San Jose State University

SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2008

A framework for graphical analysis of a home-
network router using D'Trace

Christopher S. Nelson
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd theses

Recommended Citation

Nelson, Christopher S., "A framework for graphical analysis of a home-network router using DTrace" (2008). Master’s Theses. 3622.
DOI: https://doi.org/10.31979/etd.hry2-b982
https://scholarworks.sjsu.edu/etd_theses/3622

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for

inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3622?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3622&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A FRAMEWORK FOR GRAPHICAL ANALYSIS OF A

HOME-NETWORK ROUTER USING DTRACE

A Thesis
Presented to
The Faculty of the Department of Computer Engineering

San José State University

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Christopher S. Nelson

December 2008

UMI Number: 1463414

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleed-through, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

®

UMI

UMI Microform 1463414
Copyright 2009 by ProQuest LLC.
All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest LLC

789 E. Eisenhower Parkway
PO Box 1346

Ann Arbor, Ml 48106-1346

© 2008
Christopher S. Nelson

ALL RIGHTS RESERVED

SAN JOSE STATE UNIVERSITY
The Undersigned Thesis Committee Approves the Thesis Titled
A FRAMEWORK FOR GRAPHICAL ANALYSIS OF A
HOME-NETWORK ROUTER USING DTRACE
by
Christopher S. Nelson

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

7R LA - jof 14 /¢

Dr. Rod Fatoohi, Department of Computer Engineering Date

Dr. Frank Lin, Department of Computer Engineering Date

S;/k/ . [0/13 /o f

Dr. Xiao Su, Department of Computer Engineering Date

APPROVED FOR THE UNIVERSITY

h‘)ﬂ;«g t“ ?7‘“ ('\ \b['l‘blo‘(

Associate Dean Date

ABSTRACT
A FRAMEWORK FOR GRAPHICAL ANALYSIS OF A
HOME-NETWORK ROUTER USING DTRACE
by Christopher S. Nelson

Simple network routers used in homes and small offices typically lack tools for
monitoring and analysis that would be useful to the normally novice users of these
products. Sophisticated network simulation applications require too much effort for
typical users to consider, but including simple tools in the router management software
would enable common users to more quickly and completely understand reasons for
performance problems.

DTrace provides the opportunity to gather performance data from the router itself,
and if presented in an easily understood graphical format, common users will be
empowered to understand and address problems quickly and without need for additional
support. This thesis addresses the development of a framework—utilizing DTrace, Java,
AJAX, and remote procedure calls (RPCs) for client-to-server communication—for
creating graphical analysis tools for analyzing common home-network routers. A
reference implementation and test results that validate the framework architecture are

also provided.

ACKNOWLEDGEMENTS

This thesis represents the capstone of my graduate studies and the fulfillment of
the thesis requirement for a Master of Science in Computer Engineering at San José State
University. Although this thesis represents the compilation of my own efforts, I would
like to acknowledge and extend my sincere gratitude to the following persons for their
valuable time and assistance—without whom the completion of this thesis would not
have been possible:

1. Dr. Rod Fatoohi, Professor in the Computer Engineering department at San José
State University, for his support and guidance in the organization and
development of this thesis while acting as my faculty advisor.

2. Dr. Frank Lin, Professor in the Computer Engineering department at San José
State University, for his support and guidance in the finalization of this thesis as a
member of my department thesis review committee.

3. Dr. Xiao Su, Associate Professor in the Computer Engineering department at San
José State University, for her support and guidance in the finalization of this thesis
as a member of my department thesis review committee.

4. Dr. Lee Chang, Professor and Graduate Advisor for the Computer Engineering
department at San José State University, for his guidance through the

requirements of a thesis project at San José State University.

5. My friends and family, for patience through the many hours I was occupied with
this project and the support and encouragement to stick with it and get it finished.

DEDICATION

To my beautiful wife, Lisa. Thanks for the support,
encouragement, and time to complete this project
and reach this life milestone.

vi

TABLE OF CONTENTS

LIST OF FIGURES......c.ootiietnenieseeeetrtestniesisseresesessenssbesissssss st sbassestssssssnsesaesnsssaessesnes Xi
LIST OF TABLES.......c.o oottt ettt tssest e ssese s b sss s e s s sasas e sassssssen s xiii
LIST OF ACRONYMS.....oooitcirrertrenisicsreveseeseses s estasess st ssestsnestessessessessessssensessessasans Xiv
GLOSSARY ...ttt srerte st e st st saesenaesesseessesssesssssaesssesssesesssaesabnessesennnesessnesanaessnnens XVi
L INTRODUCTION.......cceeiriririeeriereteentssessensssesessestsressssisssssesesssssessessssasssssssnsssssnns 1
Project Goal and ObjJECtiVES..........ccevvvmiinrinrininiiiiniicniereeen e 2
Overview of this Document.............ccccocveniininiiniiniicniisecnnne e, 3
II. TECHNICAL AND MARKET BACKGROUND.......cccoivrimrinnirenetnecensesenne 4
Technology Trends.........c..ocvevrievininiicrerieenesesesct e e s s 4
Market ReSEarch........coccovicuieiiiiiienieneecectnstnent et 5
II. ARCHITECTURE AND DESIGN.......cccoccriniiininniinicsesinssissssecseessnesenssssns 8
General ArchiteCtUrE........cc.ccveirercriiieiiniiien e s enaes 8
Browser-Based User Interface..........ccoccvceenininiiniiiccincniinceciecciennieeennen 8
Front-to-Back-End Communication...........coouceeeveerveininrnensensieescnreninessnsnnes 9
Server-Side DeSiZN.....c.coivivuirirererereneeeetrret ittt e 10
Introduction t0 DTIACE..........ccceiveeriieenriniteiert et e e s ee s e 11
IV. PLATFORM PREPARATION.........coccertiireerenereneinenisices e smecseesiseesseesssnsenessnees 13
Choosing an Operating SYStem...........cccovverienririiineinniicnecseniesesessseenees 13
Choosing a Hardware Platform..........cccoeccvneneninnninnninccecinieceeneenens 14
Installing and Configuring the Operating System...........ccoovvvireiriiinnnucnans 16
Supporting WIreless.........oeveerecrenerieieninniici s sansnes 18
Choosing Routing SOftware...........cccccevveminnininiincnncncccniinecnns 19
Installing and Configuring the Routing Software..........cccccoceccncercriinnnnns 20
Choosing @ Web Server.........coccocrerenvnnniniiienieee et 21
Installing and Configuring the Web Server...........cooovviiniicninnnnnnne. 22
Choosing a Web Application Framework.........c..ceeceeevervienvenneinecneesseecnnens 23
Using the Web Application Framework............ccouevvvcvcvnininncceiinnicnnnns 24
Choosing a Programming Language............ccceeeeireruevenerienieenerencreeenons 26

vii

V. IMPLEMENTATION.......cccctiienietiniiniteieseeescseaneesesesassssescessesesssessessesssssesseess 27
Developing DTrace Scripts to Gather Data...........ccocvcevvinniiininininecnennnn. 27

The Back End: Incorporating DTrace with Application Code.................. 34

The Back End: Other Server-Side Code..........cccorrermvrreriveercrnnnnnsinncnnens 42

The Front End: Developing the User Interface..........ccoovvnvecncccccnnnnnnns 48

RPCs: Tying the Front and Back Ends Together..........cccceveivienercrcnseenne. 57

Deploying the Complete Web Application............cevevceevrurcnieccniesinecenenne 66

VI TESTING.....ciiieeticeieecretnesncsstsresse st e s essebestssesiesssesss st sasssesaessenesssonsenssass 72
Testing on @ Virtual SYStem.........cccvveririeeirerenreencrnneninientesese e eseeeesens 72

Testing on a Real System..........cccoviiiiiiniininininiiiinnnneas 82

VII. SUGGESTIONS FOR FUTURE DEVELOPMENT........ccccccotrmrimririiieeeenreeennn 89
OpenSolaris on MIPS...........oivieiiiiieiiitcererereee et eesenee s 89

Wireless Support on OpenSolaris..........coveoieevnniencincninninencceeceeecnnns 90

DTTace i LINUX.....coeeeereereeinrircnreeeressetsenaesesessseesessessesseeseeneessmeesssesses 90

Cleaning Up the User Interface...........ccocveverinrnineniinsrenennnenenieisssseesnnns 91

Additional FEattres..........coeirerirenreneeercnmeriniereeessesesneseesssessasesssessessesasnes 92

Final INtegration.........ccccvceeeieiineimniesecrecsesienienceeesesscsessssssnssessessensaesssnssns 93

VIII. CONCLUSIONS AND RECOMMENDATIONS........ccoeoveerenreernnireeeneeeneseeenes 94
REFERENCES........cccooetrtntiriiinieentssenst st sasstesesesessesessssssesasesessesssssnssossssessssssessssanssessasses 96
APPENDICES ...ttt st ree e st e e et b e s e st e s eee e s rn e e sentaanasaassnnnenenseennes 99
APPENDIX A: PROJECT REQUIREMENTS.........ccccouririmrninrinerienrieieneenes 100
Project Deliverables..........cccovvirririreereeircneinneeeee e s sre e snes 100

Functional Requirements.............cccccoeeeeerierinrenerienesnesesinsessnessesssesseens 100
Non-Functional REQUITEMENLS........cccceeemmirerrenrerienrcresrenieniesressvesssseeane 102
Requirements ANalysis...........coceeeeceinesniniereentereenssenisssnnnnsesseesseecsenes 103

Hardware, Software, and Skill-Set Requirements...........cccccoceevveereernennee. 104

APPENDIX B: PROJECT SCHEDULE.........cccoeotvinirerinrrerneeeesnesiesneseesesseeees 107

Initial Schedule..........ccooociiiiieiireereee et 107

Final Schedule.........cccccoeveririiinniiiinecctiieecetcse et seans 109

APPENDIX C: DEVELOPING WITH THE NETBEANS IDE............cccceeeunee 111
Creating a Web Application Project...........cooeevenmeeveniencnnecncnnnieessnneens 111

Using GWTANB......cccotreretrercerrectrtecsreesresesesssseeseseestessessessessessnsons 114

Creating an RPC.......c.oeovioriiiinririectcctrtsentnesee e strcesessesae e eessassensenes 115

Using Additional Java Libraries..........ccccvveruerieentrnenenesvennnnnnereeressenennas 116

viii

Building and Hosting the Web Application Locally.........c.ccooeeeruennennnn. 117

Building the Web Application for Deployment..........cococvnevcnincnivennne 119
APPENDIX D: SOURCE CODE ~ GENERAL FILES.........cccocvvnvinininnennnn 121
IAEXJSPvrrvereeeeeeerenereertreesinieseetesesssesesenestsessesaesa et aesesaoteasneesnesesnsensen 121
WED.XIML ...ttt ssae st e ess e be e st s s sab o en 121
QEIP.CSS. ittt ettt s e nesbe s e e be st s a e n s an e s eeabeeene 122
JICENSE.EXL. ...ttt e esres ettt e 127
COMEEXL XML ...viiiieiecie et esb s sbe s s e e st s et ene 131
EWLPTOPETLICS. ..cveveeeirerirerireissietesceternstssescesesmess s saee et aesebesae st e seesasbosssren 131
APPENDIX E: SOURCE CODE — PACKAGE org.dgrp.......cccccoevveminrerernneens 132
DtraceGraphicalRouterProject.gwt.Xml........ccccouevininicivnnnennncnecnnennee. 132
APPENDIX F: SOURCE CODE - PACKAGE org.dgrp.client............ccceunes 133
ADOULJAVA. ...ttt et seeress s sse s e oo snssasssnesae e e e s 133
ANAlYSISJAVA. ...ttt 135
ANalySiSMENUJAVA......cocivirircre ettt rresesesse e e ssas e s e neseens 138
BandwidthInfo.java...........cceevvecninnininnininececcee e 151
BandwidthMonitor.java.........ccccccerrmeiirseerieseeeiieesrese s sreeeseeeessesaese e 153
BandwidthMoOnitOrASYNC. JaVa.......cccvveerieereereniennenneeneesessnnsreesseeessnes 153
DGRPERITYPOINEJAVA......coveereeririiiecinentiniesie s stsrestsceessee e seneens 154
GetVersionInfo.java..........ccocvveininecniiniii e 157
GetVersionInfoASYNC.JaVA......ccoerreeeecrenrininienteeeeenssr et eneens 157
ImagePanel.java............cceivirinininiinncnnieses e 158
SEtHNES.JAVA. 1.cverereiriisireeeeeereirts ettt st s 170
SIAEbarjava........coeueeiiirieeree e 171
Sidebarltem.java.........ccoeeverrereeneneiiisire e se s e e st aee s 173
TopologYINfO.JAVA......cccivireieriiricriirecreet ettt nve s sae et enes 174
VETSION.JAVA...c.eeurerieeeeeitintenceseneeseesteaesessetssesnssiesaessassonssesessasseassssseseensas 175
VersionCONLENTS. JAVA.ccccreerieririreeeresterecrereesansaeseesseesessssassssessssnsens 180
WEICOMEJAVA......coverreriereeiriceriestetesesteesaossessesnsssaessesssesssesnessesssaessnsanas 181
APPENDIX G: SOURCE CODE — PACKAGE org.dgrp.server.............coeueu... 182
BandwidthMonitorImpl.java...........cccoecveveccrenmenieninrcecrennnneeneesesennes 182
DGRPLOZEELJAVA......coeeueiereiiienetieesieetessts e ees st e ctssasaaseenesensnens 184
GetVersionInfoImpljava.........cccccevevninreiecnicnninnirenee s sesensenns 185
APPENDIX H: SOURCE CODE - PACKAGE org.dgrp.server.dtraceservices 192
DTraceCountDataBytesService.java..........cceeverrereeeneecreniosorsenerecsensens 192
DtraceCountPacketsServiCe.java........ccoervrrecriereniesesesessennnesnesssensenns 196
count_data bytes.d........o.covcerieirieniinininincn e ae e 199

ix

count PACKetS.d.......ccoiveeiniiiiiiiiccr e 200

SOFT COPY SOURCE CODE.........ccooviiiiiiriiiiencnsnsinesestsisseeesssssssessesees in pocket

LIST OF FIGURES

Figures

1. Linksys Browser Interface

2. High-Level Framework Diagram

3. DTrace Extracting Data

4. Utilizing DTrace Scripts from Java Classes
5. Basic Interface Layout

6. Application Interface Analysis Menu

7. Graphics Controlled by the ImagePanel Class
8. RPCs

9. Results of a Successful Version RPC

10. Tomcat Web Application Manager

11 Creating Virtual Network Interfaces

12 DGRP Welcome Screen

13. DGRP Settings Screen

14. DGRP Version Screen

15. DGRP About Screen

16. Snoop Capture

17. DGRP Analysis Screen

xi

28
36
51
55
56
58
63
71
76
77
78
79
80
81

82

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

3L

32.

33.

34.

DGRP On Real Hardware

Test Laptop IP Address

Ordering According to Activity

DTrace Script Output

DGRP Analysis Matches DTrace Scripts
House-of-Quality Diagram

Original Project Schedule

Final Project Schedule

Creating a New Web Application Project in NetBeans
Choosing a Web Server in NetBeans

Choosing the GWT Framework in NetBeans

The GWT4NB Plugin in NetBeans

Creating an RPC in NetBeans

Using Additional Java Libraries

Local Deployment of a Web Application from NetBeans
NetBeans Hosting a Web Application Locally

A Web Application Ready for Deployment

xii

84
85
86
87
88
104
108
110
112
113
114
115
116
117
118
119

120

LIST OF TABLES

abl
Common Home-Network Router Architectures
Project Deliverables
Hardware Requirements
Software Requirements

Skill-Set Requirements

xiii

:

100

105

105

106

LIST OF ACRONYMS

AJAX Asynchronous JavaScript and XML
API Application Programming Interface
CD Compact Disc

DGRP DTrace Graphical Router Project
DNS Domain Name System

DVD Digital Video Disc

GUI Graphical User Interface

GWT Google Web Toolkit

GWT4NB Google Web Toolkit for NetBeans
HTML HypterText Markup Language

IDE Integrated Development Environment
IP Internet Protocol

IPTV Internet Protocol Television

ISP Internet Service Provider

JAR Java Archive

JDK Java Development Kit

JSP JavaServer Pages

MIPS Multi-Instruction Processing System

Xiv

NIC
o
QFD
RIP
RPC
SPARC
SSID
SXCE
TCP
UDP
USB

XML

Network Interface Card

Operating System

Quality Function Design (or Deployment)
Routiﬁg Information Protocol
Remote Procedure Call

Scalable Processor Architecture
Service Set Identifier

Solaris Express Community Edition
Transmission Control Protocol
User Datagram Protocol

Universal Serial Bus

Extensible Markup Language

back-end

client-server model

DTrace

front-end

Google Web Toolkit

GWT4NB

home-network router

GLOSSARY

An acronym for “server-side. The server software in the
client-server model.

The concept in computing in which one application or
system (the client) makes requests of another application or
system (the server)—which services those requests upon
receipt according to the server software.

The dynamic tracing facility introduced in the Solaris
operating system that allows querying thousands of software
“probes” for real-time information while the software is
running. For significant information on DTrace, refer to the
OpenSolaris community web site (OpenSolaris Community:
DTrace, 2008).

Opposite of “back-end.” An acronym for “client-side.” The
client software in the client-server model.

An open-source framework for the development of AJAX
web applications using Java source code. It also includes
functionality for remote procedure calls.

A plug-in developed for easy integration of the NetBeans
IDE and the Google Web Toolkit.

The multi-function device found in many homes that often
serves as a cable or ADSL modem, gateway, wireless access
point, and router for the computing devices on the home
network.

xvi

Java DTrace library

NetBeans IDE

OpenSolaris

remote procedure call

web application

web server

A Java library of classes that provides access to the DTrace
facility on the Solaris operating system from within Java
classes (as opposed to via the command-line or scripts in a
shell).

An open-source integrated development environment
distributed by Sun Microsystems that simplifies the
development, debugging, packaging, compilation, and
distribution of software applications.

The open-source version of the Solaris operating system
originally developed by Sun Microsystems. For information
about OpenSolaris, refer to the OpenSolaris web site
(OpenSolaris, n.d.).

The concept in distributed computing in which an
application or system makes a call to (and often waits for a
response from) a piece of software functionality (e.g.,
method, function, etc.) that may physically reside on a
system somewhere remote from the initiating system.

A software application most often designed to be run in a
web browser. This uses the client-server model, as the
client-side software executes in the browser, and the server-
side code executes on the web server.

The server-side software that provides the services for
clients to access—most often through a web browser. Web
servers host web applications that clients load and execute
in a browser.

xvii

I. INTRODUCTION

Many home and non-enterprise network administrators (to use the term loosely),
lack a set of tools that would enable them to do basic network monitoring and analysis of
problems. Troubleshooting of a “slow Internet connection” frequently involves steps like
rebooting the client computer(s) and/or the router and then—if that did not fix the
problem—calling the service provider for additional help.

Meanwhile, as a separate issue, the real-time, in-production analysis capabilities
of Dtrace—the dynamic tracing functionality introduced in the Solaris 10 operating
system—have only begun to be realized. Apple Inc. has implemented similar analysis
tools in their recently released “Leopard” operating system and introduced a graphical
user-interface (GUI) front-end called “Instruments,” and ports of DTrace to Linux have
begun (but have substantial work remaining before becoming pervasive). Still, relatively
little has been done thus far (except by Apple and a couple of newer OpenSolaris
projects) to provide graphical front-ends for these tools that would make them helpful to
the common user.

The intersection of these issues is at the point of a possible solution for that
inexperienced network “administrator.” By using the capabilities of DTrace at the heart
of the network—on the router itself, and if the data is presented in such a way

(graphically) that the user could understand it quickly and easily, one could get a much

clearer picture of the true source of the performance problem—whether that be an
overactive client computer, an issue on the router itself, delays on the Internet Service
Provider (ISP) side, etc.

Today’s home-network routers are typically Linux-based (or use a proprietary
operating system) and operate on Multi-Instruction Processing System (MIPS) processors
—an architecture to which Solaris has apparently not been ported. Given a proven
framework and reference implementation, future applications could include the
development of productized Solaris-based routers that include this type of analysis tools
(Solaris would need to be ported to MIPS to use today’s hardware) or the development of
similar graphical front-ends for the Linux version(s) of DTrace (after their development
is complete) and integration of these into products similar to what is already available in

today’s market.

Project Goal and Objectives
Thus the general goal of this project is to develop a framework for and reference
implementation of a graphical interface for analyzing a Solaris-based network router

using DTrace. The high-level objectives for the project are as follows:

1. Develop a software architecture to graphically present the analysis data made
available by DTrace in an interface similar to the graphical user interfaces
commonly available in today’s home-network routers.

2. Using the aforementioned architecture, develop a core set of analysis points in the
graphical interface that form a model to be followed in the development of future
analysis points.

3. Thoroughly document the design, architecture, and reference implementation
code, and make these available to the open-source community in an effort to
promote future development in this area.
Overview of this Document

This thesis reports on the project in chapters: II. Technical and Market
Background; III. Architecture and Design; IV. Platform Preparation; V. Implementation;
VI. Testing; VII. Suggestions for Future Development; and lastly, VIII. Conclusions and
Recommendations. Chapter II, immediately following, discusses the need for this type of

project in relation to the current technology market. Project requirements, schedules, and

implementation source code are provided in the appendices for reference.

II. TECHNICAL AND MARKET BACKGROUND

Technology Trends

It is no secret that home computing has moved from nearly nonexistent to
pervasive in the last two decades, that—in the latter part of that same time—access to the
Internet has become a necessary part of life for most people in the developed countries of
the world, and that the number of devices connecting to the Internet is growing at an
ever-increasing rate. Many of these devices connect from home or other small sub-
networks across the world through devices providing routing, network switching, access
point, and sometimes modem capabilities, and the setup and maintenance of these devices
is still too cumbersome for the average user.

As the Home Gateway Initiative—*‘an industry body that offers an active dialogue
between telecoms operators, vendors, and manufacturers, and defines technical
specifications for home gateways (Home Gateway Initiative, 2007, para. 1)”—states in a
white-paper describing the growing need for such an organization,

“Multiple devices wish to share the broadband connection [to the

Internet]. Games consoles, PC’s, telephones and IPTV settops all want a

broadband connection, so the consumer needs to be able to share that

connection between all devices, simultaneously.... Clearly networking is
complex to manage for both the customer and for the service provider who

is often the first point of contact when a customer encounters a problem.

(Home Gateway Initiative — Vision, 2007, para. 4)”

As the number of devices in the home connecting to the Internet continues to increase,

4

the need for removing that network-management complexity will increase as well. The
device manufacturer who can produce a device that is simple to implement and to debug
when things go wrong, or the service provider who can provide a service offering to
manage the complexity for the customer will have a business advantage as the number

and complexity of home networks continues to rise.

Market Research

In the home-network router market, a number of recognizable companies exist. A
quick search on the web sites of Best Buy, Circuit City, or Fry’s will reveal products from
Netgear, D-Link, Belkin, Linksys, Apple, 2Wire, and many others. Nearly all of these
provide a browser-based interface for management like that in Figure 1, and few—if any
——debuggipg tools are provided in the interfaces to help determine the cause of problems.
The “Help” link from a 2Wire home router, for example, points the user to the 2Wire
support web page—offering basic troubleshooting tips but nothing specific to the user’s
network or situation.

Outside of the home-network market, however, efforts are being made to ease the
pain of troubleshooting computing devices. Sun introduced their new Dynamic Tracing
(DTrace) technoldgy in their Solaris 10 operating system; the DTrace manual explains
that “DTrace enables you to explore your system to understand how it works, track down
performance problems across many layers of software, or locate the cause of aberrant

behavior” (DTrace — Introduction, 2007, para. 1). Since then, a few OpenSolaris projects

Basic Setup zilfa Firefox
Fle . Edt View . Hstory -Bookmarks -~ Tools: - Help
ﬁ' L}htuamszmw ,

Link Rowler wirh §

Setup

| Automatic Configuration - DHCP

RouterName NELSONS
Host Name

Domain Name

MTU

Size

Local IP Address é
SubnetMask |

DHCP Server

Starting P

Address

Maximum Number ;7]
s il

Figure 1. Linksys Browser Interface

The Linksys browser interface is similar to those offered by most of the home-network
router providers.

—like Chime (OpenSolaris Project: Chime Visualization Tool for DTrace, 2008)—have
taken up the effort to make graphical front-ends for DTrace, and one has been created for
integrating with the Sun Studio and NetBeans Integrated Development Environments
(IDEs) (NetBeans DTrace GUI Plugin, n.d.). Apple has also taken interest in DTrace, and

in their latest operating system, they implemented a graphical tool called Instruments that

utilizes their own version of DTrace. Work is ongoing in the Linux community as well to
port DTrace to the various distributions of Linux, and other variations—like SystemTap
—are also developing (SystemTap, n.d.). The development of these tools is in apparent
recognition of the need for easier debugging of problems in increasingly complex
computing devices. It seems reasonable to apply these tools to the growing complexity
of home network devices just the same.

The current collection of home-network routers are primarily specialized
hardware making use of a MIPS processor and relatively little memory. The author was
unable to find any recent version of Solaris that has been compiled for the MIPS
architecture, so loading Solaris onto the existing products’ hardware directly is not
directly possible. An implementation using DTrace on a router (and thus—at this time—
requiring Solaris instead of Linux) would have to be made to use some other hardware
until such a time as Solaris is available for the MIPS architecture.

With this background information in-hand and the tools described in the current
state, the author set out to create a framework that would enable the use of DTrace to
collect useful data from a home-network router and present it to users in an easy-to-
understand graphical format that would enable them to understand problems in their
home network. It was also necessary to develop an implementation of the framework and
to test that implementation in order to prove the framework architecturally sound. The
following chapters describe the framework, the reference implementation developed, and

the testing performed to validate both.

HI. ARCHITECTURE AND DESIGN

General Architecture

The general architecture for this framework is depicted in Figure 2. A web
application provides a browser-based user interface as the front end of the application—
communicating with the back end (i.e., software on the router itself) via remote procedure
calls. This architecture is further discussed in the following sections which detail the
design of this framework and a reference implementation that proves its effectiveness and

functionality.

Browser-Based User Interface

As discussed previously in the Market Research section (p. 5), most of today's
home network routers provide a user interface via a web browser (see Figure 1). In order
to easily integrate the functionality of this project iﬁto routers like those in today's market
, the logical choice for user interface is to also develop it in a browser-based fashion.
With this as a design assumption, the user interface for this project is designed as a web
application. The choice of web server, application language, etc.—though indicated in
part in Figure 2—is actually implementation-specific and is thus discussed further in the
following two chapters. The primary functions of the front-end user interface are to

accept user input and properly format and display data: The front end should not rely on

the server side to provide formatting or other control over the user interface display.

Web Application:
(written with Google
wWeb Toolkit)

Client gets data
from server via
GWT RPCs

S

—~

Front-End Back-End
Figure 2. High-Level Framework Diagram

The general architecture of this application includes a web application pulling data from
DTrace, Quagga, and the Solaris OS directly

Front-to-Back-End Communication
Communication between the front end (i.e., browser-based user interface) and the
back end (server-side) of this program is achieved using the concept of remote procedure

calls. RPCs, in summary, allow a software program to use a piece of software

functionality (e.g., method, procedure, or function—depending on the programming
language) as if it was resident with the program on whatever hardware on which it is
running, though the implementing side of that piece of code is often on a different (and
perhaps distant) piece of hardware. (For further information on the concept of RPCs, the
reader is encouraged to reference the many helpful articles available on the Internet and
elsewhere.) For this application, the client-side code running in the browser interacts
with data-providing code running on the router via RPCs. The choice of what RPC
package is used and whether the RPCs should be synchronous (i.e., blocking calls),
asynchronous (i.e., non-blocking calls), or some combination of the two is an

implementation-specific discussion and is thus addressed in the following chapter.

Server-Side Design

In this design, the “server” is actually the router itself—from which the user
interface is served as a web application. So, in addition to performing the functions of a
router, the operating system and software running on the router hardware must also act as
a web server for the user interface and—as already briefly discussed in the previous
sections—provide data to client software (running in the user's browser) in response to
requests in the form of remote procedure calls. While this data may be pulled from the
operating system (OS) or from software running on top of the OS, the most interesting
pieces of data in the context of this application are those provided by DTrace—and most

specifically the DTrace Network Providers. (For a brief introduction to DTrace and the

10

DTrace Network Providers, refer to the next section.) While this design and reference
implementation rely on DTrace as it is currently (at the time of this writing) made
available by the Solaris OS, other operating systems or implementations of DTrace could
be used to provide a similar back end in future implementations: For further discussion

on this topic, refer to Chapter VII. Suggestions for Future Development (p. 89).

Introduction to DTrace

As it is described in the formal DTrace documentation, “DTrace helps you
understand a software system by enabling you to dynamically modify the operating
system kernel and user processes to record additional data that you specify at locations of
interest, called probes. (DTrace — Introduction, 2007, para. 2)” Probes are little pieces of
code included in operating systems and applications that have implemented them for
DTrace to use for collecting data when asked; as the formal documentation says, they are
like “programmable sensors scattered all over your [operating] system in interesting
places. (DTrace — Introduction, 2007, para. 2)” The modules of the operating systems or
applications that provide these probes to the DTrace facility are aptly named providers.
For example, the Solaris operating system makes available send and receive probes in the
ip Provider (Gregg, B., 2008); the probes fire (i.e., DTrace can collect data) each time the
kernel sends or receives a packet, and relevant data (e.g., source and destination address,
packet header flags, number of data bytes included, etc.) can be collected for analysis.

Additional network-related providers (e.g., TCP, User-Datagram Protocol (UDP), etc.),

11

collectively known as the “Network Providers” are being added to the Solaris operating
system for future use by DTrace (DTrace Network Providers, 2008). For details on what
providers and probes are implemented in a given operating system or application, the user
is directed to the DTrace-relevant documentation for that OS or application.

Multiple interfaces exist to the DTrace facility. For example, a program can be
written in DTrace's D programming language to extract data from specified probes and
format the text-based output, or a programmer could make use of the Java DTrace library
currently available for the Solaris OS (Java DTrace API, 2007). The analysis that can be
performed by DTrace is limited only by the providers and probes already implemented in
a specific application or OS and the imagination of the programmer utilizing the data
made available by those providers and probes.

This very brief and high-level introduction to DTrace only touches on the very
basics, and the reader is encouraged to refer to the available DTrace documentation for

significant additional detail.

12

IV. PLATFORM PREPARATION

The sections in this chapter describe the choice, installation, and configuration of
a number of available pieces of hardware and software that create the underlying
platform on which the reference implementation was developed and tested. The

following chapter describes in detail the actual implementation.

Choosing an Operating System

That DTrace is the source of the data used for this application is an underlying
assumption and a premise of the entire project, thus when making one of the first
implementation choices—the choice of which operating system to use—the list of
options is limited to only those which already provide the DTrace facility. At the time of
commencing this project, only two operating systems had incorporated DTrace
functionality—Sun Microsystems' Solaris 10 OS and its subsequent open-source
derivatives and Apple's Mac OS X 10.5 (Leopard), though work had begun on porting
DTrace to FreeBSD, and—as of the time of this writing—recent information suggests
that FreeBSD's DTrace facility is ready for use—at least in its initial form (DTrace for
FreeBSD, 2008).

Choosing between Solaris and OS X for this project iteration was a simple

decision: OpenSolaris—a freely available, open-source derivative of Sun's Solaris 10—

13

includes the latest and greatest features of DTrace, is actively supported by the open-
source community, is regularly updated (biweekly or less frequently—depending on the
release chosen) (OpenSolaris Download Center, 2008), and works on at least SPARC and
x86 platforms with the possibility of porting it to other hardware as well, while OS X is
limited to Apple's hardware only, is not free, and may not include the full DTrace
functionality (refer to Leventhal, A., 2008, for a discussion of Apple's DTrace
implementation and its limitations). This simple comparison led the author to choose
OpenSolaris as the operating system for this iteration of this project. Installing and using
this operating system is discussed in the Installing and Configuring the Operating System

section (p. 16).

