San Jose State University

SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2006

LRET : local reference with early termination for
H.264 motion estimation

Sweta Singh
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd theses

Recommended Citation

Singh, Sweta, "LRET : local reference with early termination for H.264 motion estimation" (2006). Master’s Theses. 3031.
DOTI: https://doi.org/10.31979/etd.bka8-aa6m
https://scholarworks.sjsu.edu/etd_theses/3031

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for

inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3031&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3031&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3031&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3031&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3031?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3031&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

LRET:
LOCAL REFERENCE WITH EARLY TERMINATION

FOR H.264 MOTION ESTIMATION

A Thesis
Presented to
The Faculty of the Department of Computer Engineering

San Jose State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

By

Sweta Singh

December 2006

UMI Number: 1441125

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1441125
Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, MI 48106-1346

©2006
Sweta Singh

ALL RIGHTS RESERVED

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

S A

Dr. Xiao Su

\\L;A,W 3\,\

Dr. Weider Yu

el

Dr. Donald Hung

APPROVED FOR THE UNIVERSITY

. Wl ere. J2Ho3 0t

ABSTRACT
LRET:
LOCAL REFERENCE WITH EARLY TERMINATION
FOR H.264 MOTION ESTIMATION

By Sweta Singh

While the support for multiple reference frames and variable block sizes enables
H.264 — the latest digital video compression standard — to achieve high data compression,
it adversely affects the encoder complexity and motion estimation time. This paper
proposes and describes a new algorithm, LRET — Local Reference with Early
Termination — that greatly reduces the H.264 motion estimation time. This paper also
introduces a novel tool, RFP - Reference Frame Plotter - that graphically shows the
reference frames selected by H.264 encoder. Further, the paper presents an analysis of
the performance of LRET in terms of motion estimation time, video quality, and
compression efficiency. The results show that as compared to H.264 reference software,
LRET achieves up to 59% reduction in motion estimation time with negligible effect on

the video quality and compression efficiency.

Acknowledgements

It is difficult to overstate my gratitude to my thesis advisor, Dr. Xiao Su.
Throughout my thesis-writing period, she provided encouragement, sound advice, and
lots of good ideas. This thesis would not have been possible without her persistent
support. [cannot thank her enough.

I would also like to thank members of my thesis panel - Dr. Weider Yu and Dr.
Donald Hung - for giving me their time and invaluable suggestions.

I am also thankful to my husband, Khem, and friends Rakesh and Anjali for

helping me at various stages of my research.

Table of Contents

ADDIEVIATIONS .« vttt ttetetetete it ettt et et et et et et et e e et et e e e arrens ix
I INrOQUCHION . ..eicttitristretecerie sttt sttt et e e be st e s saesbaesbeesbeessasssesenersasavasanessenn 1
2 H.264 enCOAET OVEIVIEW ...ueiviiiiiiierinieiireesieesiaesseesseressesssesssassssassssesssnessseesssesssessssenss 4
2.1 Motion estimation in H.264ccccceviriniiniienienirenirinesseenesnenieesessssesssessnesseesses 6
2.2 Motivation behind research WOTKcccccevveverienieeniinnienninieereennesseeseeseessesseessees 7
3 Local reference with early termination (LRET) algorithm........cccccovvivvvnereninieniennenn 11
4 Reference frame plotter (REP).....ccccviiriivieniiiniiininienieneniieseeneesensseseesesssesssesseesnes 16
4.1 REP data StIUCLUIE.....coviiieiriiertinienreenieersensesesssesisesrsensesssesssesssessesssesssessasssasssenss 17
4.2 RFP AlOTIthm ..c.ccveuirieiiiieniiiienieiisieenereeeenies s e ssessesesressessessssessassesessens 17
5 EXperimental TESUILS.....civeernieriniieneinisesisennsreiesieisserensresssiessssesenssssssssessssesssseseses 19
5.1 Effect of LRET early termination on bit rate, PSNR, and ME time................... 20
5.2 Effect of LRET locality search range on bit rate, PSNR, and ME time.............. 24
5.3 Effect of partition weights on LRET performancecocvevervenrercvecrenenseriennes 27
5.4 Effect of number of reference frames on LRET performance..........ccoceerervevernens 29

5.5 Comparison between LRET, H.264 reference software, and MURF in terms
Of €NCOAEr EffICIENCY ...ccuvicieiiieriicrccecre ettt sbeseneeras 32
5.6 Comparison based on reference frames selection.........c.ccoceverercrnercnrcnreennen 35
6 CONCIUSION .ovveutiriereienieresienieisiesicsteesresses et sbeeresae e sstoresaennsbesesssssesbassessesessnasensossssnsias 39
T FULUIE WOTK c.vevvirreririeniiinienieriesienienesnsnisiestesessessenessnosessensenessossssssssssonsesssssssnssessossssnas 40
RETOTENCES .. v euviiecriniiniiiiientene st esre s e s et esr e seseesbessaesnesessresenesessasnsensnaresenssnessons 41
Appendix A: Source code of reference frame plotter.......cccvvvvvvecerircinienienrercerienrerenenens 43
Appendix B: Experimental data for locality search range variation..........c..covevenieniiaens 58

vi

Figure 2.1
Figure 2.2
Figure 2.3
Figure 2.4
Figure 3.1
Figure 4.1
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4

Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12
Figure 5.13
Figure 5.14
Figure 5.15
Figure 5.16

List of Figures

Basic coding structure of H.264 for a macroblock.........cceceveevienevcnnnnecnens 4
Multi-frame predictionc.ueeieveererseenienteie ettt s ee e 6
Macroblock Partitions.........cceeeeieerieiecierieeeseee et ste e ste e e s e seseesresressnens 7
Reference frame distribution for frame number 22 of “carphone.qcif” 9
LRET search range of three........coccvvevieeciireninecneicienineneeecrcreseeenee 12
RFP data SIrUCIUIEcoveruieieierieniieeeieneeniesienceee s esesereseesseesesanessessesseennenne 17
LRET performance - early termination threshold vs ME time.................... 20
LRET performance - early termination threshold vs PSNR............ccc.c...... 21
LRET performance - early termination threshold vs bit ratec...c...... 22
LRET performance - early termination threshold vs bit rate (lesser
SEQUETICES) .vvevvreruvranveersueerrersreesssenssesessaesasessssesssessnssessesssnesssessssassseesnsasessessns 23
LRET performance - ME time vs locality search range...........cccceevverurenenne. 25
LRET performance - PSNR vs locality search range..........c.ccocvevvevereennnne 26
LRET performance - bit rate vs locality search range..........cccceevveevervennnns 26
Comparison of LRET ME time with and without partition weights........... 27
Comparison of LRET PSNR with and without partition weights............... 28
Comparison of LRET bit rate with and without partition weights.............. 29
Effect of number of reference frames on LRET ME time........c.cocccocvueeneene. 30
Effect of number of reference frames on LRET PSNR........cccccceevecrnennen. 31
Effect of number of reference frames on LRET bit ratecoceeveevvernennee. 31
Reference frames selected by H.264 reference software...........ccccevueeeeenne. 36
Reference frames selected by LRETccccoveiiiivienienieninnniiicnneneneeeennenne 37
Reference frames selected by LRET with increasing early termination
ThreShOld....co.viiiiee et 38

vii

Table 2.1
Table 5.1
Table 5.2

Table 5.3

List of Tables

Comparison between ME time, bit rate, and video quality for varying

number of reference framescocvvvevvviniinenrerenne e 10
Comparison between LRET, MURF, and H.264 reference software based

ON ME TN .ottt sttt resreesreea e s e e be s besrnesanesba s basnnesassssaessnessnes 32
Comparison between LRET, MURF, and H.264 reference software based

O PSNR ... oottt sttt snr s s abesesanaessanessanns 33
Comparison between LRET, MURF, and H.264 reference software based

ONL DI TALE Lovveiiriiiectieree st erieereee e e eesraeesaresnresenesare s meaennessaressaesbnesabessabese 34

viii

AVC
CIF
DPB
IEC
ISO
ITU
ITU-T
LRET
ME
MPEG
PSNR
QCIF
RFP

SIF

Abbreviations

Advanced Video Coding

Common Intermediate Format

Decoded Picture Buffer

International Electrotechnical communication
International Organization for Standardization
International Telecommunication Union

ITU — Telecommunication Standardization Sector
Local Reference with Early Termination
Motion Estimation

Moving Picture Experts Group

Peak Signal-to-Noise Ratio

Quarter Common Intermediate Format
Reference Frame Plotter

Standard Image Format

ix

1 Introduction

Over the last decade, digital video has become an integral part of visual
communication. It is employed widely in applications ranging from television broadcast
to video for mobile devices. These applications required that the digital video be
optimized to consume less bandwidth, storage, and computing power. Furthermore, the
introduction of applications such as video streaming required that this optimization be
done in a small time. To meet these requirements, digital video compression was
introduced.

