San Jose State University

SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

1991

Coset enumeration

Matthew T. Lazar
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd theses

Recommended Citation

Lazar, Matthew T., "Coset enumeration” (1991). Master's Theses. 139.
DOI: https://doi.org/10.31979/etd.2p9u-7tck
https://scholarworks.sjsu.edu/etd_theses/139

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for

inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/139?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F139&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfiims International
A Bell & Howell Information Company

300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
313/761-4700 800/521-0600

Order Number 1344285

Coset enumeration

Lazar, Matthew Thomas, M.S.

San Jose State University, 1991

U-M-1

300 N. Zeeb Rd.
Ann Arbor, MI 48106

COSET ENUMERATION

A Thesis
Presented to
The Faculty of the Department of Mathematics

San Jose State University

In Partial Fulfiliment
of the Requirements for the Degree

Master of Science

By
Matthew T. Lazar

May, 1991

APPROVED FOR THE DEPARTMENT OF MATHEMATICS

Come Alprcr

Dr. R&g)er Alperin‘

Moo e

Dr. Richard Kubelka

(D p I

Dr. Brian Peterson

APPROVED FOR THE UNIVERSITY

ABSTRACT
COSET ENUMERATION

by Matthew T. Lazar

This thesis discusses the algorithm developed by Coxeter and
Todd in 1936 called coset enumeration. We are interested in

determining the index of a subgroup of a finitely presented group. Let
F be a free group with generators x4, . . ., Xp. Letry, ..., rg be words
in F, let R be the set of all conjugates in F of these words, and let [R]

be the subgroup generated by R. Define K as F/[R] and y; as the image
of xj under the canonical map. Letgyq, ..., g;beelementsof F, hy,.. .,

hy their images in K, and H the subgroup generated by the h;. ltis

required to find the index of H in K.

ACKNOWLEDGEMENTS

I would like to thank the members of my examining committee
for their patience in reviewing this thesis. | would like to thank Dr.
Roger Alperin for suggesting this thesis topic, and for his thoughtful
comments concerning the presentation of it. Thanks also goes to my

family and friends for their encouragement in writing this thesis.

TABLE OF CONTENTS

SECTION

INTRODUCTION
CHAPTER | - PRELIMINARIES
1.1 - Free Groups
1.2 - The Nielsen-Schreier Theorem
1.3 - Free Presentations of Groups
1.4 - Tietze Transformations
CHAPTER Il - COSET ENUMERATION
2.1 - Statement of the Problem
2.2 - The Algorithm
2.3 - Examples

2.4 - Enhanced Coset Enumeration (Leech)

PAGE

18
31
35
40
41
42

56

2.5 - Different Implementations

of Coset Enumeration

2.6 - Limitations of Coset Enumeration

2.7 - Original Todd-Coxeter Coset

Enumeration

2.8 - Computer Implementation
CHAPTER Ill - PRESENTATIONS OF SUBGROUPS

3.1 - Statement of the Problem

3.2 - The Method

3.3 - Examples

BIBLIOGRAPHY

Vi

76

81

82

86

o1

o1

92

93

106

INTRODUCTION

We are concerned with an algorithm for determining the index,
when it is finite, of a subgroup H of a group K, when K is specified by
a finite set of generators and relations and H is specified by a finite
set of words in the generators of K. A systematic computational
attack on the problem was discovered by Coxeter and Todd in 1936 and
has proved to be a very useful tool in problems involving generators
and relations in groups. Although the method was not completely
formalized, it was evidently possible to convert it into a computer
program, and this has been done by a number of people.

in Chapter | we introduée the basic concepts of free groups,
presentations of groups, and Tietze transformations, which are
needed as background to the understanding of the problem. Chapter |

also gives a proof of the Nielsen-Schreier theorem, which states that

a subgroup of a free group of finite rank is again a free group.

In Chapter ll, we give a formal statement of the coset
enumeration problem, a formal description of the algorithm to solve
the problem, and a proof that the algorithm works. We interpret each
step of the algorithm in group-theoretic terms, and we are thus able
to describe in such terms the point at which the algorithm
terminates.

Chapter Il continues with a modification by Leech of the coset
enumeration aigorithm. Enhanced coset enumeration allows us to
express elements in the subgroup H of the group K in terms of the
generators of H. Chapter |l concludes with various implementations
of the coset enumeration algorithm along with a discussion of some
inherent limitations of the algorithm.

Finally, Chapter lil discusses a second problem related to coset
enumeration. Namely, we are given a finite presentation for a group K
and a finitely generated subgroup of finite index whose generators are
expressible in terms of the generators of K. Our problem is to find a

presentation for H in terms of the generators of H. The solution to

this problem brings together the topics that were discussed in
Chapters | and Il, namely, the Nielsen-Schreier theorem, Tietze
transformations, and the enhanced coset enumeration method of
Leech.

it should be noted that the results presented in this thesis are
by no means original. Mainly, this thesis is a gathering of various
sources compiled into one paper which discusses the solutions to the
two problems mentioned above.

In Chapter I, Preliminaries, Section 1.1, Free Groups, are
discussed in Macdonald [7]. Sections 1.2, The Nielsen-Schreier
Theorem, 1.3, Free Presentations of Groups, and 1.4, Tietze
Transformations, are discussed in Johnson [4].

In Chapter Il, Coset Enumeration, Sections 2.1, Statement of the
Problem, and 2.2, The Algorithm, are covered in Trotter [11]. Section
2.4, Enhanced Coset Enumeration (Leech), is covered in Leech [5].
Sections 2.5, Different Implementations of Coset Enumeration, and
2.6, Limitations of Coset Enumeration, are covered in Cannon, Dimino,

Havas, and Watson [1]. Section 2.7, Original Todd-Coxeter Coset

Enumeration, is covered in Johnson [4].

Finally, in Chapter lil, Presentations of Subgroups, Sections 3.1,
Statement of the Problem, and 3.2, The Method, are presented in
Johnson [4]. The examples given in Sections 2.3 and 3.3 are original,
in addition to the computer implementation as described in

Section 2.8.

CHAPTER |

PRELIMINARIES

This chapter contains preliminary theorems needed for the
discussion of coset enumeration in chapters two and three. First we
define the concept of a free group with free basis. In the next
section, we prove the Nielsen-Schreier theorem which states that a
subgroup of a free group is again free. In section 1.3 we discuss free
presentations of groups. Finally in section 1.4 we discuss Tietze
transformations.

1.1 FREE GROUPS

We take any non-empty set X and proceed to define the free

group on X. Let X = {x,: = I} where 1 is a suitable index set. We

take another set in one-one correspondence with X; call it x-1and

write its elements as x,t'1, forne I1.

1.1.1 Definition - A word in the elements of X U X1 is an ordered set
of n elements from X U X-1, with repetitions allowed, for some

n> 0. The length of the word is the integer n.

A typical word of length n>0 will be written x‘j;)ﬁ:
1 n

where e; =1 or -1. The unique word of length 0 will be 1; this word is

called the "empty word." (x1 means Xx.) As a word is an ordered set,
it could be regarded as a vector.

As a consequence of the definition, two words are equal if and
only if they have the same length and their corresponding terms are
equal.

Next we define the product of two words: Let w be an arbitrary
word. The product of 1 with w and w with 1 is w.

Let u = ..., v=x% . xdn, The product uv is defined to be
T Tn] Km

the word 3@ ... @ox% x‘:tm. The length of the product is n+m

Ty Tn By

and uv = vu in general. The elements of X U X-1 are words of length 1,

and every word, except the empty word, is the product of certain

types of these particular words. The associative law holds and the
set of words forms a monoid.

Now we define a group whose elements are certain equivalence
classes of these words.

Let W(X) = { words in the elements of X U X-1}.

1.1.2. Definition - Two words u,v e W(X) are adjacent if there are
words z1, zp and an elementae XU X1 for.which U=2z4zp
v=zqaalzy oru=zqaalzy, v=z4zp. (Interpret (x1)1asx)
1.1.3. Definition - Two words u,v e W(X) are equivalenf if eitheru=v
or if there exist z4, 2p, . . ., zp With n22 such that u = 24, v = z and z;

is adjacent to zj,4 fori=1, ..., n-1.

We can now verify that this provides an equivalence

relation ~ on the set of words in W(X).

We have u ~usinceu=u. fu~rvandu=#v thenu=24q,v=2,
and z; is adjacent to z;,. fori=1, ..., n-1. Butthenv=2zp, u=2z4

and z;, 1 is adjacent to zj fori = n-1, .. .1, since adjacency is

symmetric. So v~u. If u~vand v~w thenu =24 ,v=2,and zjis

adjacentto zj, 4 fori=1,...,n-1. Alsov =2z,=y{, W=ympnandyjis
adjacentto yj, 1 fori=1,..., m-1. Sou=2¢,W=yq, and z;is
adjacentof zj, 4 for i=1, ..., n-1; 2y =yq, and y;is adjacent to y;, 4
fori=1,..., m-1. So u~w.

We form the set of equivalence classes. The equivalence class
containing w will be denoted by [w].
1.1.4 Definition - The product of equivalence classes [u], [v] of words
in W(X) is defined to be [uv].
1.1.5 Theorem - The product of two equivalence classes of words in
W(X) is well defined, and the set of all equivalence classes with this
binary operation forms a group.
Proof:

The statement about being well defined is that [u'v'] = [uv] if [u']
= [u] and [V'] = [v]. The fact ihat u and u’ are equivalent implies that
[u'v] = [uv] because u'v and uv are adjac:nt if u' and u are adjacent.

Similarly, [u'v'] = [u'v] follows from the equivalence of vand V.

Therefore [u'V'] = [uv] as required.

Now we verify that we have a group. Closure is clear from the
definition of product and subsequent justification.
Since [u)([vIw]) = [u]lvw] = [u(vw)] = [(uv)w] = [uv][W] = ([u][v])[w],

the associative law holds. The class of words containing 1 is an

identity element as [w] [1] = [w] =[1][w]. fw=aqas...a, for

aje XU X thenwilap . ..a; =11 =[a;,...ay7 T w]. 7/
1.1.6 Definition - The free group on the (nonempty) set X is the set of
equivalence classes of words in W(X) with the binary operation
described above.

1.1.7 Definition - A word in X U X-1 fs reduced if it has the form

o &
S

with X3 = x 2 fori=1,..., n-1.
(x"(-1) is understood as x.)
1.1.8 Theorem - Each equivalence class of words in W(X) contains one
and only one reduced word.
Proof:
Letw e W(X). There is no particular trouble in showing that if

w is not reduced then it is adjacent to a word of smaller length; and

9

so an inductive argument will produce an equivalent reduced word.
To show that [w] contains only one reduced word requires more
thought. We define a particular method of reduction, that is of

obtaining a reduced word equivalent to a given word.

Letw=aq...apwherea;e XUX1for1<i<n. Letwg=1and
w1 =a4. Suppose w; is defined, where 1 <i < n; we produce the
definition for wj, 1 in two sepa'rate cases. Remember w; is a word, so
that one can speak of its last term without ambiguity. If wjdoes not
have a last term a;,, 4 -1, then we put w; +1 =W, @j,.1; if wjdoes end in
ai+1'1, say wj = zai+1‘1, then z is uniquely determined (because
zqaj, 1”1 = zpaj,1~1 implies z4 = z by the definition of a word) and
we define w1 to be z.

This gives an inductive definition for wg, wq, . . ., Wp. 1f n=0,
w), is defined to be 1. A consequence of the definition is that w; is

reduced for 0<i<n, and that in particular wy, is reduced. Another fact

10

is that wj is equivalent to aq . . . aj for each i and so [wp] = [w]. Note

that if w is already reduced, then wp, = w.
Next we show that two adjacent words u and v have reduced

forms which are identical. Letu=ay...a,ar.q...apand

v=aj...axxTayq...apwherexe XUX1.
This choice of u and v is general enough. Suppose the procedure

above gives the sequence ug=1, Uy, ..., Uy foru, vg=1,v4, .. ., v +2
for v. Since w; was determined in the inductive definition by the

first i factors in w, we have ﬁ0=vo, uq=vi, ... U=vy. We shall show
that u, = v.» in two separate cases.

i) If u, does notend in x"1 then Ve=Up Vpy i = VX, and vp o = vy,
(Here we use the definition of w;.) Therefore up = vy, o.

i) If u,does end in xf1, say Uy = zx-1, then z cannot have a reduced
form zgx for any zg; if it did then u=zgx x~1 would not be in reduced

form. Therefore vp = up, Vg =2, and v o = 2x1 = ur as required.