Choosing a Hardware Platform

With the operating system decision made, the choice of hardware platform is next
to be determined. As the long-term goal of this project is to integrate with existing
management software on today's common home-network routers, the ideal hardware
platform for development is the hardware on which those home-network routers are
currently built. As briefly discussed in Chapter I1. Technical and Market Background (p.
4), research shows that many of today's home-network routers are built on the MIPS
architecture with a relatively small memory footprint. The OpenWrt Community—an
“open source project to create a free embedded operating system for network devices

(OpenWrt, 2008, para. 3)"—tracks the hardware specifications of many home network

14

routers. The following table is a sampling of data adapted from OpenWrt's extensive

Table of Hardware (Table of Hardware, 2008).

Table 1. Common Home-Network Router Architectures

Brand Model Processor Architecture Memory
D-Link DSL-G604T TI AR7 MIPS 16 MB
Linksys WAG354G TI AR7 MIPS 16 MB
Linksys WRTSL54GS Broadcom 4704 MIPS 32 MB
Netgear WGT624 Atheros 2312 MIPS 16 MB
Belkin F5D8230-4 Realtek 8651B MIPS-like 16 MB

As shown, many of the big-name home-network router makers use the MIPS
architecture for today's products. While other architectures exist, most of the mainstream
products appeared to be based on MIPS at the time of commencing this project. With
that in mind, it made sense to investigate whether Solaris could be made to run on MIPS.
Unfortunately, at the time, the author was unable to find any current existing work toward
porting the Solaris operating system to MIPS. Outdated work existed (see Rational Apex
Embedded Solaris to MIPS Family Release Note for Tornado, 2001) for an example of
work over 10 years old in which a previous version of Solaris was made to run on MIPS),
but nothing was found that indicated Solaris 10 (or later) had run successfully on MIPS
or was even close to being able to do so. In fact, an e-mail conversation from recent
years—archived on the OpenSolaris website—discusses in some detail the idea of porting

Solaris to MIPS but clearly states that that work is not in progress (MIPS port of

15

opensolaris, 2005). To be certain, the author contacted the initiator of the OpenSolaris e-
mail conversation who confirmed that her queries had been met with answers and
discussion but no progress—either at the time of the original conversation or in the
months since (T. Snyder, personal communication, February 4, 2008).

Without the pre-existing capability to run Solaris on MIPS, a decision was
necessary whether to begin work on porting Solaris to MIPS to get the functionality of
DTrace on a currently available home-network router or to defer the Solaris-to-MIPS port
and concentrate on the other major portions of the project using a different hardware
platform for this iteration. For the development of this framework, the choice was made
to use a different hardware platform and to encourage the future porting of Solaris to
MIPS as a follow-on to this project. For more information on this step, refer to Chapter
VIL. Suggestions for Future Development (p. 89). With MIPS no longer an option for this
project, the choice of a hardware platform for development was quite simple: Choose a
common platform that is readily available to developers and on which Solaris can already
run. The choice of an x86 platform met these simple criteria, so the author developed on
an Intel Centrino-based laptop and tested on a number simple Intel and AMD-based

servers. For further information on testing, refer to Chapter VI. Testing (p. 72).

Installing and Configuring the Operating System
There are many ways to install the OpenSolaris operating system—from compact

discs (CDs) or digital video discs (DVDs), from iso images, or via a network connection,

16

for example, so this section will document the basic settings and adaptations necessary
during the installation of the OpenSolaris operating system for the purposes of this
project iteration—using a DVD installation as an example. Detailed installation
instructions are available from the OpenSolaris web site (OpenSolaris, 2008), so only a
summary of the common steps will be provided here. While development of this project
iteration commenced on OpenSolaris's Solaris Express Community Edition build 82 and
later moved to build 96, the installation and modifications process was the same for both
versions.

1. Download a DVD image of the required build, burn the image to a DVD, and
boot the development system from the DVD.

2. Select the appropriate boot option from the GRUB menu (the default for a local
install or one of the tty options for a console install, and select from the following

menu whether to use a windowed or text-based installation process.

3. Using the menus provided, when prompted, complete the appropriate language,
networking, time, and password configurations.

4. Ensure that the installation takes place from the DVD, and accept the license
agreement when prompted.

5. Use the default install, or select custom install to configure disk partition
information and which parts of the OS should be installed.

6. When the install completes and the system reboots, be sure to eject the DVD so
that the system will boot from the new operating system on the hard drive.

For the purposes of this project, very little post-installation configuration of the operating
system is required. After the reboot, log in using the super-user root and the password set
during installation. From this point, the additional installation and configuration steps

described in the latter sections of this chapter could be followed, but there is one useful

17

step the author preferred to do after the OS installation is complete: Enabling remote
login of the root user via secure shell (SSH) proved to be very convenient for the author,
as he frequently used a terminal emulation software to open a remote console on the
router. While this is considered a security risk in normal deployments, it proved to be
very useful in development. To enable remote login by roof via SSH, edit the
Jetc/ssh/ssd_config file, and change the line

PermitRootLogin no
to

PermitRootLogin yes
and restart the SSH service using the command

svcadm restart ssh

Supporting Wireless

Wireless support in a home-network router takes two forms: First, a wireless NIC
must be identified that is supported by the hardware platform and operating system of
choice—OpenSolaris in the case of this project iteration; second, software must be
available to make the router act as an access point—not just a member of a wireless
network but rather the point at which others access the wireless network (e.g., the owner
and perhaps broadcaster of the service set id:ntiﬁer (SSID), etc.).

For the first task, the author investigated a few different Universal Serial Bus

(USB) NICs on the development platform running OpenSolaris—namely the Belkin

18

F5D7050 4001 model, the AirLink101 AWLL3028 model, and the Linksys WUSBF54G
model. Using the information available from the subset of the OpenSolaris community
working toward the development of the zyd wireless NIC driver (Wireless Network
Driver for ZyDAS, 2008), the author determined that the Belkin and AirLink101 NICs
were not yet supported by OpenSolaris. Using the Linksys NIC, however, the author was
able to install the necessary drivers and configure the interface such that it joined an
existing wireless network.

But while the author was able to make a wireless NIC work with OpenSolaris, he
was unable to find any access point software available for OpenSolaris at the outset of
this project, and a recent discussion on the OpenSolaris community forums confirmed
this research, so it was decided that wireless support would be out of the scope of this
reference implementation (Thread: solaris as a wireless access point, 2007). The topic is,

however, discussed in Chapter VII. Suggestions for Future Development (p. 89).

Choosing Routing Software

Because of the long-term goal of this project—that the software will be integrated
into the management software of today's home-network routers, the choice of routing
software for this initial implementation is not of long-term significance. In other words,
because the routing functionality is already part of home-network routers, this iteration of
this project need only find a solution that will provide that functionality until this

software can be integrated back into the software on the true home-network routers.

19

Given the decision to use Solaris for this iteration's operating system, the routing
software must function on Solaris. Early in the project, the author's university advisor
recommended the consideration of a routing software called Zebra—one he knew was
once available for use on the Solaris OS. Simple research into the recent history of Zebra
showed that it had been forked and that development for Solaris had continued under the
name Quagga (OpenSolaris Project: Quagga Routing Protocol Suite Integration, 2007).
In fact, Quagga is now pre-installed in OpenSolaris, so the use of it is very

straightforward—as described in the next section.

Installing and Configuring the Routing Software

As noted previously, Quagga is pre-installed in OpenSolaris, so only a few steps
are required to enable and use it—as listed below. For the complete installation and
configuration documentation, refer to the OpenSolaris Quagga web site (OpenSolaris
Project: Quagga Routing Protocol Suite Integration, 2007).

1. Disable the other routing services available on Solaris:

svcadm disable route:default
svcadm disable ripng:default

2. Enable the Routing Information Protocol (RIP) using Quagga (and its
dependencies):

svcadm enable -r rip:quagga ,

3. Verify the Quagga RIP service is online using either svcadm or routeadm:

nv96-vbox$ svecs -1 rip:quagga
fmri svc:/network/routing/rip:quagga
name Quagga: ripd, RIPv1l/2 IPv4 routing protocol daemon.

20

enabled true
state online
next state none

state_time
logfile
restarter
contract_id
dependency
(online)
dependency
(disabled)
dependency
(online)
dependency

104

Wed Aug 27 16:53:29 2008
/var/svc/log/network-routing-rip:quagga.log
svc:/system/svc/restarter:default

require all/none svc:/system/filesystem/usr:default
optional all/refresh svc:/network/ipvé4-forwarding

require_all/refresh svc:/network/routing-setup

optional all/restart

svc:/network/routing/gebra:quagga (online)

nv96-vbox$
nv96-vbox$
nv96-vbox$ routeadm
Configuration
Option

IPv4 routing
IPv6 routing
IPv4 forwarding
IPv6e forwarding

Routing services
Routing daemons:

STATE
disabled

routing:ipv4
disabled

routing:ipvé
online
online
disabled
disabled
disabled
disabled
disabled
online
disabled
disabled

nv96-vbox$

Choosing a Web Server

Current Current
Configuration System State
enabled enabled
disabled disabled
disabled disabled
disabled disabled

"route:default ripng:default”

FMRI
svc:/network/routing/legacy-

svc:/network/routing/legacy-

svc:/network/routing/zebra:quagga
svc:/network/routing/rip:quagga
svc:/network/routing/ripng:default
svc:/network/routing/ripng:quagga
sve: /network/routing/ospf:quagga
svc:/network/routing/ospf6:quagga
svc:/network/routing/bgp:quagga
svc:/network/routing/ndp:default
svc:/network/routing/rdisc:default
svc:/network/routing/route:default

21

The choice of web server was not one based primarily on the comparison of
available options, rather it was based on the author's experience with previous web
application development. The author was most familiar with the Apache Tomcat server
—produced by The Apache Software Foundation (The Apache Software Foundation,
2008), and its simple integration with the author's primary Integrated Development
Environment, the NetBeans IDE, made for simple development. Similar to the choice of
routing software in this initial iteration, the choice of web server is of little long-term
consequence: When a future iteration integrates this software with existing home-
network router management software, the web server used will be that already in use by

the existing management software.

Installing and Configuring the Web Server

Like Quagga, the Apache and Apache Tomcat web server suite come pre-installed
in the OpenSolaris operating system. Little preparatory work is necessary to be ready to
deploy basic web applications, though the Apache Foundation provides detailed
installation and configuration instructions on their web site (4dpache Tomcat 6.0, 2008).
The following steps are those necessary to prepare Apache Tomcat for use with this
project iteration's software (as described later in this chapter):

1. In the directory /var/apache/tomcat/conf/, copy server.xml-example to server.xml
as in the command

cp /var/apache/tomcat/conf/server.xml-example /var/apache/tomcat/
conf/server.xml

22

2. Inthe directory /etc/apache, copy httpd.conf-example to httpd.conf as in the
command

cp /etc/apache/httpd.conf-example /etc/apache/httpd.conf

3. Edit the file /etc/apache/httpd.conf to remove the “#” from the start of the line
(i.e., uncomment the line)

#include /etc/apache/tomcat.conf

4. In the file ~var/apache/tomcat/confitomcat-users.xml, add manager to the roles for
user fomcat.

5. Restart the apache daemon using the series of commands

/etc/rc3.d/S50apache stop; sleep 1; /etc/rc3.d/S50apache start
A few remaining steps specific to the deployment of this project's web application are
discussed later in this chapter in the section Deploying the Complete Web Application (p.
66). Note that the installation and configuration described here do not make use of the
authentication, authorization, or other security-related capabilities of the Apache
software. The assumption exists that the web server used in future iterations when this
software is integrated with an existing home-network router's management software will

already be configured to address these security needs.

Choosing a Web Application Framework

While web applications can be developed entirely from scratch using any number
of programming languages, there are a number of development frameworks and toolkits
available to ease the development and maintenance burden for today's increasingly

complex web applications. A large list of available web application frameworks is

23

available on Wikipedia (List of web application frameworks, 2008). Examples of these
frameworks include Struts from the Apache Foundation (Struts, 2008), Stripes (Stripes
Home, 2008), Ruby on Rails for the Ruby programming language (Ruby on Rails, 2008),
and several based on the JavaScript client-side programming langnage—including the
Google Web Toolkit from Google. The Google Web Toolkit (GWT) is an open-source
project that promises to “ease [the development and maintenance] burden by allowing
developers to quickly build and maintain complex yet highly performant JavaScript front-
end applications in the Java programming language. (Google Web Toolkit, 2008, para. 1)”
Given the author's experience with the Java programming language, this was a quickly a
leading candidate among the available toolkits for this project iteration. After some
experimentation with sample web applications provided by the GWT community
(Building a Sample Application, 2008), the author determined that the Google Web
Toolkit would suffice for this project iteration. As discussed in Chapter VII. Suggestions
Jor Future Development (p. 89), the authors of future iterations of the project may want to
explore other available and perhaps more fully featured toolkits and frameworks for

greater flexibility in the user interface.

Using the Web Application Framework
The community developing the Google Web Toolkit provides significant
documentation on the use of GWT in web application development (Google Web Toolkit,

2008). The reader is encouraged to refer to that documentation for details, though a

24

summary is provided here. The GWT is provided in a package that includes
documentation, samples, and a collection of Java Archive (JAR) files. These JAR files
include Java classes that can be used by application developers while writing their code
along with tools for compiling, hosting, and debugging applications. These tools can be
used via a command-line interface on a console or through a graphical IDE such as
Eclipse (Eclipse — an open development platform, 2008) or NetBeans (NetBeans, 2008).
The author used NetBeans and an open-source plugin called GWT4NB (gwt4nb Project
Home, n.d.) that allowed for easy integration of Netbeans with the compiler and other
tools included in GWT.

It is important to understand what GWT does with the code written by developers:
GWT produces AJAX code—collections of JavaScript and Extensible Markup Language
(XML) files that are used by a web browser in the rendering of a web application—from
Java code written by the application developer. As mentioned before, GWT includes Java
(note, not JavaScript) classes that are made available for the developer to use; these
classes provide either identical or very similar functionality to most of the classes in the
standard Java Development Kit (JDK). This allows developers to code web applications
in the Java language and use GWT to translate (i.e., compile) that Java code into
equivalent JavaScript and XML. A complete Application Programming Interface (API)
and simple sample code is provided for developers to reference in the documentation
provided in the GWT package..

One other significant function provided by GWT worthy of summarizing here is

25

that of the Remote Procedure Call. GWT's RPC functionality allows web applications
running in a browser to asynchronously make requests of the server without reloading the
entire page in the browser. It is important to understand the two sides of this
communication: The client-side code—the AJAX translated from GWT Java classes and
running in the browser—requests a function to be performed by the server and listens
without blocking for a response; the server-side code is true Java (from the JDK—not
GWT's Java classes) and can perform any function made possible by the Java language
before returning to the client. Examples of how this works in the context of this project
are included later in this chapter in the RPCs: Tying the Front and Back Ends Together

section (p. 57).

Choosing a Programming Language

The choice of programming language for this iteration of this project was based
primarily on the author's previous experience and comfort with the Java language as a
development language for web applications. The use of Java as the source language in
the Google Web Toolkit framework also contributed to this decision. While Java is the
language with which most of this iteration's code is written, future iterations need not be

tied to Java—especially if using a different web application framework.

26

V. IMPLEMENTATION

The previous chapter described the choice, installation, configuration, and use of
hardware and software that collectively formed the platform on which the reference
implementation was developed and tested. The sections in this chapter describe in detail
the original work done by the author to implement the framework described in Chapter

1. Architecture and Design (p. 8).

Developing DTrace Scripts to Gather Data

A brief introduction to DTrace is provided in Chapter II1. Architecture and Design
(p. 8), and for detail beyond that introduction, the reader is encouraged to reference
significant DTrace documentation from Sun Microsystems (Bigddmin System
Administration Portal. DTrace, 2008) and the OpenSolaris community at (OpenSolaris
Community: DTrace, 2007). This section will describe two of the most important DTrace
scripts written to gather data relevant to this project. These scripts provide the
foundational data that the web application processes and presents to the user. Each of
these scripts uses DTrace's ip Provider (Gregg, 2008) to extract useful data from the IP
headers of packets sent and received by the router's operating system's kernel's IP stack;
this is conceptually depicted in Figure 3. Note that these scripts are written so that they

can be executed from a console on the router during development and testing and also be

27

used—without modification—by the web application's server-side Java code. All of the
DTrace scripts written for this project are available in the appendices of this document
and should be understandable given the descriptions in this section, the available DTrace

documentation, and the comments in the scripts themselves.

DTrace
pulls data from
IP packet '
headers

Router
Figure 3. DTrace Extracting Data

The DTrace scripts activate probes in the kernel's IP
stack to collect useful data into aggregations.

The first of the two important DTrace scripts in this project iteration which will be
described in detail here is named count_data_bytes.d. The “.d” extension in the file name
indicates that this is a script written in DTrace's D programming language. The first line
in this DTrace script

#!/usr/sbin/dtrace -s
is similar to the first line in many shell scripting languages: When executing this file, this
indicates to the operating system which program should be used to process it; in this case,

a program called dtrace in the directory /usr/sbin is used and is passed one parameter, -s

28

(which indicates to dtrace that the remainder of the file should be interpreted as D code).
The next line

#pragma D option defaultargs
indicates to DTrace that it should use default values for any parameters referenced in the
D code that were not explicitly defined when the script was executed. When executed
from a console, parameters are defined by adding additional items after the script name
when executing it—as in the following example:

$./count data bytes.d paraml param2
How parameters can be defined when using the DTrace script with Java code is discussed
in the following section, The Back End: Incorporating DTrace with Application Code (p.
34).

The next several lines of code in count_data_bytes.d

BEGIN /* Special probe upon script startup */
{

givenSubnet = $$1; /* subnet either given or set
as empty string */

printf ("Counting data bytes sent and received by IP” +
“ address...\n");
printf("--—-——mmm e 7o+

}

define the actions to be taken when the BEGIN probe—a special probe that DTrace
triggers when the script begins execution—fires. In this script, two things occur in the
BEGIN probe: A variable givenSubnet is created and set to the value of the first

parameter given to this script or—because of the defaultargs setting—set to the default

29

value of an empty string, and an informational heading is printed describing what this
script is doing.

Following the definition of actions for the BEGIN probe, actions are defined for
two additional probes—send and receive in the ip provider. These probes fire whenever
the network stack in the OS kernel sends or receives—respectively—an Internet Protocol
packet. (For a full discussion of the ip provider, the reader is encouraged to refer to the
DTrace ip provider web site (Gregg, 2008.)

ip:::send /* Probe for sent packets (by destination address) */
{
@sndlargs[2]->ip_daddr]
@totlargs[2]->ip daddr]

sum(args [2]->ip plength);
sum(args[2]->ip plength);

(]

}

ip:::receive /* Probe for received packets (by source address) */
{
@rcv[args[2]->ip saddr]
@tot[args[2]->ip saddr]

sum(args{2]->ip plength);
sum(args[2]->ip plength);

[/l

}

Whenever the send probe fires, two aggregations are updated: @snd and @tot. In
DTrace, an aggregation is something like an array in other programming languages—
indexed by something called a ruple. In this case, the tuple is the ip_daddr—the
destination IP address—of the structure provided in args/2]. The ip provider provides a
series of structures containing information in an array called args whenever a probe fires;
it is from these structures that DTrace scripts can obtain and analyze data. args/2]
contains a simple structure of the type ipinfo_t—which is defined as follows (Gregg, B.,

2008):

typedef struct ipinfo {
uint8 t ip_ver; /* IP version (4, 6) */

30

uintlé t ip plength; /* paylocad length */

string ip_saddr; /* source address */
string ip_daddr; /* destination address */
} ipinfo_t;

Thus, when the send probe fires, the entries in aggregations @snd and @tot for the
destination IP address provided in the args/2] structure are updated with the value in the
payload length field of the same structure according to DTraces's sum function. The sum
function adds to an existing value whatever new value is provided to it. So, in summary,
the actions in the send probe add the payload length of a packet to two aggregations
which are indexed by destination IP address. The receive probe actions work very much
the same way, though the aggregations are indexed by the source IP address, ip_saddr,
and the aggregations updated are @rcv and @tot. The observant reader may notice that
the @tot aggregation is updated in ;)oth the send and receive probe actions—thus its
values are a sum of the number of data bytes sent to and received from each IP address,
whereas the @snd and @rcv aggregations track only‘ the data bytes sent to and received
from—respectively—each IP address.

There is no code in the script to cause it to terminate on its own, so it will
continue to run and to count the data bytes sent and received until the user stops it
manually (such as with Cntl-C on the console). When the script is terminated, a special
END probe is triggered—similar to the BEGIN probe which fired at the start of the script.

END /* Special probe upon script termination */

{

printf ("\n\n-————-——- e 7o+
Mo e \n")

printf ("Printing results...\n");

printf ("------—-——m "+
B e e \n") ;

printf ("\nData bytes sent to:\n");
printa(" %15s %@8u\n", @snd):;

printf ("\nData bytes received from:\n");
printa (" %$15s %@8u\n", @rcv);

printf ("\nTotal data bytes received from and sent to:\n");
printa (" $15s %@8u\n", @Qtot);
}

These actions in the END probe print an informational header and then use DTrace's
printa function to print each aggregation, @snd, @rcv, and @tot, according to the
formatting specified. For a complete discussion of formatting output from DTrace, the
reader is encouraged to reference the online DTrace manual's description of output
formatting (Output Formatting, 2007). Essentially, these statements provide a formatted
printing of each aggregation's tuples and corresponding values—sorted by the value.
Using the count_data_bytes.d script from a console on a very quiet system may

provide output similar to this:

nv96-vbox$./count data bytes.d
dtrace: script './count data bytes.d' matched 21 probes
CPU ID FUNCTION:NAME

0 1 :BEGIN

Data bytes sent to:

10.0.1.50 160
10.0.2.50 160
10.0.0.50 320
10.0.3.50 320

32

file:///nData
file:///nData
file:///nTotal

Data bytes received from:

10.0.1.50 160
10.0.2.50 160
10.0.0.50 320
10.0.3.50 320

Total data bytes received from and sent to:

10.0.1.50 320
10.0.2.50 320
10.0.0.50 640
10.0.3.50 640

nv96-vbox$

Similar to count_data_bytes.d, the DTrace script count_packets.d uses the send
and receive probes from the ip provider but simply counts the number of packets sent and
received rather than the number of data bytes in each packet. The BEGIN and END
probes are very similar and can be understood from the explanations of those in
count_data_bytes.d, and the actions of the send and receive probes use DTrace's count

function instead of sum-—as shown here:

ip:::send /* Probe for sent packets (by destination address) */
{

@snd[args[2]->ip daddr] = count();

@tot[args([2]->ip daddr] count () ;

I

}

ip:::receive /* Probe for received packets (by source address) */
{

@rcvlargs[2]->ip saddr] = count();

@tot[args[2]->ip_saddr] count () ;

}
Output from this script on a quiet system my look something like this:

nv96-vbox$./count packets.d
dtrace: script './count packets.d' matched 21 probes
CPU ID FUNCTION:NAME

0 1 :BEGIN

Counting packets sent and received by IP address...

Packets sent to:
10.0.2.50 4
10.0.3.50 4
10.0.0.50 8
10.0.1.50 12

Packets received from:

10.0.2.50 4
10.0.3.50 4
10.0.0.50 8
10.0.1.50 12
Total packets received from and sent to:
10.0.2.50 8
10.0.3.50 8
10.0.0.50 16
10.0.1.50 24

nv36-vbox$
How these scripts are used from within the web application's server-side Java code is

discussed in the following section.

The Back End: Incorporating DTrace with Application Code

With working DTrace scripts written, the next step in implementation is to
incorporate those scripts with application code. In the case of this project iteration, the
application code is written in Java, so this means using DTrace from a Java class.
Fortunately, the OpenSolaris community has developed a Java DTrace library that

provides this capability: By including the Java Archive dtrace.jar that includes all of the

34

Java DTrace functionality from the OpenSolaris community, this project's code can
utilize DTrace's data-collecting features in its server-side (i.e., back-end) code. Complete
documentation for the use of Java DTrace is provided online (Java DTrace API, 2007),
but the discussion of some of this project's back-end code here will provide an overview
of how to use this library as well. This interaction is conceptualized in Figure 4.

The Java class DtraceCountDataBytesService in the package
org.dgrp.server.dtraceservices utilizes the DTrace count_data_bytes.d script described in
the previous section to provide the data collected by the script to Java classes via a typical
Java method interface. This Java class will be described in detail in this section, and the
reader is encouraged to refer to the full set of source code in the appendices of this
document for the details of other Java classes written for this project iteration. The public
interface to this Java class includes no constructor but does include the following

methods:

public void startService (String subnet);
public boolean isRunning();

public void stopService();

public String[] getBusiestIPsByDataBytes();

Each will be described line-by-line along with the other portions of code that make up
this Java class.

As is typical in Java code, this Java class is assigned to a package—in this case
named org.dgrp.server.dtraceservices. The acronym DGRP is short for DTrace
Graphical Router Project; server indicates that this is server-side code; and

dtraceservices is a simple package for those Java classes which provide DTrace-related

35

Server-Side Java Code

DTrace Script
import org.opensolaris, os.dtrace.® #lfusrssbins/dtrace -s
Consumer consumer = new LocalConsumer(}; BEGIN {}
consumer.open(); ip:i:send

consumer, compile(scriptFile, macroArgs);
consumer.enable();
consumer.go();

{

\/

Figure 4. Utilizing DTrace Scripts from Java Classes

The OpenSolaris community provides a Java library that enables Java classes to compile
and use standard DTrace scripts.

data (as opposed to some other server-side code which has nothing to do with DTrace and
will be discussed in the following section). Following the assignment of this class to a
package, several common import statements are used to include necessary Java classes
from other libraries: java.io.File, java.net. URL, and java.util. * are all from the standard
Java Development Kit; org.dgrp.server DGRPLogger is a simple class written for this
project that provides a rudimentary logging facility for the server-side code; and
org.opensolaris.dtrace.* is from the Java DTrace library written by the OpenSolaris

community. These lines of source code are as follows:

package org.dgrp.server.dtraceservices;

import java.io.File;

36

import java.net.URL;

import java.util.*;

import org.dgrp.server.DGRPLogger;

import org.opensolaris.os.dtrace.*;

Following these opening lines of code is the start of the actual class definition—
including a number of private class variables as seen here:

public class DTraceCountDataBytesService {

private URL url = DtraceCountDataBytesService.class.
GetResource (
"/org/dgrp/server/dtraceservices/count_data_bytes.d");

private Consumer consumer;
private boolean isRunning = false;

The variable url provides the location of the DTrace script used by this Java class—
count_data_bytes.d in this case—which is also included in the same package. The
variable consumer is a DTrace consumer—an object which collects and can provide data
from DTrace according to the interfaces in the Java DTrace library; this variable is used
extensively throughout this Java class as will be apparent in the following lines of source
code. The final private variable, isRunning, is a simple boolean variable that is used to
provide a client of this service an indicator of whether or not this service has been started
(i.e., whether or not an instance of this Java class has an active DTrace consumer that is
collecting data).

The first of the public methods in this class is simple enough to be described all at
once. The source is provided here:

public void startService (String subnet) {
try {
DGRPLogger.log ("Entering DtraceCoutnDataBytesService.
startService()...\n");
File scriptFile = new File(url.toURI());

37

http://ava.net

String macroArgs = new String(subnet);
DGRPLogger.log ("Creating DTrace consumer.\n");
consumer = new LocalConsumer():;
DGRPLogger.log ("Opening DTrace consumer.\n");
consumer.open() ;
DGRPLogger.log ("Compiling DTrace script.\n");
consumer.compile (scriptFile, macroArgs);
DGRPLogger.log ("Enabling DTrace consumer.\n'");
consumer.enable () ;
DGRPLogger.log ("Starting DTrace consumer.\n");
consumer.go();
isRunning = true;
DGRPLogger.log ("Leaving DtraceCoutnDataBytesService.
startService () .\n");

}

catch (Exception e) {
e.printStackTrace():;

}

}

First, the several DGRPLogger.log() function calls make use of the simple logging
facility mentioned already in this section to provide some basic log messages. Second,
the reader will notice that the private variable ur/ is used to create a File object, named
scriptFile, that provides access to the relevant DTrace script to be used by consumer.
Third, the string parameter subnet is indirectly passed to the the consumer as a parameter
of the DTrace script. Finally, the reader can see in this code the typical series of method
calls used when starting a DTrace consumer: the creation of a LocalConsumer object,
open(), compile()—to which a DTrace script file and its parameters are passed as
parameters, enable(), and finally go()—which starts the consumer collecting data
according to the DTrace script. Following the creation, compilation, enabling, and
starting of the consumer, the private class variable isRunning is updated to indicate that
this object's consumer is indeed running, and—of course—the requisite try-catch code is

included to manage exceptions thrown during the execution of any of the method calls

38

(though some additional intelligence in the try-catch code regarding actions for specific
exceptions would be a recommended modification in future refactoring of this code.

The next two public methods in the DTraceCountDataBytesService Java class are
even more straightforward. First, isRunning() simply returns the value of the private
variable isRunning. Second, stopService() does essentially the opposite of the
startService() method just discussed: It stops and closes the DTrace consumer and sets
the isRunning variable to indicate that the service is no longer running. The code for both

methods is provided here:

public boolean isRunning() {
return isRunning;

}

public void stopService() {
consumer.stop () ;
consumer.close();
isRunning = false;

}

The last of the public methods in this class, gezBusiestIPsByDataBytes(), returns a
string array of all of the IP addresses which the DTrace consumer has added to the @tot
aggregation—sorted according to the number of total data bytes sent to or received from
each IP address. (For details about the @tot aggregation or other code internal to the
DTrace script, refer to the previous section; the sorting mechanism will be discussed later
in this section.) The first several lines provide a simple log message and then check to

ensure that it is relevant to call this method by ensuring the service is running:

public String[] getBusiestIPsByDataBytes() {
DGRPLogger.log ("Entering getBusiestIPsByDataBytes()...\n");

if (!isRunning()) { //consumer not running, data not available

39

DGRPLogger.log ("Consumer not running; returning null from
getBusiestIPsByDataBytes () .\n");
return null;

}

Next, a series of variables are created and used to get the current @fot aggregation from

the DTrace consumer and store it in a local 4ggregation object for processing:

final String totAgg = "tot";

List ipAddrs = new ArrayList();

Set<String> aggSet = new HashSet();

aggSet.add (totAgqg);

Aggregation aggregation;

try {
DGRPLogger.log ("Getting aggregation from consumer...\n");
aggregation = consumer.getAggregate (aggSet).

getAggregation (totAgqg) ;

} catch (Exception e) {
//consumer is probably not running, return null
return null;

}

With the aggregation is successfully retrieved from the DTrace consumer, it is first
checked for being empty—in which case the method returns immediately rather than

attempting to process it:

if (aggregation.equals(null)) {
return null;

}

If the aggregation is not empty, the code continues to process it. First, a List object is
created that contains the records from the aggregation. Each record includes a tuple (in
this case, a string representation of an IP address) and a value (in this case the number of
total bytes sent to and received from the corresponding IP address). The records in the

list are sorted according to a custom sorting algorithm, and then the IP addresses from the
sorted list's records are put—in order—into a string array for returning. The code for all

of these steps—not including the sorting algorithm—is provided here:

40

else { //aggregation exists
DGRPLogger.log ("Aggregation existed...\n");
List list = aggregation.getRecords();
Collections.sort (list, new AggRecordComparator()):
Iterator iterator = list.iterator();
while (iterator.hasNext()) {
AggregationRecord aggRec = (AggregationRecord)
iterator.next ();
String ip = (String) aggRec.getTuple().
iterator () .next () .getvValue () ;
ipAddrs.add (ip):
DGRPLogger.log ("Adding IP: "™ + ip);
long val = (long) aggRec.getValue().
getValue () .longValue();
DGRPLogger.log (" (value is "™ + val + ").\n");

}

String[] ipAddrsStrings = (String[]) ipAddrs.toArray(new
String[01):
DGRPLogger.log("Returning from getBusiestIPsByDataBytes () .\n");
return ipAddrsStrings;
} //end of method
} //end of class '

The sorting algorithm used to sort the aggregation's records is an implementation
of the JDK's Comparator interface and defines the compare() method such that records
with a larger value (i.e., number of data bytes) will come before those with a smaller
value in the sorted list of aggregation records. The code for this Comparator

implementation is provided here:

class AggRecordComparator implements Comparator {
public int compare (Object objl, Object obj2) {
DGRPLogger.log("Using AggRecordComparator.compare.\n");
AggregationRecord aggRecl = (AggregationRecord) objl;
AggregationRecord aggRec2 = (AggregationRecord) obj2;
long vall = aggRecl.getValue () .getValue().longValue();
long val2 = aggRec2.getValue () .getValue().longValue():
if (vall < wval?2)
return 1;
else if (vall == val2)
return 0;
else
return ~-1;

41

}

Other Java classes in this project that provide DTrace services by utilizing a
DTrace script written in the D language follow a pattern similar to
DTraceCountDataBytesService, and the reader is encouraged to review them in the
appendices. Other server-side code that is not DTrace-related is described in the next

section.