H.264, MPEG-4 Part 10, or AVC, for Advanced Video Coding, is the latest
digital video compression standard (Wiegand, Sullivan, & Luthra, 2003). It is the result
of the collaboration between the ISO/IEC Moving Picture Experts Group and the ITU-T
Video Coding Experts Group. The goals of this standardization effort were to provide
network friendly video representation and achieve enhanced compression efficiency in
terms of better video quality and lower bit rates (“H.264/MPEG-4 AVC,” n.d.).
H.264/AVC provides gains in compression efficiency of up to 50% over a wide range of
bit rates and video resolutions compared to previous standards such as, MPEG-2 and
H.263. However, this improved efficiency and flexibility came at the cost of increased
computational complexity in the codec design.

The H.264 standard does not mandate any specific implementation for an
Encoder/Decoder pair. It only defines the syntax for the encoded video bit-stream and
the method for decoding this bit-stream. Thus, many researches are being carried on each

of these functional elements in an attempt to achieve better performance in terms of faster

encoding speed and better video quality with reduced computational complexity.

Some work has been done on efficient multi-frame selection (Chang, Au, &
Yeung, 2003; Chen, Chang, Li, & Chi, 2004; Huang, Hsieh, Wang, Chient, Ma, Shen, &
Chen, 2003) while other works are based on the efficient exploitation of partition size
(Jiang, Li, & Goto, 2004; Yu, 2004; Zhou, Sun, & Hsu 2004). Some research has also
been done on efficient search and mode prediction (Li, Chen, Li, & Hsu, 2005). This
thesis aims to optimize encoding by exploiting all these areas, i.e. efficient frame
selection with consideration to partition size.

The focus of this research is on the process of Motion Estimation (ME). ME in
H.264 is far more complicated than previous standards, since it has included support for
multiple reference frame, variable block sizes, and quarter pixel precision. The increased
complexity in H.264 motion estimation process necessitates a fast search algorithm to
improve the encoding performance. The fast algorithm could target different areas of
motion estimation e.g. fast mode selection, fast reference frame selection, or fast spatial
search-point reduction. Much of the existing work aims at optimizing search pattern in
2D space and finding a good initial motion vector predictor that can be used to skip
reference frames. This thesis proposes an algorithm, LRET — Local Reference with
Early Termination — that uses the local information to optimize search pattern in the 3D
space.

The rest of this paper is organized as follows. Chapter 2 gives a brief overview of
H.264 encoder with emphasis on motion estimation. It also mentions the motivation
behind this research. Chapter 3 describes the proposed algorithm LRET. Chapter 4

presents the results and analyses of LRET’s performance in terms of ME time, bit rate,

and video quality. Chapter 5 presents uniqueness and academic contribution of this
research. Chapter 6 presents the conclusion. Chapter 7 addresses the future research that

can be performed to further this research work.

H.264 encoding consists of a hybrid of temporal and spatial prediction, in

conjunction with transform and entropy encoding. The basic process of encoding

2 H.264 encoder overview

consists of the following functional elements: Intra Prediction, Motion Estimation,

Transformation, Quantization, and Entropy Coding. Figure 2.1 shows a block diagram of

the video encoding structure of H.264.

Input Picture split
into macroblocks

+ Residual

v

DO—D Transform & Quantize

Entropy
Coding

Picture

Motion
Estimation
Y
N Motion) Decoder
Compensation o
Prediction
-» Intra Prediction b—o
+
Reconstructed +
& < Deblocking Filter Scaling & Inv. Transform

Figure 2.1: Basic coding structure of H.264 for a macroblock

Sullivan and Wiegand explain that in order to encode a video sequence, each

picture that comprises the video sequence is encoded individually. To start with, the

picture, also called a frame, is split into smaller processing units called Macroblocks.

Each macroblock is 16x16 pixels in dimension.

The first picture of a sequence is typically “Intra” coded, i.e., by only using
information contained in the picture itself. Each block in an intra frame is predicted
using information from previously-encoded spatially-neighboring blocks.

The rest of the pictures in the sequence are typically “Inter” coded. Inter coding
involves prediction from previously decoded pictures (“H.264/MPEG-4 Part 10
Tutorials,” n.d.). The coding comprises of motion estimation and motion compensation.
Motion estimation is the process of finding motion vectors, whereas, motion
compensation is the application of motion vectors to already-decoded frames. Motion
vectors (MV) describe the difference between consecutive frames in terms of where each
section of the former frame has moved to. The accuracy of MV is a quarter of a sample
distance. If the MV points to an integer-sample position, the prediction block is the
corresponding block of the reference picture; otherwise, it is obtained by interpolation at
the sub-sample positions.

The residual of the prediction — which is the difference between the original and
the predicted block — is transformed. The transform coefficients are scaled, quantized,
and entropy encoded. These coefficients, along with the motion vectors, are sent to
network abstraction layer for transmission.

The encoder also contains the decoder. For decoding, the quantized transform
coefficients are inverse scaled, inverse transformed, and then added to the prediction.
The resulting decoded picture is stored in the Decoded Picture Buffer (DPB). DPB is
maintained by both receiver and sender, so that the same picture can be used for

prediction by both. Sender cannot use the original picture as reference because

compression reduces the video quality, i.e., the decoded picture is not the same as the

original picture.

2.1 Motion estimation in H.264

Motion estimation in H.264 is more complex than that of earlier standards. The
complexity is introduced due to the support for multiple reference frames and variable
block sizes.

Figure 2.2 illustrates the multi-frame motion prediction process. It shows that for
predicting a macroblock, more than one previously-encoded frame is used as reference.
For each block of current frame, a search for a matching frame is made in all the
reference frames. The best match is selected for the predicted frame. For example, in
Figure 2.2, the best match for “checkered” block is found in reference frame that is just
before the current frame in temporal domain. Similarly, for the “horizontal striped”
block, best match is found in reference frame number four (reference frame are numbered
in chronologically reverse order) and for “vertical striped” block in reference frame

number two.

==

Four prior-decoded
pictures as reference

Current picture

Figure 2.2: Multi-frame prediction

Furthermore, H.264 also supports multiple block sizes. Each 16x16 macroblock
can be partitioned into block sizes of 16x16, 16x8, 8x16, or 8x8 pixels. An 8x8 block
can be further sub-partitioned into sizes of 8x8, 8x4, 4x8, and 4x4. Figure 2.3 illustrates

the partitioning,.

16x16 16x8 8x16 8x8

M
types
0 0 1
8x8 0 0 |1
types | 2 3

Figure 2.3: Macroblock partitions

Motion estimation is done for each of the MxN blocks. This involves searching
for a match for the current block (and all its partitions) in all the reference frames and
generating a motion vector corresponding to that. Chances of finding a closer match
increases as the block size decreases. While, a closer match leads to a smaller residual,
smaller block sizes require higher number of motion vectors to be encoded. Cost of the
match is calculated as the sum of bits needed to encode the corresponding motion vector

and the residual. The match with the least cost is selected as the best match.

2.2 Motivation behind research work

For motion estimation, H.264 employs various algorithms like Simplified

Hexagonal (SHEX) search and Fast Full search. These algorithms work in the spatial
domain. But H.264 reference software does not employ any algorithm for motion
estimation in the temporal domain (The reference software simply selects the reference
frames in chronologically reverse order). Thus, an algorithm to optimize motion
estimation in the temporal domain may be proposed.

Each picture in the temporal domain of a video sequence has a gradual change
from its previous one. This change constitutes the video motion. Thus, if a match for a
block is found in reference frame number x, it is likely that a match will also be found in
reference frame number x-1. If more reference frames are searched, a better match may
be found. But such optimization comes at the expense of high motion estimation time.
For a 16x16 macroblock, there are 45 different partitions for motion search. In each
reference frame, candidates are searched within a search window size of WxW (W is set to
33 by default). For a full search, the number of search points is given by the product of
number of partitions, number of reference frames, and search window. For example,
with five reference frames in DPB, a full search involves 245025 (=45 * 5 * 33 * 33)
search points for a single macroblock. This number is prohibitively high for the encoder.
Instead, if the search for matching block is terminated after finding a good match (and not
carried on to find the best match), then motion estimation time can be saved with little or
no effect on the encoded bit rate.

Another property of video motion is that between each consecutive frame, a group
of macroblocks might move together. For example, if the motion involves a moving
hand, all macroblocks that constitute the hand, will move together. This makes it highly

likely that the neighboring blocks of a picture will have the same reference frame. This

feature of video motion can be exploited to prioritize the search order of reference
frames.

Experiments were run to verify if the above-mentioned hypotheses held true
against the actual implementation of the reference software. Figure 2.4 shows the
reference frame selected for each block of a frame using exhaustive search across all

reference frames. It can be seen that there is a great correlation between the reference

frames of neighboring blocks.

RO

R1
R2
R3
R4
Skipped

Direct

B

Intra

Figure 2.4: Reference frame distribution for frame number 22 of “carphone.qcif”’

Table 2.1 tabulates motion estimation time and video quality for varying number
of reference frames. ME time has almost ten-fold increase with only negligible

degradation in the video quality, or compression (Low bit rates and high PSNR values

signify a better match). This data confirms that if motion estimation is terminated early,

substantial gain in ME time can be achieved.