11

Therefore in either case we have up = v, o.
Since the final n-r factors in the expressions for u and v

correspond when taken in the obvious order, we have up = vp,0,j for

i=0,...,nr. Inparticular, up = vy, 0, and it follows that the

procedure for giving a reduced form yields the same result for u and v.

Finally, let u, v be any two reduced words in [w]. Because they
are equivalent, they can be associated by a chain of adjacent words.
We apply our procedure to alt the words in the chain. The result is the
same reduced word in each case. Since the procedure does not alter
words which are already reduced, it will not alter u and v. Therefore
u=vanduand v are identical. Therefore [w] contains precisely one
reduced word. ///

We do not always write the elements of the free group on X as
equivalence classes - we shall often merely use a representative

from each class, usually the reduced word in the class, as no real

confusion will result. We write [x] as xforxe XU X-1 and [1] as 1.

If the sets X and Y are in 1-1 correspondence, the free groups on

12

them are (clearly) isomorphic. It is also true that if two free groups
are isomorphic then the correspending sets X and Y have the same
cardinality (in other words, they are in 1-1 correspondence); we shall
prove this for finite X and Y.

Thus the cardinality of X is an invariant of the free group F on X,
and it is called the rank of F
1.1.9 Definition - A free basis (or a set of free generators) for the
free group F is a set of generators for F with the property that the
only reduced word in them equal to 1 is the empty word. (Of course, a
free basis is said to generate F freely.)

A free group can have many bases other than the set X on which
it was defined. It should be clear what the rigorous interpretation of

the statement that a free group "has no relations" is. It is simply the

factthatifaq . .. a, is a reduced word equal to 1, with each

aje XU X1, then n = 0 and the word is empty.

For example, consider the free group F on the set X={x,y}. The
elements x,y, which certainly generate F, have the property that any

reduced word in them which equals 1 must be the empty word. But

13

cther generators also have that property. Consider for instance
{x,x'1 yx}. This set generates a subgroup of F which is F itself
because it contains both x and y. A reduced word in x and x'1yx is the
conjugate of a reduced word of the same length in x and y; for
example x 1 (x-Tyx)x-yx)x x (x-Tyx) 1 =xT (xlyyxxy1) x.
Therefore if w' = 1 where W' is a reduced word in {X, x'1yx}, then x~1
w x = 1 where w is a reduced word in {x,y} of the same length as w',
and so w =1, whence w is the empty word, so w' is the empty word.
Using the same group F which is free on {x,y}, we have that
{x,y.xy} is a set of generators which is not a basis. Also, the length of
the word depends on the free basis in use; thus x~1 yx has length 3
when referred to {x,y} in the above example, and length 1 when

referred to {x,x‘1 yx}.

1.1.10 Theorem - Let F be a free group with free basis X = {x;;: © € [T}

and let G be an arbitrary group. If {g;: © e I} is a set of arbitrary

elements of G, then there exists a unique homomorphism from F into G

which maps x;, to g, for alim e I1.

14

Proof:

Let @ be the mapping from X to G for which ®(x) = g, for all

n € II. Let [w] be any element of F. We suppose w =)(2 xj:
1 n

and define ®([w]) to be g‘;i g‘:: In order to show @ is
1 n

a mapping we have to show that if [u] = [v] then @ ([u]) = @ ([v]). But
this is clear if u and v are adjacent, and therefore it holds when they

are equivalent.

Let [u], [v] € F so [u][v] = [uv]. Then @([uv]) = @ ([u]) @ ([V])
by the above definition and @ ([u]fv]) = @ ([u]) @ ([v]) as required.
Since ® maps [x.] to g, it is the required homomorphism. Its
uniqueness follows from the fact that the images of the reduced
words in W(X) are determined once the images of the x,; are specified.
nm

1.1.11 Theorem - Let F,y; and Fp, be free groups of finite ranks mand n

respectively. Then Fy, is isomorphic to Fp, if and only if m = n.

15

Proof:

Suppose m = n. We mentioned before that it is clear that Fpy, is
isomorphic to Fp,.

Conversely, suppose F, is isomorphic to Fp,, and let G denote a
group of order 2 with generator g. Suppose F, has free basis
{X1, . . ., Xm} and consider a homomorphism from F,; to G. Such a
homomorphism is determined uniquely by the images of each x;, and
each x; may map to g or 1; there are therefore 2™ -1 distinct
homomorphisms from Fp, onto G. The kernel K of a homomorphism
fromF,onto Gisa normai subgroup of Fy, and F/K is isomorphic to
G. Conversely, a normal subgroup of index 2 in F, is the kernel of a
homomorphism of F; onto an isomorphic copy of G. It follows that Fi,
has precisely 2M -1 normal subgroups of index 2. Similarly Fj, has
precisely 2"-1 normal subgroups of i.ndex 2. Because F is

isomorphic to Fyy, we have 2M-1 = 2M-1, and so m = n as required. ///

16

1.1.12 Corollary - Suppose the free group F has a free basis of finite
order n. Then every finite free basis for F has precisely n elements.

Proof:

Let{x4, ..., Xn } be a free basis for F. Then F is isomorphic to
Fn- Suppose {yq, . . ., Yym} is another free basis for F. Then Fis

isomorphic to F,,, whence Fp, is isomorphic to F,, and som =n. ///

Therefore if the number of elements in a free basis for a free
group F is finite, then this number is well defined.

We now give a converse to the theorem stating the existence of
homomorphisms from a free group into an arbitrary group. As a
matter of convenience we define the free group on the empty set to be
the group with one element.

1.1.13 Theorem - If G is a group with generating set { g = € I}

which has the property that for an arbitrary group H containing the

subset {h;: & € I]}, the mapping ®: g, — h; can be extended to a

homomorphism of G into H, then G is a free group and {g;: n e [T} isa

free basis for G.

17

Proof:

We make a particular choice for H. Take H to be the free group

with {h;: © € []} as a free basis. There is by Theorem 1.1.10 a unique
homomorphism @' from H to G with ®'(h;) =g, foralln e [I. We are
given, in addition, a homomorbhism @ from G to H with @ (g,;) = h,,.
But then (@e®')(hy) = hy and (@'e®)(gy) = 9y and SO Bod' and @'ed
are the identity mappings in H, G respectively. It follows that @ is an

isomorphism. Since H is free with basis { hy: © e I}, it follows that

G is free with basis {g;: w e IT}. //

Sometimes a free group is defined by the property mentioned in
this theorem, but we have preferred a more constructive definition in
the present account.

1.2 THE NIELSEN-SCHREIER THEOREM
We now embark on the proof of the fundamental theorem of

combinatorial group theory -- the Nielsen-Schreier Theorem. This

18

theorem asserts that all the subgroups of a free group are again free.
While we prove the result only for free groups of finite rank (this is

all we need), the proof easily extends to the general case granted the
postulate that any set can be well ordered, which is a version of the
Axiom of Choice. The proof is divided into five steps. We fix the

following notation:
LetS ={s{, ..., s;} and letr = the rank of the free group F.
LetT=SU{sT:1<isr}.

Step 1. The ordering of F.

The elements of F are reduced words of the formw = x4 ... xp,

where x;e T, xixj,.1 # 1, n is the length of the word, n = I(w), and
take [(1) = 0. Order the elements of T as
S§1<Sp...<§ < s1'1 < 32‘1 co.< s,."'. If v, w are elements of F,

define v < w if I(v) < l{w) and then order words of equal length
lexicographically, that is, if v=x1 ... XpzW=Yy1...¥n, X Yie T,

and m is the least subscript such that Xq#ym, then Xq, < yy, implies

19

v <w and xm> Y, implies v > w. This is a total ordering and even a

well ordering.

1.2.1 Lemma - Letw =X{ ... xp, Xje T, n21, be a reduced word in F.

Then forv e Fwe have v < xq ... Xq.4 implies vxp < w.
Proof:

If I{v) < n-1, then l(vxp) < I(v) +1 < n = i(w). Otherwise,
V=Yq...¥n-1, Yje T, thereis aleast m such that y, # xp,, and
Ym < Xm- f¥n-1 Xy =1, then l(v) = n-2 < n = I(w) and we are done. If
VXp =Y{ ... Yn-1 Xp is reduced, since I(vxp) =1(W), Y4 =X4, ..., ¥Ym-1

= Xm-1, and Ym < X, We have vxp, < w as required. //

Step 2. The Schreier transversal.
We fix a subgroup H of F.

The right cosets of H in F yield a partition of F, and (by the
axiom of choice) we can find a subset U of F such that for any x € F,

there is exactly one element u € U such that x e Hu.

Such a subset U is called a (right) transversal of Hin F. The

20

Schreier transversal with respect to the previous ordering is obtained
if the representative in U of each coset is taken to be the least
element of that coset.

We iist the cosets Hx as x runs over F in ascending order;

thus H-1, Hsq, Hso, . . ., and for each x e F, delete Hx from the list

if Hx = Hy for some y< x. Put U = the set of x such that x remains on

the list. By construction, the transversal U has the property that x<y,

and Hx = Hy together imply thaty ¢ U. Note that since F is a free
group of finite rank, it contains only countably many reduced words.
There are only a finite number of reduced words of a given length.
Therefore, the above construction is possible.

The following is called the Schreier property:

i.2.2 - Lemma - Let x4 .. . X, be a reduced word in F (n21); then

X{...Xqe Uimpliesxq ...Xn.1 € U.
Proof:

Suppose X4 . . . Xp1 ¢ U. Then there exists a u € U such that

Hu=Hxq ...Xp.1. Thereforeu<xq...xn.1. By Lemma 1.2.1

21

UXp < X4 ... Xp. Letve Usuch that Hv = Hux,. Therefore v < uxp.

Then v < X4... Xy and Hv = Hxq... X S0 X4... Xn ¢ U as required. ///
Step 3 - The subset A of H.

Letue U,xe T. Asuxe F and U is a transversal for H in F,
there is one v e U such that ux e Hv. Since v depends on u and x, we
denote it by T (ux). Since ux = h t (ux) for some h € H, we have
ux (¢ ()1 =he Hforallue Uandxe T.

Put A ={ux(z (ux))1:ue U, xe T}, which is a subset of H.
1.2.3 Lemma - The set A just defined generates H.

Proof:

Letx e H. We can write x = X4 . . . Xp, a reduced word with
xje T. Letuq =1, uj, 1 =7 (Ux;),i=1,...,n Consider the sequence
aj = uixiui+1'1 for 1 <i<n. By definition, each aje Aandso H
containsa{ ...apy=Uq X{ ... XpUnyq Tox Un4d -1, Since

X un+1‘1 =he H uq 1 = h-1x e H, since x e H, and also

22

Un41 € U; therefore up, 1 = 1, since 1 is the unique element of U

representing the trivial coset H. Therefore x = a4 . . . ap, proving

that A generates H, as claimed. ///
Step 4. Further properties of A.

1.2.4 Lemma

) ux (t ux))"! =1ifandonlyifuxe Uforue Uandxe T.
iu=t (t (ux)xNforalue Uandxe T.

iii) Let ux, vy e UT\U; then either

a)x(t (ux)'1)vy =1 inwhichcasev=1 (Ux),y = x1u=1 vy);
or

b) the reduced word in F representingw = x(t (ux))'1 vy has length at
least two, begins with x, and ends with y.

iv) The words ux (t (ux)™1), ue Uand x e T with ux & U, are all
distinct and the set of them is equal to B U B-1 where
B={ux(t (ux)"l:ue U, xe S}\{1}.

Proof:

i) ux(t (ux))‘1 = 1 if and only if ux = © (ux) if and only if ux € U.

23

ii) AsHux=Hrt (ux),

Hu=Hzt @x)x ! =Hz (z wx)x) andsou =1 (¢ ux)x1) since
both are in U. |

iii) The crux of the proof of the Nielsen-Schreier theorem is the

following:

Lett (ux)=r{...rm, v=1ty...1, be reduced words (all
rj,tje T) so thatw = x rm"l .. .r~|'1 t1...thy=x (7 (ux))'1 vy.
Let us examine this word.

ixrm =1, thent W) xT=rqy...rmx1=ry...rpqeU
by Lemma 1.2.2, which impliesu =t (< (ux)x"') by part ii),
=7 (UX) x~1, which implies ux =t (ux), which implies ux e U by part i),
a contradiction. Also tyy =1 impliesvy =ty ...ty 1 € Uby Lemma

1.2.2, another contradiction.