The Back End: Other Server-Side Code

The previous two sections described the DTrace scripts and DTrace-related Java
classes written for this project—all of which are packaged in the
org.dgrp.server.dtraceservices Java package. This section will describe the other server-
side Java classes in the org.dgrp.server Java package.

The DGRPLogger class—mentioned briefly in the previous section—is a simple
logging facility designed to output simple strings to a log file on the server (i.e., the
router). The code is simple: There is no constructor; the log file is set in a private string
variable; and there is one public method for outputting log messages—Ilog(). The code is

provided here:
package org.dgrp.server;
import java.io.*;
public class DGRPLogger {
private static String logfile = "/var/tmp/dgrplog.txt™;
public static void log(String string) {

try {

42

BufferedWriter out = new BufferedWriter (new
FileWriter (logfile, true));
out.write(string);
out.close();
} catch (IOException e) {//ignore
}

}

Also in the org.dgrp.server package is the GetVersionlnfolmpl class—the server-
side class in a set of classes that follow a strict pattern provided by the Google Web
Toolkit for Remote Procedure Calls. How the various client-side and server-side pieces
of the different RPCs fit together will be discussed in the RPCs: Tying the Front and
Back Ends Together section (p. 57), so the following comments will deal only with

explaining what the server-side code in this class does—not how it interacts with the

client-side classes.

First, necessary package and import statements are made and the class is defined:

package org.dgrp.server;

import java.io.*;

import java.util.*;

import com.google.gwt.user.server.rpc.RemoteServiceServlet;
import org.dgrp.client.GetVersionInfo;

import org.dgrp.client.VersionContents;

import java.net.URL;

public class GetVersionInfolmpl extends RemoteServiceServlet
implements GetVersionInfo ({

Refer to the RPCs section (p. 57) for details of RemoteServiceServiet statements and the
org.dgrp.client.GetVersionlnfo class, and refer to the Front End section (p. 48) for details
of the org.dgrp.client.VersionContents class. Following these opening lines of code, a
single public method is defined—getVersionlnfo(). The complete source of that method
is provided here with explanations following:

43

http://java.net

public VersionContents getVersionInfo() {
DGRPLogger.log ("Entering getVersionInfo()...\n");
VersionContents ver = new VersionContents{():;

InputStream in = null;
Properties props = new Properties();

try {
in = getClass () .getResourceAsStream
("/appinfo.properties”);
props.load(in);

//Solaris info

ver.soclarisRelease = getSclarisRelease();
ver.solarisInstallDate = getSolarisInstallDate():
ver.solarisArch = System.getProperty("os.arch");
ver.solarisUptime = getSolarisUptime();

//Quagga info
ver.quaggaVersion = getQuaggaVersion() ;
ver.quaggalnsDate getQuaggaInstallDate();

//This software info
ver.dgrpAuthor = props.getProperty("program.AUTHOR") ;
ver.dgrpBuildDate = props.

getProperty ("program.BUILDDATE") ;
ver.dgrpBuildNumber = props.

getProperty ("program.BUILDNUM") ;
ver.dgrpDescription = props.

getProperty ("program.DESCRIPTION") ;
ver.dgrpVersion = props.

getProperty ("program.VERSION") ;

//Java info
ver.javaVMName = System.getProperty("java.vm.name");
ver.JjavaVMVendor = System.
getProperty ("java.vm.vendor");
ver.javaVMVersion = System.
getProperty("java.vm.version");
ver.javaVendor = System.getProperty("java.vendor");
ver.javaVersion = System.getProperty("java.version");

//Browser info

ver.browserInfo null; //determined client-side

//Web~Server info
ver.tomcatVersion
ver.apacheVersion

getTomcatVersion();
getApacheVersion () ;

//Remove this test
ver.removeThis = removeThisMethod():;

in.close();

}
catch (IOException e) {
e.printStackTrace () ;

}

DGRPLogger.log ("Returning from getVersionInfo() .\n");
return ver;

}
First, an object of the client-side class VersionContents is created that will be populated
with all of the version info retrieved from the server and will then be returned at the end
of the method. The rest of the method—up to the point of returning—is a series of
method calls used to populate bits of version information in the VersionContents object.
Rather than describing each line of code in the remainder of the class, the three major
forms of retrieving version information will be described by example, and the reader is
encouraged to review the full source of this class in the appendices for further detail. The
first of the three methods by which version information is retrieved is via the
props.getProperty() method. props is created near the start of the class code and is an
object of the Properties class that refers to the file appinfo.properties—which is modified
by the build process when the whole web application is compiled, built, and packaged for
deployment. This file follows the format of a properties file according to the
Properties class specification in the JDK, thus props.getProperty() can retrieve values
from name-value pairs in this file by passing the name as a parameter to the method—as
seen in lines like the following:

ver.dgrpAuthor = props.getProperty ("program.AUTHOR") ;

45

ver.dgrpBuildDate = props.getProperty ("program.BUILDDATE") ;
ver.dgrpBuildNumber = props.getProperty("program.BUILDNUM");

The second of the three methods is the retrieval of system properties from the Java
Virtual Machine (JVM) via the System.getProperty() method call. This is similar to the
properties method discussed already except that the source of these properties is the JVM
itself rather than a properties file. Examples of this method can be seen in lines like
these:

ver.javaVMName = System.getProperty("java.vm.name");
ver.javaVMVendor = System.getProperty("java.vm.vendor");
ver.javaVMVersion = System.getProperty("java.vm.version");

The last of the three methods for retrieving version information from the server is through
a series of private methods also defined in this class. These methods all follow a similar
pattern: Either open a file or execute a command and then extract the relevant text from
the output for return and eventual placement into the VersionContents object. Examples

of these method-calls can be seen here:

ver.solarisRelease = getSolarisRelease();
ver.solarisInstallDate = getSolarisInstallDate();
ver.solarisUptime = getSolarisUptime () ;

The code that defines each of these methods is very basic, so the reader is encouraged to
simply review it in its entirety in the appendices of this document.

Finally, the BandwidthMonitorImpl Java class in the org.dgrp.server package
defines the server-side part of another RPC-—the RPC by which the client-side code
requests information from the DTrace services running on the server (i.e., router). As
will become obvious to the reader in the next section, the client-side code does not

interact directly with the classes in the org.dgrp.server.dtraceservices package; rather, the

46

server-side code of the RPCs starts, stops, and gets updates from the DTrace services.
(This whole interaction will be described more fully in the RPCs: Tying the Front and
Back Ends Together section, p. 57.)

Looking more closely at the code, the reader will see that the package and import
statements are as expected and that the class definition is similar to other server-side

classes in other RPCs:

package org.dgrp.server;

import com.google.gwt.user.server.rpc.RemoteServiceServlet;
import java.util.Random;

import org.dgrp.client.BandwidthInfo;

import org.dgrp.client.BandwidthMonitor;

import org.dgrp.server.dtraceservices.*;

public class BandwidthMonitorImpl extends RemoteServiceServlet
implements BandwidthMonitor ({

private DTraceCountDataBytesService countDataBytesService;
private DTraceCountPacketsService countPacketsService;

The reader will also notice that there are two private objects created—one of each of the
DTrace service classes in the org.dgrp.server.diraceservices package previously
described. The remaining methods in this class utilize these objects so that the client-side
code need not have any knowledge of them; the client-side code need only be concerned
with the interfaces defined for each RPC. For each service, there are start, stop, and other

relevant methods defined—as in the examples here:

public void startServiceCountDataBytes(String subnet) {
DGRPLogger.log("Entering BandwidthMonitorImpl.
startServiceCountDataBytes()...\n");
countDataBytesService = new DTraceCountDataBytesServicel();
countDataBytesService.startService (subnet) ;

}

public void stopServiceCountDataBytes() {
DGRPLogger.log{"Entering BandwidthMonitorImpl.

47

stopServiceCountDataBytes ()...\n");
countDataBytesService.stopService() ;

}

public String[] getRefreshedIPs() {
DGRPLogger.log ("Entering BandwidthMonitorImpl.
getRefreshedIPs()...\n");
return countDataBytesService.getBusiestIPsByDataBytes();

}

While these examples (and most of the methods in this class in this iteration of the
project) do little more than call and return methods directly from the DTrace services
classes, this design offers the flexibility to implement more sophisticated wrapper
methods or to change the implementation of the DTrace services classes without
necessitating an alteration to the RPC interface on which the client-side code depends.
For the source of all of the methods in this Java class, the reader is encouraged to refer to

the appendices.

The Front End: Developing the User Interface

While the previous two sections described server-side or back-end code in the
org.dgrp.server and org.dgrp.server.dtraceservices packages, this section will discuss the
front-end, client-side code in the org.dgrp.client package. Many of the Java classes in
this package utilize the various widgets provided by the Google Web Toolkit to create the
graphical interface through which the user interacts with this web application. Other
classes are used in the process of analyzing and processing the data provided by the
server-side code, and still others are responsible for the client-side portion of the RPCs

that communicate between the front and back end. One of the key classes used for

48

creating the graphical interface, DGRPEntryPoint, will be described in detail, and the
reader is encouraged to view the complete source code for this class in the appendices
and to refer to the available GWT documentation to understand the rest of the code in
similar classes (Google Web Toolkit, 2007). The analysis classes will be described in
detail, and the classes related to the RPCs will be covered in the next section, RPCs.
Tying the Front and Back Ends Together.

The graphical interface for this iteration of this project is created entirely by the
use of GWT widgets. Examples of the creation, placement, and modification of these
widgets can be found in this project source code and in the examples included with the
GWT (see Using the Application Framework). Various types of panels—one of the GWT
widgets—make up the conceptual map that lays out the graphics in the interface. Panels
are included within panels, and the base panel is defined in the DGRPEntryPoint class.
DGRPEntryPoint imports a number of necessary widget classes from the
com.google.gwt.user.client package and is defined to implement the EntryPoint and

HistoryListener interfaces as shown here:
package org.dgrp.client;

import org.dgrp.client.SidebarItem.SidebarItemInfo;
import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.user.client.ui.RootPanel;
import com.google.gwt.user.client.History;

import com.google.gwt.user.client.HistoryListener;
import com.google.gwt.user.client.ui.DockPanel;
import com.google.gwt.user.client.ui.HasAlignment;
import com.google.gwt.user.client.ui.HTML;

import com.google.gwt.user.client.ui.VerticalPanel;

public class DGRPEntryPoint implements EntryPoint,
HistoryListener {

49

As the entry point Java class, GWT configures the web application when compiling and
building it to start the loading and display of the application from this class; all other
graphics are initiated from this class. As an implementation of HistoryListener, this class
enables browser history to work correctly with the AJAX application. The class then
creates a number of object instances and defines the onHistoryChanged() function

according to the HistoryListener interface:

public DGRPEntryPoint () {

}
protected Sidebar list = new Sidebar();
private SidebarItemInfo curInfo;
private SidebarItem curltem;
private HTML description = new HTML():;
private DockPanel panel = new DockPanel();
private DockPanel mainPanel;

public void onHistoryChanged(String token) {
SidebarIitemInfo info = list.find(token);
if {(info == null) {
showInfo ();
return;

}

show(info, false);
}

The next method defined, onModuleLoad(), is responsible for the layout of the panels on
the browser that make up the graphical interface. Since this is in the entry point Java
class, this method is called almost immediately when a user points the browser to the web
application's URL. Utilizing this method and the others called from it, the client-side

code lays out an interface that looks like that in Figure 5.

50

phical Router Project

ADD HEADER HERE...

Welcome to the DTrace Graphical Router Project...

Version Inf

About

HeAR

Figure 5. Basic Interface Layout

This is an example of the layout created by the entry point Java class.

The first step in this process is adding items to the Sidebar object named list. This occurs

in the following method call:

51

loadSidebarItems () ;

This method is defined as follows:

protected void loadSidebarItems() {
list.addItem(Welcome.init ());
list.addItem(Analysis.init (});
list.addItem(Settings.init ());
list.addItem(Version.init ());
list.addItem(About.init ());

}

These addltem() method calls create instances of each of the classes shown: Welcome,
Analysis, Settings, Version, and About—all of which are extensions of the abstract
Sidebarltem class. This is responsible for creating the links in the left-hand side of the
interface shown in Figure 5. The next several lines of code create other panels, set their

styles, and add them in the appropriate order:

mainPanel = new DockPanel () ;
mainPanel.setStyleName ("dgrp-MainPanel") ;

VerticalPanel vp = new VerticalPanel();
vp.setWidth ("100%");
vp.add(description);

vp.add (mainPanel) ;

description.setStyleName ("dgrp-Heading") ;

panel.add(list, DockPanel.WEST);
panel.add(vp, DockPanel.CENTER);

panel.setCellVerticalAlignment (list, HasAlignment.ALIGN TOP);
panel.setCellWidth(vp, "100%");
panel.setCellHeight (vp, "100%");

History.addHistoryListener (this);
RootPanel.get () .add(panel);

Each call to setStyleName() assigns one of the Cascading Style Sheets (CSS) styles

included in the project to the object. Working essentially backwards through the other

lines, the main DockPanel widget, panel, is added to GWT's default RootPanel; panel

52

includes the sidebar menu object, list, on the left and a VerticalPanel, vp, which in turn
includes an HTML object, description, at the top and then mainPanel beneath that. In
Figure 5, description can be seen as the space containing the text, “Welcome to the
DTrace Graphical Router Project...,” while mainPanel contains the repeat of that
welcome with the additional text, “Click a link to the left to continue....” By clicking a
link in the sidebar, the user invokes the next method defined in this class—show(). The
show() method quite simply tells the sidebar object to highlight the selected choice,
updates the text in description, removes the current widget from mainPanel, and loads

the selected item into mainPanel instead. The code for this is relatively straightforward:

public void show(SidebarItemInfo info, boolean affectHistory) ({
if (info == curInfo) {
return;

}

curInfo = info;

if (curlItem != null) {
curItem.onHide () ;
mainPanel.remove (curltem) ;

}

curltem = info.getInstance();
list.setItemSelection(info.getName ());
description.setHTML (info.getDescription());

if (affectHistory) {
History.newIltem(info.getName ());

}

mainPanel.add (curItem, DockPanel.CENTER);
mainPanel.setCellWidth (curItem, "100%");
mainPanel.setCellHeight (curItem, "100%");
mainPanel.setCellVerticalAlignment (curItem,

DockPanel.ALIGN TOP);
curItem.onShow () ;

}

Given the explanation of DGRPEntryPoint and the source code available in the

53

appendices, the reader should be well-equipped to understand the Sidebar, Sidebarltem,
About, Welcome, and Settings classes as well.

Two other classes in the org.dgrp.client package, AnalysisMenu and ImagePanel,
are also similar to the classes just discussed. They involve code primarily responsible for
the creation, layout, and modification of widgets, though there are a couple of things in
each worth special mention here. First, AnalysisMenu creates a menu of choices for the
user when the 4nalysis sidebar options is clicked. The menu is like that in Figure 6, and
each selection in the menu corresponds to a command that triggers other code to execute.
An example of a command that presents the user with an informational window warning

that the selected feature is not yet implemented is shown in the following code:

Command notSupported = new Command () {
public void execute() {
Window.alert ("This feature is not yet supported.");
}
}:

By passing this Command object as a parameter in the creation of a Menultem, as in

menu_general int status = new Menultem(notsup +
"Interface Status", true, notSupported);

an option in the menu is created that will execute the notSupported command when
selected. Similar to the AnalsysiMenu class, ImagePanel is used by the Analysis class
when it is selected in the sidebar. ImagePanel controls the layout of a number of other

graphics used by the Analysis class—several of which can be seen in Figure 7.

54

Uss the Menu Below to Select Available Analysis Festures...

freniraf fon LR BBE dbad My fge 1P P @ireless LLGENE

E ik ot i

@ Hleale it af dime

Figure 6. Application Interface Analysis Menu

The AnalysisMenu class creates a menu of choices during analysis.

ImagePanel also provides a number of methods that allow other code to control the
visibility of or otherwise edit the graphics in this clasé. For example, the following
method, hideLaptop(), is used to hide the laptop graphics seen in Figure 7:

public void hidelaptop (int position) {
switch (position) {

case 0:
laptop0.setUrl ("images/placeholder.png”);
laptop0O.setWidth ("131px");
laptop0O.setHeight ("104px");
laptop0.setStyleName ("dgrp~Images—-Image")
break;

case 1:
laptopl.setUrl ("images/placeholder.png");
laptopl.setWidth ("131px");
laptopl.setHeight ("104px") ;
laptopl.setStyleName ("dgrp-Images-Image")
break;

case 2:
laptop2.setUrl ("images/placeholder.png");

~e

~

55

laptop2.setWidth ("131px");
laptop2.setHeight ("104px");
laptop2.setStyleName ("dgrp-Images~Image") ;
break;

case 3:
laptop3.setUrl ("images/placeholder.png") ;
laptop3.setWidth ("131px");
laptop3.setHeight ("104px");
laptop3.setStyleName ("dgrp-Images-Image");
break;

default:
break; //ignore others for now

Welcann:

Anstosls

ol

Fzgure&Z Graphics Controlled by the ImagePanél Class

The ImagePanel class provides controls for many of the graphics used by the Analysis
class.

The rest of the code in AnalysisMenu and ImagePanel should be understandable given the
detailed description of DGRPEntryPoint and the complete source code in the appendices.

Of the remaining classes in org.dgrp.client, three are simple and should be

56

http://laptop3.se

understood by the reader without any special explanation: Topologylnfo objects are used
to determine the placement and keep track of which IP addresses appear on the analysis
graphics (where the “IP Address Placeholder” text appears in Figure 7); VersionContents
contains a number of public string objects that are used to pass information regarding
software versions from the server to the client when the Version link is chosen from the
sidebar; and Bandwidthinfo objects are used to communicate how much available
bandwidth is being used by a given connection. The remaining classes in this package
either directly utilize or are a necessary part of Remote Procedure Calls and will thus be

described in the next section.

RPCs: Tying the Front and Back Ends Together

Much has been discussed in the previous sections about creating DTrace scripts,
utilizing those scripts from server-side Java code, and creating the client-side graphical
interface, but the real power of this software comes from the tying together of these
pieces: By enabling the front-end code to get information from the back-end code and
act accordingly, the web application is enabled to provide useful and current information.
This is achieved through Remote Procedure Calls; see Figure 8. Two of the sidebar
choices not yet discussed—Version and Analysis—will be described in detail here along
with the corresponding RPCs through which each class is able to get useful information

from the server-side code.

57

Network

~ RPCMethod Call
- Asynchronous
 Nonglockng

__RPC Method Return

Figure 8. RPCs

RPCs provide a way of allowing code interaction between the client-side code and the
server-side code through asynchronous method calls.

As the simpler example, the Version class will be described first. The goal of the
Version link in the interface sidebar is simple: Provide the user with version information
relevant to this web application. Of course, much of the relevant software is outside the
control of this web application, so its versions must be retrieved from the server (i.e.,
router). In the code, like other Sidebarltem classes, necessary package and import

statements are included, and an init() function is defined:

package org.dgrp.client;

import com.google.gwt.user.client.ui.HTML;

import com.google.gwt.core.client.GHWT;

import com.google.gwt.user.client.rpc.AsyncCallback;
import com.google.gwt.user.client.rpc.ServiceDefTarget;

public class Version extends SidebarItem {
private HTML verInfo = new HTML (

"<div class='dgrp-About-Prose'>" +
"Retrieving version information from the server..." +

58

"</diV>",
true);

public static SidebarItemInfo init() {
return new SidebarItemInfo("Version Info",
"Version Information for the DTrace Graphical Router
Project...") {
public SidebarItem createlInstance() {
return new Version{();
}
}i
}

As seen, a placeholder HTML object is also created and used in the constructor to display
an initial message to the user—as seen here:

public Version() {
initWidget (verInfo);

The constructor then creates an asynchronous callback object; this will be used to react to
the return of the RPC once it is made. It is important to remember that the GWT RPC
implementation is asynchronous, thus when an RPC call is made, the code continues to
execute without blocking until the RPC returns—at which point the code in the callback
object will be executed according to the success (execute onSuccess()) or failure (execute
onFailure()) of the RPC. In the case of Version, onSuccess() is defined to update the
HTML object with the version information returned from the server—as seen partially

here:

final AsyncCallback callback = new AsyncCallback() {
public void onSuccess (Object result) {

VersionContents verResults = (VersionContents) result;

verInfo.set HTML (

59

}

public void onFailure (Throwable caught) {
verInfo.setHTML (
"<div class='dgrp-About-Prose'>" +
"Failed to retrieve version information from the ™ +
“server.</div>"

In the case of an RPC failure, the HTML object is updated to display an appropriate
failure message. The result of a successful RPC call can be seen in Figure 9. Following
the definition of the callback object, the RPC call can actually be made—as in the
following method call

getService () .getVersionInfo (callback) ;

where getService() is defined as

public static GetVersionInfoAsync getService () {

GetVersionInfoAsync service = (GetVersionInfoAsync)
GWT.create (GetVersionInfo.class);
ServiceDefTarget endpoint = (ServiceDefTarget) service;

String moduleRelativeURL = GWT.getModuleBaseURL() +
"getversioninfo";

endpoint.setServiceEntryPoint (moduleRelativeURL) ;

return service;

}

This method refers to the GWT-prescribed configuration of this RPC as a servlet in the

web application's web.xml file—as seen here:

<servlet>
<servlet-name>GetVersionInfo</servlet-name>
<servlet-class>
org.dgrp.server.GetVersionInfolmpl
</servlet-class>
</servlet>
<servlet-mapping>
<servlet-name>GetVersionInfo</servlet-name>
<url-pattern>
/org.dgrp.DTraceGraphicalRouterProject/getversioninfo

60

</url-pattern>
</servlet-mapping>

One last useful point that can taken from the Version class is seen in the following
method:

public static native String getBrowserInfo() /*-{
return $wnd.navigator.userAgent;

Y=*/;
This method shows an example of how raw JavaScript can be used from within client-
side GWT code. The exact syntax is required, but this makes it possible to do things with
JavaScript that the GWT cannot do, though the need for this was quite sparse in the
course of this project iteration.

For the RPC in the Version class to work correctly, two other classes must also be
defined. Recall that the RPC called the method getVersionlnfo(). This prototype for this

method is in the class, GetVersionInfo—as seen in the code here:

package org.dgrp.client;
import com.google.gwt.user.client.rpc.RemoteService;

public interface GetVersionInfo extends RemoteService({
public VersionContents getVersionInfo():

}

According to the GWT RPC implementation, another—almost identical—class must also

be defined: In this case, that class is GetVersionInfoAsync:

package org.dgrp.client;
import com.google.gwt.user.client.rpc.AsyncCallback;

public interface GetVersionInfoAsync {
public void getVersionInfo(AsyncCallback callback);
}

Finally, the actual implementation of the getVersionInfo() method is defined in the class
GetVersionInfolmpl in the server-side package org.dgrp.server. For a discussion of this

61

class, refer to the The Back End: Other Server-Side Code section (p. 42). So, in order for
the Version class to use an RPC, an asynchronous callback object must be created and
passed to the RPC call—which uses a servlet configured in web.xml to call a method
prototyped in GetVersionInfo and GetVersionInfoAsync and actually implemented in the
server-side class GetVersionInfolmpl. Note that these names were not arbitrary but were
chosen according to the requirements of the GWT RPC (Remote Procedure Calls, 2008).
Note also that the GWT4NB plugin to the NetBeans IDE automatically configures the
web.xml file and creates templates for the necessary Java classes—both on the client and
server side—greatly simplifying the creation of RPCs.

The RPC used by the Analysis class is very similar in concept to that used by the
Version class, though the interface classes highlight one important point—that a single
RPC implementation can accommodate multiple method definitions—as seen here from

the BandwidthMonitor and BandwidthMonitorImpl interfaces:

public interface BandwidthMonitor extends RemoteService({
public void startServiceCountPackets(String s);
public void startServiceCountDataBytes (String s);
public void stopServiceCountPackets();
public void stopServiceCountDataBytes();
public BandwidthInfo getBandwidthInUse (String s);
public BandwidthInfo getRandomBandwidthInUse (String s);
public String[] getRefreshedIPs();

62

Project

Welvaimne
Analysis

Settings

Ahuout

-

Figz;;e 9. Results of a Successful Version RPC

In the Version class, a successful RPC return provides version information from the
server.

public interface BandwidthMonitorAsync {
public void startServiceCountPackets(String s, AsyncCallback
asyncCallback);
public void startServiceCountDataBytes (String s, AsyncCallback
asyncCallback) ;

public void stopServiceCountPackets (AsyncCallback
asyncCallback) ;

public void stopServiceCountDataBytes (AsyncCallback
asyncCallback);

public void getBandwidthInUse (String s, AsyncCallback

63

callback);
public void getRandomBandwidthInUse(String s, AsyncCallback

callback) ;
public void getRefreshedIPs (AsyncCallback callback);

}

The implementation of these methods in the BandwidthMonitorImpl class in
org.dgrp.server has already been described in the The Back End: Other Server-Side
Code section (p. 42). Outside of the use of these RPCs in the Analysis class—which the
reader can now undoubtedly understand by reviewing the full source code in the
appendices, a few other parts of the class are worth describing here.

First, GWT's Timer class is used to make RPC calls on a regular and repeated

interval-—as seen here:

bwMonitorService.getRefreshedIPs (ipCallback) ;
Timer ipRefresh = new Timer() {
public void run() {
bwMonitorService.getRefreshedIPs (ipCallback) ;

}
s
ipRefresh.scheduleRepeating (10000) ;

In this code, the RPC getRefreshedIPs() is called once, and a timer is then created which
will trigger the same RPC to be called again every 10,000 milliseconds—or 10 seconds.
The definition of the ipCallback parameter describes what this client-side code will do

with the result of this RPC:

final AsyncCallback ipCallback = new AsyncCallback() {
public void onSuccess (Object result) {
processIPUpdates (result);

}
public void onFailure (Throwable caught) {

//ignore for now
}
b

Looking then to the definition of the processIPUpdates() function,

64

private void processIPUpdates (Object result)
String[] newAddrs = (String[}) result;
for (int i=0; i<MAX NODES; i++) {
imgPanel.hidelaptop(i);
imgPanel.hideLaptopPipe(i);
imgPanel.setLaptopIPAddrLabel (i, null);
}
topolInfo = new TopologyInfo(MAX NODES);
for (int i=0; i<newAddrs.length; i++) {
try {
topoInfo.setAddress (i, newAddrs[i]):
imgPanel.setLaptopIPAddrlLabel (i, newAddrs[i]);
imgPanel.showlLaptop (i) ;
} catch (Exception e) {
//ignore for now

1
}

it can be seen that the graphical interface is updated once every 10 seconds to show
laptop graphics on imgPanel—up to a maximum number (MAX NODES)—and to
display an IP address label for each each laptop graphic according to the array of strings
that is returned by the server-side RPC code for getRefreshedIPs(). Similarly, the

following code shows a once-per-second update to the pipe graphics displayed for each

laptop:
Timer pipeUpdate = new Timer () ({
public void run() {
for (int i=0; i<=topoInfo.getMaxNodes(); i++) {
if (! (topoInfo.getAddress (i) .equals(null))) {

bwMonitorService.getBandwidthInUse (
topoInfo.getAddress (i), pipeCallback):;

}
b
pipeUpdate.scheduleRepeating (1000);

final AsyncCallback pipeCallback = new AsyncCallback() {
public void onSuccess (Object result) {
processPipeUpdates (result);

}

65

public void onFailure (Throwable caught) {
//ignore for now

}
}:

private void processPipeUpdates (Object result) (
BandwidthInfo bwInfo = (BandwidthInfo) result;
try |
imgPanel.showLaptopPipe (topoInfo.findPosition (
bwInfo.getIPAddress()), bwInfo.getBandwidthInUse()):;
} catch (Exception e) {
//skip addresses not currently tracked

}
}

With this explénation of the Version and Analysis classes, it should be clear to the reader
how client-side code can interact with server-side code via RPCs to retrieve information
and act accordingly. With all of these pieces together, the final step in implementation is
actually creating and deploying the complete web application—which is discussed in the

following section.

Deploying the Complete Web Application

With all of the pieces discussed in this and the previous chapters in place, a few
final things are necessary to bring them all together in a complete web application. Note
that—where noted—the NetBeans IDE provided the author a simplified process that may
be more complicated in a different development environment. These items are provided

in the following list in no particular order:

1. To version-control the web application, code was added to the build xml file in the

NetBeans project directory:

66

<target
<b

<p

</

name="-pre-dist">

uildnumber file="buildnumber.properties"/>

ropertyfile file="appinfo.properties”
comment="Everything can be manually updated except
buildnum and builddate.">

<entry key="program.PROGNAME" default="${main.class}" />

<entry key="program.AUTHOR" default="" />

<entry key="program.COMPANY" default="" />

<entry key="program.COPYRIGHT" default="now" type="date"
pattern="yyyy" />

<entry key="program.DESCRIPTION" default="" />

<entry key="program.VERSION" default="1.0.0" />

<entry key="program.BUILDNUM" value="${build.number}" />

<entry key="program.BUILDDATE" type="date" value="now"
pattern="EEEEE, MMMMM dd, yyyy, hh:mm:ss a z" />

propertyfile>

<copy file="appinfo.properties"

todir="${build.classes.dir}"/>

</target>

A new file, appinfo.properties, was also created in the same directory:

program.
program,
program.
program,
program.
program.
program.
program.

With this

PROGNAME=The DTrace Graphical Router Project

BUILDNUM=22

AUTHOR=Chris Nelson

BUILDDATE=Tuesday, September 16, 2008, 07\:49\:55 PM PDT
DESCRIPTION=See the About page in the web application.
COPYRIGHT=2008

VERSION=0.9.0

COMPANY=San Jose State University

in place, the program. BUILDNUM and program.BUILDDATE

properties are updated automatically with each build of the web application

(HOWTO: use ANT with JAVA to dynamically create build numbers, 2007).