Table 2.1: Comparison between ME time, bit rate, and video quality for varying

number of reference frames

(Based on reference software encoding of “carphone.qcif”’ sequence)

Number of reference | Motion Estimation Video Quality Bit Rate
frames searched time(sec) (PSNR in db) (@ 30Hz)

2 156.786 36.37 135.62
3 217.807 36.44 134.61
4 282.131 36.49 133.78
5 351.396 36.54 133.98
6 426.467 36.54 133.66
7 490.629 36.56 133.57
8 560.217 36.6 133.96
9 628.637 36.6 133.79
10 700.139 36.62 134.09
11 768.322 36.62 133.62
12 830.87 36.63 133.94
13 899.272 36.63 134.12
14 970.156 36.62 134.06
15 1038.691 36.65 133.91

10

3 Local reference with early termination (LRET) algorithm

Local Reference with Early Termination (LRET) aims at reducing the motion
estimation time without affecting the picture quality or compression. The basic concept
behind LRET is to reorder the search order of reference frames based on their usage in
current locality. Additionally, LRET exploits the redundancy in the temporal domain of
a video sequence by terminating the search after a good match is found. Good match is
defined as one that takes fewer bits than a threshold.

LRET implementation can be functionally divided into two parts. One part is to
store the information about usage of reference frames for each macroblock. This is done
after macroblocks are encoded. The other part is to retrieve the reference frame usage
information in order to prioritize the search order in temporal domain. This is done when
a block is being encoded.

For storing information about reference frames, LRET adds an array of size 16 —
since H.264 supports a maximum of 16 reference frames — to each macroblock structure.
This array stores information about the reference frames used for encoding each of the
macroblock partitions. When a block is encoded, the array element at index
corresponding to the selected reference frame is incremented.

When storing information, LRET also allows for partition weights. Since H.264
supports variable block sizes, the reference frame increment can be done in two ways.
Either the counters can be incremented by one for each match or the increment can be
made proportional to the size of the block that is matched. That is, if a bigger block 1s

matched then the corresponding reference frame may be given more weight. LRET

11

calculates weight as the sum of height and breadth of the partition. Section 4.3 discusses
the effects of partition weights on LRET encoding performance

For retrieving information about the usage of reference frames in the current
locality, LRET takes as input the neighborhood range. This range specifies the locality
within which the reference frame statistics needs to be collected. Figure 3.1 shows the
macroblocks that are considered for statistical information collection, when a search
range of three is input. “X” symbolizes the macroblock that is being encoded. Reference

frames selected by each of the grayed macroblocks are added together.

Figure 3.1: LRET search range of three

The reference frames are selected in decreasing order of their usage in the current

locality. For each block/reference block pair, encoding cost is compared to a threshold.

12

If the threshold condition is satisfied, the search is terminated. The LRET algorithm is
described below.
1. For each macroblock that is encoded in the current frame
a. Declare an array named macroblock_array of size 16.
b. Initialize all elements of macroblock_array to zero.
2. While encoding each block
a. Create a search window based on the input search range.
b. Create an array named femp_array by adding macroblock_array of all
macroblocks that fall within the search window.
c. Set min_motion _cost=INT MAX.
d. For7=1to N, where N is the number of reference frames that the encoder
is using,
i. Select the index — ref index — that corresponds to the highest value
in array temp_array.
ii. Set the corresponding element in temp_array to “-1”.
iii. Find the block that is the best match in the reference frame number
ref index by calculating its motion cost C.
iv. If C <min_motion_cost, then
1. Set best ref=ref index.
2. Set min_motion_cost = C.
3. If min_motion_cost < threshold then break loop.
e. End-For.

3. After the block is encoded,

13

a. Setincrement factor to the sum of height and width of the block.
b. Add increment_factor to the macroblock array element that is indexed by
ref index.

The optimizations proposed by LRET do not add to the complexity of H.264
encoder. The analysis of code complexity of LRET can be done on per macroblock basis
with “n” representing the number of reference frames used for motion estimation.
Initialization of arrays within each macroblock structure

= O(n).

For a search range of x, total macroblocks that are considered for locality information
=4*x+X-1D+x2)+...+1)

=4*(x*(xt1)/2)

=2 * (x* +X)

= 0(’)

Collection of local statistics of reference frame usage

= Number of macroblocks in locality * Number of reference frames

=2 *(x*+x)) *n

= O(nx’)

Updating reference frame statistics
=0(1)
Overall complexity of LRET
= Initialization of arrays
+ Collection of local statistics of reference frames

+ Updating reference frame statistics

14

=0m) + Omx’) + O(l)

= O(nx’)

Though the code complexity of LRET is O(nx?), it is negligible when compared to
that of H.264. H.264 motion estimation process involves calculation of the sum of
absolute difference of M pixels, where M ranges from 16 (for 4x4 sub-partition) to 256
(for 16x16 macroblock) pixels for each block, and comparisons of motion cost values to

(N * W * W * #partitions) search points (See Section 2.2). Compared to this, the

computational overhead introduced by LRET is negligible.

15

4 Reference frame plotter (RFP)

Reference Frame Plotter (RFP) is a tool that plots the selected reference frames
for each block of the encoded picture. RFP is coded in JAVA and needs JAVA run time
environment for execution.

H.264 encoder has an option to enable generation of trace file. RFP uses this
trace file to collect information regarding the reference frames used by each block. It
uses this information to graphically depict the reference frame selection for a given
frame. Additionally, RFP allows for the generated image to be saved as a jpeg file.

RFP starts by reading the input file and collecting information related to the
encoded macroblock, e.g., the partition size, reference frame used, and if it is further
divided into smaller blocks. Then it stores this information into a data structure. Section
4.1 discusses the data structure used by RFP. Once RFP has processed all the
macroblocks, it sends the data structure to the image-drawing module which draws
square-shaped images. The image-drawing module then fills these images with colors
that are selected based on the reference frame used. When the image window is closed,
RFP checks to see if the image was requested to be saved. If so, it saves the image with
the specified filename in jpeg format.

Appendix A contains the RFP source code.

16

4.1 REFP data structure

RFP data structure is a three-dimensional vector. It is pictorized in Figure 4.1.

Picture >
data Square >
data Sub
Square
data

Figure 4.1: RFP data structure

The first vector, called Picture data is a collection of structures that store
information about macroblocks. Each picture_data element contains a vector named
Square_data that stores information about each partition of macroblock. Thus, if a
macroblock has four 8x8 partitions, then the corresponding picture data element will
have four square_data elements. Square_data can further contain a list named

Sub_square_data that stores information about sub partitions of 8x8 macroblock

partition.

4.2 RFP algorithm

1) For each line of encoder trace file

17

2) Read line and pass to tokenizer (delimiter = whitespace).
3) If the token = num_ref frames
a) Store value in a global variable (this decides how many colors i.e. reference
frames, this image is going to use).
4) If the token = pic_width_in_mbs_minusl or pic_height_in_map_units_minus]
a) Store values in global variables (this gives the image size).
5) For each token = Pic
a) If picture number = input picture number
i) Get the macroblock number and store its offset from image boundaries.
6) Iftoken =mb_type and picture number = input picture number
a) Create and store square_data based on mb_type.
7) Ifmb type>8
a) Store block as direct block.
8) If token = 8x8
a) Create and store sub_square_data.
9) Iftoken=ref idx 10
a) Update the color values for the square_data.
10) After all data corresponding to the picture is retrieved, draw the image.
11) When image window is closed

a) If a filename is provided for saving the file, save image.

18

S Experimental results

LRET has been implemented in H.264/AVC reference software JM 11.0
(Tourapis, Suehring, & Sullivan, 2004). LRET’s performance was measured on a Linux
2.6.8 machine with Pentium IV 2.4 GHz processor and 512 MB RAM. According to
Tourapis, Suehring, and Sullivan, the rate distortion mode should be set to high
complexity mode when evaluating algorithmic performance (21; ch.4). Also, Mahajan
and Kondayya showed that H.264 gives the best results when Simplified Hexagon
(SHEX) search is used (19). Thus, the experiments were run with SHEX and high
complexity mode of rate distortion optimization enabled.

The performance of the algorithm was analyzed in terms of compression
efficiency (bit rate), motion estimation time, and video quality (PSNR). Experiments
were run on nine video sequences. There were three sequences of each of the following
types: Common Intermediate Format (CIF), Quarter CIF (QCIF), and Standard Image
Format (SIF).

First, experiments were run to study the effect of input parameters on LRET
performance. The input parameters that were varied are early termination threshold and
LRET search range. Next, experiments to study the effect of partition weights on LRET
encoding were performed. This was followed by experiments to analyze performance of
LRET for varying number of reference frames. Lastly, experiments were done to
compare performance of LRET with that of H.264 reference software and Most Used
Reference First (MURF) (Tourapis, Suehring, & Sullivan, 2004; Mahajan & Kondayya,

2006).