Therefore xrm"' and thy are both reduced words. Let

(1 ux))- v be equal to the reduced word ry™1 .. . ripq "ty .t

We have four cases:

24

1) i<mand i < n, then case b) holds.

2) i=m<n, wis the reduced word x tm+1 - - - tn ¥, @nd b) holds; or
tm+2 - - - thy, and here xtp, 1 = 1 which implies © (ux) x1

=r{... rmx'1 =11 ...tm41 € U by Lemma 1.2.2, which implies
u=t(rt (ux)x‘1) =1 (ux)x'1 by parts ii) and i), which implies
ux =t (ux), which implies ux € U, a contradiction.

3) i=n<m, wis the reduced word xrm'1 R -1y, and b) holds;

orxrm™1 ... ra.o”1 and here ry, 471y = 1 which implies

Vy=rq...rMy1€ UbylLemma 1.2.2, a contradiction.
4)i=m=n, w = xy, and b) holds; orw = 1 whereupony = x1,
1 (ux) = v and so by partii), t (vy) =t (T (ux)x’1) = u.
Therefore b) holds in all cases except the last which yields a).
iv) Letux(t (ux))'1 =vy(r (vy))'1 where ux, vy e UT\U,
andthenx (t W)t (zr vy)yT=ulv. (4

By parts i) and i), © (vy) y"! ¢ U, since ift (vy) y"! € U, then

t (1 (vy)y'1) =v =1 (vy) y-1 which implies vy =1 (vy), a

25

contradiction since vy ¢ U.

So we can apply patrt iii) to the left hand side of (4) which is
equal to either
a) 1,whereu=v,andx =y;or

b) a reduced word of the form x.. . . y'1 so that u™lv =1 and reducing
the right hand side, either u ends in x-1 so that ux e U, or v ends in
y1so vy € U (using Lemma 1.2.2), a contradiction. Therefore the

words ux(Tt (ux))-1,ue U, xe T, ux ¢ U, are all distinct.

Letting B ={ux (= (ux))"': ue U xe S‘1}\{1}, the above
implies the set in question i; BUB4. Since,forue U, xe T, we have
(ux (< (ux))'1)”1 =1 (ux)x’1 ul=z (ux) x-1 (t (7 (ux)x‘1))'1 ,
by part ii), we have B-1 is a subset of B4, and B1'1 is a subset of B,

so that By = B-1 as required. " ///

Step 5. The Main Theorem.

1.2.5 Theorem (Nielsen - Schreier) If F is free of rank rand His a
subgroup of F, then H is free. If [F:H] = g is finite, then the rank of H is
egualto (r-1)g + 1.

26

Proof:
We prove, using the above notation, that H is free on the set B.

Since A =B U B-1U {1} (Lemma 1.2.4 part (iv)), and A generates H,

(Lemma 1.2.3), we see that B generatesH. Letby...bp, n21bea

reduced word in the elements of BU B-1 = A\ {1}, say b;
= upxj(t (uxj)) for 1 <i<n, where uje U, xje T, uxj ¢ U, and

consider the product bib;, 1 = Uixi(T LX) TUjp1Xis1 (T Wi 1Xiq) T
for some i between 1 and n.

Since by ... bp is reduced , b; b, 1 # 1, and so by Lemma
1.2.4 i), x; (= (uixi))'1 Ui.1Xj4+1 is equal to a reduced word in the
elements of T of the form x; . . . X;,.4, of length at least two. For
X (T (UX))-1 Ujpq Xjq1 = 1 implies ﬁi+1 =T (UiXj), Xj31 =x1,
Uj =7 (Uj 1Xj41), Which implies b;b;, 1 = 1, a contradiction.
Thereforeby ...bp=...Xy... Xo0... Xp...

= UqX{(t (u1x1))'1u2x2(1 (us x2))’1 e unxn(t(unxﬁ))‘1

27

SU{X] e e XD XG e e anl Xn-q - - - X (T Wpxp)™ ! the right
hand side being a reduced word in T which has length at leastn > 1,

since uy does notend in x4~1, and(t (uyxn))~! does not begin with

Xn"l .

Therefore by ... by # 1, and there is no nontrivial relation in H

amcnig the elements of B. Therefore H is free on B.
Note in the case that the index of H in F is finite we have a finite set
of free generators for H.

Now we prove the numérical part of the theorem when H is a
normal subgroup N of F. Let N have finite index kin F. Modify the

construction of the Schreier transversal by restricting attention to

reduced words X1 . . . Xp € F with each xj € S (rather than e T). If such

words are called positive we cﬁoose as representatives in U of any
right coset to be the least positive word in that coset (or 1, if the
coset is N itself).

Everything said above goes through, and in particular the

Schreier property holds, provided we can show that each nontrivial

28

coset does in fact have a positive element.

If x e T, then Nx e F/N = G say, a group of order k, so that by
Lagrange's theorem, (Nx)X = N, that is XK e N. Letxq . .. xp be any
reduced word in T. Then for all i with ;1 is S,

NXq ...Xp=Nxq...Xj.4 (NX) Xj;1 - . . X, since N is normal,

= NXq ... Xj.q (in'kxi) Xigq + - - Xpyp @S xik € N,

=Nxq ... x4 Nk x gL ox

=NXq ... Xiq XK Ixiq .0 xn

and x;K+1 = (x;"1)K1 is a reduced word in S. Performing this
operation for each i, with xi'1 e S, we obtain Nxq .. . xp = Nw where

w is a reduced word in S (rather than e T), so thatw e Nxq ... xpas
required. Call the resulting transversal U. Consider the elements ux,
ue U,xe S.

Since the ux (= (ux))~1 = 1 are all distinct by Lemma 1.2.4 iv),

and there are kr of them all.together, we must show that precisely

29

k-1 of them are 1, that is, precisely k-1 of the ux belong to U. If
V=Xq...Xpe U\{1}(sothatallx;e S, n2>1), thenv = ux,

withue U.

So every element of U\ {1} appears in the set of ux's, that is,
US n U = U\{1}, as required.

Note that ux = u'x' e U/{1} implies u = u' and x =x' since both ux
and u'x' contain only elements of S and are thus reduced.

Let H a subgroup of F be arbitrary of finite index g. Let C be the
set of all right cosets of H in £, and for each w e F, let @, be the
mapping
oy:C-C

Hv — Hvw.

Each @ is 1-1 and onto C.

We get a mapping
®: F-o Sg
WO,

30

of F into the symmetric group of degree g, which is a homomorphism.
The kernel of @ is a normal subgroup of F contained in H and having

index at most gl. Put N = Ker @.

Then N is a normal subgroup of F, N is a subgroup of H, so N is a
normal subgroup of H, and [F:N] is finite. Let [H:N] =h, so that
[F:N] = [F:H][H:N] = gh. Since N is normal, r(H) = rank of H, r(N) = rank
of N, N is a normal subgroup of F and [F:N] = gh, we have r(N)
= (r-1)gh +1. Since N is a normal subgroup of H and [H:N] = h, we have
r(N) = (r(H) -1)h + 1. Butthen (r-1)gh + 1 = (r(H) -1) h + 1,
sor(H) = (r-1)g + 1 as required. ///
1.3 FREE PRESENTATIONS OF GROUPS

Suppose X is a set, F is the free group on X, R is a subset of F
(and so consists of words in elements of X), N is the normal closure of
R in F {sometimes denoted by [R]), and G is the factor group F/N.
1.3.1 Definition - With this notation, we write

G=<X|R> (1)

and call the right hand side of this equation a free presentation, or

simply a presentation of G. The elements of X are called generators

31

and those of R are called relators. A group G is called finitely
presented if it has a presentation of the form (1) such that both X and
R are finite sets.

1.3.2 Theorem - Every group has a presentation, and a finite group is
finitely presented.

Proof:

Let G be a group, and let ®: F — G be an epimorphism with F the
free group on the set G' underlying G. Then G = <G'| Ker ® >. When G
is finite, we repeat the process, but replace Ker @ by a set R of free
generators for Ker @. Then G = <G'|R> and both |G'| and |R| are finite
by Theorem 1.2.5. In fact if |G| = g, then |G'| =g, and |R'| = gz-g+1 N/
1.3.83Lemma -Let X,Y,Zbegroupsandleta: X—->Y,B: X - Zbe
homomorphisms with o onto and such that Ker a is subgroup of Ker .
Then there exists a homomorphismy:Y — Zsuch thatyoa=§
Proof:

Foranyy e Y, choose x e X such that a(x) =y and

define y(y) = B(x). First we show this is well defined.

32

Let X' € X be another preimage of y, such that a(x") = y = a(x).
Then x'x”1 e Ker , a subset of Ker B, so that (xx"1) = 1, whence B(x")
= B(x) (=y(y)). Therefore the definition of y{y) is independent of the
choice of x. Forany x e X, x is the preimage of a(x) under o, such
that, since y(y) = B(x), (yoo)(X) = y(o(x)) = B{x). We show thatyis a
homomorphism.

Letyq, yo e Y, and x4, xo € X be their preimages. Then a(x4xo)
= a(x4) a(xo) = y4 Yo, since a is a homomorphism, so that x{xs is a
preimage of y41y». Then since y(y) = B(x) and B is a homomorphism,

¥y1Y2) = B(x1X2) = B(x1) B(x2) = ¥(y1) Wy2), completing the proof . ///
1.3.4 Theorem. -- If R and S are subsets of the free group F on aset X

such that R is a subset of S, then there is an epimorphism
v : <X|R> — <X|S> such that y(x[R]) = x[S] forx € X.
Proof:

This is a simple application of the above lemma with o and 8

the natural maps. Leta: F — F/[R]and B : F — F/[S], be the natural

33

maps. Then o is onto, and Ker o is a subset of Ker B. Therefore by
Lemma 1.3.3 there is a map v : F/[R] — F/[S] such that yoo. = B. Since B
is onto, so isy. Also y(w[R]) =w[S]forwe F. ///

1.3.5 Theorem - Let G = <X|R> be a group, with X = {x4, . . ., X4} and
R={r{,....rm}. LetHbe a group and @ : X - H be a function such that
@ (xj)) =X 1 £i<n, say, and let w' be the word obtained by priming

each of the letters in any word w e W(X). Suppose that each r;' is the

identity of H. Then there is a .mapping @': G - H such that @' (w) =w'

is well defined and is a homomorphism from G — H. In particular if

the x;' generate H, then @' is onto, and H is a homomorphic image of G,

so that [H| < |G| (in fact |H| divides |G| in the case when G is finite).
Proof:

Let F = < X | > and let v be the natural map from F to G

where v:F — F/[R] and [R] = Ker v. Since F is free on X, ® extends

uniquely to @ homomorphism @": F — H. Ourassumption about the r;

34

means that R c Ker @", and by the definition of normal closure, we
have [R] c Ker @" also, that is Ker v < Ker @".

Then by Lemma 1.3.3 there is a homomorphism @': G — H
such that @' v = @". If in addtion, the x;' generate H, then @" is

onto, so @' is onto also. ///
1.4 TIETZE TRANSFORMATIONS

Given a presentation G.= <X | R> a Tietze transformation T;
(1 i< 4)transforms it into a presentation <X' |R"> in accordance with:
1.4.1 Definition
1. Ifrisaword in W(X) and r = 1 is a relation which holds in G, let
X=X, RR=RU({r.
2. If r e R is such that the relation r = 1 holds in the group <X|R\{r}>
then let
X' = Xand R'= R\{r}.
3. lfwis awordin W(X) and z is a symbol not in X, put
X'=XU{z}, R=RU{wz}.

4. Finally if ze X and w is a word in the elements of X other than z

35

such thatw z'1 e R, then take X' = X\{z} and substitute w for z in
every other element of R to get R'".

1.4.2 Theorem. The application of any of the four Tietze
transformations does not affect the isomorphism class of the group
presented.

Proof:

For T4 the identity map <X] > — <X| > carries [R] onto [R]
and so induces an isomorphism <X|R> — <X'| R'> in this case. Note F
=<X| >=F=<X'| >, [R] =[R", and so F/[R] is isomorphic to F/[R]. The
inverse of this isomorphism yields the result for To.

As for T3, there is a homomorphism @: G — <X' | R’ > fixing X by

Theorem 1.3.5. By the same theorem, the mapping X' — G fixing X and
sending z to w extends to a homomorhism @': <X'|R'> — G.