An index jsp file is included in the web application and is the default page loaded

when a user points a browser to the web application root address. This page

includes only a simple HypterText Markup Language (HTML) header, a pointer

to the web application's CSS file, and the necessary JavaScript entry to load the

67

GWT AJAX code:

<script language="javascript" src="org.dgrp.DTraceGraphicalRouter
Project/org.dgrp.DIraceGraphicalRouterProject.nocache.js">
</script>

All of the images used in the web application are included in an images directory.

Code run by a web application served by Apache Tomcat's web server on the
Solaris operating system executes as user nobody by default. Because of the
detail of information that DTrace can provide, Solaris—by default—only allows
the root super-user to utilize the full set of DTrace probes. To give user nobody
permission to use all of DTrace's functionality, the following line was added to the

file /etc/user_attr:

nobody: :::defaultpriv=basic,dtrace kernel

. NetBeans provides the ability to build and package a web application into a Java
Archive .war file that can be immediately deployed on a web server. The author

used this function regularly.

In the author's opinion, the simplest way to deploy a pre-packaged .war file
containing a web application on an Apache Tomcat web server is through the
Tomcat Web Application Manager interface; see Figure 10. If the edits in the

Configuring the Web Server section (p. 22) were made, this interface can be

68

loaded in a web browser at http://<server IP address>/manager/html. The .war
file can be directly uploaded from that interface and will automatically be
deployed. In the case of this project, the DGRP web application can then be
accessed at http://<router IP address>/DTraceGraphicalRouterProject. There are a

couple of possible sub-steps necessary in this process:

a. The directory /var/apache/tomcat/webapps—where the .war file will be placed
during deployment—may not allow writing of files by default, so write

permissions may need to be added before uploading a .war file.

b. Tomcat 5.5.26, the version included in OpenSolaris SXCE build 94, is missing
a library, commons-io, in the directory
/usr/apache/tomcat/server/webapps/manager/WEB-INF/lib. This is fixed in -
future versions, but for this iteration, it was necessary to obtain a copy of that
library, place it in the specified directory, and restart the apache daemon to

enable uploading a .war file for deployment.

c. In order to use the DTrace library from a web application, it is necessary to
add the appropriate path to Java's library path. The following series of
commands stops the apache daemon, sets an environmental variable

appropriately, and restarts the daemon so that it can access the DTrace library

69

http://%3cserver
http://%3crouter

as needed:
/etc/rc3.d/S50apache stop

export JAVA OPTS=-Djava.library.path=/usr/lib
/etc/rc3.d/S50apache start

70

¥ wanager - Mozilla Firefox

Software Foundation

http://www.apache.org/

Tomcat Web Application Manager

Context Path {optional):
XML Configuration fle URL: |
WAR or Directory URL: |

Selact WAR file to upload |

. T 4 by i s G ‘ R
Figure 10. Tomcat Web Application Manager

The Tomcat Web Application Manager allows for simple deployment and management of
web applications.

71

http://www.apache.org/

VI. TESTING

The purpose of testing in the development of this framework and its reference
implementation is to ensure that the design proposed here does indeed work—that a web
application can dynamically provide network information via remote procedure calls
from a router utilizing DTrace to collect this data. During this development, two forms of
testing have been performed: The first used a virtual installation of the OpenSolaris
operating system sending and receiving network traffic through virtual network interfaces
to virtual interfaces on the host operating system; the second used real hardware with
other systems physically connected via real network interfaces. These two forms of
testing are discussed in this chapter. For each form of testing, one important assumption
is made: The accuracy of DTrace is already proven and is thus out of scope for this
testing, so these tests will not attempt to validate the data shown in the browser interface

by comparing it to what could be captured by independent network analyzers.

Testing on a Virtual System

Virtualization technology has seen rapid improvement in recent years, and
software from companies like VMWare and others now offers stable and generally very
usable methods by which one or more “guest operating systems” can exist on a “host

operating system.” The virtualization software makes it appear to the guest OS that it is

72

actually running native on the system hardware—but without requiring a true installation
of the OS onto the system memory (e.g., hard drive) in place of the original OS. One of
these virtualization software programs is VirtualBox, an open-source software distributed
by Sun Microsystems (VirtualBox, 2008). VirtualBox offers the capability to run a large
variety of guest operating systems on many different host operating systems. For the
purpose of this project, the author was able to utilize VirtualBox to install OpenSolaris as
a guest operating system on a laptop running Microsoft Windows XP as the host OS.

The installation of VirtualBox itself is simple and follows the pattern of most
software application installations. Complete installation and user-guide instructions are
available on the VirtualBox download web site (Download VirtualBox, 2008). Once
VirtualBox was installed, the addition of OpenSolaris as a guest operating system was
also quite straightforward. The author downloaded a single DVD disc image (in .iso
format) of OpenSolaris (build nv_96) from the OpenSolaris download web site
(OpenSolaris Download Center, 2008), mounted it as a virtual DVD-ROM for the
OpenSolaris guest OS in VirtualBox, and “powered on” the OpenSolaris OS to begin
installation just as if a real DVD had been inserted into real hardware. For additional
information about the OpenSolaris installation process, refer to the Installing and
Configuring the Operating System section (p. 16) in Chapter IV. Platform Preparation.
Two important notes should be made about the setup of OpenSolaris in VirtualBox on the
author's development laptop. First, although the VirtualBox documentation indicated that

OpenSolaris should function with only 512MB of system memory allocated for it, the

73

author found that the installation failed unless 1GB of system memory was allocated,;
second, the author also installed the “Solaris guest additions” provided with the
VirtualBox software for making the transition between host and guest operating systems
more seamless (for the mouse and keyboard, etc.) during development and testing. After
the installation was complete, configuration and the deployment of the web application
followed the steps outlined in the following sections from Chapter IV. Platform
Preparation and Chapter V. Implementation with the additions to be described:

1. Installing and Configuring the Operating System (p. 16)

2. Installing and Configuring the Routing Software (p. 20)

3. Installing and Configuring the Web Server (p. 22)

4. Deploying the Complete Web Application (p. 66)
The additions to this process included the special configuration of virtual network
interfaces on the host and guest operating systems. The VirtualBox software provides
this functionality. The author first created four virtual interfaces on the host (Windows

XP) OS using the following commands in a console:

vboxmanage createhostif “VirtualBox ifl”
vboxmanage createhostif “VirtualBox if2”
vboxmanage createhostif “VirtualBox if3”
vboxmanage createhostif “VirtualBox if4”

Next, each interface was assigned an IP address on a different subnet:

VirtualBox ifl: 10.0.0.50 (netmask: 255.255.255.0)
VirtualBox if2: 10.0.1.50 (netmask 255.255.255.0)
VirtualBox if3: 10.0.2.50 (netmask 255.255.255.0)
VirtualBox if4: 10.0.3.50 (netmask 255.255.255.0)

Then, in the VirtualBox settings for the guest OS, four virtual interfaces were created for

74

the the guest OS, and each was paired with one of the virtual interfaces on the host OS—
as shown in Figure 11. After powering on the OpenSolaris guest OS, each interface was

assigned an IP address on the same subnet as its paired interface:

ifconfig e1000g0 plumb; ifconfig e1000g0 10.0.0.1 netmask
255.255.255.0 up

ifconfig e1000gl plumb; ifconfig e1000g0 10.0.1.1 netmask
255.255.255.0 up

ifconfig e€1000g2 plumb; ifconfig e1000g0 10.0.2.1 netmask
255.255.255.0 up

ifconfig €1000g3 plumb; ifconfig €1000g0 10.0.3.1 netmask
255.255.255.0 up

In this configuration, the guest OS has four virtual physical ports—each configured on a
different subnet, and there is exactly one other system active on each subnet—the
corresponding virtual port on the host OS.

With everything set up, some simple tests were performed. First, the author
verified that the simple features worked. The following several screen shots in Figures
12, 13, 14, and 15 show the output as expected from all of the screens except for

Analysis.

75

General

Hard Disks

£B Serial Ports

& uss

ﬂ Shared Folders
Remote Display

Figure 11. Creating Virtual Network Interfaces

VirtualBox allows the creating of virtual network interfaces on both the host and guest
operating systems and the pairing of them to allow network traffic between the two.

76

The DTrace Graphical Router Project - Mozilla Firefox

THE DTRACE GRAPHICAL ROUTER PROJECT

Chris Nelson
San Jose State University

Welcome to the DTrace Graphical Router Project...
Analysis (e , e
tings
Version Infl

Ahout

igur'e>12. DGRP Welcome Srh

77

THE DTRACE GRAPHICAL ROUTER PROJECT

Chris Nelson
San Jose State University

Settingg.
Vearsion Info

Ahout

Fiure 13. DGRP Séiings Screen

78

http://10.0

The DTrace Graphical Router Project - Mozilla Firefor

About

Figure 14. DGRP Version Screen

79

JThe DTrace Graphical Router Project - Mozilla Firefox

st O
n Jose State Uiiversity

Analysis
Settings

1 ! 13 S ‘ 3 3
Figure 15. DGRP About Screen

80

With these basic functions proven working, the author moved on to the Analysis
page. By just loading the DGRP web application and performing no extra tasks, one
should see some activity: The expected activity would include just basic ARP traffic on
three of the subnets and some additional traffic on the subnet over which the RPC calls
are occurring for the web application itself. In fact, this is exactly what was seen. Figure
16 is a snapshot of the minimal traffic observed with the Solaris snoop command on the
10.0.3.0 subnet, and Figure 17 shows the output on the DGRP Analysis screen (with the

IP packet and data byte features turned on).

| File Edit Wi B Tabs
inet 16.8.1.1 netmask ffffffe@ broadcast 18.8.1.255
ether 8:€:27:d6:25:dd

elebegl: flags=201000843<UP,BROADCAST, RUNNING ,MULTICAST,IPv4,CoS> mtu 1506 index 4
inet 16.8.2.1 netmask ffffffee broadcast 16.6.2.255

: ether 8:0:27:¢7:99:ff

e10008g3: flags=261608843<UP,BROADCAST, RUNNING ,MULTICAST,IPv4,CoS> mtu 15668 index 5
inet 10.8.3.1 netmask ffffffee broadcast 18.6.3.255

L ether 8:0:27:23:6e:db

Hlo8: flags=2082000849<UP,LOOPBACK, RUNNING, MULTICAST,IPv6, VIRTUAL> mtu 8252 index 1

: inet6 ::1/128

Invas-vbox$ ifconfig 100898 down; sleep 1; ifconfig ele0ege up

nv96-vbox$ snoop -d el@88g3
Using device elBe9g3 (promiscuous mode)
: ~-» 18.6.3.255 NBT Datagram Service Type=17 Source=US-CHRISNE-81{26]
inv96-vbox-g3 -> (broadcast) ARP C Who is 18.6.3.1, nv96-vbox-g3 ?
: 10.9.3.56 -> 19.8.3.255 NBT NS Query Request for USMPSTVMBE1[B]}, Success
-» 18.6.3.255 NBT NS Query Request for USMPSTVMBE1[@], Success
-»> 18.8.3.255 NBT NS Query Request for USMPSTVMES1[8], Success
-> (broadcast) ARP C whe is 16.8.3.1, nv96-vbox-g3 ?

ol

Figure 1 6 Snoop Cépturé

Solaris's snoop command can capture traffic received on an interface.

81

Fzgure 17. DGRP Analyszs Screen

DGRP's Analysis screen shows network information from the busiest nodes on the
connected subnets.

With this confirmation of functionality in place, though the software running on the
virtual OpenSolaris system is exactly the same as that running on a real piece of

hardware, the author turned his attention to repeating these tests on real hardware.

Testing on a Real System
The setup for testing on real hardware was very similar to that of the virtual

hardware. OpenSolaris nv_96 was installed on a simple x86 server, and the same

82

configuration steps—minus the setup of virtual interfaces—as used in the virtual testing
were followed. The OpenSolaris system had one physical interface—which was
configured with IP address 10.4.32.184. The network to which the OpenSolaris system
was attached was very large and active, but the 10.4.32.0 subnet was kept relatively quiet
during this testing to allow for the observation of expected network traffic. Figure 18
shows the DGRP Analysis screen as it observed normal network activity. The author's
laptop was connected to the network using IP address 129.150.192.18—as seen in Figure
19—and was running the DGRP application in a browser; this correlated with the laptop's
IP address showing as the most active system on the DGRP application.

To validate the dynamic updating of the web application—including the
reordering of the systems shown according to how busy they are, the author copied two
large files from another system on the network (assigned IP address 10.4.32.180) to the
router. As expected, the screen updated with the now-busiest system showing in the far-
left position and the author's laptop in the second-to-the-left position—as shown in
Figure 20.

Finally, to validate the data shown in the browser interface with that of a typical
DTrace script, the author refreshed the web application (to reset the counters) and—as
close to simultaneously as possible—started the equivalent DTrace script in a console
window to observe if the counters would match. As seen in Figure 21 and Figure 22, the
counters for the relatively quiet systems do indeed match, and the slight difference in the

data for the busiest system (the author's laptop) can easily be accounted for in the

83

difference of start and stop time in the browser and script tests.

To conclude, simple testing—both on virtual and real hardware—shows that the
reference implementation of this framework does indeed correctly utilize DTrace to
capture information about the network traffic processed by the OpenSolaris router and
display it in a graphical interface for the user. In future iteration of this project, as the
number of features built on this framework grows larger, a more structured test plan
should be developed and executed to ensure bugs in the user interface or data processing

logic are identified and fixed.

Chrg ot

FUVERIE b

Figure 18. DGRP On Real Hardware

The author's laptop—running the DGRP web application—was the most active system on
the network under normal conditions.

84

nmand Prompt

Ik . {

Fgure 19. Test Laptop IP Address

The author's laptop was assigned IP address 129.150.192.18 during the testing.

85

Use the Manu Below to Seiect Avaliabis Analysis Festures...

el EEOEHL TES Y

A

The DGRP web application reorders the systems according to how busy each is—
assuming that the busiest systems are those of most interest to the users.

86

ay.sun.com - Py

gur 21. DTrace Script Output

Bpical DTrace scripts are run in a console.

87

Lise the Manu Below te Select Availakle Analysis Festures...

IS e FEGEHD TEST

Figur:é 22. JDGRPAryt\alysis Matches DTrace Scripts‘

The DGRP application relies on DTrace scripts in the background, and the data
displayed in the browser interface matches that of a typical script on a console.

88

VII. SUGGESTIONS FOR FUTURE DEVELOPMENT

While significant work has been completed in the development of this framework
and the reference implementation provided in this iteration of this project, the long-term
goals has not yet been realized: Integrating the type of tool discussed in this paper into a
true home-network router like those sold to consumers today will require some additional
work. The major remaining pieces of work are discussed in the following sections; some
are dependent upon each other, and some present an implementation choice that must be

made work in that area continues.

OpenSolaris on MIPS

Porting the OpenSolaris operating system to the MIPS architecture would enable
the use of DTrace on the hardware platforms already in use in today's home-network
routers. This type of port is obviously non-trivial, but some support already exists for the
idea within the open-source OpenSolaris community (MIPS port of opensolaris, 2005).
Significant positive aspects of this port exist: The full functionality of DTrace would be
available, and the full framework and reference implementation developed for this project
would be directly applicable and immediately usable. However, the negative parts
include the amount of work required not only to port Solaris to MIPS but to reduce the

memory footprint to a size appropriate for the typically small memory sizes available in

89

common home-network routers; in addition, the management interface functionality that

already exists for Linux on today's routers would need to be either ported or re-developed
(or at least recompiled) for Solaris as well. The effort to port OpenSolaris to MIPS would
probably be a good fit for a small group of computer Engineering graduate students—as a

knowledge of both hardware architecture and its interaction with software is required.

Wireless Support on OpenSolaris

As discussed earlier in this document, the support for wireless networking on
OpenSolaris is immature at best. Yet even with a small number of wireless chipsets
supported, this application could work in a wireless setting using OpenSolaris—save for
one missing piece of functionality: Code must be written to allow OpenSolaris to act as a
wireless access point. Today's common home-network routers actually server a number
of roles: They are routers, gateways, and wireless access points—at least. At the outset
of developing this framework, the author was unable to find any software available for
using a Solaris system as a wireless access point, so that functionality would need to be
developed by—Tlikely—a pair of software or computer engineering graduate students in

order to make OpenSolaris a truly viable option for the long-term solution.

DTrace in Linux
The choice to develop DTrace for Linux is really the second of two options—the

first of which is the porting of OpenSolaris to the MIPS architecture. While OpenSolaris

90

on MIPS provides the ability to use DTrace and this framework on the hardware platform
in use by today's home-network routers, adding DTrace to Linux would enable the use of
DTrace and this framework on both the hardware platform and operating system of
today's routers. On the positive side, all of the work to get the operating system working
on the hardware platform (including wireless support) is already complete, and this
framework—and even the code from the reference implementation—would be quite easy
to use in the Linux OS. The downside to this choice is the non-trivial effort required to
implement DTrace in (at least) the Linux kernel and to develop the Java DTrace library
for Linux necessary for the server-side code to utilize DTrace after it is implemented.
Since both the DTrace implementation in OpenSolaris and the Java DTrace library are
open-source, there is plenty of reference code available for this effort. Still, this task
would probably be appropriate for a small group of computer and software Engineering

graduate students.

Cleaning Up the User Interface

The team behind the Google Web Toolkit makes a true statement about the
development of user interfaces: “As developers, we tend to be more interested in elegant
algorithms and clever optimizations, but remember that the user's opinion of our
application will be formed almost entirely on the interface's appearance and how well it
works. Don't neglect it! (4dd Styling, 2008, last para.).” Indeed, during the course of

developing this framework and its reference implementation, the author placed relatively

91

little emphasis on the appearance of the graphical interface. Significant improvements
could be made to it through the judicious modification of the cascading style sheet, the
use of better clip art images, the rearrangement or integration of additional GWT widgets
or even those from add-on GWT widget libraries like those from the GWT Widget
Library project (GWT Widget Library, 2008) or GWT-Ext (GW1-Ext, 2008). If necessary,
the Google Web Toolkit could even be replaced by a different web application framework
that provides greater flexibility and capability for developing good-looking applications.
Note, however, that GWT provides not only the widgets and automated AJAX code
development but also the facility for Remote Procedure Calls, so choosing another web
application framework would necessitate finding other ways to provide those functions as
well. This effort is almost entirely software-related, so a single software engineer or

perhaps a pair would be appropriate for this task.

Additional Features

The reference implementation documented in this paper provides a few of the
most basic and arguable most useful data points that a tool of this nature could provide,
but an almost endless list of possibly useful features remains. A list of many potential
future features is provided in the Functional Requirements section (p. 100) of the
Requirements appendix, though future developers are encouraged to consider other ideas
as well. Development of additional features requires a firm understanding of the entire

architecture presented in this paper, so it is most likely applicable for computer

92

engineering graduate students, though software engineering students with a good

background in networking would also be appropriate for this task.

Final Integration

This effort is really the last step in achieving the goal set out in the introduction to
this project. It is dependent up on the other suggestions in this chapter—either porting
OpenSolaris to MIPS and adding wireless support or adding DTrace to Linux, improving
the user interface, and adding additional features. When these are complete, a single
graduate student—either a computer or software engineer—could pull these pieces
together to actually produce a home-network router that provides a user with a graphical
tool that utilized DTrace for analyzing his or her home-network. Depending on how well
the dependencies are completed, this final integration effort could range from somewhat
trivial to a larger amount of work; it could even potentially be combined with the

previous suggestion of developing more analysis features.

93

VIII. CONCLUSIONS AND RECOMMENDATIONS

The technology of DTrace offers a way to solve the need for simple, user-friendly
tools for home-network analysis. By collecting the detailed network traffic information
offered by DTrace and presenting it in an easy-to-understand graphical format, common
users can quickly identify and address problems in their networks without the need to
understand the many details of computer networking. The framework developed in this
project and its reference implementation provide a clear picture of how to piece together
DTrace with the other necessary technologies to make this type of easy-to-understand
graphical tool a reality.

In this project, several technologies have been pulled together to form a
framework and reference implementation for a DTrace-based graphical network analysis
tool. Because DTrace is only available at this time in the Solaris and Mac operating
systems, and because Mac OS X is not free and is only available on specific hardware,
the free, open-source OpenSolaris operating system was chosen for this implementation.
While many home-network routers use the MIPS architecture, because Solaris is not
currently available for MIPS, the x86 platform was chosen for this implementation. On
top of OpenSolaris running on x86, the Apache Tomcat web server was used, and the web
application—both client-side and server-side code—was written in the Java programming

language utilizing the Google Web Toolkit to translate the client-side code into fast

94

Asynchronous Java and XML (AJAX) code that can be executed in a browser without
reloading web pages. Asynchronous remote procedure calls (RPCs) were used to provide
the means of communication between the front-end (client-side) code executing in the
user's browser and the back-end (server-side) code executing on the router.

This framework—a client-side web application pulling data through RPCs from
server-side code utilizing Dtrace—is well defined in this document and is clearly
validated by the reference irﬁplementation also documented here. Even so, the ultimate
goal of integrating this functionality with a real home-network router (running on its
MIPS architecture and integrating into its web application management interface) has not
yet been achieved. To achieve this, there remain a few additional significant pieces of
work that must be completed. These pieces—including the porting of OpenSolaris to
MIPS or developing DTrace in the Linux kernel—may form the basis of future graduate
work that enhances what has been already completed in this project; for a complete
discussion of these pieces of suggested future development, refer to Chapter VII.
Suggested Future Development (p. 89).

In conclusion, a framework to meet the stated goal has been developed and proven
by a reference implementation, and a roadmap is provided for future development that

shows the path between this iteration and the achievement of the final goal.

95

REFERENCES
Add Styling. (2008). Retrieved September 2, 2008, from http://code.google.com/
docreader/#p=google-web-toolkit-doc-1-5&s=google-web-toolkit-
doc-1-5&t=GettingStartedStyle

Apache Tomcat 6.0. (2008). Retrieved February 2008, from http://tomcat.apache.org/
tomcat-6.0-doc/index.html

BigAdmin System Administration Portal. DTrace. (2008). Retrieved February 2008,
from http://www.sun.com/bigadmin/content/dtrace/

Building a Sample Application. (2008). Retrieved February 2008, from
http://code.google.com/webtoolkit/gettingstarted. html#Sample

Download VirtualBox. (2008). Retrieved August 17, 2008, from
http://www.virtualbox.org/wiki/Downloads

DTrace. (2007). Retrieved March 1, 2008, from http://wikis.sun.com/display/DTrace/

DTrace for FreeBSD. (2008). Retrieved April 17, 2008, from http://www.bsdcan.org/
2008/schedule/events/66.en.html

DTrace — Introduction. (2007). Retrieved March 1, 2008, from http://wikis.sun.com/
display/DTrace/Introduction

DTrace Network Providers. (2008, August 29). Retrieved September 1, 2008, from
http://opensolaris.org/os/community/dtrace/NetworkProvider/

Eclipse — an open development platform. (2008). Retrieved September 2008, from http://
www.eclipse.org/

Google Web Toolkit. (2008). Retrieved March 15, 2008, from http://code.google.com/
webtoolkit/

Gregg, B. ip Provider. (2008, July 28). Retrieved August 25, 2008, from http://
wikis.sun.com/display/DTrace/ip+provider

GWT-Ext. (2008). Retrieved September 2008, from http://gwt-ext.com/

96

http://code.google.com/
http://tomcat.apache.org/
http://www.sun.com/bigadmin/content/dtrace/
http://code.google.eom/webtoolkit/gettingstarted.html%23Sample
http://www.virtualbox.org/wiki/Downloads
http://wikis.sun.com/display/DTrace/
http://www.bsdcan.org/
http://wikis.sun.com/
http://opensolaris.org/os/community/dtrace/NetworkProvider/
http://
http://www.eclipse.org/
http://code.google.com/
http://
http://gwt-ext.com/

GWT Widget Library. (2008). Retrieved September 2008, from http://sourceforge.net/
projects/gwt-widget

gwt4nb Project Home. (n.d.). Retrieved March 2008, from https://gwtdnb.dev.java.net/

Home Gateway Initiative. (2007). Retrieved April 17, 2008, from http://
www.homegatewayinitiative.org/publis/HGI2007%20flyer.pdf

Home Gateway Initiative — Vision. (2007). Retrieved April 17, 2008, from http://
www.homegatewayinitiative.org/public/docs/HGI_white paper.pdf

HOWTO: use ANT with JAVA to dynamically create build numbers. (2007, April 16).
Retrieved March 2008, from http://stoken-tips-and-tricks.blogspot.com/
2007/04/howto-use-ant-with-java-to-dynamically.html

Java DTrace API. (2007, May 27). Retrieved May 15, 2008, from http://
opensolaris.org/os/project/dtrace-chime/java_dtrace api

Leventhal, A. Mac OS X and the missing probes. (2008, January 18). Retrieved April 17,
2008, from http://blogs.sun.com/ahl/entry/mac_os_x_and_the

List of web application frameworks. (2008). Retrieved March 2008, from
http://en.wikipedia.org/wiki/List of web_application frameworks

MIPS port of opensolaris. (2005, December 3). Retrieved May 2, 2008, from http://
opensolaris.org/jive/thread.jspa?messageID=51805

NetBeans. (2008). Retrieved February 2008, from http://www.netbeans.org/

NetBeans DTrace GUI Plug-in. (n.d.). Retrieved March 12, 2008, from http://
www.netbeans.org/kb/dtracegui_plugin/NetBeans DTrace GUI Plugin.html

OpenSolaris. (n.d.). Retrieved March 1, 2008, from http://www.opensolaris.org

OpenSolaris Community: DTrace. (2007, October 23). Retrieved March 1, 2008, from
http://opensolaris.org/os/community/dtrace/

OpenSolaris Download Center. (2008). Retrieved March 1, 2008, from http://
www.opensolaris.org/os/downloads/

OpenSolaris Project: Chime Visualization Tool for DTrace. (2008). Retrieved April 17,
2008, from http://opensolaris.org/os/project/dtrace-chime/

97

http://sourceforge.net/
https://gwt4nb.dev.java.net/
http://
http://www.homegatewayinitiative.org/publis/HGI2007%20fiyer.pdf
http://
http://www.homegatewayinitiative.org/public/docs/HGI_white_paper.pdf
http://stoken-tips-and-tricks.blogspot.com/
http://
http://blogs.sun.com/ahl/entry/mac_os_x_and_the
http://en.wikipedia.org/wiki/List_of_web_application_frameworks
http://
http://www.netbeans.org/
http://
http://www.netbeans.org/kb/dtracegui_plugin/NetBeans_DTrace_GUI_Plugin.html
http://www.opensolaris.org
http://opensolaris.org/os/community/dtrace/
http://
http://www.opensolaris.org/os/downloads/
http://opensolaris.org/os/project/dtrace-chime/

OpenSolaris Project: Quagga Routing Protocol Suite Integration. (2007). Retrieved May
2, 2008, from http://opensolaris.org/os/project/quagga/

OpenWrt. (2008). Retrieved April 17, 2008, from http://wiki.openwrt.org/

Output Formatting. (2007). Retrieved May 2008, from
http://wikis.sun.com/display/DTrace/Output+Formatting

Rational Apex Embedded Solaris to MIPS Family Release Note for Tornado. (2001).

Retrieved April 17, 2008, from ftp:/ftp.software.ibm.com/software/rational/docs/
apex/400b_vxw/vxworks relnote_mips/vxworks_release_note.html

Remote Procedure Calls. (2008). Retrieved March 2008, from http://code.google.com/
docreader/#p=google-web-toolkit-doc-1-5&s=google-web-toolkit-
doc-1-5&t=DevGuideRemoteProcedureCalls

Ruby on Rails. (2008). Retrieved August 2008, from http://www.rubyonrails.com/

Solaris Dynamic Tracing Guide. (2005). Retrieved March 1, 2008 from http://
docs.sun.com/app/docs/doc/817-6223

Stripes Home. (2008). Retrieved August 2008, from http://www.stripesframework.org/
Struts. (2008). Retrieved August 2008, from http://struts.apache.org/
SystemTap. (n.d.). Retrieved April 17, 2008, from http://sourceware.org/systemtap/

Table of Hardware. (2008). Retrieved March 2008, from
http://wiki.openwrt.org/TableOfHardware

The Apache Software Foundation. (2008). Retrieved February 2008, from http://
www.apache.org/

Thread: solaris as a wireless access point. (2007). Retrieved March 2008, from http:/
www.opensolaris.org/jive/thread.jspa?threadID=52197 &tstart=45

VirtualBox. (2008). Retrieved August 25, 2008, from http://www.virtualbox.org/
Wireless Network Driver for ZyDAS ZD1211 802.11b/g USB Chipset (zyd).(2008).

Retrieved February, 2008, from http://www.opensolaris.org/os/community/ laptop/
wireless/zyd/

98

http://opensolaris.org/os/project/quagga/
http://wiki.openwrt.org/
http://wikis.sun.com/display/DTrace/Output+Formatting
ftp://ftp.software.ibm.com/software/rational/docs/
http://code.google.com/
http://www.rubyonrails.com/
http://
http://www.stripesframework.org/
http://struts.apache.org/
http://sourceware.org/systemtap/
http://wiki.openwrt.org/TableOfHardware
http://
http://www.apache.org/
http://
http://www.opensolaris.org/jive/thread.jspa?threadID=52197&tstart=45
http://www.virtualbox.org/
http://www.opensolaris.org/os/community/

APPENDICES

99

APPENDIX A. REQUIREMENTS

Project Deliverables

The deliverables for this project are as described in Table 2:

Table 2. Project Deliverables

Deliverable

Description

Proven Framework and
Reference Implementation

Complete Source Code
(hard and soft copy)

Portable Presentation and
Demonstration

Formal Presentation

Thesis Report

A working implementation of the graphical analysis
interface—including capability to provide a basic set
of datapoints—must be completed.

The source code for all components of the reference
implementation will be provided with the final report
—both in hard and soft copy.

A digital presentation of the project and a
demonstration of its functionality (likely as a
screencast) will be created and made available in soft
copy with the final report.

A formal presentation of the project and a live
demonstration will be given to faculty members of the
university and other graduate students.

A formal report (this document)—formatted according
to university requirements and thoroughly
documenting the project background, design,
implementation, and suggestions for future work—
will be submitted to the university for approval and
binding.

Functional Requirements

The primary customers of this framework and reference implementation project

100

will be the makers of home-network routers who would see a business advantage by
including a tool of this sort with their product(s) in order to make analysis of the home
network and debugging of common problems easier for the typical customer. Other
customers include the open-source community who may be encouraged to continue the
effort to port DTrace to Linux and/or work to port Solaris to the MIPS architecture—
either way enabling this tool to be used on routers like those currently in production.
As a framework, the functional requirements for this project are somewhat loose.
The following list (in no particular order) provides a set of features and a subset of the
data-points that may be of interest in future implementations of this framework. As
described in the discussion of project deliverables, this framework and reference
implementation should make available some—but not all—of this data in order to prove
the usefulness of the design.
1. Indication of current version information (of thesis and other relevant software)
2. Indication of basic network interface settings (e.g., Internet Protocol (IP) address,
netmask)
3. Indication of other relevant system settings (e.g., Domain Name Service (DNS)
servers, gateway)
4. Indication of a new connection (in the case of Transmission Control Protocol
(TCP)) or a new address from which data is received or to which data should be
sent

5. Indication of connection termination (explicit in the case of TCP or after a period

101

of no traffic for other “connections™)

6. Connection speed (theoretical maximum and actual)

7. Bandwidth (theoretical maximum and actual being used)

8. Response time (maximum, minimum, average)

9. Number of packets/frames recetved or sent (total or per period of time)

10. Number of bits/bytes received or sent (total or per period of time)

11. Number of checksum errors (total or per period of time)

12. Some indication of overall connection quality (likely as an aggregation of several
data points)

13. User-tunable parameters for data points

14. Indication of router's CPU and memory (real and virtual) utilization

15. Indication of network buffer overflows

16. Ability to modify system and interface settings (e.g., IP addresses, DNS servers,
etc.)

17. Ability to easily integrate into the existing interfaces provided in common home-

network routers (e.g., exist as a browser-based application)

Non-Functional Requirements
As a framework project, performance, compliance, security, and similar
nonfunctional requirements are—for the most part—not applicable. It is worth

mentioning that much of the DTrace functionality requires super-user privileges on the

102

Solaris operating system , so some form of authentication and authorization would
probably be required to ensure an appropriate user is the one using the graphical
interface, but this form of authentication already exists in most of the existing routers’
interfaces and is outside the scope of this project.