19

5.1 Effect of LRET early termination on bit rate, PSNR. and ME time

Experiments were run with varying early termination threshold. The threshold
was varied from zero bits to 1200 bits in steps of 100. Search range was set to span the
entire picture. Figure 5.1 through Figure 5.4 depict the effect of early termination on ME
time, PSNR values, and bit rate respectively.

Figure 5.1 shows that the ME time reduces with an increase in the early
termination threshold. This is expected behavior, since early termination stops further

searches for finding a better match.

—e— coastguard.cif

200 —O— salesman.cif

700
600 §
m —o— football. sif
@ 500 —»— carphone.qcif
E T S o . —— foreman. qcif
: 400 et N —5¢— mobile.sif
-‘% :) —x— mother_daughter.qcif
E —O—tennis.sif
8 300 .
ul —m— hall.cif
[
o
&
°
=

100 X

0 200 400 600 800 1000 1200
Early Termination Threshold (bits)

Figure 5.1: LRET performance - early termination threshold vs ME time

Figure 5.2 shows that an increase in the early termination threshold has a very

small effect on the PSNR values of the picture. For higher values of early termination

20

threshold, the PSNR values show a slight decrease. This is because a not-so-good match
is found, and the search is terminated. Since worse matches are used for encoding, the

video quality decreases.

—O—football. sif

—y carphone.qcif

—— foreman.qcif

—4— mobile.sif
—x—mother_daughter.qcif
——tennis.sif

—gz— hall.cif

—e— coastguard.cif
—O—salesman.cif

Peak Signal-to-Noise Ratio (db)

0 200 400 600 800 1000 1200
Early Termination Threshold (bits)

Figure 5.2: LRET performance - early termination threshold vs PSNR

Figure 5.3, shows the bit rates with variable early termination threshold. But,
since the bit rates used by SIF and QCIF images vary a lot, not much can be inferred
from this figure. Thus, Figure 5.4 is created for a small number of sequences so that the

variation can be better observed.

21

3000

2500

—O— football. sif
—¢— carphone.qcif
—— foreman.qcif
—g3— mobile. sif
—x— mother_daughter.qci
M | —O—tennis.sif

E | —g=— hall.cif

—e— coastguard.cif
g | —O— salesman.cif

2000

Bit Rate (@30Hz)

500

0 200 400 600 800 1000 1200
Early Termination Threshold (bits)

Figure 5.3: LRET performance - early termination threshold vs bit rate

Figure 5.4 shows that the bit rates increase slightly with an increase in the early
termination threshold. This too is expected. As the threshold increases, the quality of
match selected deteriorates. Worse match results in an increase in “residual” and thereby

in an increase in the number of bits required in encoding the match.

22

& | —o— football. sif
—x— carphone.qcif

~N ¢ | —A— foreman. qcif

T o

& By | —=3— mobile.sif

® 3 —x— mother_daughter.qcit
§ } | —O—tennis.sif

b —3— hall.cif

(7]

—e— coastguard. cif
—O—salesman.cif

0 200 400 600 800 1000 1200
Early Termination Threshold (bits)

Figure 5.4: LRET performance - early termination threshold vs bit rate (lesser

sequences)

Overall performance of LRET with variable early termination threshold shows
that increasing the threshold gets major improvements in ME time with only little
degradation in compression (bit rate) and video quality (PSNR). For example, in
“hall.cif’, ME time reduces by 55% while bit rate increases by 0.006% and PSNR
degrades by 0.001%.

Also, LRET performance was seen to vary considerably between early
termination threshold values of 200 bits to 600 bits. In terms of percentage gain in ME
time for a given degradation in video quality and compression, the best performance is

achieved with a threshold of 500.

23

With a threshold of zero, LRET performance is similar to that of H.264 reference
software (Tourapis, Suehring, & Sullivan, 2004). When the early termination threshold is
set to zero, the LRET encoder does not terminate the search process early. Instead, it
continues to search all reference frames (albeit in a different order than H.264 reference

software) for a better match.

5.2 Effect of LRET locality search range on bit rate, PSNR. and ME time

To observe the effects of locality search range on LRET performance,
experiments were conducted by varying the search range in steps of one for QCIF, and in
steps of two for SIF and CIF formats. Once the search range reaches the maximum
dimension of current frame, further increase in search range is immaterial. The early
termination threshold was set to 1000 bits. Figure 5.5 through Figure 5.7 illustrate the
effect of search range on LRET performance.

Figure 5.5 shows that ME time has initial jumps for increasing search range but
almost stabilizes beyond search range of seven. Typically, motion estimation time
decreases when a match is found earlier. If all macroblocks within a search range
constitute the same moving object, then the correct reference frame will be searched
sooner. But if the current block does not come from the same object, then the right
reference frame may be picked later. This will increase the motion estimation time.

For a couple of sequences, ME time increases at search range of six. This shows
that beyond search range of six, distribution of selected reference frames is such that the
right reference frame is not picked early. This leads to an increase in the motion

estimation time.

24

600

500

—o— football. sif
—— carphone.qcif
—A— foreman.qceif
—g¢— mobile.sif
—x— mother_daughter.qcif
——tennis.sif
—£3— hall.cif

| | —e— coastguard.cif
U S S S —O—salesman.cif

400
300 §

200 -SSR

Motion Estimation Time (sec)

100

0 2 4 6 8 10 12 14
LRET Locality Search Range (macroblock)

Figure 5.5: LRET performance - ME time vs locality search range

Figures 5.6 and 5.7 show the PSNR and bit rate for increasing search ranges
respectively. The variation in values is so low that the charts don’t help much in analysis.
Instead, the data sets using which these charts were plotted are used for analysis (See

Appendix B).

25

—e— coastguard.cif
—O— salesman.cif

g —o— football.sif

° N o —— carphone.qcif
E oo —— foreman.qeif
lg —53— mobile.sif

z° —x—mother_daughter.qcif
$ —O—tennis.sif

® ,

E, —g3— hall.cif

77

X

[}

[

a

0 2 4 6 8 10 12 14
LRET Locality Search Range (macroblock)

Figure 5.6: LRET performance - PSNR vs locality search range

3000

2500
| —o— football.sif
_ 2000 —— carphone.qcif
H —/— foreman.qeif
g) —i3— mobile.sif
; 1500 —x— mother_daughter.qcit
& —0O—tennis..sif
= : e R | gz hall.cif
@ 1000 — L] .
: i . : : : ¢ | —@— coastguard.cif
—O— salesman.cif
500
O i I] 1 1

0 2 4 6 8 10 12 14
LRET Locality Search Range (macroblock)

Figure 5.7: LRET performance - bit rate vs locality search range

26

The data sets illustrate that for most sequences, ME time is approximately the
same for varying search ranges, whereas, compression and video quality have minor
improvements. The improvements in compression and video quality suggest that bigger
search ranges select correct reference frame.

In terms of percentage gain in ME time for a given degradation in video quality

and compression, the best performance is achieved for a search range of seven.

5.3 Effect of partition weights on LRET performance
To analyze the effect of partition weights, the “mother-daughter.qcif” video
sequence is encoded twice, once with partition weights and once without. Figure 5.8

through Figure 5.10 summarize the results. Samples are collected for increasing search

435 4

43 3

ranges.
45
)
o &
~ 445 #
-]
E
T , ____
o B Without Partition Weight
£ m With Partition Weight
?
wl
o
2
°
=

42,5 ¢

1 2 3 4 5 6 7 8 9 10 11 12
LRET Locality Search Range (macroblock)

Figure 5.8: Comparison of LRET ME time with and without partition weights

27

Figure 5.8 shows that the introduction of partition weights reduces the motion
estimation time. Figures 5.9 and 5.10 show that the performance of LRET, in terms of bit
rate and video quality, does not vary much by the introduction of partition weights. This
result suggests that the introduction of partition weights reorders the search in temporal
domain such that the correct reference frame is searched first. But since the final
selection of match remains unchanged, there is not much difference in the PSNR and bit

rate values.

37.64

37.62

37.6

B Without Partition Weight
m With Partition Weight

37.58

Peak Signal-to-Noise Ratio (db)

w w w
N N N
8 £ 8

1. 2 3 4 5 6 7 8 9 10 11 12
LRET Locality Search Range (macroblock)

Figure 5.9: Comparison of LRET PSNR with and without partition weights

28

36.1

(48]
(32
N

36
T 359
a
@455 8 Without Partition Weight
% & With Partition Weight
(4
[

1 2 3 4 5 6 7 8 8 10 11 12
LRET Locality Search Range (macroblock)

Figure 5.10: Comparison of LRET bit rate with and without partition weights

5.4 Effect of number of reference frames on LRET performance

This section shows the effect of varying number of reference frames on LRET
performance. The experiments are run with number of reference frames in DPB being
incremented in steps of one, from one to fourteen. The early termination threshold is set
to 1000 and the search range is set to span the entire picture. Figure 5.11 through Figure
5.13 summarize the results.