Note @' is the inverse of ® and so <X|R> is isomorphic to <X'|R'>. For
@@’ (x [RU{wz 1)) =@ (x [R) =x [RU {w 2T},

®od' (z [RU {wz1}]) = @ (W [R])=w [RUjw z1}] = 2[R U {w 2’1}, and

36

@'s® (x [R]) = @'(x [R U {wz"1}])) =x [R].
As for Ty, the inverse of ®, which is @', coupled with

transformations of type T4 and To giyes the required isomorphism in

the final case. We have

<XU{z}| wz'=1,R{ (X2) =Ro (X,2) =...=Ry(X,2) = 1>

applying T4, is isomorphic to,

<XU{z}| wz"1=1,Ry (X,2)=Ro (X,2) =...=Ry(X,2) =1,
R1'(X,w) = Ro'(X,w) =... Ry (X,w) = 1>

applying To, is isomorphic to,

(XU{z}lwz1 =1, Ry (Xw) =Ro'(XW) =...=R(Xw) = 1>

applying @', is isomorphic to,

<X| Ry’ (Xw) =Rg(Xw) =... R(Xw) = 1> = <X| R>. //

1.4.3 Theorem- Given two finite presentations <X|R> and <Y|S>

for a group G, one can be transformed into the other by a means of a

finite number of Tietze transformations.

37

Proof:

We shall deal with relations rather than relators and write

R = 1 to denote the set of equations r=1 , r ¢ R. We write X = X(Y),
Y =Y (X) for the equations expressing the elements of X as words in Y,
and vice versa (possible since both X and Y generate G).

The method of progress from <X|R> to <Y|S> is indicated in the
following scheme.

G = <X|R(X) = 1>.
T3Y=Y(X) : <XY|RX) =1, Y =Y(X)>.
Ty S(Y) =1, X=X(Y)

© <X YIRX) =1,S(Y)=1,Y=Y(X), X=X (Y) >.
Tg4 X=X(Y): <Y| R(X(Y)) =1, S(Y) =1, Y = Y(X(Y))>.
ToRX(Y)) =1, Y =Y(X(Y)) : <Y|S(Y)=1>.
Step 2 is valid because the elements Y < G satisfy S(Y)= 1.

Step 4 is valid because S(Y) = 1 actually defines G in terms of the

elementsof Y. ///

Remarks: In the process of the above proof, the Tietze

38

transformations respectively have been applied

T1: ISI+ X, To: IR +[Y], Tg: Y| , T4: | X| times.

1.4.4 - Theorem LetG =<X| R(X) = 1> and let Y < G be another set of
generators of G such that X = X(Y), say. Then G is isomorphic to

<Y| R(X(Y)) = 1, Y = Y(X(Y))>.

Proof:

Using the notation of the proof of Theorem 1.4.3, we proceed by
applying Tietze transformations.

G = <X| R(X) = 1>.

T3Y=Y(X): < X, Y|RX)=1,Y =Y (X)>.

Ty X=X(Y): <X,Y]| R(X) =1, Y = Y(X), X = X(Y)>.
TaX=X(Y): <¥Y] RX(Y))=1,Y =Y (X(Y))>. /I

Remarks: In the process of the above proof, the Tietze

transformations respectively have been applied

Tq1: X, Tg: [Y] , T4t | X| times.

39

CHAPTERIII

COSET ENUMERATION

We are interested in determining the index of a subgroup of a
finitely presented group. An algorithm to solve this problem was
discovered by Coxeter and Todd in 1936. Since then, various versions
of this algorithm have been given, along with a proof of the
correctness of the algorithm. We give a formal statement of the
problem, a discussion of the algorithm and a proof of its correctness, .
and examples of the application of the algorithm to various groups and
subgroups.

It should be noted that the algorithm is mechanical enough to be
implemented on a computer. In fact, several people have written

computer implementations of it.

40

2.1 STATEMENT OF THE PROBLEM

Our problem may be stated informaily as: Find the index of H in

K, where K is generated by y1, yo, . . ., ¥, Subject to the relations
ri=ro=...=rg=1,and His generated by hq, ho, . . ., hy. Here the r;

and h; are expressed in terms of the y;.

A formal restatement of the problem is: Let F be a free group on
the generators x4, .. ., Xxy. Letrq,..., rgbewords in F, let R be the
set of all their conjugates in F, and let {R] be the subgroup generated

by R. Define K as F/[R] and y; as the image of x; under the canonical
map. Furthermore, letgq, . . ., gy be elements of F, hy, . . .,hy their
images in K, and H the subgroup generated by the h;. It is required to
find the index of H in K.

Let G be the subgroup of F generated by g4, . . ., gt and R. Under

the canonical map, the cosets of H in K correspond to ithe cosets of G
in F, and the original problem is equivalent to finding the index of G

inF.

41

2.2 THE ALGORITHM

We will describe the algorithm to solve the coset enumeration
problem in terms of operations on an array A of integers with n+1
columns and a varying number of rows. (It is possible that the number
of rows may be infinite.)

The columns are labelled from 0 to n, with columns 1 to n

corresponding to the n generators x4, . . ., X, of F and column 0

corresponding to the identity element which we will denote xg. For

notational convenience, we number the rows consecutively from 1, but

the order of the rows has no significance. The array need not be
complete, that is, some cells Aij may be empty, but we assume that

every row contains at least one non-empty cell.

The following condition;e, are assumed to hold for all arrays:
1) Any row with more than one entry has an entry in column 0.
2) The integer 1 appears in the array.
3) Any integer appearing in the array appears at least once in each
column.
4) No proper subset of the rows forms an array satisfying 3).

42

Two further properties are given for which it is convenient to have

names.
We call an array consistenf if
5) No integer appears more than once in any column.
We call an array complete if
6) No cell is empty.
An example of a complete and consistent array corresponding to

a free group F with two generators x and y is as follows:

O WON |
O OhA WX
OO+ wWNOK

An array which is both consistent and complete can be
interpreted as a multiplication table defining a transitive

representation of F by permutations of the integers appearing in the

array. For an integer p, PXj is defined as the entry in column j of the

row with p in column 0, while p-xj-'1 is the entry in column 0 of the

43

row with p in column j.

Since F is free this specification of the action of the generators
can be extended to give a representation of the whole group.
Conditions 3), 5), 6) ensure that the operations are well defined.

A little effort is required to show condition 4) is equivalent to
transitivity of the representation. For if the action were not
transitive, we could delete all rows which begin with an integer
which is not in the orbit of 1, violating condition 4). And if we were
able to violate condition 4), certain integers would not be in the orbit
of 1, which violates transitivity.

Given a complete, consistent array A, we define S'(A) to be the
subgroup of F which leaves the integer 1 invariant, i.e. the isotropy
subgroup of 1 under the action. The right cosets of S'(A) in F are in
one to one correspondence with the different integers appearing in A,
and so the index of S'(A) in F is equal to the (possibly infinite) number

of rows of A. For example we could identify with the integer i the
right coset {w e F: 1-w =i}, where {w ¢ F: 1‘w = 1} = S'(A).

An array satisfying 1) - 4) can be interpreted as partially

44

specifying a representation on equivalence classes of the integers in

A and defines a corresponding subgroup S(A). We explain as follows.
A link in A is a pair (i,u) where i is a row number and u = Xj or xj"‘ ,

and neither Ajg nor Ajj is empty. The head of (i,u) is Ajg if u = xj and
Ajj it u = x;"1, while the tail of (i,u) is Aj if u = x; and Ajg if

u=x71. Asequence of links c = (i1,uq), . . ., im.Um) is @ path in Aif

the head of each link after the first is equal to the tail of the

preceding link. We say that ¢ is a path from p to q if p is the head of
(i1,u4) and q is the tail of (im,um). The inverse of ¢ is the sequence
(impUm™ 1), - . ., (i,u4”1) and is a path if ¢ is. The element of F

represented by the word uy . . Uy is said to be covered by c. Note

that if ¢ covers w then ¢~ covers w1,
We define S(A) as the set of all w e F covered by some path

from1to1inA.

Note that S(A) is a subgroup of F. If ¢4 is a path from 1 to 1

covering wy, and co is a path from 1 to 1 covering wp, then cyCo is a

45

path from 1 to 1 covering wqws. Also c1'1 is a path from 1 to 1

covering w1‘1. Since 1 appears somewhere in the first column of any

array A, we have a path from 1 to 1 covering the identity. We define p
and q in A to be equivalent if there is a path from p to q in A covering
the identity. Then the distinct equivalence classes of integers

correspond to distinct right cosets G/S(A). For example we could
identify with the integer i the right coset {w € F: 3 path from 1 to i

covering w}, where {w e F: 3 path from 1 to 1 covering w} = S(A).
We next describe the effect that certain operations on A have on
S(A).

2.2.1 Lemma- Suppose that the cell Aij is empty and that p is an

integer not occurring in A. Form A' by placing p in Aij and for each

column except the jth adding a new row with p in that column, so that
condition 3) is satisfied. Then S(A") = S(A).
Proof:

Suppose j# 0. The only essential difference between A’ and

A is that A' contains additional links (i,x]) and (i,x]-‘1). Clearly S(A)

46

is a subset of S(A"). Conversely, take any w e S(A"), and letcbe a

path from 1 to 1 in A' covering w and of minimal length. If either of

the new links occurs in ¢, the combination (i,xj)(i,xj'1) must occur,
since (i,Xj) is the only link in A' with p as tail and (i,Xj'1) is the only
one with p as head. An occurrence of (i,xj)(i,xj‘1) would contradict

the minimality of c. Hence cis a path in Aand w e S(A). If j=0, then

by condition 1) there is a unique k=0 with Aj non-empty and a
similar consideration of (i,xk'1) and (i,xi) completes the proof. ///

2.2.2 - Lemma - Let p<q be two integers in A and let Cp and Cq be

paths in A from 1 to p and 1 to q respectively. Form A’ from A by

replacing all occurrences of q by p. Then S(A') is the subgroup
generated by S(A) and wpwq'1 where Wp, Wq are covered by Cp:Cq

respectively.

Proof:
Let G be the subgroup generated by S(A) and wpwq'1. Any

sequence of links which is a path in A is also a path in A' and so

47

S(A) = S(A"). In A, cpcq‘1 is a path from 1 to 1 covering wpwq'1.
Hence wowg™! S(A") and G c S(A).

Conversely, suppose w e S(A") and ¢ = (i{,uq) . . . (imum) is a

path from 1 to 1 in A’ which covers w. Considered as a sequence of
links in A, ¢ can fail to be a 'path in A only because of breaks where

the tail of one link is p and the head of the other link is g, or vice

versa. Let b(c) denote the number of such breaks. (If p = 1, then ¢ may
not be from 1 to 1 in A. A trivial variation of the following argument

will handle this possibility; we consider this case at the end of the
following argument.) Assume the inductive hypothesis that if w is

any element of S(A') covered by a path ¢ from 1 to 1 in A’ such that

b(c) < s, thenw e G. The hypothesis is true for s=1, since if b(c) = 0,

then cis a path in A and w e S(A) which is a subset of G. Now

consider a w e S(A") covered by a path with b(c) =s. Suppose the first

break occurs aiter the kth link, and for definiteness, suppose that the
tail of (ik,uk) is p, and that the head of (ix,.1,uk+1) is Q. Consider the
sequence C'=84SoS3 where sq = (i{,uq) . .. (ik,uk)cp‘1, So = cpcq'1,

48

and sg = Gg(i41,Uk+1) - - - (im;Um). Now ¢ covers w, so w = wywowg
where w; is covered by s;. The sequence sq isapathfrom1to1in A
and so wy e S(A) c G; wp =wgWg™! € G; and s3 is a path from 1 to 1

in A" with b(s3) < s so by the inductive hypothesis wg € G. Hence
w e G and the proof is complete.

Note if p=1, and cis not from 1to 1 in A, it may be a path
fromqto 1in A, so we can consider c'=s{Sos3 where sq = cp'1,
Sp = cpcq'1, s3 = Cqif,u1)(i2,u) . . . (im:um), and apply the above
argument to s3 which is from 1 to 1in A. Other cases are handled

similarly. ///
2.2.3 Corollary - If p and q are equivalent in A, and A' is obtained by
replacing q by p throughout A, then S(A")=S(A).

Proof:

Let Cpq be a path from p to g covering the identity. Apply
Lemma 2.2.2 with Cp any path from 1 to p covering Wp and take
P ‘ - -1 identi
Cq = CpCpq: Since Wp = Wq, WpWq™' IS the identity and the result

49

follows. ///
2.2.4 Lemma - Given a finite array A, there is a finite algorithm for
obtaining a consistent array B with S(A) = S(B).