In general, this reference implementation software should perform quickly enough
and be stable enough to make obvious its usefulness. The interface should not crash in
normal operating conditions, and if errors do occur, they should be handled gracefully

with proper notification given to the user to enable him or her to take necessary action.

Requirements Analysis

As mentioned previously, the functional requirements for this framework project
are rather loose, so a an in-depth requirements analysis—in the form of a multi-level
quality-function-design (QFD) analysis or some other format—is not applicable.
Nonetheless, a single-level house of quality is provided in Figure 23 to offer some basic
correlation between the assumed customer requirements and the initial technical

requirements.

103

~+

<

INTERRELATIONSHIP
Low

. Medium

- High

Create Web Appiication
Support Wireless

Use DTrace

Indicate New Conx.

Indicate Terminated Conx.

Show Conx. Speed/etc.

Total/Avg. Bytes/Bits/Pkis.

Total/Avg. Errors

Overall Conx. Quality

CPU/Memory Utilization
Conx, State

Queue Drops

Bandwidth Avail /Used

Buffer Overfiows

Choose Routing Protocol

Enable/Disable Interfaces

Use Quagga

Packet Filter Options

Use Solaris

% Show System Settings

Graphical Interface

Able to Integrate with Existing
Solutions

Quick Performance

iNE |

Stable Interface

Lots of Data Points for Analysis

Support Dynamic Analysis
{Change Selected Data Points)

Figure 23. House-of-Quality Diagram

This House-of-Quality diagram shows some correlation between the basic customer
requirements and the initial technical requirements

Hardware, Software, and Skill-Set Requirements

Tables 3, 4, and 5 provide lists of the high-level hardware, software, and skill-set

requirements for the completion of this project. Brief comments are provided about the

choice of some of the components, and these choices are discussed in more detail in the

104

Architecture and Design (p. 8) and Implementation (p. 27) chapters of this document.

Table 3. Hardware Requirements

Component

Comments

X86 System to Serve as Router

Multi-port PCI-E Ethernet Network
Interface Card (NIC)

Monitors, Keyboards, Mice, Power
Cables, Ethernet Cables

Two or Three Other Computers for
Testing

Laptop for Portable Development
Environment

" Any basic x86 or x64 system will work to run

Solaris. (A SPARC system would work too.)

Needed to provide additional Ethernet ports
for multiple connections to the router

Available as needed during development and
testing

Needed to connect to router and
generate/receive traffic during testing

Developer will be mobile and will load
snapshots of code onto the router from
development laptop at various intervals for
testing

Table 4. Software Requirements

Component

Comments

Operating System for Router
(must provide DTrace functionality)

Individual Development
Environment

‘Web Server

Routing Software

Using OpenSolaris Solaris Express
Community Edition (SXCE). New builds are
provided bi-weekly, though development of
this project will likely sync only as needed for
major bug fixes or feature enhancements

Using NetBeans IDE

Using Apache Tomcat Web Server to serve
web application for browser-based interface

Using Quagga—a fork of Zebra (supports
Solaris)

105

Table 5. Skill-Set Requirements

Skill-Set

Comments

Knowledge of DTrace

Basic Administrative Knowledge of
the Chosen Operating System

Java Programming Skills

Web-Application Development Skills
Knowledge of AJAX

Knowledge of Networking Basics
Willingness to Learn

DTrace scripting relies on knowledge of C
programming language and Unix-style shell
scripting

Using OpenSolaris

Used in JavaServer Pages (JSPs), servlets, and
other web-application coding

Used for fast updating of graphics in the
browser

As in many architecture projects, the need for
additional skills will arise during the course of
the project.

106

APPENDIX B. PROJECT SCHEDULE

Initial Schedule

107

f;wmx . 2y
2] mmswrwww'?

n -"‘vv&mzhﬁswp{mwm B

1 Advisormesting
1 nmmwm

- documentation
: mwmmm

':;m '

'MWuwm

K . .

wmmmmﬂm

smmwmm 'mm

: m‘imhm i 1ﬁm

Fzgure 24. Original Project Schedule

Final Schedule

109

EREEEEEEREEEEEERREEEERERE R

Figure 25. Final P

roject Schedule

APPENDIX C. DEVELOPING WITH THE NETBEANS IDE

For the development of the reference implementation code in this project, the
author made use of the NetBeans Integrated Development Environment. NetBeans is an
open-source IDE distributed by Sun Microsystems, Inc. A significant amount of
information regarding the installation and use of NetBeans is available on the NetBeans
web site (NetBeans, 2008), but this appendix will provide a brief overview of several of
the common steps the author used in the course of developing this framework and

reference implementation.

Creating a Web Application Project

To create a web application project in NetBeans, select File — New Project, and
choose Web Application as in Figure 26. Name the project appropriately, and select the
desired web server for association with this project. The author used Apache Tomcat—as
shown in Figure 27. Finally, to use the Google Web Toolkit web application framework,
select it from the available frameworks—as shown in Figure 28; this requires installation

of the GWT4NB plug-in—as described in the following section.

111

"New Project

Steps

1. Choose Project

,,,,, * Web Free-Form Project

o

Creates an empty Web application in a standard IDE project. A standar
IDE-generated build script to buid, run, and debug your project.

d project uses an

i

Figure 26. Creating a New We Application Prject in NetBeans

Creating a web application project in NetBeans will automatically include and configure
necessary files for a web application.

112

New ¥eb Application

Steps

1. Choose Project

2. Name and Location

3. Server and Settings
4, Frameworks

R

Server in NetBeans

Figure 27. Chbosing a Web

The author used the Apache Tomcat web server for development.

113

New; Web ;ﬂmplication

Steps

1. Choose Project

2, Name and Location
3. Server and Settings
4. Frameworks

visual Web JavaServer Faces
Spring Web MVC 2.5

JavaServer Faces

Stmike 1 2 Q

i

3

Figure 28. Choosing the GWT Framework in NetBeans

Integration between NetBeans and the Google Web Toolkit was made easy by the
GWT4NB plug-in.

Using GWT4NB
To create a web application project using the Google Web Toolkit framework as
described in the previous section, it is required that the GWT4NB plug-in be installed.

This is handled via the plug-in wizard in NetBeans—as shown in Figure 29.

114

% Plugins

GWT4ANB " peactivate
Ruby and Ralis | -
S0A
BPEL

Composite Application

Yersion: 2.0.1
Source: NetBeans Bata

. Plugin Description
visual J5F Web & Java EE
1BM WebSphiere Applicatio... Web & Java EE
Web Applications ‘Web & Java EE
Java EE Web & Java EE
Struts Web & Java EE
XMt and Schema Wweb & Java EE
GlassFish ‘Web & Java EE
Identity Web & Jaya EE
BEA Weblogic Server ‘Web & Java EE
JBoss Application Server ‘Web & Java EE
Spring Web MyC web & Java EE
RESTFul Web Services Web & Java EE
web Services Web & Java EE
Tomeat Web & Java EE
WSDL Web & lavaEE

The GWT4NB project aims to enable developers to take advantage of
both: the superior support For creating Web Applications built into the

| NetBeans IDE and the power of GWT (Google web Toalkit), Provided
functionality includes: - Using GWT with new or existing Web Projects -
Deployment, running and debugging GWT-enabled Web Apps using
arbitrary Application Server - Assistance to deal with some code editing
ruances such as creating RPC services efficiently Project Home Page:
http:{{gwtdnb.dev.java.net/

r
I
F
r
|
L]
r
r
I~
r
r
[
I
I~
I
N
L
i
I
r

OOGoEAIECLBABOCHGGOR0

Figure 29. The GWT4NB Plugin in NetBeans

With the GWT4NB plugin installed in NetBeans, development of web applications using
the GWT framework is significantly easier.

Creating an RPC

To create a remote procedure call in a web application project using the GWT4NB
plugin in NetBeans, select File — New File, and choose the GWT RPC Service from the
available options—as shown in Figure 30. According to configuration options selected

on the following wizard screen, the necessary modifications will be made to files like

115

http://gwt4nb.dev.java.net/

web.xml, and the necessary front and back-end Java classes will be created with

placeholders for code development.

BNewFile

| Steps

1. Choose File Type

JavaServer Faces
Struts
Spring Framework
Java

JavaBeans Objects
Junit
Persistence

Figure 30. breating (; RPC in]\ZztBeans
Creating an RPC is made rather simple in NetBeans with the GWT4NB plugin.
Using Additional Java Libraries

To use additional Java libraries—often packaged in JavaArchive jar files, add

them using the project properties wizard—as seen in Figure 31.

116

§ B Project Properties - DiraceGraphicallouterProject
)

Frameworks
Build

> Compling
@ Packaging

, m C:\Program Files\Google\gwt-windows-1.5.1\gwt-user.jar
m C:\Program Files\Google\gwt-windows-1.5.1\gwt-dav-windows. jar
Ct\Program Fies\Googleigwt-windows-1.5,11gwt-serviet.jar
D:\Documents and Settings\chrisne\My DocumentsifletBeans Projectsiinclude'dtrace. jar

Figure 31 Usin Additional Java Libraries

To use additional Java libraries in a NetBeans project, add them in the project properties
wizard.

Building and Hosting the Web Application Locally

For basic verification of functionality or simple debugging, the author frequently
found it useful to build the web application and host it locally on the development
machine using the Apache Tomcat web server (as specified in the Project creation, see the
Creating a Web Application Project section in this appendix, p. 111). To do this in
NetBeans, seléct Run — Run Main Project. Output like that in Figure 32 will be

displayed in the NetBeans console, and the web application will launch in a local browser

window—Ilike in Figure 33.

117

] DTEacéGraphlcaleuterPro]ect - NetBeans IDE 6.1

Waiting for Tomcsat...
Tomcat server started.

Incrementally redeploying http: //localhost:8080/DTraceCGraphicalRouterProject
eploy is in progress...
Temp/contexcl0918. xmlspat.

Figure 32. Local Deployment of a Web Application from NetBeans

NetBeans can build and host a web application on the development machine using a web
server specified during the creation of the project.

118

file://D:/Documents
http://localhost

THE DTRACE GRAPHICAL ROUTER PROJECT

I Chrs Nelsan
San Jose State University

Welcome to the DTrace Graphical Router Project...

Yersion int

Ahout

o

Figure 33. NetBeans Hostig a Web Application Locally

NetBeans can build and host a web application on the local machine using a web server
specified during the creation of the project.

Building the Web Application for Deployment

When ready to deploy the complete web application, NetBeans can build and
create a JavaArchive .war file that can be deployed using a web server like Apache
Tomcat. To do this, select Build — Clean and Build Main Project. This will produce

a .war file in the project's dist directory—as seen in Figure 34.

119

\NetBeans Projects’DiraceGraphical

b i S

 D:\Documents and SettingsichrisnelMy DocumentsiNetBeans Projects\DTraceGraphicaRouterProjectidist

JatkDTraceGraphicalRouterProject.war

Figure 34. A Web Application Réady Jfor Deployment
NetBeans can build a web application and package it in a .war file for deployment on a
web server.

120

APPENDIX D. SOURCE CODE - GENERAL FILES

The complete source code for the reference implementation of this framework is
provided in this and other appendices to this document for the reader's easy reference.
For the simplest viewing experience or to use the code without copying and pasting it
into a new source file, the reader is encouraged to review the soft-copy files available on

the CD-ROM included with this document.

index.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.0rg/TR/html4/loose.dtd">

<html>
<head>
<meta name='gwt:module'
content='org.dgrp.DTraceGraphicalRouterProject=org.dgrp.DTraceGra
phicalRouterProject'>
<title>The DTrace Graphical Router Project</title>
<link rel="stylesheet" href="dgrp.css">
</head>
<body>
<iframe src="javascript:''" id='_ gwt historyFrame'
style="'width:0;height:0;border:0'></iframe>
<center></center>
<hr>

<script language="javascript"
src="org.dgrp.DTraceGraphicalRouterProject/org.dgrp.DTraceGraphic
alRouterProject.nocache.js"></script>
</body>
</html>

web.xml

121

http://www.w3.org/TR/html4/loose.dtd

<?xml version="1.0" encoding="UTF-8"?2>
<web-app version="2.5" xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app 2 5.xsd">
<servlet>
<servlet-name>GetVersionInfo</servlet-name>
<servlet-
class>org.dgrp.server.GetVersionInfoImpl</servliet-class>
</servlet>
<servlet>
<servlet-name>BandwidthMonitor</servlet-name>
<servlet-)
class>org.dgrp.server.BandwidthMonitorImpl</servlet-class>
</servlet>
<servlet-mapping>
<gservlet-name>GetVersionInfo</servlet-name>
<url-
pattern>/org.dgrp.DTraceGraphicalRouterProject/getversioninfo</ur
l-pattern>
</servlet-mapping>
<servlet-mapping>
<gervlet-name>BandwidthMonitor</servlet-name>
<url-
pattern>/org.dgrp.DTraceGraphicalRouterProject/bandwidthmonitor</
url-pattern>
</servlet-mapping>
<session-config>
<session-timeout>
30
</session-timeout>
</session-config>
<welcome-file-list>
<welcome~file>index.jsp</welcome-file>
</welcome-file-list>
</web-app>

dgrp.css

body {
background-color: black;
color: white;
font-family: Arial, sans-serif;
font-weight: bold;
font-size: medium;
margin: 20px 20px 20px 20px;

122

http://Java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-
http://j
http://java.sun.com/xml/ns/j

code {

a {
color: white;

}

a:visited {
color: white;

}

.gwt-BorderedPanel {
}

.gwt-Button {
}

.gwt-Canvas {
}

.gwt-CheckBox {
}

.gwt-DialogBox {
}

.gwt-DialogBox .Caption {
}

.gwt-FileUpload ({
}

.gwt-Frame {
}

.gwt-HorizontalSplitter .Bar ({
}

.gwt-VerticalSplitter .Bar {
}

.gwt-HTML {
font-size: smaller;

}

.gwt-Hyperlink {
}

.gwt-Image {
}

123

.gwt-Label {
}

.gwt-ListBox {
}

.gwt-~MenuBar {
background-color: #444444;
color: white;
border: 1lpx solid white;
cursor: default;

}

.gwt-MenuBar .gwt-Menultem {
padding: 1px 4px lpx 4px;
font-size: smaller;
cursor: default;
color: white;

}

.gwt-MenuBar .gwt-MenulItem-selected ¢{
background-color: #222222;
color: white;

}

.gwt-PasswordTextBox {

}

.gwt-RadioButton {
}

.gwt-TabPanel {
}

.gwt-TabPanelBottom ({
}

.gwt—-TabBar {
}

.gwt-TabBar .gwt-TabBarFirst ({
}

.gwt-TabBar .gwt-TabBarRest {
}

.gwt-TabBar .gwt-TabBarItem {
}

.gwt-TabBar .gwt-TabBarItem-selected {

124

}

.gwt-TextArea {
}

.gwt-TextBox {
}

.gwt-Tree {
)

.gwt-Tree .gwt-Treeltem {
}

.gwt-Tree .gwt-Treeltem-selected ({

}

.gwt-StackPanel {
}

.gwt-StackPanel .gwt-StackPanelltem {
}

.gwt-StackPanel .gwt-StackPanelltem-selected {

Styling added for the DTrace Graphical Router Project
*/

.dgrp~-MainPanel ({
border: 8px solid white;
background-color: #ccccce;
color: black;
width: 100%;
height: 35em;

}

.dgrp-Heading {
background-color: white;
color: black;
padding: 10px 10px 2px 10px;
font-size: small;

}

.dgrp-Sidebar-List {
margin-top: 8px;
margin-bottom: 8px;
font-size: smaller;

125

}

.dgrp-Sidebar-List .dgrp-Sidebar-Item ({
width: 100%;
padding: 0.3em;
padding-right: 16px;
cursor: pointer;
cursor: hand;

}

.dgrp-Sidebar-List .dgrp-Sidebar-Item-Selected {
background-color: #993999;
color: black;
font-weight: bold;
font-style: italic;
}

.dgrp-Images-Image {
margin: 10px;

}

.dgrp~Images-Wireless {
margin-left: 75px;
}

.dgrp-Images—-RouterStats {
margin-right: 75px;
}

.dgrp-Images-Laptop0Pipe {
margin-left: 100px;
}

.dgrp-Images-LaptoplPipe {
margin: Opx;
}

.dgrp-Images-Laptop2Pipe {
margin: Opx;

}
.dgrp-Images—-Laptop3Pipe {

margin-right: 100px;
}

.dgrp-Images-Button {
}

.dgrp-Layouts {
}

126

.dgrp-Layouts-Label {
}

.dgrp-Layouts-Scroller {
}

.dgrp-Popups-Popup {
}

.dgrp-About-Prose {
margin: 8px;

}

.dgrp-Stat-Table ({
font-size: small;

}

license.txt

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License"™ shall mean the terms and conditions for use,
reproduction, and distribution as defined by Sections 1 through 9
of this document.

"Licensor" shall mean the copyright owner or entity
authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity
and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this
definition, "control™ means (i) the power, direct or indirect, to
cause the direction or management of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%)
or more of the outstanding shares, or (iii) beneficial ownership
of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making
modifications, including but not limited to software source code,

127

http://www.apache.org/licenses/

documentation source, and configuration files.

"Object” form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but not
limited to compiled object code, generated documentation, and
conversions to other media types.

"Work" shall mean the work of authorship, whether in Source
or Object form, made available under the License, as indicated by
a copyright notice that is included in or attached to the work
(an example is provided in the Appendix below) .

"Derivative Works" shall mean any work, whether in Source
or Object form, that is based on (or derived from) the Work and
for which the editorial revisions, annotations, elaborations, or
other modifications represent, as a whole, an original work of
authorship. For the purposes of this License, Derivative Works
shall not include works that remain separable from, or merely
link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof.

"Contribution” shall mean any work of authorship, including
the original version of the Work and any modifications or
additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by
the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the
purposes of this definition, "submitted" means any form of
electronic, verbal, or written communication sent to the Licensor
or its representatives, including but not limited to
communication on electronic mailing lists, source code control
systems, and issue tracking systems that are managed by, or on
behalf of, the Licensor for the purpose of discussing and
improving the Work, but excluding communication that is
conspicuously marked or otherwise designated in writing by the
copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or
Legal Entity on behalf of whom a Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License., Subject to the terms and
conditions of this License, each Contributor hereby grants to You
a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and
distribute the Work and such Derivative Works in Source or Object
form.

3. Grant of Patent License. Subject to the terms and
conditions of this License, each Contributor hereby grants to You

128

a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, and otherwise
transfer the Work, where such license applies only to those
patent claims licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by combination of
their Contribution(s) with the Work to which such Contribution (s)
was submitted. If You institute patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit)
alleging that the Work or a Contribution incorporated within the
Work constitutes direct or contributory patent infringement, then
any patent licenses granted to You under this License for that
Work shall terminate as of the date such litigation is filed.

4., Redistribution. You may reproduce and distribute copies of
the Work or Derivative Works thereof in any medium, with or
without modifications, and in Source or Object form, provided
that You meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent
notices stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative
Works that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work, excluding
those notices that do not pertain to any part of the Derivative
Works; and

(d) If the Work includes a "NOTICE" text file as part of
its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one of
the following places: within a NOTICE text file distributed as
part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and do not
modify the License. You may add Your own attribution notices
within Derivative Works that You distribute, alongside or as an
addendum to the NOTICE text from the Work, provided that such
additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your

modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of

129

Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work
otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state
otherwise, any Contribution intentionally submitted for inclusion
in the Work by You to the Licensor shall be under the terms and
conditions of this License, without any additional terms or
conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use
the trade names, trademarks, service marks, or product names of
the Licensor, except as required for reasonable and customary use
in describing the origin of the Work and reproducing the content
of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law
or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS"™ BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
determining the appropriateness of using or redistributing the
Work and assume any risks associated with Your exercise of
permissions under this License.

8. Limitation of Liability. In no event and under no legal
theory, whether in tort (including negligence), contract, or
otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct,
indirect, special, incidental, or consequential damages of any
character arising as a result of this License or out of the use
or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or
malfunction, or any and all other commercial damages or losses),
even if such Contributor has been advised of the possibility of
such damages.

9. Accepting Warranty or Additional Liability. While
redistributing the Work or Derivative Works thereof, You may
choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights
consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole
responsibility, not on behalf of any other Contributor, and only
if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted

130

against, such Contributor by reason of your accepting any such
warranty or additional liability.

END OF TERMS AND CONDITIONS

context.xml

<?xml version="1.0" encoding="UTF-8"?>
<Context path="/DTraceGraphicalRouterProject"/>

gwt.properties

The name of the module to compile
gwt.module=org.dgrp.DTraceGraphicalRouterProject

Path of the GWT installation directory.Use Internet-Standard of
forward slases for this path

gwt.install.dir=C:/Program Files/Google/gwt-windows-1.4.62

Folder within the web app context path where the output

of the GWT module compilation will be stored.
gwt.output.dir=/org.dgrp.DTraceGraphicalRouterProject

Script output style: OBF[USCATED}, PRETTY, or DETAILED
gwt.compiler.output.style=0OBF

The level of logging detail: ERROR, WARN, INFO, TRACE, DEBUG,
gwt.compiler.loglLevel=WARN

Script output style: OBF[USCATED], PRETTY, or DETAILED
gwt.shell.output.style=0BF

The level of logging detail: ERROR, WARN, INFO, TRACE, DEBUG,
gwt.shell.logLevel=WARN

131

APPENDIX E. SOURCE CODE - PACKAGE org.dgrp

The complete source code for the reference implementation of this framework is
provided in this and other appendices to this document for the reader's easy reference.
For the simplest viewing experience or to use the code without copying and pasting it
into a new source file, the reader is encouraged to review the soft-copy files available on

the CD-ROM included with this document.

DTraceGraphicalRouterProject.gwt.xml

<?xml version="1.0" encoding="UTF-8"?2>

<module>
<inherits name="com.google.gwt.user.User"/>
<entry-point class="org.dgrp.client.DGRPEntryPoint"/>
<!-- Do not define servlets here, use web.xml -->

</module>

132

http://DTraceGraphicalRouterProject.gwt.xml

APPENDIX F. SOURCE CODE — PACKAGE org.dgrp.client

The complete source code for the reference implementation of this framework is
provided in this and other appendices to this document for the reader's easy reference.
For the simplest viewing experience or to use the code without copying and pasting it
into a new source file, the reader is encouraged to review the soft-copy files available on

the CD-ROM included with this document.

About.java

package org.dgrp.client;
import com.google.gwt.user.client.ui.HTML;

/**
* About page.
*/

public class About extends Sidebarltem {

public static SidebarItemInfo init () {
return new SidebarItemInfo ("About", "About the DTrace
Graphical Router Project...") {
public SidebarItem createlInstance() {
return new About ()
}
i
}

public About () {
initWidget (new HTML {
"<div class='dgrp-About-Prose'>" +
"<p>The DTrace Graphical Router Project was created by
Chris Nelson " +
"in partial fulfillment of the requirements of the San Jose

State " +
"University Computer Engineering Master's Degree Program.</
p>
" +

"<h2>Project Title</center></h2>" +

133

"<p><i>A Framework for Graphical Analysis of a Home-Network

"Router Using DTrace</i></p>
" +

"<h2>Project Abstract</h2>" +

"<p><i>Simple network routers used in homes and small
offices " +

"typically lack tools for performance monitoring and
analysis that " + .

"would be useful to the normally novice users of these
products. " +

"Sophisticated network simulation and analysis applications
require too " +

"much effort for a typical user to consider, but including
some simple " +

"tools in the router software would enable the common user
to more " +

"quickly and completely understand the reason or reasons
for " +

"performance problems.</p>" +

"<p>DTrace—a dynamic tracing framework first released in
Solaris 10 " +

"and currently being ported to Linux—provides the
opportunity to " +

"gather relevant performance data from the router itself,
and 1if " +

"presented in an easily understood graphical format, the
common user " +

"will be empowered to understand and address problems more
quickly and " +

"with less need for additional support. This thesis
addresses the " +

"This thesis addresses the development of a framework for
and " +

"reference implementation of graphical analysis tools for
analyzing " +

"common network routers using DTrace.</i></p>
" +

"<h2>Useful Links</h2>" +

"Open-Source Project
Code
" +

"Online Documentation" +

n/div>",

true));

}

public void onShow() {
}

134

http://unknown/%22%3eOpen-Source
http://unknown/%22%3eOnline

Analysis.java

package org.dgrp.client;

import
import
import
import
import

public

com.google.gwt.core.client.GWT;
com.google.gwt.user.client.Timer;
com.google.gwt.user.client.rpc.AsyncCallback;
com.google.gwt.user.client.rpc.ServiceDefTarget;
com.google.gwt.user.client.ui.VerticalPanel;

class Analysis extends SidebarItem {

public static SidebarItemInfo init () {

return new SidebarItemInfo("Analysis™,

"Use the Menu Below to Select Available Analysis

Features...") {

}

public SidebarItem createlnstance() {
return new Analysis();
}
};

private ImagePanel imgPanel;

private AnalysisMenu analysisMenu;

private TopologyInfo topolnfo;

private BandwidthMonitorAsync bwMonitorService;
private String subnet = "10.0.0.0";

private final int MAX NODES = 4;

public Analysis () {

imgPanel = new ImagePanel();

analysisMenu = new AnalysisMenu(imgPanel);
VerticalPanel vp = new VerticalPanel();
vp.setWidth ("100%");

vp.setHeight ("100%") ;
vp.add(analysisMenu);

vp.add (imgPanel) ;

initWidget (vp);

// Create asynchronous callbacks to handle results
final AsyncCallback ipCallback = new AsyncCallback()
public void onSuccess (Object result) {
processIPUpdates (result);
}
public void onFailure (Throwable caught) {
//ignore for now
}
}i

135

final AsyncCallback statCallback = new AsyncCallback() {
public void onSuccess (Object result) {
processStatUpdates (result);
}

public void onFailure (Throwable caught) {
//ignore for now
}
}i

final AsyncCallback emptyCallback = new AsyncCallback() {
public void onSuccess (Object result) {
//ignore
}
public void onFailure (Throwable caught) {
//ignore
}
b:

bwMonitorService = getBandwidthMonitorService();

bwMonitorService.startServiceCountDataBytes (subnet,
emptyCallback) ;

bwMonitorService.startServiceCountPackets (subnet,
emptyCallback) ;

topoInfo = new TopologyInfo (MAX NODES) ;

//Create timers to repeatedly trigger updates
bwMonitorService.getRefreshedIPs (ipCallback);
Timer ipRefresh = new Timer () {
public void run() {
bwMonitorService.getRefreshedIPs (ipCallback);
}
bi
ipRefresh.scheduleRepeating (10000);

Timer statUpdate = new Timer () {
public void run() {
for (int i=0; i<=topoInfo.getMaxNodes(); i++) {
if (! (topolInfo.getAddress (i) .equals(null))) {
bwMonitorService.getBandwidthInUse {
topolInfo.getAddress (i),
statCallback);

}
}:
statUpdate.scheduleRepeating (1000);

136

public static BandwidthMonitorAsync
getBandwidthMonitorService () {
BandwidthMonitorAsync service =
(BandwidthMonitorAsync) GWT.create (BandwidthMonitor.class);
ServiceDefTarget endpoint = (ServiceDefTarget)
service;

String moduleRelativeURL = GWT.getModuleBaseURL() +
"bandwidthmonitor";

endpoint.setServiceEntryPoint (moduleRelativeURL) ;
return service;

}

private void processIPUpdates (Object result) ({
String[] newAddrs = (String[]) result;
for (int i=0; i<MAX NODES; i++) {
imgPanel.hidelaptop (i)
imgPanel.hidelLaptopPipe (i) ;
imgPanel.setLaptopIPAddrLabel (i, null);
}
topolnfo = new TopologyInfo (MAX NODES);
for (int i=0; i<newAddrs.length; i++) {
try {
topoInfo.setAddress (i, newAddrs[i]):
imgPanel.setLaptopIPAddrLabel (i, newAddrs{i]):
imgPanel.showLaptop (i) ;
} catch (Exception e) {
//ignore for now

}
}

private void processStatUpdates (Object result) {
BandwidthInfo bwInfo = (BandwidthInfo) result;
try {
imgPanel.showlLaptopPipe (topoInfo.findPosition (
bwinfo.getIPAddress()),
bwInfo.getBandwidthInUse());

imgPanel.setLaptopStatValue (topoInfo.findPosition (bwl

nfo.
getIPAddress()), imgPanel.NUM PACKETS, "" +
bwInfo.getTotalPacketsSentToAndReceivedFrom()
I
imgPanel.setLaptopStatValue (topoInfo.findPosition (bwl
nfo.

getIPAddress()), imgPanel.NUM DATA BYTES, "" +

bwInfo.getTotalDataBytesSentToAndReceivedFrom
0);

} catch (Exception e) {

//skip addresses not currently tracked
}

137

public void onShow () {
}

AnalysisMenu.java
package org.dgrp.client;

import com.google.gwt.user.client.ui.Composite;
import com.google.gwt.user.client.ui.MenuBar;
import com.google.gwt.user.client.ui.Menultem;
import com.google.gwt.user.client.Command;
import com.google.gwt.user.client.Window;

/**
*
* @author chrisne
*/

public class AnalysisMenu extends Composite {

// Declare menu bars and items

private MenuBar menu = new MenuBar();

private MenuBar menu_router = new MenuBar (true);

private Menultem routerStatsOnOff;

private Menultem menu router int status;

private Menultem menu_router int max bw;

private Menultem menu router int cur bw;

private Menultem menu_router int_ speed;

private MenuBar menu_router CPUUtil = new MenuBar (true);
private Menultem menu router CPUUtil tot;

private Menultem menu_router CPUUtil byproc;

private MenuBar menu_router memUtil = new MenuBar (true);
private MenuBar menu_ router memUtil total = new MenuBar (true);
private Menultem menu router memUtil total real;

private Menultem menu router memUtil total virtual;
private MenuBar menu_router memUtil byProc = new MenuBar (true);
private Menultem menu_router memUtil byProc_real;
private Menultem menu_router memUtil byProc virtual;
private MenuBar menu TCP = new MenuBar (true);

private Menultem menu_ TCP_inboundDrops;

private Menultem menu_ TCP_connState;

private MenuBar menu TCP packets = new MenuBar (true);
private Menultem menG_TCE_packets_recvd;

private Menultem menu TCP packets sent;

private Menultem menu_TCP_packets recvdByTime;

private Menultem menu TCP packets sentByTime;

138

private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private

MenuBar menu TCP bytes = new MenuBar (true);
Menultem menu TCP bytes_ recvd;

Menultem menu TCP bytes sent;

Menultem menu TCP bytes_recvdByTime;

Menultem menu_ TCP_bytes_sentByTime;

MenuBar menu TCP bits = new MenuBar (true);
Menultem menu TCP_bits recvd;

Menultem menu_TCP_bits sent;

Menultem menu TCP bits recvdByTime;

Menultem menu TCP bits sentByTime;

MenuBar menu_TCP_errors = new MenuBar (true);
MenuItem menu TCP_errors_hdr;