Figure 5.11 shows that as the number of reference frames increases, ME time also

increases. This is expected because LRET is O(nx?), where n is the number of reference

frames (See Chapter 3).

29

180

160

140

120

100

60

Motion Estimation Time (sec)

40

20

80 ¢

5

Number of Reference Frames

—o— Carphone
—0—foreman
—4— mother_daughter

Figure 5.11: Effect of number of reference frames on LRET ME time

Figure 5.12 shows that PSNR values increase with an increase in number of

reference frames used. This is expected because if more reference frames are searched

then the chances of finding a better match increases. Similarly, Figure 5.13 shows that

for higher number of reference frames, lower bit rates are achieved.

30

38

37.5

37
—o— Carphone

—0— foreman
—— mother_daughter

Peak Signal-to-Noise Ratio (db)

35.5
0 5 10 15

Number of Reference Frames

Figure 5.12: Effect of number of reference frames on LRET PSNR

160
140
120

100

—&— Carphone
—O— foreman
—A— mother_daughter

80

60

Bit Rate (@30Hz)

40 8

20

Number of Reference Frames

Figure 5.13: Effect of number of reference frames on LRET bit rate

31

5.5 Comparison between LRET, H.264 reference software, and MURF in terms of
encoder efficiency
In this section, LRET is compared to H.264 reference software and MURF
(Tourapis, Suehring, & Sullivan, 2004; Mahajan & Kondayya, 2006). The results are
summarized in Table 5.1 through Table 5.3.
Table 5.1 shows that compared to the reference software, LRET achieves up to
59% reduction in motion estimation time. But, compared to MURF, the motion

estimation times of LRET are slightly higher.

Table 5.1: Comparison between LRET, MURF, and H.264 reference software based

on ME time
MURF LRET H.264 % Gain over

Reference | Reference
Software Software

Hall.cif 166.166 169.486 386.916 56.2

Foreman.qcif 70.444 71.09 148.81 52.23

Carphone.qcif 82.908 83.989 171.559 51.04

Mother_daughter.qcif 43.807 44.787 109.382 59.05

Gains in ME time as compared to reference software are achieved due to the
reduction in number of reference frames searched by LRET. Even when only one
reference frame is used, LRET shows gains in ME time. This is due to the “early

termination” feature of LRET. While reference software compares all blocks of a frame

32

to get the lowest cost, LRET only searches till it finds one that costs less than the
termination threshold.

As compared to MURF, LRET takes more time for ME. This is because
of the difference in the number of operations performed by both the algorithms. LRET,
as discussed in Chapter 3, is O(nx’) while MURF is O(nlogn) (Mahajan & Kondayya,
2006). LRET collects information for each macroblock, whereas, MURF collects
information for the entire frame. Thus with an increase in search range, the overhead
involved with LRET is considerably higher than MURF.

Table 5.2 shows that compared to the reference software, LRET degrades the
video quality of reference software by 0.002% on average. Compared to MURF, LRET

is slightly worse in video quality.

Table 5.2: Comparison between LRET, MURF, and H.264 reference software based

on PSNR
MURF LRET H.264 % Decrease in
Reference PSNR as
Software compared to
H.264

Hall.cif 37.75 37.74 37.84 0.002

Foreman.qcif 35.97 35.95 36.05 0.002

Carphone.qcif 36.47 36.45 36.59 0.003

Mother daughter.qcif 37.64 37.61 37.75 0.003

33

PSNR values of LRET as compared to reference software are as expected. Since
LRET terminates search early, the reference block is not the perfect match and thus the
video quality deteriorates.

Surprisingly, even MURF gets better video quality than LRET. This suggests that
the reference frame order selected by MURF and LRET are different. This difference is
introduced by the partition weights in LRET.

Table 5.3 shows that LRET usually utilizes more bits compared to H.264

reference software but gives slightly better performance than MURF.

Table 5.3: Comparison between LRET, MURF, and H.264 reference software based

on bit rate
MURF LRET H.264 % Increase in
Reference bit rate as
Software compared to
H.264

Hall.cif 181.18 180.97 178.81 0.011

Foreman.qcif 107.67 106.56 105.86 0.006

Carphone.qcif 126.74 126.73 126.2 0.004

Mother_daughter.qcif 35.81 35.83 36.19 -0.01

Again, behavior of LRET as compared to reference software is as expected.

Worse matches result in higher residuals and thus require more bits to encode the

information.

34

As compared to MURF, LRET gets better compression. But from Table 5.2, it
can be seen that the compression efficiency is achieved at the expense of lower PSNR.
This suggests that LRET has more “skipped” blocks.

Interestingly, for the “mother_daughter.qcif” sequence, it is observed that LRET
takes less number of bits than reference software. Also, LRET takes much less ME time
for the sequence too (See Table 5.1). This result is due to SHEX. SHEX too employs
early termination, albeit in the spatial domain. Thus, the reference frame order becomes
more important. Consider an example where a block is searched in two reference frames:
R1 and R2. Match in R1 has a residual of 999 bits while match in R2 has a residual of
600 bits. If the SHEX termination threshold is set to 1000 bits, SHEX will find a match
in either of the reference frames but the order of reference frames’ search will determine
the residual left and thereby the compression efficiency. Thus, in this particular

sequence, LRET gives a better search order of reference frames.

5.6 Comparison based on reference frames selection

This section uses the RFP tool to compare the choice of reference frame selected
by LRET and H.264 reference software.

Figure 5.14 shows the reference frames selected by H.264 reference software.
The reference software does full search in both temporal and spatial domain. So the

matches found are the best possible ones. The aim of LRET is to achieve the same

references for each block as shown in Figure 5.14.

35

RO

R1

R2

R3

R4
Skipped
Diract

Intra

OO

Figure 5.14: Reference frames selected by H.264 reference software

Figure 5.15 shows the reference frames selected by LRET. It can be seen that
Figures 5.14 and 5.15 do not match exactly. One reason for this anomaly is the “initial
ignorance” of LRET. That is, for the first macroblock, LRET has no history of local
usage of reference frames. So it searches in chronologically reverse order of reference
frames. The feature of early termination results in a not-so-good match. Information
about this match is then used in selecting the reference frame order for the next block.

This way, the error gets propagated.

36

RO

R1

R2

R3

| |

R4

Skipped

Direct

Intra

Figure 5.15: Reference frames selected by LRET

In order to remove the initial ignorance problem, the early termination threshold
used by LRET is incremented gradually. That is, for the first row, the threshold is set to
zero, for the second row to 100, for the third to 200, and so on. This enables LRET to get
the best matches in the first row and then build from there. Figure 5.16 shows the

reference frames selected when the termination threshold is incremented gradually.

37

RO

R1

R2

R3

R4

Skipped
Direct

Intra

I)

Figure 5.16: Reference frames selected by LRET with increasing early termination

threshold

Comparison between Figures 5.14 and 5.16 shows that gradually increasing the

early termination threshold gives better matches for selection of reference frames.

38

6 Conclusion

In this paper, a new algorithm, LRET — Local Reference with Early Termination —
is proposed and described in detail. LRET reduces the H.264 motion estimation time by
prioritizing the reference frame selection, and terminating the search early. LRET
optimizes the search order in the temporal domain while the existing H.264 algorithms
reorder the search in the spatial domain (within a frame). Thus, LRET can be used in
conjunction with any of the existing H.264 algorithms to get better results.

Also, a tool RFP — Reference Frame Plotter — is created and described. RFP
shows the reference frames selected by H.264 encoder in a graphical format and may be
used to analyze the performance of H.264 based encoder.

Further, the performance of LRET is analyzed in terms of motion estimation time,
video quality, compression efficiency, and selection of reference frames. Although ME
time is not affected much by the search range, it is found to decrease with an increase in
the early termination threshold, a decrease in the number of reference frames, and the
introduction of partition weights. Also, it is seen that the video quality and compression
efficiency do not vary much for the various inputs.

Finally, a comparison between performance of LRET, MURF, and H.264
reference software is presented. Though, performance of LRET is found to be similar to
that of MURF, as compared to H.264 reference software, LRET is found to achieve up to
59% reduction in motion estimation time with negligible degradation in video quality

(0.002%) and compression (0.001%).

39

7 Future work

Although LRET has greatly improved the motion estimation time, it is not yet as
good in video quality, or compression. As seen from section 5.6, the choice of reference
frames is not the same as that of H.264 reference software. Further work is required to
optimize on the algorithm to get better matches. Some of the areas where improvements
can be done are mentioned below.

The weights given for each partition size can be refined, so that they produce
better search order of reference frames. Similar weights can be introduced for LRET
locality search range.

Also, it is observed (refer to macroblock number 23 in Figures 5.14 and 5.15) that
LRET does not get the best match even though the best match came from the reference

frame that had highest local usage. This issue needs to be investigated further.

