of 

Deschampsia caespitosa and Bromus carinatus. However, these results are 

contrary to those of Koide (1985), who found that AM caused growth depressions 

in seedlings of Helianthus annuus. Rapid seedling emergence is a desirable 

quality for grassland management, especially in situations where quick seedling 

establishment is needed, for example, in erosion control. Application of AM for 

this purpose may be appropriate; however, the present study demonstrated that 

more rapid seedling emergence did not necessarily lead to larger or more robust 

plants. 

In this investigation, the effects of AM on plant size and vigor were species 

specific. Of the three grasses tested, only N. pulchra demonstrated a significant 

positive growth response to inoculation. Generally, inoculated N. pulchra had 

greater biomass but shorter tillers. Considering that the total number of tillers 

was equal in inoculated and uninoculated treatments, this result indicates that 

AM inoculation altered this plant's architecture, producing shorter and thicker 

leaves and thus sturdier plants. Similarly, Koide (1985) observed that AM 

inoculation of Helianthus annuus caused a shift in the plant's carbon allocation 
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that altered leaf and stem structure in the same way. A study on the effects of 

shorter, more robust plants in grassland ecosystems would provide more insight 

into the usefulness of using AM in the restoration of N. pulchra stands. 

Though positive growth effects were clearly noted in N. pulchra as a result 

of mycorrhizal inoculation, it is not probable that these were due to increased 

mineral uptake. N and P uptake is essential to the production of plant biomass, 

and the near equal concentrations of these macronutrients in inoculated and 

uninoculated plants strongly suggests that vegetative development in this study 

could not be attributed to mineral uptake. Overall, results from the plant tissue 

analysis showed no consistent trend in macronutrient content that coincided with 

the growth data. 

Only Bromus hordeaceus flowered over the course of the experiment. 

California native perennial grasses often take longer to flower than exotic annual 

species and, in the case of N. pulchra, may not flower until the second year 

following seed germination (US Forest Service 2008). Although mycorrhizal 

inoculation did not affect vegetative growth in B. hordeaceus, it had a clear effect 

on seed production. In general, inoculated plants produced significantly more 

seed and more viable seed. Plants in competition produced more seed. 

Contrary to these results, Wilson and Hartnett (1998) and Smith et al. (1998) 

found no significant mycorrhizal effects on the flowering of inoculated warm-

season grasses. An increase in exotic seed production and viability is of concern 
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to land managers whose goals are to reduce the number of non-native species in 

California grasslands. Results from this research indicate that mycorrhizal 

inoculation in the field may enable B. hordeaceus to achieve higher reproductive 

success, thereby increasing non-native populations rather than eradicating them. 

B. carinatus and N. pulchra suffered when put in competition with the non-

native B. hordeaceus. Dyer & Rice (1996, 1997) similarly found that N. pulchra 

grew larger and produced more florets when competition was relieved in interior 

grasslands. In addition, the study described here revealed that, when grown with 

B. hordeaceus, N. pulchra had higher biomass in the presence of mycorrhizae 

than in their absence, whereas B. hordeaceus was smaller in the presence of 

mycorrhiza . Given that the plant tissue analysis did not account for any increase 

in nitrogen and phosphorus uptake, and as it is unlikely that micronutrient uptake 

would have such a significant influence over growth, the increase in biomass of 

N. pulchra might be attributable primarily to an increase in water uptake. 

Alternatively, an indirect effect of mycorrhizae on plant photosynthesis or other 

physiological functions might explain the change in biomass. In addition, the lack 

of correlation between the micronutrient levels and plant growth adds to my 

suspicion that the mycorrhizal effect on N. pulchra was mainly in elevating 

moisture acquisition from the soil and away from B. hordeaceus. 

Aside from hastening B. carinatus seedling emergence, AM had little effect 

on this native grass. AM, however, had a clear influence on the development of 

27 



N. pulchra and may not only be beneficial in assisting seedling emergence but 

also in its competition with the non-native B. hordeaceus or other grasses for 

moisture. This kind of species-specific information is essential for making 

informed judgments on the management of restoration programs in any particular 

community. 

The native grasses, N. pulchra and B. carinatus, analyzed in this study are 

common California native grasses that are desirable for restoration projects. 

They often grow in competition with the annual non-native B. hordeaceus which 

is widespread throughout many grassland habitats and very difficult to control. 

The widespread nature of these grass competitions makes this investigation 

relevant to land managers who constantly struggle to find effective strategies to 

remove non-natives and to restore native grasses. Many recent restoration 

projects have employed mycorrhizal inoculation with the intention of boosting 

natives with little awareness of the potential negative effects that may ensue. 

Throughout this paper I have offered insight into the complexity of 

mycorrhizal-plant interactions during restoration. In the case of restoring N. 

pulchra, it is clear that the addition of mycorrhizae may aid in this plant's 

reestablishment by producing fast emerging, robust plants that are better suited 

to compete against non-natives as well as tolerate low moisture and drought 

conditions. These benefits may become increasingly important as scientists 

begin to look at the effects of global warming on native plant populations. 
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Though vegetatively less robust, the non-native B. hordeaceus may 

become substantially more successful reproductively in the presence of AM, 

thereby contributing more seed to the non-native seedbank on a restoration site. 

This addition of non-native seed, however, may be inconsequential where there 

is already a large non-native seedbank. While an increase in non-native seedling 

emergence may be observed the second year after AM inoculation, it may not 

pose a large threat to the natives if a healthy and robust native stand capable of 

competitive dominance is established. Future studies are needed to weigh the 

net effects of sexual reproductive success versus vegetative growth under field 

conditions in order to determine the implications for restoration. 

Table 7: Implications for practice 

• Nassella pulchra, Bromus carinatus and Bromus hordeaceus seedlings 
emerged more quickly and in greater numbers in the presence of AM. 

• Plant response to AM inoculation appeared to be species-specific. 
• The vegetative advantage gained by the native N. pulchra as a result of AM 

inoculation may allow for a more robust and competitive native population. 
• The non-native B. hordeaceus experienced high reproductive success in the 

presence of AM causing an increase of non-native seed in the seedbank. It is 
possible, however, that the vigorous native population established with the 
help of AM may be able to withstand the competitive pressure of these 
emerging non-natives. 
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