Menultem menu TCP_errors_chksum;

Menultem menu_ TCP_errors_hdrByTime;

Menultem menu TCP_errors_chksumByTime;
MenuBar menu TCP_buffers = new MenuBar (true);
MenuBar menu_TCP_buffers send = new MenuBar (true);
Menultem menu TCP_buffers send status;
MenulItem menu TCP buffers send overflows;
MenuBar menu_TCP_buffers receive = new MenuBar (true);
Menultem menu TCP_buffers receive status;
Menultem menu TCP_buffers receive_overflows;
MenuBar menu UDP = new MenuBar (true);

MenuBar menu_UDP_packets = new MenuBar (true);
Menultem menu UDP_packets_ recvd;

Menultem menu UDP_packets sent;

Menultem menu UDP_packets recvdByTime;
Menultem menu UDP_packets sentByTime;

MenuBar menu UDP_bytes = new MenuBar (true);
Menultem menu UDP_bytes_ recvd;

Menultem menu UDP_bytes sent;

Menultem menu_ UDP_bytes_recvdByTime;

Menultem menu_UDP bytes sentByTime;

MenuBar menu_UDP_bits = new MenuBar (true);
Menultem menu UDP_bits_ recvd;

Menultem menu UDP_bits sent;

Menultem menu UDP bits_ recvdByTime;

Menultem menu UDP_bits sentByTime;

MenuBar menu UDP_errors = new MenuBar (true);
Menultem menu UDP_errors hdr;

Menultem menu UDP_errors_chksum;

Menultem menu UDP errors hdrByTime;

Menultem menu UDP_errors_chksumByTime;
MenuBar menu UDP buffers = new MenuBar (true);
MenuBar menu UDP buffers send = new MenuBar (true);
Menultem menu_ UDP_buffers send status;
Menultem menu UDP buffers send overflows;
MenuBar menu_GDP_Euffers_;ecei;e = new MenuBar (true);
Menultem menu UDP_buffers receive status;
Menultem menu UDP_buffers receive overflows;
MenuBar menu IPv4 = new MenuBar (true);

139

private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private
private

MenuBar menu_ IPv4_packets = new MenuBar (true);
Menultem menu IPv4 packets_recvd;

Menultem menu IPv4 packets_ sent;

Menultem menu_ T Ipvd _packets_sent_and_rcvd;
MenuIltem menu_IPv4_packets_recvdByT1me,
Menultem menu IPv4_ packets_sentByTime;

MenuBar menu_IPv4 bytes = new MenuBar (true);
Menultem menu IPv4 bytes recvd;

Menultem menu_ " IpPv4 _bytes _sent;

Menultem menu " IPv4 _bytes sent and rcvd;
Menultem menu T 1IPv4 _bytes recvdByTlme,
MenulItem menu_IPv4_bytes_sentByT1me,

MenuBar menu_ IPv4_bits = new MenuBar (true);
Menultem menu IPv4 bits recvd;

Menultem menu _IPv4 bltS _sent;

Menultem menu_ _IPv4 blts sent_and_rcvd;
Menultem menu_IPv4_b1ts_recvdByT1me,

Menultem menu IPv4 bits_ sentByTime;

MenuBar menu_IPv4_errors = new MenuBar (true);
Menultem menu IPv4 errors_hdr;

Menultem menu_ IPv4 errors_chksum;

Menultem menu IPv4 errors_hdrByTime;

MenuIltem menu_ IPv4_errors_chksumByTime;
MenuBar menu_ IPv4 buffers = new MenuBar (true);
MenuBar menu_IPv4 buffers send = new MenuBar (true);
Menultem menu IPv4 buffers _send_status;
MenuItem menu IPv4 buffers send _overflows;
MenuBar menu_IPv4_buffers_rece1ve = new MenuBar (true);
Menultem menu IPv4_ buffers receive_status;
Menultem menu IPv4_buffers receive overflows;
MenuBar menu_IPv4_responseTime = new MenuBar (true);
Menultem menu IPv4 responseTime max;

Menultem menu IPv4_responseTime min;

Menultem menu IPv4 responseTime avg;

MenuBar menu_ IPv6 = new MenuBar (true);

MenuBar menu_rawlIP = new MenuBar (true);
MenuBar menu_SCTP = new MenuBar (true):;

MenuBar menu wireless = new MenuBar (true);
Menultem wirelessOnOff;

MenuBar menu_legend = new MenuBar (true);
MenuBar menu_test = new MenuBar (true);
Menultem testItem;

//Strings for special menu characters
public static final String notsup = " <DGRP-NOTSUP><DGRP-
SPLIT>⊗ <DGRP-

SPLIT>";

public static final String on = " <DGRP-ON><DGRP-
SPLIT>√ <DGRP~

SPLIT>";

public static final String off = " <DGRP-OFF><DGRP-

140

SPLIT>⊗ <DGRP-SPLIT>";
public static final String submen = " é »";

public AnalysisMenu(final ImagePanel imgPanel) {
/* Create the not-supported command */
Command notSupported = new Command () {
public void execute() {
Window.alert ("This feature is not yet implemented.”);
)
Vs

/* Create the legendInfo command */
Command legendInfo = new Command () {
public void execute() {
Window.alert ("The menu items in the legend perform no
action.");
}
};

/* Create the test command */
Command testCmd = new Command () {
public void execute() {
testItem.setHTML (changeMenuStatus (testItem.getHTML ())

imgPanel.showAllGraphics();

}z

/* Create the wireless command */
Command wirelessCmd = new Command () {
public void execute() {
wirelessOnOff.setHTML (changeMenuStatus (wirelessOnOff.
getHTML ()));
if (imgPanel.isWirelessVisible() == true) {
imgPanel.hideWireless();
}
else {
imgPanel.showWireless();

}
}:

/* Create the routerStats command */
Command routerStatsCmd = new Command () {
public void execute() {
routerStatsOnOff.setHTML (changeMenuStatus (routerStats
OnOff.getHTML()));
if (imgPanel.isRouterStatsVisible () == true) {
imgPanel.hideRouterStats();

}

else {

141

imgPanel.showRouterStats () ;

}:

/* Create the IPv4 Packets Sent and Received command */
Command IPv4PacketsSentAndRcvdCmd = new Command () {
public void execute() ({
menu_IPv4 packets_sent and rcvd.setHTML(changeMenuSta
tus(menu_IPv4_packets_sent_and_rcvd.getHTML()));
if (imgPanel.isIPv4PacketsSentAndRcvdVisible() ==

true) {
imgPanel.hidelIPv4PacketsSentAndRcvd () ;

}

else {
imgPanel.showIPv4PacketsSentAndRcvd() ;

}
}r

/* Create the IPv4 Data Bytes Sent and Received command */
Command IPv4BytesSentAndRcvdCmd = new Command () {
public void execute() {
menu_IPv4 bytes sent and rcvd.setHTML (changeMenuStatu
s (menu_IPv4 bytes_sent and rcvd.getHTML())):;
if (imgPanel.isIPv4BytesSentAndRcvdVisible() == true)

{
imgPanel.hideIPv4BytesSentAndRcvd () ;

}

else {
imgPanel.showIPv4BytesSentAndRcvd () ;

}

}:

/* Create the "Router” menu */

menu_router.setAutoOpen (true);

menu_router CPUUtil.setAutoOpen(true);

menu_router memUtil.setAutoOpen{true);

menu_router memUtil total.setAutoOpen (true);

menu_router _memUtil byProc.setAutoOpen (true);

routerStatsOnOff = new Menultem{off + "Enable/Disable", true,
routerStatsCmd) ;

menu_router.addItem(routerStatsOnOff);

menu_router int status = new Menultem(notsup + "Interface
Status", true, notSupported):;

menu_router.addItem(menu_router_int status);

menu_router int max_bw = new Menultem(notsup + "Interface
Maximum Bandwidth", true,

notSupported) ;

142

menu_router.addItem(menu router int max bw);
menu_router_int cur_bw = new Menultem(notsup + "Interface
Current Bandwidth Usage", true,
notSupported) ;
menu_router.addItem(menu router int cur bw);
menu_router int_ speed = new Menultem(notsup + "Interface
Speed", true, notSupported);
menu_router.addItem(menu_router int speed);
menu_router CPUUtil tot = new Menultem(notsup + "Total",
true, notSupported);
menu_router CPUUtil.addItem(menu router CPUUtil tot);
menu_router CPUUtil byproc = new Menultem(notsup + "By
Process"™, true, notSupported):;
menu_router CPUUtil.addItem(menu router CPUUtil byproc);
menu_router.addItem("CPU Utilization" + submen, true,
menu_router CPUUtil);
menu_router memUtil total real = new Menultem(notsup +
"Real", true, notSupported);
menu_router memUtil total.addItem(menu_router memUtil total r
eal);
menu_router memUtil total virtual = new Menultem(notsup +
"Virtual", true, notSupported);
menu_router memUtil total.addItem(menu router memUtil total v
irtual);
menu_router memUtil.addItem("Total" + submen, true,
menu_router memUtil total):
menu_router memUtil byProc real = new Menultem(notsup +
"Real", true, notSupported):;
menu_router memUtil byProc.addItem(menu router memUtil byProc
_real);
menu_router memUtil byProc virtual = new Menultem(notsup +
"Virtual", true, notSupported);
menu_router memUtil byProc.addItem(menu_router memUtil byProc
_virtual);
menu_router memUtil.addItem("By Process" + submen, true,
menu_router memUtil byProc);
menu_router.addItem("Memory Utilization” + submen, true,
menu router memUtil);

/* Create the "TCP” menu */

menu_TCP.setAutoOpen (true);
menu_TCP_packets.setAutoOpen (true);
menu_TCP_bytes.setAutoOpen (true) ;
menu_TCP_bits.setAutoOpen (true);
menu_TCP_errors.setAutoOpen (true);
menu_TCP_buffers.setAutoOpen (true);

menu_TCP_buffers send.setAutoOpen(true);

menu_TCP_buffers receive.setAutoOpen (true);
menu_TCP_inboundDrops = new Menultem(notsup * "Inbound TCP

143

Connection Drops", true,
notSupported) ;
menu_ TCP.addItem(menu TCP inboundDrops);
menu TCP_connState = new Menultem(notsup + "Connection
State", true,
notSupported) ;
menu_TCP.addItem(menu TCP_ connState);
menu_TCP packets_recvd = new Menultem(notsup + "Received",
true, notSupported):
menu_TCP_packets.addItem(menu TCP_packets_recvd);
menu TCP packets sent = new Menultem(notsup + "Sent", true,
notSupported);
menu_TCP_packets.addItem(menu TCP_packets_sent):
menu_TCP_packets recvdByTime = new Menultem(notsup +
"Received per Unit of Time", true,
notSupported) ;
menu_TCP_packets.addItem(menu_ TCP_packets recvdByTime);
menu_TCP_packets sentByTime = new Menultem(notsup + "Sent per
Unit of Time", true,
notSupported) ;
menu_TCP_packets.addItem(menu TCP_packets sentByTime);
menu_TCP.addItem("Packets" + submen, true, menu_ TCP_packets);
menu_TCP bytes recvd = new Menultem(notsup + "Received",
true, notSupported):
menu_TCP_bytes.addItem(menu TCP bytes recvd);
menu_TCP_bytes sent = new Menultem(notsup + "Sent", true,
notSupported):
menu_TCP_bytes.addItem(menu TCP bytes_sent);
menu_TCP_bytes recvdByTime = new Menultem(notsup + "Received
per Unit of Time", true,
notSupported) ;
menu_TCP_bytes.addItem(menu TCP_bytes recvdByTime);
menu_ TCP_bytes sentByTime = new Menultem(notsup + "Sent per
Unit of Time", true,
notSupported) ;
menu_TCP_bytes.addItem(menu TCP bytes_sentByTime);
menu_TCP.addItem("Bytes” + submen, true, menu TCP_bytes);
menu_TCP_bits recvd = new Menultem(notsup + "Received", true,
notSupported) ;
menu_TCP bits.addItem(menu TCP bits recvd);
menu_TCP_bits sent = new Menultem(notsup + "Sent", true,
notSupported) ;
menu_TCP_bits.addItem(menu TCP bits sent);
menu_TCP_bits recvdByTime = new Menultem(notsup + "Received
per Unit of Time", true,
notSupported) ;
menu_TCP bits.addItem(menu TCP bits recvdByTime) ;
menu:TCP:bits_sentByTime = new Menultem(notsup + "Sent per
Unit of Time", true,
notSupported);
menu_TCP_bits.addItem(menu TCP bits sentByTime);

144

menu TCP.addItem("Bits" + submen, true, menu TCP bits);
menu_TCP_errors_chksum = new Menultem(notsup + "Checksum",
true, notSupported);
menu TCP_errors.addItem(menu TCP_errors_chksum);
menu_TCP_errors_hdr = new Menultem({notsup + "Header", true,
notSupported);
menu TCP_errors.addItem(menu TCP_errors_hdr);
menu_TCP_errors_chksumByTime = new Menultem(notsup +
"Checksum per Unit of Time", true,
notSupported);
menu_TCP_errors.addItem(menu TCP errors chksumByTime);
menu TCP_errors hdrByTime = new Menultem(notsup + "Header per
Unit of Time", true,
notSupported) ;
menu TCP_errors.addItem(menu TCP_errors_hdrByTime);
menu_ TCP.addItem("Errors" + submen, true, menu TCP_errors);
menu_TCP buffers send status = new Menultem(notsup +
"Status", true, notSupported);
menu_TCP_buffers send.addItem(menu TCP_buffers send status);
menu TCP buffers send overflows = new Menultem(notsup +
"Overflows", true, notSupported):;
menu_TCP_buffers send.addItem(menu TCP buffers send overflows
)i
menu_TCP_buffers.addItem("Send" + submen, true,
menu_TCP buffers send);
menu TCP_buffers_receive_status = new Menultem(notsup +
"Status", true, notSupported);
menu_TCP_buffers receive.addItem(menu_ TCP_buffers_receive_sta
tus);
menu_ TCP_buffers receive overflows = new Menultem(notsup +
"Overflows", true, notSupported):
menu_ TCP_buffers receive.addItem(menu TCP_buffers receive ove
rflows) ;
menu_TCP buffers.addItem("Receive" + submen, true,
menu_TCP_buffers receive);
menu_TCP.addItem("Buffers” + submen, true, menu TCP buffers);

/* Create the "UDP" menu */

menu_UDP.setAutoOpen(true);

menu_UDP_packets.setAutoOpen (true);

menu_UDP_bytes.setAutoOpen (true);

menu UDP bits.setAutoOpen (true);

menu_ UDP_errors.setAutoOpen (true);

menu_UDP_buffers.setAutoOpen (true);

menu_UDP_buffers_send.setAutoOpen (true);

menu_UDP_buffers receive.setAutoOpen (true);

menu:UDP_packets_recvd = new Menultem(notsup + "Received",
true, notSupported);

menu UDP_packets.addItem(menu UDP_packets_ recvd);

menu UDP_packets_sent = new Menultem(notsup + "Sent", true,

145

notSupported);
menu UDP packets.addItem(menu UDP packets_sent);
menu_UDP packets recvdByTime = new Menultem(notsup +
"Received per Unit of Time", true,
notSupported) ;
menu_UDP packets.addItem(menu UDP_packets_ recvdByTime);
menu UDP packets sentByTime = new Menultem(notsup + "Sent per
Unit of Time", true,
notSupported) ;
menu_UDP packets.addItem(menu UDP_packets_sentByTime);
menu UDP.addItem("Packets" + submen, true, menu UDP_ packets);
menu UDP bytes recvd = new Menultem(notsup + "Received”,
true, notSupported);
menu_ UDP _bytes.addItem(menu UDP bytes recvd);
menu_UDP _bytes sent = new Menultem(notsup + "Sent", true,
notSupported) ;
menu UDP _bytes.addItem(menu UDP bytes_ sent);
menu_ UDP_bytes recvdByTime = new Menultem(notsup + "Received
per Unit of Time", true,
notSupported) ;
menu_UDP_bytes.addItem(menu UDP bytes recvdByTime);
menu_UDP bytes_sentByTime = new Menultem(notsup + "Sent per
Unit of Time", true,
notSupported) ;
menu_UDP_bytes.addItem(menu UDP_bytes_ sentByTime);
menu UDP.addItem("Bytes" + submen, true, menu UDP bytes);
menu_UDP_bits recvd = new Menultem(notsup + "Received", true,
notSupported);
menu_UDP_bits.addItem(menu UDP_bits_ recvd);
menu UDP_bits_sent = new Menultem(notsup + "Sent", true,
notSupported) ;
menu UDP_bits.addItem(menu UDP_bits_sent);
menu UDP _bits recvdByTime = new Menultem(notsup + "Received
per Unit of Time", true,
notSupported) ;
menu_UDP bits.addItem(menu UDP bits recvdByTime);
menu_UDP_bits_sentByTime = new Menultem(notsup + "Sent per
Unit of Time", true,
notSupported) ;
menu UDP_bits.addItem(menu UDP bits sentByTime);
menu_UDP.addItem("Bits" + submen, true, menu UDP bits);
menu UDP_errors chksum = new Menultem(notsup + "Checksum",
true, notSupported):;
menu_UDP_errors.addItem(menu_UDP_errors_chksum);
menu_UDP_errors_hdr = new Menultem(notsup + "Header", true,
notSupported) ;
menu_ UDP_errors.addItem(menu UDP errors hdr);
menu_UDP_errors_chksumByTime = new Menultem(notsup +
"Checksum per Unit of Time", true,
notSupported) ;
menu UDP errors.addItem(menu UDP_errors_chksumByTime);

146

menu UDP _errors_hdrByTime = new Menultem(notsup + "Header per

Unit of Time", true,
notSupported) ;

menu UDP_errors.addItem(menu UDP_errors_hdrByTime);

menu UDP.addItem("Errors" + submen, true, menu_UDP_errors);

menu UDP buffers send_status = new Menultem(notsup +
"Status", true, notSupported);

menu UDP buffers_send.addItem{menu_ UDP buffers_send_status);

menu UDP _buffers send overflows = new Menultem(notsup +
"Overflows"™, true, notSupported);

menu_UDP_buffers_send.addItem(menu UDP _buffers_send overflows
)i

menu_UDP_buffers.addltem("Send" + submen, true,
menu UDP_buffers send);

menu_ UDP_buffers receive status = new Menultem(notsup +
"Status", true, notSupported):

menu_UDP_buffers_receive.addItem(menu UDP buffers receive sta
tus);

menu_UDP buffers receive_overflows = new Menultem(notsup +
"Overflows", true, notSupported):

menu_UDP_buffers_receive.addItem(menu_UDP_buffers receive ove
rflows);

menu UDP buffers.addItem("Receive" + submen, true,

menu UDP buffers receive);
menu_UDP.addItem("Buffers" + submen, true, menu UDP buffers);

/* Create the "IPv4" menu */

menu_IPv4.setAutoOpen (true);

menu IPv4 packets.setAutoOpen(true);

menu_IPv4 bytes.setAutoOpen (true);

menu IPv4 bits.setAutoOpen (true);

menu_IPv4 errors.setAutoOpen (true);

menu_IPv4_buffers.setAutoOpen(true);

menu_IPv4 buffers send.setAutoOpen (true);

menu_IPv4 buffers receive.setAutoOpen (true);

menu_IPv4 responseTime.setAutoOpen(true);

menu_IPv4 packets_recvd = new Menultem(notsup + "Received”,
true, notSupported);

menu_ IPv4_packets.addltem(menu_ IPv4 packets_recvd);

menu_IPv4 packets_sent = new Menultem(notsup + "Sent", true,
notSupported) ;

menu_IPv4 packets.addItem(menu IPv4 packets_sent);

menu_IPv4 packets_sent_and rcvd = new Menultem(off + "Sent
and Received", true, IPv4PacketsSentAndRcvdCmd);

menu_IPv4 packets.addItem(menu IPv4 packets_sent and rcvd);

menu_IPv4 packets recvdByTime = new Menultem(notsup +
"Received per Unit of Time", true,

notSupported) ;
menu IPv4 packets.addItem(menu IPv4_packets recvdByTime);
menu_IPv4_packets_sentByTime = new Menultem(notsup + "Sent

147

per Unit of Time", true,
notSupported) ;
menu_IPv4 packets.addItem(menu IPv4 packets sentByTime);
menu_IPv4.addItem("Packets" + submen, true,
menu_IPV4_packets),
menu_IPv4 bytes recvd = new Menultem(notsup + "Received",
true, notSupported);
menu_IPv4 bytes.addItem(menu IPv4_bytes_recvd);
menu_IPv4 bytes sent = new Menultem(notsup + "Sent", true,
notSupported);
menu_IPv4 bytes.addItem(menu IPv4 bytes_sent);
menu IPv4 _bytes sent _and rcvd = new Menultem(off + "Sent and
Received", true, IPv4BytesSentAndRcvdCmd) ;
menu_IPv4 bytes.addItem(menu IPv4 bytes sent and rcvd);
menu_IPv4 bytes recvdByTime = new Menultem(notsup + "Received
per Unit of Time", true,
notSupported) ;
menu_IPv4 bytes.addItem(menu IPv4 bytes recvdByTime);
menu_ Ipv4 _bytes sentByTime = new Menultem(notsup + "Sent per
Unit of Tlme", true,
notSupported) ;
menu_ IPv4 bytes.addItem(menu IPv4 bytes sentByTime);
menu_IPv4.addItem("Bytes" + submen, true, menu_IPv4 bytes);
menu_IPv4 bits recvd = new Menultem(notsup + "Received”,
true, notSupported):
menu_IPv4 bits.addItem(menu_ IPv4_bits recvd);
menu IPv4 bltS sent = new Menultem(notsup + "Sent", true,
notSupported),
menu IPv4 bits.addItem(menu IPv4 bits sent);
menu_IPv4 bltS _sent_and _rcvd = new MenuItem(notsup + "Sent
and Recelved" true, notSupported),
menu IPv4 bits.addItem(menu_ IPv4 bits_sent and rcvd);
menu_IPv4 bits_recvdByTime = new Menultem(notsup + "Received
per Unit of Time", true,
notSupported) ;
menu_IPv4 bits.addItem(menu IPv4 bits recvdByTime);
menu_IPv4 bits_sentByTime = new Menultem(notsup + "Sent per
Unit of Time", true,
notSupported) ;
menu_IPv4 bits.addItem(menu IPv4_bits sentByTime);
menu_ T Ipv4. addItem("Blts" + submen, true, menu IPv4 bits);
menu_IPv4_errors_chksum = new Menultem(notsup + "Checksum",
true, notSupported);
menu_IPv4 errors.addItem(menu_IPv4 errors_chksum);
menu_IPv4_errors_hdr = new Menultem(notsup + "Header", true,
notSupported) ;
menu IPv4 errors.addItem(menu IPv4 errors_hdr);
menu_IPv4_errors_chksumByTime = new Menultem(notsup +
"Checksum per Unit of Time", true,
notSupported) ;
menu_IPv4 errors.addItem(menu IPv4 errors_ chksumByTime);

148

menu_IPv4 errors hdrByTime = new Menultem(notsup + "Header
per Unit of Time", true,
notSupported) ;
menu_IPv4_errors.addItem(menu IPv4 errors_hdrByTime);
menu IPv4.addItem("Errors" + submen, true, menu IPv4 errors);
menu IPv4 buffers send status = new Menultem(notsup +
"Status", true, notSupported):
menu_IPv4 buffers send.addItem{menu IPv4 buffers send status);
menu_IPv4 buffers send overflows = new Menultem(notsup +
"Overflows", true, notSupported):;
menu_IPv4 buffers send.addItem(menu_ IPv4 buffers send overflo
ws) ;
menu_IPv4 buffers.addItem("Send" + submen, true,
menu IPv4 buffers send);
menu_IPv4 buffers receive_status = new Menultem(notsup +
"Status", true, notSupported);
menu_IPv4 buffers receive.addItem(menu IPv4 buffers receive_s
tatus);
menu IPv4 buffers receive overflows = new Menultem(notsup +
"Overflows", true, notSupported):
menu_IPv4 buffers receive.addItem(menu IPv4 buffers receive o
verflows);
menu_IPv4 buffers.addItem("Receive” + submen, true,
menu_IPv4 buffers receive):
menu_IPvé4.addItem("Buffers" + submen, true,
menu IPv4 buffers);
menu_IPv4_responseTime max = new Menultem(notsup + "Maximum",
true,
notSupported) ;
menu_IPv4 responseTime.addItem(menu IPv4_ responseTime max);
menu_IPv4 responseTime min = new Menultem(notsup + "Minimum",
true,
notSupported);
menu_IPv4_responseTime.addItem(menu_ IPv4 responseTime min);
menu_IPv4_ responseTime avg = new Menultem(notsup + "Average",
true,
notSupported) ;
menu_IPv4_responseTime.addItem(menu_IPv4 responseTime avg);
menu_IPv4.addItem("Response Time” + submen, true,
menu IPv4 responseTime);

/* Create the "IPv6" menu */
menu_IPv6.setAutoOpen (true);
menu_IPv6.addItem (" (PLACEHOLDER)", true, notSupported);

/* Create the "Raw IP" menu */
menu_rawIP.setAutoOpen (true);
menu_rawIP.addItem (" (PLACEHOLDER)", true, notSupported):;

149

/* Create the "SCTP" menu */
menu_SCTP.setAutoOpen (true);
menu_SCTP.addItem (" (PLACEHOLDER)", true, notSupported);

/* Create the "Wireless" menu */

menu_wireless.setAutoOpen(true);

wirelessOnOff = new Menultem(off + "Enable/Disable"™, true,
wirelessCmd) ;

menu_wireless.addItem(wirelessOnOff);

/* Create the "LEGEND" menu */

menu_legend.setAutoOpen (true);

menu_legend.addItem(notsup + "Feature Not Yet Supported”,
true, legendInfo);

menu_legend.addItem(on + "Feature Turned On", true,
legendInfo);

menu_legend.addItem(off + "Feature Turned Off", true,
legendInfo);

/* Create the "TEST" menu */

menu_test.setAutoOpen (true);

testItem = new Menultem(off + "Show All Graphics", true,
testCmd) ;

menu_test.addItem(testItem);

//System.out.println ("HTML: " + testItem.getHTML());

/* Add menu items to the top horizontal menu */
menu.addItem(new Menultem("Router"”, menu_router));
menu.addItem(new Menultem("TCP", menu_ TCP));
menu.addItem(new Menultem("UDP", menu UDP));
menu.addItem(new Menultem("IPv4", menu IPv4));
menu.addItem(new Menultem("IPvé6", menu IPv6));
menu.addItem(new Menultem("Raw IP", menu_rawIP));
menu.addItem(new Menultem("SCTP", menu SCTP));
menu.addItem(new Menultem("Wireless", menu wireless));
menu.addItem(new Menultem("LEGEND", menu legend)):;
menu.addItem(new Menultem("TEST", menu test));

menu.setWidth ("100%");
initWidget (menu) ;

}

public static String changeMenuStatus (String origHTML) {
System.out.printlin("Original HTML: " + origHTML);

String[] tokens = origHTML.split ("<DGRP-SPLIT>");

150

if (tokens([0].equals (" <DGRP-ON>")) {

System.out.println("Returning HTML: " + off +
tokens{21]);

return (off + tokens{2]):

}

else if (tokens[0].equals(" <DGRP-OFF>")) {
System.out.println ("Returning HTML: " + on + tokens([2]);
return (on + tokens{2]):;

}

else {
System.out.println("Returning original HTML.");
return (origHTML);

BandwidthInfo java

package org.dgrp.client;
import com.gocgle.gwt.user.client.rpc.IsSerializable;

/**
*
* Qauthor chrisne
*/

public class BandwidthInfo implements IsSerializable {

private final double LOW BW THRESHOLD = 0.33;
private final double MED BW THRESHOLD = 0.67;
private final double HIGH BW_THRESHOLD = 0.9;

private String ipAddress;
private String bandwidthInUse;

private int pktsSentTo, pktsRcvdFrom, dataBytesSentTo,
dataBytesRcvdFrom,
pktsSentAndRcvd, dataBytesSentAndRcvd;

public BandwidthInfo (String ipAddress) {
this.ipAddress = ipAddress;
bandwidthInUse = null;

}

public BandwidthInfo() { //no-argument constructor required

for GWT serialization

this.ipAddress
bandwidthInUse

"0.0.0.0";
null;

il

151

}

public String getIPAddress () {
return ipAddress;

}

public void setBandwidthInUse (int current, int max) {
double percentage = current / max;

if (percentage < LOW BW THRESHOLD) {
bandwidthInUse = "low";

}

else if (percentage < MED BW THRESHOLD) {
bandwidthInUse = "medium";

}
else if (percentage < HIGH BW_THRESHOLD) ({

bandwidthInUse = "high";
}

else { //bandwidth usage nearing maximum
bandwidthInUse = "blocked";
}
}

public String getBandwidthInUse() {
return bandwidthInUse;

}

public void setTotalPacketsSentTo(int totalPackets) {
pktsSentTo = totalPackets;
}

public void setTotalPacketsReceivedFrom(int totalPackets) {
pktsRcvdFrom = totalPackets;

}

public void setTotalDataBytesSentTo(int totalDataBytes) {
dataBytesSentTo = totalDataBytes;

}
public void setTotalDataBytesReceivedFrom(int totalDataBytes)

dataBytesRcvdFrom = totalDataBytes;
}

public void setTotalPacketsSentToAndReceivedFrom{int
totalPackets) {
pktsSentAndRcvd = totalPackets;

}
public void setTotalDataBytesSentToAndReceivedFrom(int

totalDataBytes) {
dataBytesSentAndRcvd = totalDataBytes;

}
public int getTotalPacketsSentTo() {

return pktsSentTo;

152

}

public int getTotalPacketsReceivedFrom() ({
return pktsRcvdFrom;

}

public int getTotalDataBytesSentTo() {
return dataBytesSentTo;

}

public int getTotalDataBytesReceivedFrom{() {
return dataBytesRcvdFrom;

}

public int getTotalPacketsSentToAndReceivedFrom() {
return pktsSentAndRcvd;

}

public int getTotalDataBytesSentToAndReceivedFrom() {
return dataBytesSentAndRcvd;

}

BandwidthMonitorjava

package org.dgrp.client;
import com.google.gwt.user.client.rpc.RemoteService;

/**
*
* @author chrisne
*/
public interface BandwidthMonitor extends RemoteService({
public void startServiceCountPackets (String s);
public void startServiceCountDataBytes (String s);
public void stopServiceCountPackets();
public void stopServiceCountDataBytes|();
public BandwidthInfo getBandwidthInUse (String s);
public BandwidthInfo getRandomBandwidthInUse (String s);
public String[] getRefreshedIPs();

BandwidthMonitorAsync.java

package org.dgrp.client;
import com.google.gwt.user.client.rpc.AsyncCallback;

/**
*

153

* @author chrisne
*/
public interface BandwidthMonitorAsync {
public void startServiceCountPackets(String s, AsyncCallback
asyncCallback);
public void startServiceCountDataBytes(String s,
AsyncCallback asyncCallback});
public void stopServiceCountPackets (AsyncCallback
asyncCallback) ;
public void stopServiceCountDataBytes (AsyncCallback
asyncCallback);
public void getBandwidthInUse(String s, AsyncCallback
callback);
public void getRandomBandwidthInUse (String s, AsyncCallback
callback);
public void getRefreshedIPs (AsyncCallback callback);

}

DGRPEntryPoint.java
package org.dgrp.client;

import org.dgrp.client.SidebarItem.SidebarItemInfo;
import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.user.client.ui.RootPanel;
import com.google.gwt.user.client.History;

import com.google.gwt.user.client.HistorylListener;
import com.google.gwt.user.client.ui.DockPanel;
import com.google.gwt.user.client.ui.HasAlignment;
import com.google.gwt.user.client.ui.HTML;

import com.google.gwt.user.client.ui.VerticalPanel;

/**
*
* @author Christopher Nelson
*/
public class DGRPEntryPoint implements EntryPoint,
HistoryListener {

/** Creates a new instance of DGRPEntryPoint */
public DGRPEntryPoint () {

}

protected Sidebar list = new Sidebar();

private SidebarItemInfo curInfo;

private SidebarItem curItem;

private HTML description = new HTML{();

private DockPanel panel = new DockPanel () ;
private DockPanel mainPanel;

154

public void onHistoryChanged(String token) {

// Find the SidebarItemInfo associated with the history
context. If one

// is found, show it (It may not be found, for example,
when the user

// mis-types a URL, or on startup, when the first context
will be "").