Proof:

Suppose A is not consistent so that, say Ajj = Ay; with izk. If
either of the rows has only a single entry, it may be deleted without
affecting S(A); otherwise both A;g and Ay are non-empty. For each
column number msj proceed from left to right as follows:

i) If Ajm = Axm» Or if both are empty, make no change.
ii) If just one of Ajy,, Akm is empty, copy the other entry into it.

iii) If Aim#Axm- replace the larger number by the smaller throughout

the array.
Operation ii) does not affect S(A), since it does not create any

essentially new paths, that is, paths that cover new words.
If iii) applies, then A, is equivalent to Ay, and so by Corollary
2.2.3, S(A) is unchanged.

When these opertions have been done for all columns the two

50

rows i and k are identical, and one may be deleted. Thus from any
inconsistent array A we obtain an equivalent array A' with one less
row. If Ais finite the process must lead to a consistent array in a
finite number of steps. ///

Remark: In a consistent array, no two distinct integers are
equivalent. For if they were equivalent, then at least one integer
wouid appear more than once in a column.

2.2.5 Lemma - Given an array A and a word w € F, an array B may
be constructed in a finite number of steps such that S(A) = S(B)
and for some q there is a path from 1 to q in B which covers w.
Proof:

The construction can be made by applying the operation in
Lemma 2.2.1 not more than m times, where m is the length of w.
Note, w may not be reduced, so we consider the length of w to be the

length of the non-reduced word w. ///
2.2.6 Theorem - Given a finite set of words uq, . . .,up, in a finitely

generated free group, there is a finite algorithm for determining the

index of the subgroup they generate.

51

Proof:

Let Gk, k=1, ..., m be the subgroup generated by the first k of

the u;j and let G be the trivial subgroup. Start with the array Ag
which has n+1 rows, a 1 in éach row and column (so there are n+1

entries in the array), and no other entries. Then S(Ag) = Gg. Suppose
Ay.1 has been constructed, with S(Ay_4) = Gk.4. Apply Lemma2.2.5
if necessary to obtain an array with a path covering uy from 1 to py,

and then replace py by 1 to obtain A;. By Lemma 2.2.2, S§(Ag) = G.
Finally apply Lemma 2.2.4 to obtain éconsistent array B
with S(B) = Gp.

If B is complete, Gy, has finite index equal to the number of
rows of B. On the other hand, if B is not complete, the construction of
Lemma 2.2.1 leads to an array B' with S(B') = Gy,. Examination of the

construction shows that B' is also consistent and incomplete (unless
n=1, B' actually has more empty cells than B) so the same operation

can be applied to B', and so on. Carrying out this process countably

52

many times gives a complete consistent array, showing that G, has

infinite index. ///

We are now in a position to attack the original problem. Let G

be the subgroup of F generated by the words g4, . . ., gg and all

conjugates of the words rq, . . ., 1y. Since the latter set is infinite we
cannot simply apply Theorem 2.2.6. We describe a process for

constructing a sequence of consistent arrays Ag, A1, . . . which may
or may not terminate. We write Gy for S(Ak).

Use the method of Theorem 2.2.6 to construct Ag so that G
is generated by g4, . . ., gg, and then continue as follows:

a) Take p as the smallest unprocessed integer in Ak. (Initially all

integers are unprocessed and p=1 will be the choice when k=0.)

b) Letc be a path from 1 to p, and let w be the word it covers. Obtain

a new consistent array Bk, 1 by the method of Theorem 2.2.6 so that

S(Bk,1) is generated by Gy and the elements wry wl, .., wrtw"'.

Whenever a new integer is introduced in the construction use an

53

integer larger than any that has yet appeared; that is, an integer
eliminated by use of Lemma 2.2.2 should not be reintroduced.
c) If necessary, apply Lemma 2.2.1 to fill all the cells of the row with

p in column 0, and column 0 of all rows with p in other columns. Take

the resulting array as Ak, 1. Then Gy, 1 = S(Ak,1) = S(Bky1) is

generated by G and wrqw™!, . . ., wrpw1,

d) Mark the integer p as processed, and increase k by 1.
e) If the array contains any unprocessed integers, return to step a).
If it does not, stop.

The contention is that this procedure terminates if and only if G

has finite index in F, and that if it does terminate then G = S(Ay)
where As is the final array. If the process terminates, then, in virtue
of step) , A; must be complete and hence Gy has finite index. Since

G is a subset of G, this shows that the process cannot terminate

unless G has finite index.
Conversely, suppose G does have finite index. By Theorem

1.2.5, the Nielsen-Schreier theorem proved above in Chapter |, G is

54

finitely generated. Each member of a finite set of generators is
expressible in terms of the g's and a finite number of the conjugates
of the r's; hence G is actually generated by the g's and some finite

number of conjugates of the r's. Now observe that if w is any word

covered by a path from 1 to a processed integer in Ay, then all the

conjugates wriw‘1 are in Gk. Because of step ¢), for any w € F there

will be for some k a path in Ak over w from 1 to some integer q.

Eventually either q itself will be marked, or it will have been

replaced by some smaller integer which was marked. Thus any finite

set of conjugates of the r's will be in Gy for some sufficiently large k
and consequently, for some k, Gk = G and is of finite index.
This implies Ay will be complete, for if A were not complete,

Gy = G would not have finite index by the argument given in the proof

of Theorem 2.2.6. None of the steps a) - @) can introduce new integers

into a complete array, so in a finite number of steps the algorithm

will terminate. At this point A¢= Ai and S(A¢) = Gk = G. Thus we

55

have proved:
2.2.7 Theorem - Given words g4, .. ., ggand rq, . . ., r; in a finitely

generated free group, let G be the group generated by the g's and the
conjugates of the r's. Then the above algorithm terminates if and only
if G is of finite index in F. If the algorithm terminates, it determines
the index of Gin F. ///
2.3 EXAMPLES

The following examples will provide insight into the above

algorithm.

When creating a path from 1 to 1 covering w = uq up . .. u,
where uje X U X1, X ={xy, .. ., Xy}, the notation will be to write
1uqjqugjo...jk-1 U 1 where j; are positive integers in the array
fori=1tok-1. This s interpreted as a path from 1 to j{ viauq, a

path from jq to jo via up, . . ., a path from ji_4 to 1 via uy.
Also note when processing the integer i, we need only create
paths, using Lemma 2.2.1, from i to i covering the relator fj- The

reason being that if w is a word covered by a path from 1 to i, then

56

w1 is a word covered by a path from i to 1, and so creating a path
from i to i covering the relator T really adds the word w g wlto

the generators of S(A), which is what was intended. A path fromito i
covering the relator 5 is called an rj-cycle.

When we create patﬁs which cover words in the coset
enumeration, we either make deductions or definitions. A definition
is made when no information gives the product of a coset with a
generator, so that a new integer must be defined in the array

according to Lemma 2.2.1. A deduction at j is made when

we create a cycle from i to i say, i w4 iq uq | u2 io W i, where i, j,

i1, and ip are positive integers in the array, uq, us e XU X-1, and wy,
wo € W(X). If we know iy uq = j, but notj up =ip, then j up = ip was
deduced. Similarly, if we know io u2'1 = j, but not u1‘1 =iy, then j

u1'1 = i4 was deduced. Each cycle covered gives rise to 0 or 1

deductions, the deductions being made when we close the cycle.

When covering a path from i to i, we can make deductions from

57

left to right as well as right to left starting at i on either end. This
reduces the number of new integers defined in the coset enumeration.
When we come to a point Where no deductions can be made, at this
point only do we define new integers.

231 LetG=<xyx4=y3 = (xy)2=1>, H=<x>.

Find the index of H in G.

1 x ¥ Start with the identity.
1 1x1. Add the generator for H.
1 ‘Process integers starting with 1.
1
1 x ¥
1 1 2 Ix1x1x1x1.
1y2y3y1.
2 3 3 1x1y2x3y1.
2
3 1
1 x ¥
1 1 2 2x3x4x5x2.
2y3yly2.
2 3 3 2x3yixiy2.
3 4 1
4 5
4
5 2
5

58

- |
— Ix
=<

2
2 3 3 3x4x5x2x3.
3yly2y3.
3 4 1 3x4y5x2y3.
4 5 5
4
5 2
1 x ¥
1 1 2
2 3 3 4x5x2x3x4.
4y5y6y4.
3 4 1 4x5y6x6y4.
4 5 5
5 2 6
6 6 4

The array is complete so we are done. Note then that the index
of Hin G is 6.
2.3.2 Let G = <x,y| x3 = y3 = 1>, H = <xy, yx>.

Find the index of H in G.

1 x ¥y Start with the identity.
1 ' Add the generators for H. 1x2y1.
1 1y3x1. Then process integers
1 starting with 1.

59

1 x ¥
1 2 3
2 3 1 1x2x3x1.

1y3y2y1.

The array is complete and we are done. The index of Hin G is 3.

So as to make as many deductions as possible without defining
new integers in the array, sometimes it is desirable to check other
relators and partially process other integers before an integer has
been completely processed. This does not affect the termination of
the algorithm, so long as eventually every integer is completely
processed. This method will be illustrated in the following example.
2.3.3 Let G = <a,b,c,d,e| abc™1 = bed™1=cde1=dea1=eab™1 = 1>,

Let H = <a>. Find the index of H in G.

1 Start with the identity.
i Add the generator for H.
1 1al.
1 Process integers starting with 1.

60

3 1aib2c 1.
1b2c3d-11.
1d3eta-11.
1 3e1aib13.

1 3bic2d-13.

3c3d2e12.

2 3 3 2 3d2e2a’ls.
1e3a2b-11.
1c2d3e-11.

—_
ST
N o
)

w i
| o

3 2 1 2 1
3
3
At this point we have a 1d3 and 2d3 which makes 1 equivalent to 2.

Now replace 2 by 1 to make the array consistent.

1 a b ¢ d e
1 1 1 A1 3 3
1

Now we have 1a1 and 3al which makes 1 and 3 equivalent.

So replace 3 by 1 and we are done.

61

"
-
- o
-0
'Y
- o

Therefore the index of Hin G is 1, and so G is cyclic.
234 LetG=<x3=y3 = (xy)2=1>, H=<x>.

Find the index of H in G.

1 x ¥
1 Start with the identity.
1 Add the generator for H.
1 1x1.
Process integers starting with 1.
1 x ¥
1 1 2 . 1x1x1x1.
1y2y3y1.
2 3 3 1x1y2x3y1.
2
3 1
1 x ¥
1 1 2 2x3x4x2.
2 3 8 2y3y1y2.
2x3y1x1y2.
3 4 1 :
4 2
4

62

P ==
© = X
@ N

3x4x2x3.
3y1y2y3.
3x4y4x2y3.
3 4 1
4 2 4

At this point the array is complete and we are done. The index of H in
Gis 4.
2.3.5Let G =<x,y| x2 = y4 = xyx'1y =1>, H=<xy>.

Find the index of H in G.

1 x ¥
1 Start with the identity.
1 Add the generator of H.
1 1x2y1.
Process integers starting with 1.
1 x ¥
1 2 3
1x2x1.
2 1 1 1y3ydy2y1.
1x2y1x™'2y1.
3 4
3
4 2
4

63

1 x ¥
1 2 3 2x1x2.
2 1 1 2y1y3ydy2.
3 4 2x1y3x~'4y2.
4 3 2
4
1l x ¥
1 2 3 3x4x3.
2 1 1
3 4 4
4 3 2

The array is complete and we are done. Therefore the index of H

in Gis 4.

24 ENHANCED COSET ENUMERATION (LEECH)
2.4.1 The Basic Method

Given an element of a group, presented as a word in the
generators of the group, and an enumeration of the cosets of a
subgroup of the group, we can readily determine whether the element
is an element of the subgroup. All we have to do is to begin with
coset 1 -- which is the subgroup itself -- and multiply by the
successive letters of the word; the element is an element of the
subgroup if and only if the final result is coset 1. Although this will

exhibit which elements of the group are elements of the subgroup, it

64

does not enable us to exhibit them as words in the subgroup
generators. The present method was devised to allow derivation of

the appropriate words in the subgroup generators.

Recall that a cycle over a relator g is a path in an array A from i

to i covering a relator T for some i and j positive integers.