40

References

Chang, A., Au, O. C., & Yeung, Y. M. (2003, April). A novel approach to fast multi-
frame selection for H.264 video coding. Proceedings of IEEE International
Conference on Acoustics Speech and Signal Processing, 703-707.

Chen, M.-J., Chang, Y.-Y., Li, H.-J., & Chi, M.-C. (2004, May). Efficient multi-frame
motion estimation algorithms for MPEG-4 AVC/JVT/H.264. Proceedings of
IEEE International Symposium on Circuits and System, 737-740.

H.264/MPEG-4 AVC. (n.d.). Retrieved August 28, 2006, from Wikipedia: The Free
Encyclopedia site: http://en.wikipedia.org/wiki/H.264

H.264/MPEG-4 Part 10 Tutorials. (n.d.). Retrieved August 28, 2006, from
http://www.vcodex.com/h264.html

Huang, Y. W, Hsieh, B.-Y., Wang, T.-C., Chient, S.-Y., Ma, S.-Y., Shen, C.-F., & Chen,
L.-G. (2003, April). Analysis and Reduction of Reference Frames for Motion
Estimation in MPEG-4 AVC/JVT/H.264 [Electronic Version]. Proceedings of
IEEE International Conference on Acoustics Speech and Signal Processing, 145—
148.

Jiang, Y., Li, S., & Goto S. (2004, July). Low complexity variable block size motion
estimation algorithm for video telephony communication. The 2004 47" Midwest
Symposium on Circuits and Systems, Vol. 2.

Li, G.-L., Chen, M.-J., Li, H.-J., & Hsu, C.-T. (2005, May). Efficient Search and Mode
Prediction Algorithms for Motion Estimation in H.264/AVC [Electronic Version].
IEEE International Symposium on Circuits and System, 2005.

Mahajan, A., & Kondayya, S. (2006, May) Advanced Video Coding. Project Report
submitted to Faculty of the Department of Computer Science, San Jose State
University, San Jose, CA.

Sullivan, G. J., & Wiegand, T. (2004, December). Video Compression — From Conepts to
the H.264/AVC Standard [Electronic Version]. Proceedings of the IEEE.

Tourapis, A. M., Suehring, K., & Sullivan, G. (2004). H.264/MPEG-4 AVC Reference
Software Manual. Retrieved September 9, 2006, from http://ftp3.itu.ch/av-
arch/jvt-site/2004_10_Palma/JVT-M012r0.doc

Wiegand, T., Sullivan, G., & Luthra, A., Draft ITU-T Recommendation and Final Draft
International Standard of Joint Video Specification. Retrieved September 12,

41

2006, from http://ip.hhi.de/imagecom_G1/assets/pdfs/JVT-G050.pdf

Yu, A.C. (2004, May). Efficient block-size selection algorithm for inter-frame coding in
H.264/MPEG-4 AVC. Proceesings of IEEE International Conference on
Acoustics, Speech, and Signal Processing, Vol. 3.

Zhou, Z., Sun, M.-T., & Hsu, Y.-F. (2004, May). Fast Variable Block-Size Motion
Estimation Algorithms Based On Merge and Split Procedures for H.264/Mpeg-4

AVC. Proceedings of the 2004 International Symposium on Circuits and Systems,
2004. Vol. 3.

42

Appendix A

Source code of reference frame plotter

import java.io.*;

import java.util.*;

import java.lang.reflect.*;
import java.awt.*;

import javax.swing.*;
import Jjava.awt.event.*;
import javax.imageio.*;
import java.awt.image.*;

public class InputFileParser extends JPanel
{ public static void main(String[] =zrgs)
{ InputFileParser i p = new InputFileParser():
if (Array.getLength(args) < 3)
{ System.out.println(” ST

B A B SR R PE T IR B
System.out.println (" . =--
porooman)y '

System.exit (-1);

}

else

{
ifp.mFileName = args[0];
ifp.mPicChoice = Integer.parselnt(args(l]);
ifp.mbHeight = ifp.mbWidth =

Integer.parselnt (args[2]);
if (Array.getlLength(args) == 4)
{
ifp.mOutputFile = args[3];
}

try

int Line = 0;
BufferedReader in = new BufferedReader (new

43

FileReader (ifp.mFileName));
String stzIl;
while (!ifp.mDone && ((strIN = in.readLine()) !=
null))
{
int rev = ifp.processline(strIN);
}
in.close();
if (ifp.mDone)
ifp.startMe();
else
System.out.println ("
)
}
catch (IOException =)
{
System.out.println(":: : "te.getMessage());
}

}

public void startMe()
{

JFrame frane = new JFrame();

frame.getContentPane () .add(this, java.awt.BorderLayout.CENTE
R);

frame.setDefaultCloseOperation(JFrame.EXIT _ON_CLOSE);

frame.setSize (mPicWidth + 200 , (mPicHeight+100));

frame.setVisible (true);

frame.addWindowlListener (new
Java.awt.event.WindowAdapter ()

{
public void windowClosing(WindowEvent winzvz)
{
if (mOutputFile != "")
{
System.out.printin (" = : ' o+
mOutputFile);
try
{
System.out.println ("
")
BufferedImage _mz%s = new

BufferedImage (getWidth (), getHeight (),
BufferedImage.TYPE _INT_RGB);

44

Graphics2D 4y = image.createGraphics():;

g.setRenderingHint (RenderingHints.KEY FRACTIONALMETRICS, Ren
deringHints.VALUE FRACTIONALMETRICS ON) ;

g.setRenderingHint (RenderingHints.KEY TEXT ANTIALIASING,Ren
deringHints.VALUE TEXT ANTIALIAS ON);
paint(g);
g.dispose ()
System.out.println ("
2
ImagelIO.write(image, " :- ", new
File (mOutputFile));
System.out.println (" v o oo T

image.flush{();
System.out.println ("

}
catch (IQOException =)
{
System.out.println ("
;" + e.getMessage());
e.printStackTrace();
}
System.out.println(" = . . = S O
+ mOutputFile);
}
System.exit (0);
}
b
}
public void paintComponent (Graphics o)
{
ListIterator izzv> = mPicdata.listIterator():
int = = 0, v = 0;
while (iterX.hasNext ())
{
MacroBlock 7 = (MacroBlock)iterX.next():;
ListIterator i-=r7 = mb.squaresdata.listIterator();
while (iterY.hasNext ())
{
SquareData rox = (SquareData)iterY.next();
drawBox (g, mb.offsetX + box.x, mb.cffsetY +
box.y, box.wd, box.ht,getColor(box.color));
ListIterator iterZiR =

45

box.subSquaresdata.listIterator();
while (iterSUB.hasNext ())
{
SquareData suniox =
(SgquareData)iterSUB.next () ;
drawBox (g, mb.offsetX + subBox.x,
mb.offsetY + subBox.y, subBox.wd,
subBox.ht,getColor (box.color));
}
}
X++;
}
int n =25;
for (int - = 0; ¢ < mRefFrames; c++,h +=35)
{
drawBox (g, mPicWidth+75,h,25,25,getColor(c));
g.setColor (Color.black);
String =ty = " +c;
g.drawString(str,mPicWidth+75+40,h+15);
}
drawBox (g, mPicWidth+75,h,25,25,getColor (20));
g.setColor (Color.black):;

g.drawString (" < ", mPicWidth+75+40,h+15);
drawBox (g, mPicWidth+75,h+35,25,25,getColor(21));
g.drawString (" =00, mPicWidth+75+40, h+50) ;

g.setColor (Color.black):;

drawBox (g, mPicWidth+75,h+70,25,25,getColor(22));
g.setColor (Color.black);

g.drawString (" ", mPicWidth+75+40,h+85);

}//close paintComponent

public void drawBox(Graphics <,int mx, int v, int he,
int wd, Color o)

{

.setCclor (Color.black); // black to draw the border

.drawRect (mx, my, ht,wd):;
.setColor(c):
.fillRect (mx+1,my+1,ht-1,wd-1);

Q QQQ

}
public Color getColor(int =)
{

Color colcr = Color.gray:

if (¢ == 0)
color = Color.cyan;

46

if (¢ ==
color
(c ==
color
(c ==
color
(c ==
color
(==
color
(c ==
color
(c ==
color
(¢ ==
color
(c ==
color
(c ==
color
if |
color
(c ==
color
(¢ ==
color
if |
color
if |
color
if |
color
(c ==
color
if
color
(c ==
color

if

if

if

if

if

if

if

if

if

if

if

if

if

1)
Color
2)

Color.

3)

Color.

4)

Color.

5)

Color.

6)

Color.

7)

.green;

magenta;
yvellow;
pink;
blue;

red;

new Color(100,150,150);

8)
new
9)
new
10)
new
11)
new
12)
new
13)
new
14)
new
15)
new
16)

Color (100,150,100);
Color(100,100,150);
Color(150,100,100);
Color(150,100,150);
Color(150,150,100);
Color(200,150,100);
Color (200,100,150);

Color(200,100,100);

new Color (200,200,100);

22)

Color.darkGray;
//direct
Color.