SidebarltemInfo info = list.find(token);

if (info == null) {
showInfo ();
return;

}

show(info, false);

}

public void onModuleload () {
// Load all the sidebar items.
loadSidebarItems () ;

// Put the sidebar on the left, and add the outer dock
panel to the

// root.

mainPanel = new DockPanel();

mainPanel.setStyleName ("dgrp-MainPanel");

VerticalPanel vp = new VerticalPanel();
vp.setWidth("100%");
vp.add(description);

vp.add{mainPanel);

description.setStyleName ("dgrp-Heading");

panel.add(list, DockPanel.WEST);
panel.add (vp, DockPanel.CENTER);

panel.setCellVerticalAlignment (list,
HasAlignment .ALIGN_TOP);

panel.setCellWidth(vp, "100%"):;

panel.setCellHeight (vp, "100%");

History.addHistoryListener (this);
RootPanel.get () .add (panel);

// Show the initial screen.
String initToken = History.getToken|();
if (initToken.length() > 0) {
onHistoryChanged (initToken) ;
} else {
showInfo();

}

155

}

public void show(SidebarItemInfo info, boolean affectHistory)
{

// Don't bother re-displaying the existing item. This can

be an issue
// in practice, because when the history context is set,

our
// onHistoryChanged() handler will attempt to show the

currently-visible

// item.
if (info == curlInfo) {
return;

}

curInfo = info;

// Remove the old item from the display area.
if (curItem != null) {

curItem.onHide () ;

mainPanel.remove (curlItem) ;

}

// Get the new item instance, and display its description
in the

// item list.

curlitem = info.getlInstance();

list.setltemSelection(info.getName()):;

description.setHTML (info.getDescription());

// 1f affectHistory is set, create a new item on the
history stack. This

// will ultimately result in onHistoryChanged() being
called. It will

// call show() again, but nothing will happen because it
will request

// the exact same item we're already showing.

if (affectHistory) {

History.newltem(info.getName());

}

// Display the new item.

mainPanel.add (curItem, DockPanel.CENTER) :;

mainPanel.setCellWidth (curItem, "100%");

mainPanel.setCellHeight (curlItem, "100%");

mainPanel.setCellVerticalAlignment (curltem,
DockPanel .ALIGN TOP);

curltem.onShow () ;

}

/**
* Adds all items to the list. Note that this does not create

156

actual instances
* of all items yet (they are created on-demand). This can
make a significant
* difference in startup time.
*/
protected veoid loadSidebarItems() {
list.addItem{Welcome.init ());
list.addItem(Analysis.init());
list.addItem({Settings.init());
list.addItem(Version.init());
list.addItem(About.init ());
}

private void showlInfo() {
show(list.find ("Welcome"), false);
}

GetVersionInfo.java

package org.dgrp.client;
import com.google.gwt.user.client.rpc.RemoteService;

/**

*

* @author Christopher Nelson
*/
public interface GetVersionInfo extends RemoteService({
public VersionContents getVersionInfo();

}

GetVersionInfoAsync.java

package org.dgrp.client;
import com.google.gwt.user.client.rpc.AsyncCallback;

/**

*
* @author Christopher Nelson
*/
public interface GetVersionInfoAsync {
public void getVersionInfo (AsyncCallback callback);
}

157

ImagePanel.java
package org.dgrp.client;

import com.google.gwt.user.client.ui.DockPanel;
import com.google.gwt.user.client.ui.HorizontalPanel;
import com.google.gwt.user.client.ui.Label;

import com.google.gwt.user.client.ui.Image;

import com.google.gwt.user.client.ui.Composite;
import com.google.gwt.user.client.ui.Grid;

J**
*
* @author chrisne
*/

public class ImagePanel extends Composite {

private final String NUM_PACKETS LABEL = "# Packets";
public final int NUM PACKETS = {;

private final String NUM_DATA BYTES LABEL = "# Data Bytes";
public final int NUM DATA BYTES = 1;

private boolean isIPv4PacketsSentAndRcvdVisible = false;
private boolean isIPv4BytesSentAndRcvdVisible = false;

DockPanel dock, routerStatsbDock, wirelessDock, laptopODock,
laptoplDock,
laptop2Dock, laptop3Dock;
HorizontalPanel ispPanel, routerPanel, pipePanel, laptopPanel;
Image laptop0O, laptopl, laptop2, laptop3, router, wireless,
routerStats,
laptopOPipe, laptoplPipe, laptop2Pipe, laptop3Pipe;
Label laptop0IPAddrLabel, laptoplIPAddrlLabel,
laptop2IPAddrlabel,
laptop3IPAddrLabel;
Grid laptopOgrid, laptoplgrid, laptop2grid, laptop3grid;

public ImagePanel () {

laptop0 = new Image("images/placeholder.png"):
laptop0O.setWidth ("131px");

laptop0O.setHeight ("104px");
laptop0O.setStyleName ("dgrp-Images-Image") ;

laptopl = new Image ("images/placeholder.png"):
laptopl.setWidth("131px");

laptopl.setHeight ("104px");
laptopl.setStyleName ("dgrp-Images—-Image") ;

158

laptop2 = new Image ("images/placeholder.png”);
laptop2.setWidth ("131px");

laptop2.setHeight ("104px");
laptop2.setStyleName ("dgrp-Images—-Image") ;

laptop3 = new Image ("images/placeholder.png");
laptop3.setWidth ("131px");

laptop3.setHeight ("104px");
laptop3.setStyleName ("dgrp-Images—-Image") ;

router = new Image ("images/router.png"™);
router.setWidth ("188px"):
router.setHeight ("166px");
router.setStyleName ("dgrp-Images-Image") ;

wireless = new Image ("images/placeholder.png");
wireless.setWidth ("384px");

wireless.setHeight ("231px");
wireless.setStyleName ("dgrp-Images-Wireless");

routerStats = new Image("images/placeholder.png");
routerStats.setWidth ("255px") ;

routerStats.setHeight ("275px") ;
routerStats.setStyleName ("dgrp-Images—-RouterStats”);

laptopOPipe = new Image ("images/placeholder.png");
laptopOPipe.setWidth ("371px");
laptopOPipe.setHeight ("54px") ;
laptopOPipe.setStyleName ("dgrp-Images-LaptopOPipe");
laptoplPipe = new Image ("images/placeholder.png");
laptoplPipe.setWidth ("102px");

laptoplPipe.setHeight ("54px");
laptoplPipe.setStyleName ("dgrp-Images-LaptoplPipe");
laptop2Pipe = new Image ("images/placeholder.png”);
laptop2Pipe.setStyleName ("dgrp~Images-Laptop2Pipe™);
laptop2Pipe.setWidth ("102px");

laptop2Pipe.setHeight ("54px");

laptop3Pipe = new Image("images/placeholder.png”);
laptop3Pipe.setWidth ("371px");

laptop3Pipe.setHeight ("54px");
laptop3Pipe.setStyleName ("dgrp-Images-Laptop3Pipe");

dock = new DockPanel();

wirelessDock = new DockPanel();

routerStatsDock = new DockPanel ();

pipePanel = new HorizontalPanel();

laptopODock = new DockPanel ();

laptopOIPAddrlLabel = new Label();

laptopOIPAddrlabel.setHorizontalAlignment (Label.ALIGN CEN
TER) ;

159

laptopOgrid = new Grid(2, 2);
laptopOgrid.setVisible (false);
//laptopQOgrid.setBorderWidth(1);
laptopOgrid.setCellPadding(2);
laptopOgrid.setStyleName ("dgrp-Stat-Table");
//laptopOgrid.setHTML(0, 0, "# Packets");
//laptopOgrid.setHTML(1, 0, "# Data Bytes");
//laptopOgrid.setHTML (0, 1, ™0");
//laptopOgrid.setHTML{(1, 1, "0");
laptoplDock = new DockPanel();
laptoplIPAddrLabel = new Label();
laptoplIPAddrLabel.setHorizontalAlignment (Label .ALIGN_CEN
TER) ; .
laptoplgrid = new Grid(2, 2);
laptoplgrid.setVisible (false);
//laptoplgrid.setBorderWidth (1) ;
laptoplgrid.setCellPadding (2);
laptoplgrid.setStyleName ("dgrp-Stat-Table") ;
//laptoplgrid.setHTML (0, O, "# Packets");
//laptoplgrid.setHTML(1, O, "# Data Bytes");
//laptoplgrid.setHTML (0, 1, "0™);
//laptoplgrid.setHTML (1, 1, "0");
laptop2Dock = new DockPanel();
laptop2IPAddrLabel = new Label();
laptop2IPAddrLabel.setHorizontalAlignment (Label.ALIGN CEN
TER) ;
laptop2grid = new Grid(2, 2);
laptop2grid.setVisible (false);
//laptop2grid.setBorderWidth (1) ;
laptop2grid.setCellPadding (2) ;
laptop2grid.setStyleName ("dgrp-Stat—~Table");
//laptop2grid.setHTML (0, 0, "# Packets");
//laptop2grid.setHTML (1, 0, "# Data Bytes");
//laptop2grid.setdTML(0, 1, "O");
//laptop2grid.setHTML(1, 1, "0"):
laptop3Dock = new DockPanel():;
laptop3IPAddrLabel = new Label();
laptop3IPAddrLabel.setHorizontalAlignment (Label.ALIGN CEN
TER) ;
laptop3grid = new Grid(2, 2);
laptop3grid.setVisible (false);
//laptop3grid.setBorderWidth (1) ;
laptop3grid.setCellPadding(2);
laptop3grid.setStyleName ("dgrp-Stat-Table");
//laptop3grid.setHTML (0, 0, "# Packets");
//laptop3grid.setHTML (1, 0, "# Data Bytes");
//laptop3grid.setHTML (0, 1, "O");
//laptop3grid.setHTML(1, 1, "0");
ispPanel = new HorizontalPanel ();
routerPanel = new HorizontalPanel ():;
laptopPanel = new HorizontalPanel():

160

laptopPanel.setHeight ("150px");

ispPanel.setHeight ("100px");
wirelessDock.setWidth ("500px™);
routerStatsDock.setWidth ("500px");
laptopODock.setWidth ("300px") ;
laptopODock.setHeight ("100%");
laptoplDock.setWidth ("300px");
laptoplDock.setHeight ("100%");
laptop2Dock.setWidth ("300px") ;
laptop2Dock.setHeight ("100%") ;
laptop3Dock.setWidth ("300px");
laptop3Dock.setHeight ("100%");

dock.setWidth ("100%") ;
dock.setHeight ("100%");

dock.setHorizontalAlignment (DockPanel .ALIGN CENTER) ;

routerStatsDock.add(routerStats, DockPanel.CENTER);

wirelessDock.add(wireless, DockPanel.CENTER) ;
routerPanel.add (routerStatsDock) ;
routerPanel.add (router);
routerPanel.setCellVerticalAlignment (router,
HorizontalPanel.ALIGN BOTTOM) ;
routerPanel.add(wirelessDock) ;

pipePanel.add(laptop0Pipe);
pipePanel.setCellWidth (laptopOPipe, "475px");
pipePanel.setCellHorizontalAlignment (laptopOPipe,
HorizontalPanel .ALIGN_CENTER) ;
pipePanel.add (laptoplPipe);
pipePanel.setCellWidth (laptoplPipe, "125px™);
pipePanel.setCellHorizontalAlignment (laptoplPipe,
HorizontalPanel.ALIGN CENTER);
pipePanel.add(laptop2Pipe) ;
pipePanel.setCellWidth (laptop2Pipe, "125px");
pipePanel.setCellHorizontalAlignment (laptop2Pipe,
HorizontalPanel .ALIGN CENTER);
pipePanel.add (laptop3Pipe);
pipePanel.setCellWidth (laptop3Pipe, "475px");
pipePanel.setCellHorizontalAlignment (laptop3Pipe,
HorizontalPanel.ALIGN_ CENTER);

laptopODock.add (laptop0IPAddrLabel, DockPanel.SOUTH) ;

laptopODock.add (laptopOgrid, DockPanel.WEST);

laptopODock.add (laptop0, DockPanel.CENTER);

laptopODock.setCellHorizontalAlignment (laptopO0,
DockPanel .ALIGN CENTER) ;

laptoplDock.add (laptoplIPAddrLabel, DockPanel.SOUTH) ;

laptoplDock.add (laptoplgrid, DockPanel.WEST);
laptoplDock.add (laptopl, DockPanel.CENTER) ;

161

laptoplDock.setCellHorizontalAlignment (laptopl,
DockPanel.ALIGN_CENTER) ;

laptop2Dock.add (laptop2IPAddrLabel, DockPanel.SOUTH);

laptopZ2Dock.add (laptop2grid, DockPanel.WEST);

laptop2Dock.add(laptop2, DockPanel.CENTER);

laptop2Dock.setCellHorizontalAlignment (laptop2,
DockPanel .ALIGN CENTER):

laptop3Dock.add (laptop3IPAddrlabel, DockPanel.SOUTH);

laptop3Dock.add (laptop3grid, DockPanel.WEST);

laptop3Dock.add (laptop3, DockPanel.CENTER) ;

laptop3Dock.setCellHorizontalAlignment (laptop3,
DockPanel .ALIGN CENTER);

laptopPanel.add (laptopODock) ;
laptopPanel.add (laptoplDock) ;
laptopPanel.add (laptop2Dock) ;
laptopPanel.add(laptop3Dock);

dock.add (ispPanel, DockPanel.NORTH) ;
dock.add (routerPanel, DockPanel.NORTH) ;
dock.add (pipePanel, DockPanel.NORTH)
dock.add (laptopPanel, DockPanel.NORTH) ;
dock.setCellWidth (ispPanel, "100%");
dock.setCellWidth (routerPanel, "100%");
dock.setCellWidth (pipePanel, "100%");
dock.setCellWidth (laptopPanel, "100%™);

initWidget (dock) ;
}

public void hideWireless() {
wireless.setUrl ("images/placeholder.png"):
wireless.setWidth ("384px");
wireless.setHeight ("231px");
wireless.setStyleName ("dgrp-Images-Wireless");

}

public void showWireless() {
wireless.setUrl ("images/wireless cloud.png");
wireless.setWidth ("384px");
wireless.setHeight ("231px");
wireless.setStyleName ("dgrp-Images-Wireless");

}

public boolean isWirelessVisible() {
if (wireless.getUrl () .endsWith("placeholder.png™)) {
return false;
}
else {
return true;

}

162

}

public void hideRouterStats() {
routerStats.setUrl ("images/placeholder.png");
routerStats.setWidth ("255px");
routerStats.setHeight ("275px") ;
routerStats.setStyleName ("dgrp-Images—RouterStats");

}

public void showRouterStats() {
routerStats.setUrl ("images/placeholder for router stats.p
ﬂg") :
routerStats.setWidth ("255px") ;
routerStats.setHeight ("275px") ;
routerStats.setStyleName ("dgrp-Images—-RouterStats");
}

public boolean isRouterStatsVisible() {
if (routerStats.getUrl () .endsWith("placeholder.png")) {
return false;
}
else {
return true;
}
}

public void hidelIPv4PacketsSentAndRcvd () {
isIPv4PacketsSentAndRcvdVisible = false;

}

public void showIPv4PacketsSentAndRcvd () {
isIPv4PacketsSentAndRcvdVisible = true;

}

public boolean isIPv4PacketsSentAndRcvdVisible() {
return isIPv4PacketsSentAndRcvdVisible;

}

public void hideIPv4BytesSentAndRcvd() {
isIPv4BytesSentAndRcvdVisible = false;

}

public void showIPv4BytesSentAndRcvd () {
isIPv4BytesSentAndRcvdVisible = true;

}

public boolean isIPv4BytesSentAndRcvdVisible() {
return isIPv4BytesSentAndRcvdVisible;

}

public void hidelaptop({int position) ({
switch (position) {
case 0:
laptop0.setUrl ("images/placeholder.png");
laptop0.setWidth ("131px");

163

laptop0.setHeight ("104px");
laptop0O.setStyleName ("dgrp-Images-Image");
laptopOgrid.setVisible{false);
break;

case 1:
laptopl.setUrl ("images/placeholder.png");
laptopl.setWidth ("131px");
laptopl.setHeight ("104px") ;
laptopl.setStyleName ("dgrp-Images-Image");
laptoplgrid.setVisible (false);
break;

case 2:
laptop2.setUrl ("images/placeholder.png") ;
laptop2.setWidth ("131px"):
laptop2.setHeight ("104px");
laptop2.setStyleName ("dgrp-Images—-Image");
laptop2grid.setVisible (false);
break;

case 3:
laptop3.setUrl ("images/placeholder.png");
laptop3.setWidth ("131px"):
laptop3.setHeight ("104px");
laptop3.setStyleName ("dgrp-Images-Image") ;
laptop3grid.setVisible (false);
break;

default:
break; //ignore others for now

}

public void showLaptop (int position) {
switch (position) ({

case 0:
laptop0.setUrl ("images/laptop.png");
laptop0.setWidth ("131px");
laptop0.setHeight ("104px");
laptop0.setStyleName ("dgrp~Images~Image");
laptopOgrid.setvisible (true);
laptopOgrid.setHTML{(0, 1, "");
laptopOgrid.setHTML(1, 1, "");
break;

case 1:
laptopl.setUrl ("images/laptop.png");
laptopl.setWidth ("131px");
laptopl.setHeight ("104px");
laptopl.setStyleName ("dgrp-Images-Image") ;
laptoplgrid.setVisible (true);

laptoplgrid.setHTML(0, 1, "");
laptoplgrid.setHTML(1, 1, "™);
break;

case 2:

164

laptop2.setUrl ("images/laptop.png");
laptop2.setWidth ("131px") ;
laptop2.setHeight ("104px");
laptop2.setStyleName ("dgrp-Images-Image");

laptop2grid.setVisible (true);
laptop2grid.setHTML(0, 1, "");
laptop2grid.setHTML(1, 1, "");

case 3:

break;

laptop3.setUrl ("images/laptop.png");
laptop3.setWidth ("131px") ;
laptop3.setHeight ("104px");
laptop3.setStyleName ("dgrp-Images-Image”);

laptop3grid.setVisible (true);
laptop3grid.setHTML(0, 1, "");
laptop3grid.setHTML(1, 1,

"ll);

break;
default:
break;

}

//ignore others for now

public boolean islLaptopVisible (int position) {

switch (position) {
case 0:
if (laptop0.getUrl ()
return false;
}
break;
case 1:
if (laptopl.getUrl ()
return false;
}
break;
case 2:
if (laptop2.getUrl{()
return false;
}
break;
case 3:

if (laptop3.getUrl ()

return false;
}

break;
default:
break;

165

.endsWith ("placeholder.png"))

.endsWith ("placeholder.png"))

.endsWith ("placeholder.png™))

.endsWith ("placeholder.png”))

//ignore others for now

return true;

}

public void showLaptopPipe (int position, String bwUsage)

switch (position) {
case 0:

.png");

m.png");

.png") ;

ng");:

LaptopOPipe") ;

if (bwUsage.equals ("low")) {

laptopOPipe.setUrl ("images/laptop0_pipe_ small

}
else if (bwUsage.equals("medium")) {

laptopOPipe.setUrl("images/laptop0 pipe mediu

}
else if (bwUsage.equals("high")) {

laptopOPipe.setUrl ("images/laptop0 _pipe large

}
else if (bwUsage.equals("blocked")) {

laptopOPipe.setUrl ("images/laptop0 pipe red.p

}

laptopOPipe.setWidth ("371px");
laptopOPipe.setHeight ("54px") ;
laptopOPipe.setStyleName ("dgrp~Images-

break;

case 1:

.png");

m.png”);

.png"} ;

ngn) :

LaptoplPipe");

if (bwUsage.equals("low")) {

laptoplPipe.setUrl ("images/laptopl pipe small

}
else if (bwUsage.equals ("medium")) {

laptoplPipe.setUrl ("images/laptopl pipe mediu

}
else if (bwUsage.equals("high"})} {

laptoplPipe.setUrl ("images/laptopl pipe large

}
else if (bwUsage.equals("blocked”)) {

laptoplPipe.setUrl ("images/laptopl pipe red.p

}

laptoplPipe.setWidth ("102px") ;
laptoplPipe.setHeight ("54px");
laptoplPipe.setStyleName ("dgrp-Images-

break;

case 2:

166

if (bwUsage.equals("low")) {
laptop2Pipe.setUrl ("images/laptop2 pipe small

.png") ;
}
else if (bwUsage.equals("medium"))} {
laptop2Pipe.setUrl ("images/laptop2 pipe mediu
m.png") ;
}
else if (bwUsage.equals("high")) {
laptop2Pipe.setUrl ("images/laptop2 pipe large
.png");
}
else if (bwUsage.equals("blocked")) {
laptop2Pipe.setUrl ("images/laptop2 pipe red.p
ng") ;

}
laptop2Pipe.setWidth ("102px") ;
laptop2Pipe.setHeight ("54px") ;
laptop2Pipe.setStyleName ("dgrp-Images-
Laptop2Pipe”) ;
break;
case 3:
if (bwUsage.equals ("low")) {
laptop3Pipe.setUrl ("images/laptop3 pipe small

.png”);
}
else if (bwUsage.equals ("medium")) {
laptop3Pipe.setUrl ("images/laptop3 pipe mediu
m.png") ;
}
else if (bwUsage.equals("high")) {
laptop3Pipe.setUrl ("images/laptop3 pipe large
.png”) ;
}
else if (bwUsage.equals ("blocked")) {
laptop3Pipe.setUrl ("images/laptop3 pipe red.p
ngu) :

}

laptop3Pipe.setWidth ("371px") ;

laptop3Pipe.setHeight ("54px");

laptop3Pipe.setStyleName ("dgrp-Images-—
Laptop3Pipe");

break;

default:
break;

}

public void hideLaptopPipe (int position) {
switch (position) {
case 0O:

167

laptop0.setUrl ("images/placeholder.png”) ;
laptopO.setWidth ("131px") ;
laptop0.setHeight ("104px");
laptop0.setStyleName ("dgrp-Images—-Image");
break;

case 1:
laptopl.setUrl ("images/placeholder.png");
laptopl.setWidth ("131px");
laptopl.setHeight ("104px");
laptopl.setStyleName ("dgrp-Images-Image");
break;

case 2:
laptop2.setUrl ("images/placeholder.png");
laptop2.setWidth ("131px");
laptop2.setHeight ("104px") ;
laptop2.setStyleName ("dgrp-Images-Image") ;
break;

case 3:
laptop3.setUrl ("images/placeholder.png");
laptop3.setWidth ("131px");
laptop3.setHeight ("104px");
laptop3.setStyleName ("dgrp-Images—-Image");
break;

default:
break; //ignore for now

}

public void setLaptopIPAddrlLabel (int position, String text) {
switch (position) {

case 0:
laptop0IPAddrLabel.setText (text);
break;

case 1:
laptoplIPAddrlabel.setText (text);
break;

case 2:
laptop2IPAddrLabel.setText (text);
break;

case 3:
laptop3IPAddrLabel.setText (text);
break;

default:
break;

}

public void setLaptopStatValue(int position, int stat, String
value) {
String label = "", valueUsed = "";

168

switch (stat) {
case NUM_PACKETS:
if (isIPv4PacketsSentAndRcvdvVisible) {
label = NUM_PACKETS_LABEL:
valueUsed = value;
}

break;

case NUM DATA BYTES:
if (isIPv4BytesSentAndRcvdVisible) {
label = NUM DATA BYTES LABEL; "
valueUsed = value;
}

break;

default: //ignore; invalid statistic
break;

}

switch (position) {
case 0:
if (stat == NUM PACKETS) {
laptopOgrid.setHTML (0, 0, label);
laptopOgrid.setHTML (0, 1, valueUsed);
} else if (stat == NUM DATA BYTES)
laptopOgrid.setHTML(1, 0, label);
laptopOgrid.setHTML(1l, 1, wvalueUsed);
} else {
//ignore for now; invalid statistic
}
break;
case 1:
if (stat == NUM_PACKETS) {
laptoplgrid.setHTML (0, 0, label);
laptoplgrid.setHTML(0, 1, valueUsed);
} else if (stat == NUM DATA BYTES) ({
laptoplgrid.setHTML (1, 0, label);
laptoplgrid.setHTML(1l, 1, valueUsed);
} else {
//ignore for now; invalid statistic
}
break;
case 2:
if (stat == NUM_PACKETS) {
laptop2grid.setHTML(0, 0, label);
laptop2grid.setHTML(0, 1, valueUsed);
} else if (stat == NUM DATA BYTES) ({
laptop2grid.setHTML (1, 0, label);
laptop2grid.setHTML(1l, 1, valueUsed);
} else {

169

//ignore for now; invalid statistic

}

break;

case 3:

if (stat == NUM PACKETS) {
laptop3grid.setHTML (0, 0, label);
laptop3grid.setHTML (0, 1, valueUsed);

} else if (stat == NUM _DATA BYTES) {
laptop3grid.setHTML (1, 0, label):
laptop3grid.setHTML(1, 1, valueUsed);

} else {
//ignore for now; invalid statistic

}

break;

default: //ignore for now; invalid position
break:;

}

void showAllGraphics () {

showWireless () :;

showLaptop (0) ;

showLaptop (1) ;

showLaptop (2) ;

showLaptop (3) ;

showLaptopPipe (0, "small");

showLaptopPipe (1, "small");

showLaptopPipe (2, "small");

showLaptopPipe (3, "small");
setLaptopIPAddrLabel (0, "IP Address Placeholder");
setLaptopIPAddrLabel (1, "IP Address Placeholder");
setLaptopIPAddrlabel (2, "IP Address Placeholder");
setlLaptopIPAddrlLabel (3, "IP Address Placeholder"):

Settings.java
package org.dgrp.client;
import com.google.gwt.user.client.ui.HTML;
/ Je K
* Settings pagde.

*/

public class Settings extends SidebarItem {

170

public static SidebarItemInfo init() {

return new SidebarItemInfo("Settings",

public SidebarItem createlInstance() {

};
}

publ
in

system

}

publ
}

Sidebar.java

return new Settings();

}

ic Settings() {

itWidget (new HTML (

"<div class='dgrp-About-Prose'>" +

"This is a placeholder for the future implementation of
settings." +

"

Examples of settings that may be included:" +
"" o+

"Interface IP Addresses" +

"Interface Netmasks</1li>" +

"Interfaces Enabled or Disabled" +
"Default Gateways (Routers)" +

"<1i>DNS settings</1i>" +

"Quagga routing protocol" +

"Quagga packet filtering" +

"<1i>Tunable DGRP Settings</1li>" +

"" +

"</div>",

true)):;

ic void onShow() {

package org.dgrp.client;

import
import
import
import

import

/**
* The
with a
* des
*/

org.dgrp.client.SidebarItem.SidebarItemInfo;
com.google.gwt.user.client.ui.Composite;
com.google.gwt.user.client.ui.Hyperlink;
com.google.gwt.user.client.ui.VerticalPanel;

java.util.ArrayList;

left panel that contains all of the sidebar items along
short
cription of each.

171

"System Settings...")

{

public class Sidebar extends Composite {

private VerticalPanel list = new VerticalPanel():;
private ArraylList items = new ArrayList();
private int selectedItem = -1;

public Sidebar() {

initWidget (1list) ;

setStyleName ("dgrp-Sidebar-List");
}

public void addItem(final SidebarItemInfo info) {
String name = info.getName();
Hyperlink link = new Hyperlink(name, name);
link.setStyleName ("dgrp-Sidebar-Item");

list.add(link);
items.add (info);

}

public SidebarItemInfo find(String sidebarItemName) {
for (int i = 0; i < items.size(); ++i) {
SidebarItemInfo info = (SidebarltemInfo) items.get(i);
if (info.getName () .equals (sidebarItemName)) {
return info;
}
}

return null;

}

public void setItemSelection(String name) {
if (selectedItem != -1) ({
list.getWidget (selectedItem) .removeStyleName ("dgrp—~Sidebar-
Item-Selected");
}

for (int 1 = 0; 1 < items.size(); ++1i) {
SidebarItemInfo info = (SidebarItemInfo) items.get(i);
if (info.getName () .equals (name)) {
selectedItem = iy
list.getWidget (selectedItem) .addStyleName ("dgrp-Sidebar-
Item-Selected");
return;

}

172

Sidebarltem.java
package org.dgrp.client;

import com.google.gwt.user.client.ui.Composite;

/**

* A 'SidebarItem' is a single panel of the application. They are
meant to be

* lazily instantiated so that the application doesn't pay for
all of them

* on startup.

*/

public abstract class SidebarItem extends Composite {

/**
* Encapsulated information about an item. Each item is
expected to have
* a static init() method that will be called at startup.
*/
public abstract static class SidebarItemInfo {
private SidebarItem instance;
private String name, description;

public SidebarItemInfo(String name, String desc) {
this.name = name;
description = desc;

}
public abstract SidebarItem createlnstance();

public String getDescription() {
return description;

}

public final SidebarItem getInstance() {
if (instance != null) {
return instance;
}
return (instance = createlnstance());

}

public String getName() {
return name;
}
}

/**
* Called just before this item is hidden.