Also recall that when we create paths which cover words in the
coset enumeration, we either make deductions or definitions. A
definition is made when no information gives the product of a coset
with a generator, so that a new ihteger must be defined in the array

according to Lemma 2.2.1. A deduction at j is made when we create a
cycle fromitoisay, iwq iq uq jusiowai, wherei, j, i1, and io are
positive integers in the array, uq, up e XU x-1, and wq, wo e W(X). If
we know i4 uq = j, but not j us = ip, then j uo = is was deduced.
Similarly, if we know i u2'1 = j, but not u1'1 =14, then j u1'1 = iq

was deduced. Each cycle covered gives rise to 0 or 1 deductions, the
deductions being made when we close the cycle.

The enhanced coset enumeration handles deductions by

65

creating deduction words. Suppose i w4 i U4 j ug io W i is a cycle
fromito i, and we have deduced j us = is. Then to get the deduction
word corresponding to the above, we create a path from j to in
without using uo, that s, j uy™1 iy wy™t iwo™1 is. The deduction
word would be u4~1 w41 w1, the word covered by the path from j

to ir. We will use the deduction word as a substitution when trying

to write words in the subgroup in terms of the generators of the
subgroup. This methed will be illustrated in the following example.
2.4.2 Example.

Consider G =<a, b | a% = b3 =(ab)2 = 1>, H = <a>.

Find the index of H in G using enhanced coset enumeration.

1 a b Start with the identity.
1 Add the generator for H,
1 1al.

Then process integers. We have 1alalalal. Next we have
1b2b3b1. So we defined 1b2, and 2b3. We deduced 3b1. So

deduction #1 is 3b1 and 3b1 = 3b-12b-11, a path from 3 to 1 not using

66

3b1.

Continuing, we havelaib2a3b1. We have deduced 2a3.
Deduction #2 is 2a3 = 2b-11a"11b-13. We must process the
deduction completely. We create deduction words recursively.
Therefore, if we use a previous deduction path in creating a new
deduction path, we substitute the deduction word for that path in the
new path at the appropriate place. So deduction # 2 is
2a3 = 2b"11a"11b-13=2b-11a*11b2b3 from above using the deduction
1b713 = 1b2b3.

Next we have 2a3a4a5a2. Wé defined 3a4 and 4a5. We
deduced 5a2. Deduction #3 is 5a2 = 5a~14a-13a"12
= 5a14a"13b 120 11a1b2.

As we continue processing integers, we have 2b3b1b2,
2a3b1alb2, 3a4a5a2a3, 3b1b2b3, and 3a4b5a2b3. We have deduced
4b5. Deduction #4 is 4b5 = 4a"13b"12a"15
= 4a713b"12p"11a11b2b3a445.

As we continue processing integers, we have 4a5a2a3a4, and

4b5b6b4. We have defined 5b6, and we have deduced 6b4. Deduction

67

#5 is 6b4 = 6b15b"14 = 6b~15a-14a"13b-12b"11a1b2b3a4.

As we continue processing integers, we have 4a5b6atb4. We
have deduced 6a6. Deduction #6 is 6a6 = 6b-15a"14b"16
= 6b-15a 14a"13b-120"11a-11b2b3adasb6.

At this point the array is complete. We have:

1 a b
1 1 2
2 > 3
3 4 14
4 5 54
5 23 6
6 6 45

The subscripts correspond to the above deductions.
Now we have much more information in our array which can be
demonstrated as follows. The deductions are
#13b1 =b b1,
#22a3 =b 1a"Tob,
#35a2 = ala-lb-TbTab,
#4 4p5 = a”1b"1b-1a Tbbaa,

#5 6b4 = b-1a-1a-1b-1b-1abba, and

68

#6626 = b-1aa-1b"1b-1a"bbaab.

Now suppose we want to find the order of ¢ =a™1b. Thenc# e H
since 1¢*1, that is we have a path in the array from 1 to 1 covering
c#. 1a-11b2a-1506a-16b4a-13b1. Now if we substitute our
deduction words in this word, we can express ¢4 in terms of the
generators of H. We have
(ia-11b2)(2a~15)(5b6)(6a"16)(6b4)(4a"13)(3b1)
= (a1b)(b"1a Tbbaa)(b)(b-1a-1a"1b-1b-1abbaab)

(b-1a-1a-1b-1b-1abba)(@1)(o-10-1) = 1,
since all the terms cancel in the above expression. Therefore in
terms of the generators of H, ¢4 = 1, so the order of ¢ is 4.

Using the above method, one can also verify that the period of
d=alblabis 3. One may obtain dd = a‘4, expressed in terms of the
generators of H, but reference to the relator at =1 completes the
verification. Therefore, when an element is expressed as a word of
the subgroup, it is not necessarily derived in its simplest form.

Note that this method works because we are always making

substitutions that are validly defined from the relators. For instance,

69

from b3=1, allows us to substitute b = b"2, Therefore 3b1
= 3b-12b"11 is a valid substitution.

Furthermore, consider the array B obtained from the final array
A, by deleting the entries with subscripts corresponding to deduction
words. Whenever we have a path from 1 to 1 in A, we are able to
substitute equivalent deduction words which allows us to write the
path from 1 to 1 in B. But the only paths from1to 1inB are
expressed in terms of the generators for H, namely S(B) = <a>.
Therefore for every path from 1 to 1 in A, we are able to express it in
terms of an equivalent word coverered by 1 to 1 in B, which is

expressible in terms of <a> alone.

i a b
1 1 2
2 3
3 4

4 5

5 6
6

We can make the above array a valid array B by adding the
appropriate entries so that each number appearing in the array

appears at least once in each column. That is:

70

1 a b
1 1 2
2 3
3 4
4 5
5 6
6
1
2
3
4
5
6

Then we can see that the array B can be obtained from B' which is
1 a b
1 1
1
by use of Lemma 2.2.1, that is by putting new integers into empty

celis, which does not change S(B'). But S(B') = <a>=H.

2.4.3 Handling Coincidences.

2.4.3.1 Definition - A coincidence is defined to be the occurrence in

an array of two integers which are equivalent, where we recall that i

is equivalent to j if there is a path from i to j covering the identity.
The handling of coincidences is much the same as creating of

deduction words. When a coincidence is found, for instance i is

71

equivalent to j, then when making the array consistent by replacing j
by i wherei<j, we concatena;ce the deduction word corresponding to
(i is equivalent to j) to each new deduction word. This method will be
illustrated in the following example. Instead of writing "i is
equivalent to j" we shall write "i ~ j."
2.4.4 Example.

Consider G = <a,b,c,d,e|abc‘1 = bed-1=cde 1=dea-1=eab 1=15.

Let H = <a>.

1 Start with the identity.

Creating deduction words as above leads to the array:

72

oah

The deductions are,
#1 1c2 = ab,
#2 1d3 = bc,
#3 3e1 = c1p1 a,
#43b1 =c"1p1a2
#5 3d2 = c"1b-1a3p,
#6 2e2 = b-1adp,
#7 3a2 = ¢"1b-1ap,
#8 1e3 = aSbc, and
#9 2d3 = b 1a 7be,
From 1d3 and 2d3 we get 1d3d-12 = (1d3)(3d"11)

= (be)(b-1c1a”b) = a’b. Call this deduction #10, (1 ~2) =a’b .

73

But then (1b2)(2 ~ 1) gives us (b)(b"1a7) = a”/ = (1b1). Call this
deduction #11. But then (1¢2)(2 ~ 1) gives us (ab)(b‘1a'7) =a®b

= (1c1). Call this deduction #12. But then (1 ~ 2)(2¢3) gives us
(a’b)(c) = a’bc = (1¢3). Call this deduction #13. Then we have
2c11)(1¢3) = (b-1a"1)(a’be) = b-1abbc = (2 ~ 3). Call this deduction
#14. Butthen (1 ~ 2)(2 ~ 3) gives us (a’b)(b-1abbc) = al3bc = (1 ~ 3).
Call this deduction #15. But then (1d3)(3 ~ 1) gives us
(bc)(c1b-1a13) = a-13 = (1d1). Call this deduction #16. But then
(1e3)(3~1) gives us (aBbec)(c1b-1a-13) = a-19 = (1e1). Call this
deduction #17.

Therefore the final table is:

1 a b ¢ d e
1T 1 149 142 14 147

Therefore G is cyclic generated by <a>. And we can see that each
of the generators b,c,d,e is expressed in terms of of the generator a.
Note also from (1~3)(3a2)(2~1) we have (a13bc)(c-1b-1abb)(b-1a7)
-al2- (1a1). Call this deduction #18. Therefore a = al2 soall =1,

and G is a finite group.

74

This working is readily transcribed into a formal proof that the
group is finite and cyclic. The numbers in the left margin indicate use

of the numbered relation:

c = ab. 1)
d = be. 2)
2) e=dla=clpla 3)
3) b=ea=cl1b1a2 4)
1),4) d=bc=c"1b"1a3p. 5)
5) e=cd=cc"1b-1a3p 6)
=b1adp.
5),6) a=de=c-1b~1a6b. 7)
7) e=ba=bb~1a"6bc 8)
=apc.

1),8) d=c'le=b-la-a®bc 9)
=b-1a7be.

2),9) i=dd-l=bec1b"a’b 10)
=a’b.

10) b=b-1=bb~1a""=a7- 11)

75

1),10) c=c-1=ab-1=abb-la”’
=a8, 12)
10) c=1-c=a’be. 13)
1),13) 1=c"le=b"1a"la’bc 14)
=b-1abpe.
10),14) 1=1-1=a’bb~1abbc 15)
= a13pc.
2),15) d=d-1=bcc 1b-1a-13 16)
=a13
8),15) e=e-1=aBbcc 1213
_a-19. - 17)
7),15) a=1-a1=alSbcclb-1abb1a7
10) =al2. 18)
Therefore a =al2 so al1 = 1, the group is finite and cyclic, and
we have expressed b,c,d,e in terms of <a>.
2.5 DIFFERENT IMPLEMENTATIONS OF COSET ENUMERATION
The Todd-Coxeter algorithm is a systematic procedure for

enumefating cosets of a subgroup H of finite index in a group G, given

76

a set of defining relations fdr G and words generating H. At the
present time, Todd-Coxeter programs represent the most common
application of computers to group theory. They are used for
constructing sets of defining relations for particular groups, for
determining the order of a grdup from its defining relations, for
studying the structure of particular groups, and for many other things.
We describe briefly four different implementations of the
Todd-Coxeter coset enumeration algorithm.
2.5.1 Haselgrove - Leech-Trotter
The Haselgrove-Leech-Trotter method was developed by
Haselgrove in 1953 and later adapted by Leech, Trotter, and others.
in the Haselgrove-Leech-Trotter method, relators are applied to the
cosets in the order in which the cosets were introduced. If for some
coset i and relator r, the r-cycle at coset i is incomplete, sufficient
new cosets are immediately introduced so as to complete the r-cycle
ati.
2.5.2 Felsch Method

Suppose that the definition i(sj)=k has been made, where i, k

77

correspond to integers in the array, and Sj is a generator for G. The
Felsch procedure is to apply all significantly different cyclic

permutations of relators beginning with sj to coset i. This process is

repeated with any deductions (i')(sj') = k' which may have been

discovered, until all possible consequences of the original definition
have been discovered. Only at this stage will a new coset be
introduced, if necessary, and then by defining it so that the first
vacant position in the coset table is filled.
2.5.3 Guy - Lookahead

A type of lookahead program was used by Leech in 1959, but
this form of the Todd-Coxeter algorithm did not really begin to
develop until Guy wrote a léokahead Todd-Coxeter program on the
ATLAS at Cambridge in 1967.

The lookahead method operates in two distinct phases: a
defining phase and a lookahead phase. As long as the number of

cosets defined at any instant is less than a certain specified number

My, the algorithm remains in the defining phase. In this phase, the

78

enumeration proceeds by the Haselgrove-Leech-Trotter method. When,
however, the number of cosets defined exceeds the limit M , the

algorithm switches to the lookahead phase. Here, relators are applied
to cosets as before, but if a relator cycle is incomplete at some
coset, no new cosets are defined to complete the cycle. The aim is to
discover a large number of deductions and coincidenqes without
introducing any new cosets.. If enumeration is still incomplete at the
end of the lookahead phase and if sufficient storage space is
available, we return to the definition phase in which we remain until
either the enumeration is complete or the number of cosets defined
again passes some preset limit. Thus, the algorithm alternates
between the defining phase aﬁd the lookahead phase.
2.5.4 Cannon, Dimino, Havas, Watson - Modified Lookahead

There are a number of ways of arranging the lookahead. Guy,
for example, divides his available space into a number of blocks
and applies lookahead before allowing the coset table to extend
into a new block. We shall call this technique bumping.