21)

20)

Color.

return color;

orange;

white;

//intra

//skipped

47

int mriowWidohy
int xP

int
int
int
int
int
int

boolean iy
boolean miik

boolean il
beocolean milone;

String nmHilslame;
String T rnuTEiis;

class SguareData
{

int 5

int v;

int wi;

int ni;

int <ol

Vector

Piguarestaizy // 1ist of sub SquareData

SquareData ()
{
x = 0;
y =0
wd =
ht = 0;
color = 0;
subSquaresdata = new Vector():
}
2

.
14

O O ~-

class MacroBlock

{

Vector stuaresuaTta; // list of SquareData
MacroBlock ()

{
offsetX = 0;

48

offsetY = 0;
mbType = 0;
squaresdata = new Vector():
}
}i

Vector mFicdata; // list of MacroBlock
MacroBlock = cronloohg

SquareData xlua: Datag
InputFileParser ()

{
mbWidth = 100;
mbHeight = 100;
mPicWidth = 200;
mPicHeight = 200;
mMBNum = 0;
mCurrentX =
mCurrentY
i=13 =0;
mRefIdx = 0;
m8X8Idx = 0;
mMBFound = false;
mPicFound = false;
mMBTypeFound = false;
mDone = false;
mTotalMB = 1;
mPicChoice = 0;
mPicdata = new Vector();

.
’

0
0;

mFileName = "'";
mRefFrames = 0;
mOutputFile = "";

}
public int processLline(String =tzIl)

{

String vaius = "";

String zzmcizz = striIN;

StringTokenizer —~x=znz = new StringTokenizer (tempStr);
int »=0;

while (tokens.hasMoreTokens())

{
String Toren = tokens.nextToken():;
if (token.endsWith (" . o0 . - 0"))
{
tokens.nextToken(); //skip 1 tokens
tokens.nextToken(); //skip 1 tokens

49

value = removelastChar (tokens.nextToken());
mRefFrames = Integer.parselnt(value);

if (token.endsWith ("1 w0 0 oo oY)
{

tokens.nextToken(); //skip 1 tokens

tokens.nextToken(); //skip 1 tokens

value = removelastChar (tokens.nextToken{()):

int vium = Integer.parselnt(value) + 1;

mPicWidth = xNum * mbWidth; // 40x40 is the
square size

mTotalMB *= xNum;

}
if
(token.endsWith (" R T M)
{
tokens.nextToken(); //skip 1 tokens
tokens.nextToken(); //skip 1 tokens
value = removelastChar (tokens.nextToken());
int vium = Integer.parselnt(value) + 1;
mPicHeight = yNum * mbHeight;
mTotalMB *= yNum;
}
if (token.equals(" = :"))
{
value = tokens.nextToken () ;
int gicliar = Integer.parselnt(value);
if (picNum == mPicChoice) //user input
{
if (!mPicFound)
mPicFound = true;
tokens.nextToken(); //skip one token
value = tokens.nextToken () ;
if (value.equals (" ~:"))
{
value = tokens.nextToken () :
int mdiditn = Integer.parselnt (value);
if (mMBNum >= 0)
{
if (mMBFound)
{
if (!mMBTypeFound)
{

// this means we did not

50

find any mb type, so this has to be white, skipped
SquareData sd. = new
SquareData () ;
sdl.x = sdl.y = 0;
sdl.ht = sdl.wd = mbWidth;
sdl.color = 20; // skipped

mMacroBlock.squaresdata.add (sdl) ;
}
// we found a new MB so add the
previous active one into the main vector
mPicdata.add (mMacroBlock) ;
}
mMBFound = true;
mMBTypeFound = false;
j = 0; //initialise j
mRefIdx = 0;
m8X8Idx = 0;
mMacroBlock = new MacroBlock():;
if (mPicdata.size() == 0) // this
is a first MB
{
mMacroBlock.offsetX

mCurrentX;

mMacroBlock.offsetY
mCurrentyY;
}
else
{
if ((mMacroBlock.offsetX =
mCurrentX + mbWidth) > (mPicWidth - mbWidth))
{
mMacroBlock.offsetX = 0;
mMacroBlock.offsetY

mCurrentY + mbHeight;
}

else

{
mMacroBlock.offsetY

I

mCurrenty¥;

}
}
mCurrentX mMacroBlock.offsetX;
mCurrentY = mMacroBlock.offsetY;

51

}
else
{
if (mPicFound)
{

//this is the last mb of the pic
if (mMBFound)
{
if (!mMBTypeFound)
{
// this means we did not find
any mb type, so this has to be white, skipped
SquareData =a¢l = new
SquareData () ;
sdl.x = sdl.y = 0;
sdl.ht = sdl.wd = mbWidth;
sdl.color = 20; //skipped

mMacroBlock. squaresdata.add(sdl);
}
// we found a new MB so add the
previous active one into the main vector
mPicdata.add (mMacroBlock) ;
}

mMacroBlock = new MacroBlock();
if ((mMacroBlock.cffsetX = mCurrentX
+ mbWidth) > (mPicWidth - mbWidth))
{
mMacroBlock.offsetX = 0;
mMacroBlock.offsetY = mCurrentY +
mbHeight;
}
else
{
mMacroBlock.offsetY
}
mCurrentX = mMacroBlock.cffsetX:;
mCurrentY = mMacroBlock.offsetY;
mDone = true;//TODO: cleanup here
}
j = 0; //initialise j
mRefIdx = 0;
m8X8Idx = 0;

mCurrentY¥;

52

from here

}
if
{

horizontaly

mMBFound = false;

mMBTypeFound = false;

mPicFound = false;

// we processed all the MBs, can return

if (mPicdata.size() == mTotalMB)
{
mDone = true;
}
}
(token.endsWith (" » -+ ") && mPicFound)

mMBTypeFound = true;
value = getValueAfterEquaSign(strIN);

int

whTvre = Integer.parselnt (value);

mMacroBiock.mbType = mbType:;

if
{

}

(mbType == 1)

// one full block

SquareData s72. = new SquareData():
sdl.x = sdl.y = 0;
sdl.ht = sdl.wd = mbWidth;
mMacroBlock.squaresdata.add (sdl);

else if (mbType == 2)

{

// it has two small blocks devided

SquareData =%. = new SquareData();
sdl.x = sdl.y = 0;
sdl.ht = (int) mbHeight/2;
sdl.wd = mbWidth;
SquareData =22z = new SquareData();
sd2.y = (int) mbHeight/2;
sd2.x = 0;
sd2.ht = (int) mbHeight/2;
sd2.wd = mbWidth;
mMacroBlock.squaresdata.add(sdl);
mMacroBlock.squaresdata.add (sd2) ;
}
else 1if (mbType == 3)

{

SquareData =.i. = new SquareDatal():;
sdl.x = sdl.y = 0;
sdl.ht = mbHeight;

53

}

sdl.wd = (int) mbWidth/2;
SquareData :su. = new SquareData();
sd2.y = 0;

sd2.x = (int) mbWidth/2;:;

sd2.ht = mbHeight;

sd2.wd = (int) mbWidth/2;

mMacroBlock.squaresdata.add (sdl);
mMacroBlock.squaresdata.add(sd2);

else if (mbType == 8)
{

SquareData . = new SquareData():;
sdl.x = sdl.y = 0;
sdl.ht = (int) mbHeight/2;
sdl.wd = (int) mbWidth/2;
SquareData =7 = new SquareDatal():
sd2.y = 0;
sd2.x = (int) mbWidth/2;;
sd2.ht = (int) mbHeight/2;
sd2.wd = (int) mbWidth/2;
SgquareData s> = new SquareDatal():;
sd3.y = (int) mbHeight/2;
sd3.x = 0;
sd3.ht = (int) mbHeight/2;
sd3.wd = (int) mbWidth/2;
SquareData =zt = new SquareDatal();

}

else if

{

sdd.y = (int) mbHeight/2;
sdd.x = (int) mbWidth/2;;
sd4.ht = (int) mbHeight/2;
sdd.wd = (int) mbwWidth/2;
mMacroBlock. squaresdata.add() :
mMacroBlock. squaresdata.add(sd2);
mMacroBlock. squaresdata.add (sd3)
mMacroBlock.squaresdata.add (sd4)

sdl

14

.
I4

(mbType > 8)

// one full block

SquareData sl = new SquareData():
sdl.x = sdl.y = 0;
sdl.ht = sdl.wd = mbWidth;

sdl.color = 22; // intra

54

mMacroBlock.squaresdata.add (sdl);
}
}

if (token.endsWith("=="") &&
tokens.nextToken () .equals (" -t 2. ") && mPicFound)
{

String w=np = getValueAfterEquaSign(strIN);

int I = temp.length{();

value = temp.substring(0,1-2);

int i{%=%7,pe = Integer.parselnt(value);