If the optimum block size is chosen, this technique will result in

79

extremely rapid enumerations. On the other hand, a poor choice of
block size can result in inefficient enumerations. The other

possibility, is to let the coset table exhaust the available space

before applying lookahead. Also, when the program is in the lookahead
phase, it can return to the defining phase as soon as a single
coincidence has been discovgred (incremental lookahead) or only after
all relators have been applied to all cosets currently defined

(complete lookahead).

If all cosets have been processed in the lookahead phase of an
incremental lookahead program, the program begins again with the
first coset not yet processed in the defining phase. A single
application of lookahead, of either kind, to every coset not yet
processed in the defining phase is called a lookahead pass. Generally,
both incremental and complete lookahead programs are arranged so
that they terminate when either the coset enumeration completes or a
lookahead pass fails to discover a single coincident coset. In the case
of complete lookahead, a considerable amount of time can be saved in

situations where the enumeration does not complete by specifying

80

that execution is to terminate if less than a certain number of
coincidences are discovered during an application of lookahead.

The lookahead program can bé modified slightly to allow the
lookahead phase to use relators (redundant relators) which are not
used in the defining phase.

2.6 LIMITATIONS OF COSET ENUMERATION

The obvious limitations of coset enumeration are time and space.
Only a finite amount of computer space is available for storage; one
cannot always enumerate every coset of a particular subgroup even if
the subgroup has finite index.

The central problem in programming the Todd-Coxeter algorithm
is finding a satisfactory rule for introducing new cosets. As the
range of application of a Todd-Coxeter program is thus limited by the
amount of storage required.to hold the partial coset tables generated
during an enumeration, one tries to define cosets in such a way that
as few redundant cosets as possible are introduced.

It is easily seen, however, that the application of the

Todd-Coxeter algorithm to certain presentations will necessarily

81

require the introduction of redundant cosets.

For example the group G=<a | aP =a9 =1, p, q prime pzg> is
trivial but min(p,q) cosets must be defined before the relation a=1 is
discovered. Given any integer m, one can produce a presentation for
the trivial group which requires the definition of at least m cosets
before the Todd-Coxeter algorithm is able to deduce the group is
trivial. Then by adding such a presentation of the trivial group to
some presentation of a group G, we can produce an arbitrarily bad
presentation for G.

2.7 ORIGINAL TODD-COXETER COSET ENUMERATION

Let G = <X | R> be a finite group and put F = <X | >, N = [R], so
that G is isomorphic to F/N; then to perform a coset enumeration on G
is simply to count cosets of N in F, that is to find |G|. The first coset
enumeration method was developed in 1936 and many refinements
have been introduced since that time, particularly since the advent of
high-speed computing machines, to which the method is readily
adaptable. The version given here is the original one, due to Todd

and Coxeter.

82

For each relatorr = x4 . .. x, € R, with x4 . . . X, a reduced word

in XU X1, we draw a rectangular table having n+1 rows and a certain
number (for the moment unlimited) of rows. We begin by entering the
symbol ‘1" in the first and last places of the first row of each table,

the remaining places in the first row being as yet empty. We then fill
some empty space with the symbol '2' (usually next to some 1" --

either to the left or right of it). Suppose the situation to be that a 2

is to the right of 1 with x4 € XU x-1 lying between them in the first

row of the table. Then we put a 2 in the first and last places of the

second row of each table and, wherever in any table 1 lies to the left

of an empty space with x4 between the two spaces or to the right of

an empty space with x1'1 between the spaces, we fill that empty
space with a 2. Similarly, if 2 lies to the right (left) of an empty
space with x4 (x1'1) beiween the spaces, we fill that space with a 1.
The idea behind the process (which we call scanning) is that 1 and 2

correspond to the elements 1 and x4 of G, so that we may write

83

1x4 =2, and 2x-|"I =1.

Having made sure that no more spaces can be filled in this way,
we fill an empty space with the new éymbol 3, begin a new row of the
tables and scan as above, entering all possible 1's, 2's and 3's in
accordance with definitions of 2 and 3. Then fill an empty space with
the symbol 4, begin the fourth row of the tables and scan again. The
process terminates when there are no more empty spaces, whereupon
the total number of rows is equal to |[G|. There are two ways in which
we obtain information of the type ix = j other than by definition. The

first is when any row of a table becomes complete. Thus in the
transition | | x;1 | xj341i = 1Ixj|K|Xj41 | j we obtain two
pieces of information, namely Ix; = K, kx;,.1 = j; one of these was

either known already or was a definition, the other may be regarded
as a bonus. The second way is when we obtain information, say ix = j,
when we already know ix = k. We then deduce j = k and that the
corresponding entries in the j and k rows of all the tables are equal.
This situation is called coset collapse, and when it occurs we delete
the kth row if k > j. Each row of each table begins and ends with the

84

same symbol because the word at the head of each table is a relation
holding in G.

Incorporated in the original exposition of Todd and Coxeter is a
valuable refinement of the process, whereby we enumerate the cosets
of a nontrivial subgroup, H say, of G; the resulting number of rows is

the index | G : H|. The subgroup H is specified by giving its generators

as reduced words in X U X-1 and the process is the same as above,
with the addition of one-rowed tables (beginning and ending with 1)
for each generator of H. The process terminates when all tables are
complete.

It may be clear already why the orginal coset enumeration
algorithm of Todd and Coxéter is equivalent to the algorithm given in
Sections 2.1 and 2.2.

Completing the one-rowed tables corresponding to generators of
H corresponds to creating paths from 1 to 1 covering generators of H,
which is the first step of the algorithm given in Sections 2.1 and 2.2.
Completing the tables with relators at the head of each table is

equivalent to processing integers in the algorithm given in Sections

85

2.1 and 2.2. When we process an integer, say k > 0, then for each
relator rj, we create a path from k to k covering Il This corresponds

to completing a row of each relator table that has the integer k at the
beginning and end of the row. As the original Todd and Coxeter
algorithm terminates when all tables are complete, that is have no
empty spaces, the algorithm given in Sections 2.1 and 2.2 terminates
when all integers have been processed.
2.8 COMPUTER IMPLEMENTATION

As mentioned previously, the coset enumeration algorithm is
mechanical enough to be implemented on a computer. The following is
a discussion of such an implementaiion. The computer program
corresponds to the algorithm as described in Sections 2.1 and 2.2.

The computer program needs the following subroutines and
functions:
1. READPRESENTATION() - a subroutine to read a presentation of G;
2. READSUBGROUP() - a subroutine that reads the subgroup H and its
generators;

3. FILLCELL(l,J) - a subroutine to fill in the empty cell (1,J) with an

86

integer not occuring in the array A according to Lemma 2.2.1;

4. REPLACEINTEGER(P,Q) - a subroutine to replace an integer

Q>P by P throughout an array A according to Lemma 2.2.2;

5. MAKECONSISTENT() - a subroutine to make a finite array A
consistent according to Lemma 2.2.4;

6. CREATEPATH(K,W) - a subroutihe which creates a path from an
integer K > 0 to K covering word W. This subroutine may make use of
subroutines FILLCELL(l,J), REPLACEINTEGER(P,Q), and
MAKECONSISTENT();

7. CREATEIDENTITY() - a subroutine to create an initial array A with
n+1 rows and n+1 columns with 1's along the main diagonal and empty

cells everywhere else. This amounts to creating an array A such that

S(A) = <1>. We are assuming that G = <X | R>, X = {X{, .. ., Xp}
8. PROCESSINTEGER(K) - a subroutine which for each relator r;,
creates a path from K to K covering s where K > 0. This subroutine

would make use of CREATEPATH(K,R J). This subroutine also takes an

array A and fills all empty cells of the row with K in column 0, and all

87

empty cells in column 0 which have a K in that row by use of
subroutine FILLCELL(I',J");

9. NEXTUNPROCESSEDINTEGERO - a function which determines
the next unprocessed integer of an array A. The function returns an
integer K>0 as the next unprocessed integer or 0 if all integers in the
array A have been processed;

10. NUMBEROFGENERATORS(H) - a function which returns an
integer corresponding to the number of generators of the subgroup H;
11. OUTOFMEMORY() - a function which determines if we are
running out of memory. This function returns TRUE if we are almost
out of memory, and FALSE otherwise;

12. PRINTARRAY - a subroutine to print the current array A,

13. NUMBEROFROWS)() - A function which returns the number of
rows of the current array A.' Hence if A is consistent and complete

this function returns the index of H in G.

The main body of the program would look like the following:

88

PROGRAM COSETENUMERATION();
{
READPRESENTATION();
READSUBGROUP();
CREATEIDENTITY();
FOR I = 1 TO NUMBEROFGENERATORS(H)

{
CREATEPATH(1,H(l));

r* H(l) IS AGENERATOR OF H. CREATE A PATH FROM 1
TO 1 COVERING H(l) FOR EACH GENERATOR H(l) OF H*/
}
LETK=1;
LET DONE = FALSE;
WHILE NOT DONE DO

{
PROCESSINTEGER(K);
/* CREATE PATH FROM K TO K COVERING EACH
RELATOR Ry */

LET K = NEXTUNPROCESSEDINTEGER();
IF K=0 THEN LET DONE = TRUE;
IF OUTOFMEMORY() THEN LET DONE = TRUE;

}
IF K= 0 THEN

{
PRINTARRAY();

PRINT("THE INDEX OF H IN G IS ", NUMBEROFROWS());

ELSE

{
PRINT("UNABLE TO COMPLETE ARRAY. RUNNING OUT OF

MEMORY."};
PRINTARRAY();

89

The details of programming each subroutine and function are left

to the reader.

90

CHAPTER Il

PRESENTATIONS OF SUBGROUPS

Although implicit in the work of Reidemeister, the process
described below has only recently been exploited. Like that of coset
enumeration, its popularity is in the development of high-speed
computers. There are many programs adapting both methods for
machine computation, and at least one which combines the two in a
rather elegant way.

3.1 STATEMENT OF THE PROBLEM

Our object is to produce a presentation for a given subgroup H of

finite index in a group G for which a finite presentation

G=<X|R>,

X={x{,...Xn} R={r1, ..., I'm} (1)
is known.

91

The subgroup H is given as the subgroup of G generated by

some finite subset Y of G, where Y =Y(X), Y ={y{, ..., y} (2),

that is, the y;j are expressed as words in X U x1,

3.2 THE METHOD
The method in principle is very simple and proceeds in five steps.
Step 1. Find the transversal U. Let C be the preimage of H under the

natural map
vF-G

X=X

where F = <X | >. By enumerating cosets, we find a right transversal
U={uq,..., ug} for Cin F. Since H = C/[R], we canregard Uas a

transversal for H in G. We assume U has the Schreier property (Lemma
1.2.2).

Step 2. In accordance with Theorem 1.2.5, the set

B={ux(~< (ux))'1: ue U, xe X)\ {1} forms a set of free generators
for C. Write B ={bq, ..., bk} where k = (n-1)g+1.

Step 3. Since U-1is a left transversal for C in F, any element fe F

92

can be written in the form f = u~lc, ue U, ce C. Now [R], being the

normal closure of R in F, is generated by elements of the form 1rf,
re R fe Fandf1rf=clurulc=clurul)candso[R]is
the normal closure in C of the set S = {uj G uj'1: 1<i<m, 1<j< g} of

cardinality mg.
Step 4. We now have generators B and relators S = S(X) for H.

Using Lemma 1.2.3, each element of S can be expressed in terms
of the bj, say S = S(B), whereupon H = <B| S(B) = 1> is a finite free

presentation for H.
Step 5. If the generators for H are prescribed as in (2), we use Lemma
1.2.3 to obtain Y = Y(B). Then using enhanced coset enumeration
(Leech) of Section 2.4, we obtain B = B(Y), that is, we express the
elements of B in terms of the generators Y of H.

We then use Tietze transformations in Theorem 1.4.4 to obtain
H=<Y|S(B(Y)) =1,Y = Y(B(Y))>.
3.3 EXAMPLES
3.3.1 LetG = <x,y| x3 = y2 = (xy)2 = 1>, H = <y>.

Find the presentation for H in terms of the generators for H.

93

Step 1. First perform enhanced coset enumeration to obtain

1 x '}
1 2 1
2 3 20
3 14 23

where deductions are

#1 3x1 =3x" 1214,

#2 2y3 = 2x"11y-11x2x3, and

#3 3y2 = 3x"Tax11y1x2.

Since 1-1 =1, 1x =2, 1y=1, and 1x1= 3, we obtain the Schreier
transversal U = {1,x,x1}.

Step 2.

We have B = {ux (t (ux))"':ue U, x e X} where U ={1,x, x°1}, X = {x,y}.
Therefore we have

1x (t (x) 1 =xx1=1,

y(z ay) 1 =y,

xx(T (xx))'1 = x3,

94

xy(T xy)) T =xyx,

x'1x(T (x"’x))'1 =1, and

xTy(z Ty T =xTyx1.

Therefore B = {y, x3, XyX, x‘1yx'1) is a free set of generators for C of
order (2-1)3 + 1 =4. Let B ={b4,bp,b3,b4}.

Step 3.

We have S = {uj f uj’1 :1<i<m,1<j<m}where U= {1,x,x'1} and
R ={x3,y2 (xy)3. Therefore S = {x3, y2, xy2x-1, x;1y2x, (xy)2,
x(xy)2x'1 , YXyx}.

Step 4. Express the elements of S in terms of B. We have
x3 = x3 = b1,

y2 = (y)(y) =b4?,

xy2x"i = (xyx)(x‘1yx'1) = bgby,

x-1 y2x = (x‘1yx'1)(xyx) = byba,

xyxy = (xyx)(y) = bgb1,

X (Xyxy) x1 = (x3) (x‘1yx'1)(x3) (x'1yx‘1) = bobgboby, and

95

yxyx = (y)(xyx) = bqbg.

Therefore H = <b{,bs,bg,bg | bo
=b4 2=b3b4=b4b3=b3b1 =bsbybobg=b1bg=1>
where by =y, bo = x3, bg = Xyx, by = x-1 yx‘1.

Step 5. Express B in terms of the generators of H using enhanced

coset enumeration. We have
y = by,
by=y=Y,
bo = x3 = 1x2x3x1 = x2 x2 = 1,
bg = xyx = 1x2y3x1 = xx 1y Txxx"1x"1 = y-1, and
bg = x-1 yx’1 =1x1 3y2x‘1 1.= xxx~1x1 yxx'1 =Y.
ThereforeH=<y |1 = y2 = y'1y = yy'1 =y2 = yy‘1 =1,y=y>o0r
simplifying we have H = <y]| y2 = 1> as expected.

3.3.2 Let G = <x,y, x2 = y4 = xyx'1y =15, H = <xy>.

Find a presentation for H in terms of the generators of H.

96

Step1. Find a Schreier transversal.

Using enhanced coset enumeration, we have

HW NN
- N
-
0K

33 2o

where deductions are

#1 2x1 =2x11,

#2 4y2 = ay-13y- 11y 12,

#3 4x3 = 4y-13y-11y-12x-11y3, and

#4 3x4 = 3y~ 11x2y1y3y4.

Because 11 = 1, 1x=2, 1y=3, 1x"1=2, 1y 1=2, 1xx=1, 1xy=1, and
1xy-1=4 we have a Schreier transversal U = {1,x,y,xy-1}.

Step 2. Find the set of free generators B for C.
WehaveB={ux (< (ux))'1: ue U, xe X} where
U={1,xy, xy‘1}, X ={x,y}. Therefore we have

1x (¢ (%) 1 = xx"1=1,

1y (t Ay =yy1=1,

97

xx (7 (xx))'1 =x2=x2,

xy (T)T =xy,

yx(T x)) T = yayx T,

yy(T oy) T =y3T,

xy'1x (T (xy‘1 x))'1 = xy‘1xy‘1, and
xy Ty (¢ xy ly)y T =1,

Therefore B = {x2, Xy, yxyx'1, y3x'1, xy"| xy‘1} forms a free set
of generators for C of order (2-1)4 + 1 = 5. Let B = {b4,bp,b3,b4,b5}.
Step 3. Find a set of relators for H.

We have S = {ujriu: 1<i<m, 1 éj < g} where U = {1.x,y, xy 1},
and R = {x2, y4, xyx~1y}.
S0 S = {x2,y4 xyx-1y,xydx-1 xxyx-Tyx-1,yx2y-1,yxyx-1,
xy‘1 x2yx’1 ,xy‘1 xyx"I yyx"I }.
Step 4. Express S in terms of B. We have

x2=x2=b1,

y4 = (y3x"T)(xy) = bgbo,

g8

xyx“1y = (xy)(x2)~ (xy)= bab4 by,

xy4x1 = (xy)(y3x~T)=bobg,

x2yx-Tyx1 = (x3)(xy-1xy~1)1=byb5T,

yx2y™1 = (yxyx-1)(xy~Txy™1)=b3bs,

yxyx-! = yxyx-1=bg,

xy‘1 x2yx'1 = (xy'1 xy‘1)(yxyx"1)=bgbs, and

xy Tayx- 21 = (xy Txy 1)y 3% D yxyx 1)1 (y3x) = bgbabs by,

S0 H = <by,b5,b3,b4,b5] by = bgbo=boby 1bs = boby = b1bg
=bgbs=bg=bgbg=bgbsbg Tby=1>.

Step 5. Using enhanced coset enumeration, express B in terms of Y.

We have

(oF =x2=1x2x1 =xx"1 =1,
bo = xy = 1x2y1 = xy,

bg = yxyx1 = 1y3xay2x11 = y(y Ixyd)yd) x1 =1,

bg =y3x~1 = 1y3ydy2x11 =yy (y3)x1 = (xy)', and

99

bg = xy~ xy 12 1x2y'14x3y‘11 = x(y3)(y'3x 1y)y =1.

SoH= <(xy)| 1= (xy) (xy) = xy)(xy) = (xy)(xy) T = 1=1=1=1

=(xy)™2 = 1, xy = xy>,

or H = <(xy) | (xy)2 = 1>.

3.3.3LetG=<xy| x3 = y3 = ;I>, H = <xy,yx>.

Find a presentation for H in terms of the generators of H.
Step 1. Find the Schreier transversal for H.

Using enhanced coset enumeration we have

1 x Y
1 2 3
2 3¢ 1
3 1 2o

where deductions are
#1 2x3 =2x"11x"13, and
#2 3y2 =gy 11y-l2.
Since 1'1 =1, 1x = 2, and 1y = 3, the Schreier transversal U is
U ={1,x,y}.

Step 2. Find a free set of generators B for C.

100

We have B = {ux(t (ux))'1: ue U, xe X} where U = {1,x,y}, X = {x,y}.

Therefore we have
1x(t dx)1 =1,
ty(z Ay =1,
x2(© o)) =xy1,
xy(t () =xy,
yx(© (X)) = yx, and
y2(© 21 =y2cl.
Therefore B = {x2y"1, xy, yx, y2x"1} is a set of free generators
for C of order 3(2-1)+1 = 4. Let B = {bq,bp,b3,b4}.
Step 3. Find a set of relators for H.
We have S = {ujriuj'1: 1<i<m,1<j<q}). Therefore S ={x3, y3,

xySx-1, yx3y-1} is a set of relators for H.

Step 4. Express S in terms of B. We have

x3 = (x2y~T)(yx) = bqbg,

y3 = (y2x~1)(xy) = bgbo,

101

xy3x~1 = (xy)(y2x1) = boby, and

yx3y~1 = (yx)(x2y1) = bgby.

Therefore H = <b,bp,bg,bg| b1bg = bgbo = bobg =bgbq = 1>.
Step 5. Express B in terms of Y. We have

by = x"zy‘1 = 1x2x3y‘11 = x(x‘2) y‘1 = (yx)'1,

bo = xy = 1x2y1 =xy,

bz = yx = 1y38x1 = yx, and

bg = y2x~1 = 1y3y2x 11 = yiy2)x1 = (xy) 1,

Therefore H = <(xy),(yx)I(yx)™1 (yx) = (xy) T (xy)= (xy)(xy)"!
= (yx)(yx)"! = 1, xy=xy, yx=yx>,
or H = <(xy), (yx)| > and so H is a free group.

3.34 LetG = <x,, ..., X, xi2 =1, (xixj)'"u =1,i=1,..,nj=1, .., n>,
where mij is a positive integer for alli,j=1,.. ., n.

Let H = Ker ® where @ is a homomorphism from G to <{0,1} + >
such that @ (xj) =1fori=1,..., n. Find a presentation for H.

Step 1. Find a Schreier transversal U for C. Coset enumeration

102

produces

[\)_I.I_L
- N X
f—
Lol

Since 1-1 =1, and 1xq =2, a Schreier transversal U is U = {1,x4}.
Step 2. Find the set B of free generators for C.

We have B = {ux(t (ux))’1: ue U, xe X} where

U={1,x4}, X={X1, .. ., Xp}. Therefore we have
1xq (7 (1X1))"1 = X1X-|"‘l =1, x1x4(t (X-|X<|))"1 = X12 =bp,
1xo (1 ('1)(2))"‘l =)(2X1"l = Dby, X4Xo(T (X{ X2))"I = X{X2 =bp.q,

1xp(t (1 xn))'1 = xnx-l'1 =bp.4, and x4Xo(© (x-|xn))‘1 = X{Xp = bop-1-

103

Therefore B = {bq, by, . . ., bon-1} forms a free set of generators for C

of order (n-1)2 + 1 = 2n-1.

Step 3. Find a set of relators S for H.

We have S = {u; i1 <ism, 1 <j< g} where

U={1x}and R ={x, (xx)™ :i=1,..,nj=1,...,n} So
S={%, (x;x;)™, X, (x3)x;, x1(xixj)mux;1: i=1,..,n, j=1, ., n}
Step 4. Express S in terms of B. We have

X2 = bi_1bnyit, i=1,...,n,bg=1,

(Xixj)mll = (bi_1bn+j_1)mii, i=1,..,nj=1,..,nDbyg=1,
x1(x2)x1"1 =bp4ieq big, =1, ..., N, bg=1,and

x1(xixj)mlix;1 = Opyicgbj)™si=1, .., nj=1,...,nDby=1.

Therefore H = <by, . . ., ban-1| bi.1Bnsic1= bnsicibit = (Bi-1Pn4jo1) ™!

= (bpyiibj)™=1,i=1,..,nj=1,...,n,bg=1>
Since bn+i=bi'1 fori=0,..., n-1, where bg =1, we have

bati-1 = bi_1‘1 fori=1,...,n.

104

- - - m,
Therefore H = <b, . . ., br-1| biabi.y=b"oe1 = (b))
=6, 40.)™ =1,i=1, ..., n,j=1,...,n by =1>,

which simplifies to

H= <b1v seey bn-1l (bi-1bj]1)m“ =1v i =1l ey N, j =1’ seey Ny bo =1 >

Note the by's are defined above as words in X U X-1.

105

BIBLIOGRAPHY

[1] J. Cannon, L. Dimino, G. Havas, J. Watson, "Implementation
and Analysis of the Todd-Coxeter Algorithm,”

Mathematics of Computation, v. 27, 1973, pp. 463-490.

[2] H. S. M. Coxeter and J. A. Todd. "A Practical Method for
Enumerating Cosets in an Abstract Finite Group,”

Proc. Edinburgh Math. Soc. (2), 5, 1936.

[3] L. A. Dimino, "A Graphical Approach to Coset Enumeration,"
SIGSAM Bulletin, v. 19, 1971, pp. 8 - 43.

[4] D. L. Johnson. Presentations of Groups, Cambridge
University Press, Cambridge, 1976.

[5] J. Leech, "Computer Proof of Relations in Groups,” in

Topics in Group Theory and Computation (Edited by
M. P. J. Curran), Academic Press, London and New
York, 1977, pp. 38-61.

[6] J. Leech, "Coset Enumeration” in Computational Problems

in Abstract Algebra (Edited by John Leech), Pergamon
Press, New York and Oxford, 1970, pp. 21 - 35.

[7] I. D. Macdonald. The Theory of Groups, Oxford University
Press, Oxford, 1968.

106

[8] W. Magnus, A. Karrass and D. Solitar. Combinatorial Group
Theory, Interscience, New York, 1966.

[9] N. S. Mendelsohn, "An Algorithmic Solution for a Word

Problem in Group Theory,"” Canad. J. of Math,, v. 16,
1964, pp. 509-516.

[10] Michio Suzuki. Group Theory |, Springer-Verlag, New York,
1982.

[11] H. F. Trotter, "A Machine Program for Coset Enumeration,"

Canad. Math. Bull., v. 7, 1964, pp. 357-368.

107

	San Jose State University
	SJSU ScholarWorks
	1991

	Coset enumeration
	Matthew T. Lazar
	Recommended Citation

	tmp.1290447007.pdf.1vnaX