SquareData = = (SquareData)
mMacroBlock.squaresdata.get (m8X8Idx) ;

if (i8x8Type == 0) //means it is not divided

but it has be of different color
{
sd.color = 21; //direct
}
else if (i8x8Type == 5) //means it is divided
in half horizontally
{
SquareData =2: = new SquareDatal():
sdl.y = sd.y:;
sdl.x = sd.x;
sdl.ht {(int) sd.ht/2;
sdl.wd sd.wd;
sdl.color = sd.color;

SquareData =7z = new SquareDatal();
sd2.x = sd.x;
sd2.y = sd.y + (int) (sd.ht/2);
sd2.ht = (int) sd.ht/2;
sd2.wd = sd.wd;
sd2.color = sd.color;
sd.subSquaresdata.add(sdl) ;
sd.subSquaresdata.add(sd2) ;

}

else 1if (i8x8Type == 6) //means it 1is divided
in half vertically

{
SquareData z=2. = new SquareDatal():;
sdl.y = sd.y;
sdl.x = sd.x;
sdl.wd = (int) sd.wd/2;
sdl.ht sd.ht;
sdl.color = sd.color;

55

SquareData s722 = new SquareData():;
sd2.y = sd.y;
sd2.x = sd.x + (int) (sd.wd/2):
sd2.ht = sd.ht;
sd2.wd = (int) sd.wd/2;
sd2.color = sd.color;
sd.subSquaresdata.add(sdl);
sd.subSquaresdata.add(sd2) ;

}

else 1f (i8x8Type == 7) //means it is divided
in 4 parts

{
SquareData s21 = new SquareDatal():;
sdl.x = sd.x;
sdl.y = sd.y;
sdl.ht = (int) sd.ht/2;
sdl.wd = (int) sd.wd/2;
sdl.color = sd.coler;

Squarelata =72 = new SquareDatal();
sd2.x = sd.x + (int) sd.wd/2;
sd2.y = sd.y;

sd2.ht = (int) sd.ht/2;

sd2.wd = (int) sd.wd/2;

sd2.color = sd.color;

SquareData =° = new SquareDatal():
sd3.y = sd.y + (int) sd.ht/2;
sd3.x = sd.x;

sd3.ht = (int) sd.ht/2;

sd3.wd = (int) sd.wd/2;

sd3.color = sd.color;

SquareData =724 = new SqguareDatal():
sdd.y = sd.y + (int) sd.ht/2;
sdd.x = sd.x + (int) sd.wd/2;
sdd.ht = (int) sd.ht/2;

sdd.wd = (int) sd.wd/2;

sdd4.color = sd.color;

r

sd.subSquaresdata.add (sdl)
sd.subSquaresdata.add(sd2) ;
sd.subSquaresdata.add (sd3);
sd.subSquaresdata.add(sd4) ;
}
mMacroBlock. squaresdata.set (m8X8Idx, sd);

56

m8X8Idx++;
}
if (token.endsWith(" -+ = = ") && mPicFound)
{
value = getValueAfterEquaSign(strIN);
int -olor = Integer.parselnt(value);
SquareData s = (SquareData)
mMacroBlock.squaresdata.get (mRefIdx);
sd.color = color;
mMacroBlock.squaresdata.set (mRefIdx, sd):;
mRefIdx++;
}
}
return 0;
}
public String removelastChar(String =i :1L)
{
int I = strIN.length();
return strIN.substring(0,1-1);
}
public String removeFirst7Char(String szzIl)
{
int 1 = strIN.length();
if (1 > 7)
return strIN.substring(7,1):;
else
return strIN;
}
public String getValueAfterEquaSign(String stril)
{
int . = strIN.length():
int e7uai~7 = strIN.indexOf (' ");
String =un = strIN.substring(equalAT+1);
StringTokenizer = :xers = new StringTokenizer (sub):;
if (tokens.hasMoreTokens ())
{
return tokens.nextToken():;
}

return " ;

57

Appendix B

Experimental data for locality search range variation

Table B.1: ME time vs locality search range for SIF and CIF sequences

Search | Coastguard | Salesman Hall Mobile Football Tennis
Range (CIF) (CIF) (CIF) (SIF) (SIF) (SIF)
1 455.1 541.066 336.139 338.676 163.067 101.21

3 433.529 542.488 335.75 342.783 162.834 100.546

5 430.744 541.699 335.636 346.432 162.796 100.345

7 429.245 541.451 336.483 346.38 162.76 100.313

9 429.061 542.157 336.35 347.989 162.847 100.237

11 427.458 542.372 336.635 348.694 162.765 100.258

13 426.324 549.619 337.48 349.946 162.915 100.939

15 425.591 555.162 336.829 349.63 163.36 100.392

17 425.925 547.704 336.283 350.444 162.569 100.275

19 425.687 542.899 337.054 349.938 162.871 100.181

21 424.843 543.197 336.694 349.723 162.944 100.643

22 425 544.332 337.04 349.293 163.335 100.486

58

Table B.2: ME time vs locality search range for QCIF sequences

Search Range Carphone Mother_Daughter Foreman
(QCIF) (QCIF) (QCIF)
1 82.449 43.793 71.482
2 82.337 43.917 71.19
3 82.178 43.771 71.776
4 82.483 43.727 71.46
5 82.171 43.875 71.589
6 82.296 43.701 71.294
7 82.454 43.691 71.219
8 82.275 43.866 71.6
9 82.25 43.643 71.253
10 82.334 43.84 71.09
11 82.24 43.722 71.065
12 82.678 43.548 70.987

59

Table B.3: PSNR vs locality search range for SIF and CIF sequences

Search | Coastguard | Salesman Hall Mobile Football Tennis
Range (CIF) (CIF) (CIF) (SIF) (SIF) (SIF)
1 35.55 36.98 37.54 33.25 33.03 33.96
3 35.55 36.98 37.54 33.26 33.03 33.96
5 35.55 36.98 37.54 33.26 33.03 33.96
7 35.54 36.98 37.54 33.26 33.03 33.96
9 35.54 36.98 37.54 33.26 33.03 33.97
11 35.54 36.98 37.54 33.26 33.03 33.97
13 35.54 36.98 37.54 33.26 33.03 33.97
15 35.54 36.98 37.54 33.26 33.03 33.97
17 35.54 36.98 37.54 33.26 33.03 33.97
19 35.54 36.98 37.54 33.27 33.03 33.97
21 35.55 36.98 37.54 33.27 33.03 33.96
22 35.55 36.98 37.54 33.27 33.03 33.96

60

Table B.4: PSNR vs locality search range for QCIF sequences

Search Range Carphone Mother Daughter Foreman(QCIF)
(QCIF) (QCIF)
1 36.38 37.57 359
2 36.41 37.58 35.93
3 36.44 37.6 35.93
4 36.43 37.6 35.94
5 36.44 37.6 35.93
6 36.47 37.62 35.93
7 36.46 37.62 35.95
8 36.45 37.6 35.94
9 36.46 37.63 35.95
10 36.45 37.61 35.95
11 36.45 37.61 35.95
12 36.45 37.61 35.95

61

Table B.S: Bit rate vs locality search range for SIF and CIF sequences

Search | Coastguard | Salesman Hall Mobile Football Tennis
Range (CIF) (CIF) (CIF) (SIF) (SIF) (SIF)
1 2048.44 1105.79 1061.13 1674.35 2697.4 1174.96
3 2047.65 1105.39 1060.82 1674.24 2698.47 1175.58
5 2047.95 1105.48 1060.39 1673.72 2696.36 1175.78
7 2048.09 1105.48 1060.39 1671.08 2698.11 1171.08
9 2048.35 1105.48 1060.39 1672.22 2699.54 1173.23
11 2048 1105.48 1060.39 1671.71 2696.05 1174.5
13 2047.23 1105.48 1060.39 1670.4 2696 1171.41
15 2047.94 1105.48 1060.39 1671.47 2696.65 1172.76
17 2047.18 1105.48 1060.39 1671.62 2699.04 1173.27
19 2047.2 1105.48 1060.39 1671.31 2698.01 1174.79
21 2047.99 1105.48 1060.39 1670.29 2697.6 1171.8
22 2047.99 1105.48 1060.39 1670.29 2697.6 1171.8

62

Table B.6: Bit rate vs locality search range for QCIF sequences

Search Range Carphone Mother_Daughter Foreman(QCIF)
(QCIF) (QCIF)
1 128.26 35.9 108.24
2 127.58 36.05 107.43
3 127.41 35.98 108.27
4 126.97 35.86 107.51
5 126.99 35.76 107.76
6 126.77 35.8 106.8
7 126.74 35.78 107.89
8 126.75 35.78 107.39
9 126.91 35.96 106.92
10 126.82 35.92 106.56
11 126.82 35.92 106.56
12 126.82 35.92 106.56

63

	San Jose State University
	SJSU ScholarWorks
	2006

	LRET : local reference with early termination for H.264 motion estimation
	Sweta Singh
	Recommended Citation

	tmp.1290447007.pdf.Ss0s6