173

*/
public void onHide() {
}

/**

* Called just after this item is shown.
*/

public void onShow() {

}

TopologyInfo java

package org.dgrp.client;

/**
*
* @author chrisne
*/
public class TopologyInfo {

private int maxNodes;
String[] nodeAddresses;

public TopologyInfo(int maxNodes) {
this.maxNodes = maxNodes;
nodeAddresses = new String[maxNodes]:

}

public int getMaxNodes () {
return maxNodes;

}

public String getAddress(int position) {
return nodeAddresses|[position];
}
public void setAddress(int position, String address) throws
Exception {
try { //excpect exception if address is new to the list
int tempPosition = findPosition (address);

if (position == tempPosition) { //this is OK
nodeAddresses[position] = address;

}

else {

throw new Exception("ERROR: Cannot add the same
address again.");
}
}

174

catch (Exception e) {
if (e.getMessage() .equals ("ERROR: Address not
found.")) { //expected
nodeAddresses{position] = address;
}
else { //do not catch exceptions we did not expect
throw e;

}

}
public int findPosition(String address) throws Exception {
for (int i=0; i<nodeAddresses.length; i++) {
if (nodeAddresses[i].equals (address)) {
return i;
}
}
throw new Exception ("ERROR: Address not found.");

Version.java

package org.dgrp.client;

import com.google.gwt.user.client.ui.HTML;

import com.google.gwt.core.client.GWT;

import com.google.gwt.user.client.rpc.AsyncCallback;
import com.google.gwt.user.client.rpc.ServiceDefTarget;

/**
* Version page.
*/

public class Version extends SidebariItem { ,

private HTML verInfo = new HTML(
"<div class='dgrp-About-Prose'>" +
"Retrieving version information from the server..." +
"</div>",
true);

public static SidebarItemInfo init () {
return new SidebarItemInfo("Version Info",
"Version Information for the DTrace Graphical Router
Project...") {
public SidebarItem createlInstance() {

175

return new Version();

}
}:
}

public Version ()

initWidget (verInfo);

// Create an asynchronous callback to handle the result.
final AsyncCallback callback = new AsyncCallback() {
public void onSuccess (Object result) {

VersionContents verResults = (VersionContents) result;

verInfo.setHTML (

"<div class='dgrp-About-Prose'>" +
"<table>" +

//This software info
"<tr><th colspan=\"4\"

bgcolor=\"black\"><font " +

Project:" +

"</td></tr>" +

Number:</td>" +

"/ed></te>" +

Date:</td>" +

"color=\"white\">DTrace Graphical Router

"</th></tr>" +
"eEr><td width=\"10\"></td><td>Version:</td>"

"<td width=\"10\"></td>" +
"<td>" + verResults.dgrpVersion +

"<tr><td width=\"10\"></td><td>Build

"<td width=\"10\"></td>" +
"<td>" + verResults.dgrpBuildNumber +

"<er><td width=\"10\"></td><td>Build

"<td width=\"10\"></td>" +

- verResults.dgrpBuildDate + "</td></tr>" +
"<tr><td width=\"10\"></td><td>Author:</td>" +
"<td width=\"10\"></td>" +

"<td>" + verResults.dgrpAuthor + "</td></tr>"

"<tr height=\"10\"><td

colspan=\"3\"></td></tr>" +

//Solaris Info
"<tr><th colspan=\"4\"

bgcolor=\"black\"><font " +

"color=\"white\">OpenSolaris:</th></tr

176

>" o+
"<tr><td width=\"10\"></td><td>Version:</td>"

"<td width=\"10\"></td>" +

"<td>" + verResults.solarisRelease + "</td></
tr>" +

"<tr><td
width=\"10\"></td><td>Architecture:</td>" +

"<td width=\"10\"></td>" +

"<td>" + verResults.solarisArch +
"</ed></tr>" +

"<tr><td width=\"10\"></td><td>Install
Date:</td>" +

"<td width=\"10\"></td>" +

"<td>" + verResults.solarisInstallDate +
"</ed></tr>" +

"<tr><td width=\"10\"></td><td>Current
Uptime:</td>" +

"<td width=\"10\"></td>" +

"<td>" + verResults.solarisUptime +
"/ed></tr>" +

"<tr height=\"10\"><td
colspan=\"3\"></td></tr>" +

//Quagga info

"<tr><th colspan=\"4\"
bgcolor=\"black\"><font " +

"color=\"white\">Quagga:</th></tr>" +

"<tr><td width=\"10\"></td><td>Version:</td>"

"<td width=\"10\"></td>" +

"<td>" + verResults.quaggaVersion +
"</td></tr>" 4

"<tr><td width=\"10\"></td><td>Install
Date:</td>" +

"<td width=\"10\"></td>" +

"<td>" + verResults.quaggalInsDate +
"</ed></tr>" +

"<tr height=\"10\"><td
colspan=\"3\"></td></tr>" +

//Java info

"<tr><th colspan=\"4\"
bgcolor=\"black\"><font " +

"color=\"white\">Java:</th></tr>" +

"<tr><td width=\"10\"></td><td>Version:</td>"

"<td width=\"10\"></td>" +
"<td>" + verResults.javaVersion +

177

"/ed></tr>" +

+

"<tr><td width=\"10\"></td><td>Vendor:</td>" +
"<td width=\"10\"></td>" +
"<td>" + verResults.javaVendor + "</td></tr>"

"<tr><td width=\"10\"></td><td>Virtual

Machine (VM) :</td>" +

+

Version:</td>" +

v /td></tr>" +

Vendor:</td>" +

"/ed></te>" +

"<td width=\"10\"></td>" +
"<td>" + verResults.javaVMName + "</td></tr>"

"<tr><td width=\"10\"></td><td>VM

"<td width=\"10\"></td>" +
"<td>" + verResults.javaVMVersion +

"<tr><td width=\"10\"></td><td>VM
"<td width=\"10\"></td>" +

"<td>" + verResults.javaVMVendor +

"<tr height=\"10\"><td

colspan=\"3\"></td></tr>" +

//Web~Server info
"<tr><th colspan=\"4\"

bgcolor=\"black\"><font " +

"color=\"white\">Apache/Tomcat Web

Server:</th></tr>" +

"</rd></tr>" +

"</rd></tr>" +

"<tr><td width=\"10\"></td><td>Apache:</td>" +
"<td width=\"10\"></td>" +
"<td>" + verResults.apacheVersion +

"<Er><td width=\"10\"></td><td>Tomcat:</td>" +

"<td width=\"10\"></td>" +
"<td>" + verResults.tomcatVersion +

"<tr height=\"10\"><td

colspan=\"3\"></td></tr>" +

//Browser info
"<tr><th colspan=\"4\"

bgcolor=\"black\"><font " +

"color=\"white\">Browser:</th></tr>" +
"<tr><td width=\"10\"></td><td>Version:</td>"

"<td width=\"10\"></td>" +
"<td>" + getBrowserInfo() + "</td></tr>" +

"</table>" +

178

"</div>"
)i
}

public void onFailure(Throwable caught) {
verInfo.setHTML (
"<div class='dgrp-About~-Prose'>" +
"Failed to retrieve version information from
the server." +
"</div>"
);

}i

// Make remote call. Control flow will continue immediately
and later
// ‘callback’ will be invoked when the RPC completes.
getService () .getVersionInfo(callback);
}

public static GetVersionInfoAsync getService () {

// Create the client proxy. Note that although you are
creating the

// service interface proper, you cast the result to the
asynchronous

// version of

// the interface. The cast is always safe because the
generated proxy

// implements the asynchronous interface automatically.

GetVersionInfoAsync service = (GetVersionInfoAsync)

GWT.create (GetVersionInfo.class);

// Specify the URL at which our service implementation is
running.

// Note that the target URL must reside on the same
domain and port from

// which the host page was served.

//

ServiceDefTarget endpoint = (ServiceDefTarget) service;

String moduleRelativeURL = GWT.getModuleBaseURL () +
"getversioninfo";

endpoint.setServiceEntryPoint (moduleRelativeURL) ;

return service;

}

public static native String getBrowserInfo() /*-{
return $wnd.navigator.userAgent;
y=*/;

public void onShow() {
}

179

VersionContents.java
package org.dgrp.client;
import java.io.Serializable;
A,

*

* @author Christopher Nelson
*/

public class VersionContents implements Serializable {

//Solaris info

public String solarisRelease; //first line of /etc/
release

public String solarisInstallDate; //from SUNWcsr

public String solarisArch; //os.arch

public String solarisUptime; //uptime

//Quagga info

public String quaggaVersion; //from SUNWquaggar

public String quaggalnsDate; //from SUNWquaggar

//This software info

public String dgrpBuildNumber; //from
appinfo.properties

public String dgrpAuthor; //from
appinfo.properties

public String dgrpBuildDate; //from
appinfo.properties

public String dgrpVersion; //from
appinfo.properties

public String dgrpDescription; //from

appinfo.properties

//Java info

public String javaVersion; //java.version
public String javaVendor; //java.vendor
public String javaVMName; //java.vm.name
public String javaVMVersion; //java.vm.version
public String javaVMVendor; //java.vm.vendor

//Browser info
public String browserInfo; //determined on client

//Web-Server info
public String tomcatVersion; //from SUNWtcatr

180

public String apacheVersion; //from SUNWapchr

Welcome.java
package org.dgrp.client;

import com.google.gwt.user.client.ui.VerticalPanel;
import com.google.gwt.user.client.uil.HTMLPanel;

public class Welcome extends SidebarItem {

public static SidebarItemInfo init () {
return new SidebarItemInfo("Welcome",
"Welcome to the DTrace Graphical Router Project...") {
public SidebarItem createInstance() {
return new Welcome ()
}
}:
}

public Welcome () {
HTMLPanel welcomeHTML = new HTMLPanel (
"<h3>Welcome to the DTrace Graphical Router
Project</h3>" +
"<p>Click a link to the left to continue...</p>"
)i

VerticalPanel welcomePanel = new VerticalPanel():;

welcomePanel.setSpacing (8);

welcomePanel .setHorizontalAlignment (VerticalPanel .ALIGN_CENTE
R);

welcomePanel.setWidth ("100%");

welcomePanel .add (welcomeHTML) ;
welcomePanel.setCellWidth (welcomeHTML, "100%");

initWidget (welcomePanel) ;
}

public void onShow() {
}

181

APPENDIX G. SOURCE CODE - PACKAGE org.dgrp.server

The complete source code for the reference implementation of this framework is
provided in this and other appendices to this document for the reader's easy reference.
For the simplest viewing experience or to use the code without copying and pasting it
into a new source file, the reader is encouraged to review the soft-copy files available on

the CD-ROM included with this document,

BandwidthMonitorImpl.java

package org.dgrp.server;

import com.google.gwt.user.server.rpc.RemoteServiceServlet;
import java.util.Random;

import org.dgrp.client.BandwidthInfo;

import org.dgrp.client.BandwidthMonitor;

import org.dgrp.server.dtraceservices.*;

/**
*
* @author chrisne
*/
public class BandwidthMonitorImpl extends RemoteServiceServlet
implements
BandwidthMonitor {

private DTraceCountDataBytesService countDataBytesService;
private DTraceCountPacketsService countPacketsService;

public void startServiceCountPackets (String subnet) {
DGRPLogger.log ("Entering
BandwidthMonitorImpl.startServiceCountPackets()...\n");
countPacketsService = new DTraceCountPacketsService();
countPacketsService.startService (subnet);

}

public void stopServiceCountPackets () {
DGRPLogger.log ("Entering
BandwidthMonitorImpl.stopServiceCountPackets()...\n");

182

countPacketsService.stopService();

}

public void startServiceCountDataBytes(String subnet) {
DGRPLogger.log ("Entering
BandwidthMonitorImpl.startServiceCountDataBytes()...\n");
countDataBytesService = new DTraceCountDataBytesService();
countDataBytesService.startService (subnet);

}

public void stopServiceCountDataBytes() {
DGRPLogger.log ("Entering
BandwidthMonitorImpl.stopServiceCountDataBytes()...\n");
countDataBytesService.stopService () ;

}

public BandwidthInfo getBandwidthInUse (String ipAddr) {
DGRPLogger.log ("Entering
BandwidthMonitorImpl.getBandwidthInUse()...\n");
BandwidthInfo bwInfo = new BandwidthInfo (ipAddr);
DGRPLogger.log ("Created bwInfo...done\n");
DGRPLogger.log ("Setting Total Packets Received From...");
bwInfo.setTotalPacketsReceivedFrom(countPacketsService.
getNumberPacketsByIP (ipAddr,
countPacketsService.DIRECTION RCVD));
DGRPLogger.log("done.\nSetting Total Packets Sent To...");
bwInfo.setTotalPacketsSentTo (countPacketsService.
getNumberPacketsByIP (ipAddr,
countPacketsService.DIRECTION_ SENT));
DGRPLogger.log ("done.\nSetting Total Packets Received
From and Sent To...");
bwinfo.setTotalPacketsSentToAndReceivedFrom (countPacketsS
ervice.
getNumberPacketsByIP (ipAddr,
countPacketsService.DIRECTION TOTAL));
DGRPLogger.log("done.\nSetting Total Data Bytes Received
From...");
bwInfo.setTotalDataBytesReceivedFrom(countDataBytesServic
e.
getNumberDataBytesByIP (ipAddr,
countDataBytesService.DIRECTION_RCVD));
DGRPLogger.log("done.\nSetting Total Data Bytes Sent
To...");
bwInfo.setTotalDataBytesSentTo (countDataBytesService.
getNumberDataBytesByIP (ipAddr,
countDataBytesService.DIRECTION_SENT));
DGRPLogger.log("done.\nSetting Total Data Bytes Received
From and Sent To...");
bwInfo.setTotalDataBytesSentToAndReceivedFrom(countDataBy
tesService.
getNumberDataBytesByIP (ipAddr,

183

file:///nSetting
file:///nSetting
file:///nSetting
file:///nSetting
file:///nSetting

countDataBytesService .DIRECTION TOTAL))
DGRPLogger.log ("done.\n");

//This is a fake for now...
bwInfo.setBandwidthInUse (1, 4);

DGRPLogger.log ("Returning from
BandwidthMonitorImpl.getBandwidthInUse () \n");
return bwInfo;

}

public String[] getRefreshedIPs() ({
DGRPLogger.log ("Entering
BandwidthMonitorImpl.getRefreshedIPs()...\n");
return countDataBytesService.getBusiestIPsByDataBytes ()

}

/*********************-k*************************************
kkokhkkkhkkhkkkkkk
* The following methods exist for the purpose of

demonstration and
* testing and are not useful for the retrieval or display of

real data.
Ak Ak hkhkhhkhkhkhkhkhkhkrArhkrhkhkhkhkhkhkhkrhkhkhkhkhkkhkrkhhrkhkhbhkhikhbkhbkkhkrhkhhhkhhkhkhdhihkhxdk

************/

public BandwidthInfo getRandomBandwidthInUse (String ipAddr) {
// Return a random bandwidth for testing/demo
int maxBandwidth = 4;
Random r = new Random();
int bandwidth = r.nextInt (maxBandwidth) + 1;

BandwidthInfo bwInfo = new BandwidthInfo (ipAddr) ;
bwInfo.setBandwidthInUse (bandwidth, maxBandwidth);

return bwInfo;

DGRPLoggerjava
package org.dgrp.server;

import java.io.*;

/**
*

* @author chrisne

184

*/
public class DGRPLogger {

private static String logfile = "/var/tmp/dgrplog.txt";

public static void log(String string) {

try {

BufferedWriter out = new BufferedWriter (new
FileWriter(logfile, true));

out.write(string):
out.close();

} catch (IOException e) {

}

GetVersionInfolmpl.java

package org.dgrp.server;

import java.io.*;

import java.util.*;

import com.google.gwt.user.server.rpc.RemoteServiceServliet;
import org.dgrp.client.GetVersionInfo;

import org.dgrp.client.VersionContents;

import java.net.URL;

/**
*
* @author Christopher Nelson
*/
public class GetVersionInfoImpl extends RemoteServiceServlet
implements
GetVersionInfo {

public VersionContents getVersionInfo() {
DGRPLogger.log("Entering getVersionInfo()...\n");
VersionContents ver = new VersionContents();

InputStream in = null;
Properties props = new Properties();

try {
in =
getClass () .getResourceAsStream("/appinfo.properties™);
props.load(in);

185

http://java.net

//Solaris info

ver.solarisRelease = getSolarisRelease();
ver.solarisInstallDate = getSolarisInstallDate();
ver.solarisArch = System.getProperty("os.arch");
ver.solarisUptime getSolarisUptime():

//Quagga info
ver.quaggaVersion = getQuaggaVersion();
ver.quaggalnsDate = getQuaggalnstallDate();

//This software info
ver.dgrpAuthor = props.getProperty("program.AUTHOR") ;
ver.dgrpBuildDate =
props.getProperty ("program.BUILDDATE") ;
ver.dgrpBuildNumber =
props.getProperty("program.BUILDNUM") ;
ver.dgrpDescription =
props.getProperty ("program,DESCRIPTION") ;
ver.dgrpVersion =
props.getProperty ("program.VERSION") ;

//Java info

ver.javaVMName = System.getProperty("java.vm.name");

ver.JjavaVMVendor =
System.getProperty("java.vm.vendor") ;

ver.javaVMVersion =
System.getProperty("java.vm.version");

ver.javaVendor = System.getProperty("java.vendor");

ver.javaVersion = System.getProperty("java.version");

//Browser info
ver.browserInfo

null; //determined client-side

//Web-Server info
ver.tomcatVersion
ver.apacheVersion

getTomcatVersion();
getApacheVersion() ;

I

in.close();

}
catch (IOException e) {
e.printStackTrace();

}

DGRPLogger.log ("Returning from getVersionInfo().\n");
return ver;

}

private String getSolarisRelease () ({
try { '
BufferedReader rel = new BufferedReader (new

186

FileReader (
"/etc/release™));
StringTokenizer st = new
StringTokenizer (rel.readLine());

String solRel = "";
while (st.hasMoreTokens()) {
solRel = solRel + st.nextToken() + " ";

}
return solRel;
}
catch (FileNotFoundException e) {
return "<i>Retrieval of this
property is " +
"only supported when running this software on
" +
"Solaris</i>";
}
catch (IOException e) {
return "<i>Failed to retrieve " +
"property</i>";

}

private String getSolarisInstallDate() {
try {
String cmd = "pkginfo -1 SUNWcsr";
Process p = Runtime.getRuntime ().exec (cmd);
BufferedReader stdInput = new BufferedReader (new
InputStreamReader (
p.getInputStream()));

String curlLine = stdInput.readLine();

while (curline != null) {
StringTokenizer st = new StringTokenizer (curline);
if (st.nextToken() .equals ("INSTDATE:")) {
return{st.nextToken() + " " + st.nextToken()

st.nextToken() + " " +
st.nextToken());

}

curlLine = stdInput.readLine();

}

return "<i>Failed to retrieve " +
"property</i>";
}
catch (IOException e) {
return "<i>Retrieval of this
property is " +
"only supported when running this software on

187

"Solaris</i>";
}
catch (NoSuchElementException e) {
return "<i>Failed to retrieve " +
"property</i>";

}

private String getSolarisUptime () {
try {
String cmd = "uptime";
Process p = Runtime.getRuntime() .exec{cmd);
BufferedReader stdInput = new BufferedReader (new
InputStreamReader (
p.getInputStream()));

StringTokenizer st = new
StringTokenizer (stdInput.readLine());
st.nextToken(); //skip the first
st.nextToken(); //...and the second
String days = st.nextToken();
st.nextToken(); //skip the fourth
String hours = st.nextToken(","):;

//assumes more than one day
return(days + " day(s) and " + hours + " hour(s)"):;
}
catch (IOException e) {
return "<i>Retrieval of this
property is " +
"only supported when running this software on
" +
"Solaris</i>";
}
catch (NoSuchElementException e) {
return "<i>Failed to retrieve " +
"property</i>";

}

private String getQuaggaVersion() ({
try { '
String cmd = "pkginfo -1 SUNWquaggar";
Process p = Runtime.getRuntime () .exec (cmd) ;
BufferedReader stdInput = new BufferedReader (new

InputStreamReader (
p-getInputStream()))

String curline = stdInput.readLine();

188

while (curline != null) {
StringTokenizer st = new StringTokenizer (curLine);
if (st.nextToken() .equals("DESC:")) {
return(st.nextToken() + " " + st.nextToken{()
+ n " +
st.nextToken() + " " +

st.nextToken()):

}

curLine = stdInput.readLine();

}

return "<i>Failed to retrieve " +
"property</i>";
}

catch (IOException e) {
return "<i>Retrieval of this

property is " +

"only supported when running this software on
" +

"Solaris</i>";

}
catch (NoSuchElementException e) {
return "<i>Failed to retrieve "™ +

"property</i>";

}

private String getQuaggalnstallDate() {
try {
String cmd = "pkginfo -1 SUNWquaggar";
Process p = Runtime.getRuntime () .exec (cmd);
BufferedReader stdInput = new BufferedReader (new
InputStreamReader (
p.getInputStream()));

String curline = stdInput.readLine();

while (curLine != null) {
StringTokenizer st = new StringTokenizer (curlLine);
if (st.nextToken() .equals ("INSTDATE:")) {
return(st.nextToken() + " " + st.nextToken()

+ " " +
st.nextToken() + " " +

st.nextToken());

}

curline = stdInput.readLine();

}

return "<i>Failed to retrieve " +
"property</i>";

189

catch (IOException e) {
return "<i>Retrieval of this
property is " +
"only supported when running this software on
114 +
"Solaris</i>";
}
catch (NoSuchElementException e) |
return "<i>Failed to retrieve " +
"property</i>";

}

private String getTomcatVersion() {
try {
String cmd = "pkginfo -1 SUNWtcatr";
Process p = Runtime.getRuntime () .exec(cmd);
BufferedReader stdInput = new BufferedReader (new
InputStreamReader (
p.getInputStream()));

String curline = stdInput.readLine();

while {(curLine != null) {
StringTokenizer st = new StringTokenizer (curLine);
if (st.nextToken().equals("DESC:™")) {
return (st.nextToken() + " " + st.nextToken ()
+ " " +
st.nextToken() + " " +

st.nextToken());

}

curLine = stdInput.readline();

}

return "<i>Failed to retrieve " +
"property</i>";
}
catch (IOException e) {
return "<i>Retrieval of this
property is " +
"only supported when running this software on
" +
"Solaris</i>";
}
catch (NoSuchElementException e) {
return "<i>Failed to retrieve " +

"property</i>";

}

private String getApacheVersion() {

190

try {
String cmd = "pkginfo -1 SUNWapchr";
Process p = Runtime.getRuntime () .exec (cmd);
BufferedReader stdInput = new BufferedReader (new
InputStreamReader (
p.getInputStream()));

String curline = stdInput.readLine();
while (curLine != null) {

StringTokenizer st = new StringTokenizer (curline);
if (st.nextToken().equals("DESC:")) {

return(st.nextToken() + " " + st.nextToken()
+ " ” +
st.nextToken() + " " + st.nextToken()
+ " " +
st.nextToken() + " " + st.nextToken ()
+ " " +
st.nextToken() + " " +

st.nextToken());

}

curlLine = stdInput.readLine():
}

return "<i>Failed to retrieve " +
"property</i>";
}
catch (IOException e) {
return "<i>Retrieval of this
property is " +
"only supported when running this software on
ll+
"Solaris</i>";
}

catch (NoSuchElementException e) {
return "<i>Failed to retrieve " +

"property</i>";

191

APPENDIX H. SOURCE CODE - PACKAGE org.dgrp.server.dtraceservices

The complete source code for the reference implementation of this framework is
provided in this and other appendices to this document for the reader's easy reference.
For the simplest viewing experience or to use the code without copying and pasting it
into a new source file, the reader is encouraged to review the soft-copy files available on

the CD-ROM included with this document.

DTraceCountDataBytesService.java

package org.dgrp.server.dtraceservices;

import java.io.File;

import java.net.URL;

import java.util.*;

import org.dgrp.server.DGRPLogger;
import org.opensolaris.os.dtrace.*;

! /**
*
* @author chrisne
*/

public class DTraceCountDataBytesService {

public final int DIRECTION_SENT
public final int DIRECTION_ RCVD

0;
1;
public final int DIRECTION TOTAL = 2;

private URL url = DTraceCountDataBytesService.class.
getResource ("/org/dgrp/server/dtraceservices/count_da
ta_bytes.d");

private Consumer consumer;
private boolean isRunning = false;

public void startService(String subnet) {

try {
DGRPLogger.log("Entering

192

http://java.net

DTraceCountDataBytesService.startService()...\n");
File scriptFile = new File(url.toURI());
String macroArgs = new String(subnet);
DGRPLogger.log("Creating DTrace consumer.\n");
consumer = new LocalConsumer();
DGRPLogger.log ("Opening DTrace consumer.\n");
consumer.open();
DGRPLogger.log("Compiling DTrace script.\n");
consumer.compile (scriptFile, macroArgs);
DGRPLogger.log ("Enabling DTrace consumer.\n");
consumer.enable();
DGRPLogger.log("Starting DTrace consumer.\n");
consumer.go{();
isRunning = true;
DGRPLogger.log("Leaving
DTraceCountDataBytesService.startService().\n");
}
catch (Exception e) {
e.printStackTrace () ;

}

public boolean isRunning() {
return isRunning;

1

public void stopService() {
consumer.stop() s
consumer.close();
isRunning = false;

}

public String[] getBusiestIPsByDataBytes () {
DGRPLogger.log ("Entering

getBusiestIPsByDataBytes()...\n");
if (!isRunning()) { //consumer not running, data not
available

DGRPLogger.log ("Consumer not running; returning null

from getBusiestIPsByDataBytes().\n");
return null;

}

final String totAgg = "tot";

List ipAddrs = new ArrayList();
Set<String> aggSet = new HashSet();
aggSet.add(totAgg);

Aggregation aggregation;

try {

DGRPLogger.log("Getting aggregation from consumer..

n");

193

A

http://DTraceCountDataBytesService.startServi.ee

aggregation =
consumer.getAggregate (aggSet) .getAggregation (totAgqg) ;
} catch (Exception e) {
//consumer is probably not running, return null
return null;

}

if (aggregation.equals(null)) {
return null;
}
else { //aggregation exists
DGRPLogger.log ("Aggregation existed...\n");
List list = aggregation.getRecords();
Collections.sort(list, new AggRecordComparator());
Iterator iterator = list.iterator();
while (iterator.hasNext()) {
AggregationRecord aggRec = (AggregationRecord)
iterator.next ();
String ip = (String)
aggRec.getTuple () .iterator () .next () .getValue () ;
ipAddrs.add (ip):
DGRPLogger.log ("Adding IP: " + ip):;
long val = (long)
aggRec.getValue () .getValue () .longValue();
DGRPLogger.log(" (value is " + val + ").\n");
}
}

Stringl{] ipAddrsStrings = (String[]) ipAddrs.toArray(new
String{01):
DGRPLogger.log ("Returning from
getBusiestIPsByDataBytes () .\n");
return ipAddrsStrings;
} //end of method

public int getNumberDataBytesByIP(String ipAddr, int
direction) {
DGRPLogger.log ("Entering getNumberDataBytesByIP(" +

ipAddr + ", " +
direction + ")...\n");

if (!isRunning()) { //consumer not running, data not

available
DGRPLogger.log ("Consumer not running; returning zero

from getNumberDataBytesByIP().\n");
return 0;

}

final String sndAgg = "snd", rcvRgg = "rcv", totAgg =
"totll;
Set<String> aggSet = new HashSet ();

194

aggSet.add (sndAgg) ;
aggSet.add (rcvAgg) ;
aggSet.add (totAgqg) ;
Aggregation aggregation;

DGRPLogger.log ("Getting aggregation from consumer...\n");
try |
if (direction == DIRECTION SENT) ({
aggregation =
consumer.getAggregate (aggSet) .getAggregation (sndAgqg) ;
}
else if (direction == DIRECTION_RCVD) {
aggregation =
consumer .getAggregate (aggSet) .getAggregation (rcvAgqg) ;
}
else if (direction == DIRECTION TOTAL) ({
aggregation =
consumer.getAggregate (aggSet) .getAggregation (totAgg) ;
}
else {
DGRPLogger.log("Invalid direction, returning
zero.\n");
DGRPLogger.log("Returning from
getNumberDataBytesByIP () .\n");
return 0;
}
}
catch (Exception e) {
//consumer is probably not running, return 0
return 0;

}

if (aggregation.equals(null)) ({
return 0;
}
else { //aggregation exists
DGRPLogger.log ("Aggregation existed...\n");
List list = aggregation.getRecords{();
Iterator iterator = list.iterator():
while (iterator.hasNext()) {
AggregationRecord aggRec = (AggregationRecord)
iterator.next();
String tuplelP = (String)
aggRec.getTuple () .iterator () .next () .getValue();
if (ipAddr.equals(tupleIP)) {
int val = (int)
aggRec.getValue () .getValue () .intValue();
DGRPLogger.log("Matched IP, value is " + val
+ n\n") :
DGRPLogger.log ("Returning from
getNumberDataBytesByIP () .\n");

195

n") ;

return val;

}

DGRPLogger.log ("IP not matched, returning zero.\n");
DGRPLogger.log ("Returning from getNumberDataBytesByIP ()

return 0;

} //end of method

} //end of class

class AggRecordComparator implements Comparator {
public int compare (Object objl, Object obj2) {

DGRPLogger.log ("Using AggRecordComparator.compare.\n");
AggregationRecord aggRecl = (AggregationRecord) objl;
AggregationRecord aggRecZ = (AggregationRecord) obj2;
long vall = aggRecl.getValue() .getValue () .longValue();
long val2 = aggRec2.getValue () .getValue().longValue();
if (vall < val2)

return 1;
else if (vall == val2)

return 0;
else

return -1;

DTraceCountPacketsService.java

package org.dgrp.server.dtraceservices;

import java.io.File;

import

java.net.URL;

import org.opensolaris.os.dtrace.*;

import
import

/**
*

Jjava.util.*;
org.dgrp.server.DGRPLogger;

* @author chrisne

*/

public class DTraceCountPacketsService

public final int DIRECTION SENT = 0;
public final int DIRECTION RCVD = 1;
public final int DIRECTION TOTAL = 2;

196

A

http://java.net

private URL url = DTraceCountPacketsService.class.
getResource ("/org/dgrp/server/dtraceservices/count pa

ckets.d"):;

private Consumer consumer;
private boolean isRunning = false;

public void startService(String subnet) {
try {
DGRPLogger.log ("Entering
DTraceCoqntPacketsSerVice.startService()...\n");
File scriptFile = new File(url.toURI{()):;
String macroArgs = new String(subnet);
DGRPLogger.log("Creating DTrace consumer.\n");
consumer = new LocalConsumer();
DGRPLogger.log ("Opening DTrace consumer.\n");
consumer.open() ;
DGRPLogger.log ("Compiling DTrace script.\n");
consumer.compile (scriptFile, macroArgs);
DGRPLogger.log ("Enabling DTrace consumer.\n");
consumer.enable();
DGRPLogger.log("Starting DTrace consumer.\n");
consumer.go();
isRunning = true;
DGRPLogger.log ("Leaving
DTraceCountPacketsService.startService () .\n");
}
catch (Exception e) {
e.printStackTrace();
}
}

public boolean isRunning () {
return isRunning;

}

public void stopService() {
consumer.stop();
consumer.close();
isRunning = false;

}

public int getNumberPacketsByIP(String ipAddr, int direction)
DGRPLogger.log ("Entering getNumberPacketsByIP(" + ipAddr
direction + ")...\n");

if (!isRunning{()) { //consumer not running, data not
available

197

DGRPLogger.log ("Consumer not running; returning zero
from getNumberPacketsByIP().\n");)
return 0;

}

final String sndAgg = "snd", rcvAgg = "rcv", totAgg =
"tot" ;

Set<String> aggSet = new HashSet ();

aggSet.add (sndAgqg) ;

aggSet.add (rcvAgqg) ;

aggSet.add (totAgqg) ;

Aggregation aggregation;

DGRPLogger.log ("Getting aggregation from consumer...\n");
try {
if (direction == DIRECTION_SENT) {
aggregation =
consumer.getAggregate (aggSet) .getAggregation (sndAgg) ;
}
else if (direction == DIRECTION RCVD) {
aggregation =
consumer.getAggregate (aggSet) .getAggregation (rcvAgg) ;
}
else if (direction == DIRECTION_TOTAL) {
aggregation =
consumer.getAggregate (aggSet) .getAggregation (totAgq) ;
}
else {
DGRPLogger.log("Invalid direction, returning
zero.\n");
DGRPLogger.log ("Returning from
getNumberPacketsByIP () .\n");
return 0O;
}
}

catch (Exception e) {
//consumer is probably not running, return 0
return 0;

}

if (aggregation.equals(null)) {
return 0;
}
else { //aggregation exists
DGRPLogger.log ("Aggregation existed...\n");
List list = aggregation.getRecords();
Iterator iterator = list.iterator();
while (iterator.hasNext()) {
AggregationRecord aggRec = (AggregationRecord)
iterator.next ();
String tupleIP = (String)

198

aggRec.getTuple () .iterator () .next () .getValue() ;
if (ipAddr.equals(tuplelIP)) {

int val = (int)
aggRec.getValue () .getValue () .intValue () ;

DGRPLogger.log ("Matched IP, value is " + wval
+ "\n") ’.

DGRPLogger.log ("Returning from
getNumberPacketsByIP () .\n");

return val;

}
}

DGRPLogger.log ("IP not matched, returning zero.\n");
DGRPLogger.log ("Returning from
getNumberPacketsByIP () .\n");
return 0;
} //end of method

} //end of class

count_data_bytes.d

#!/usr/sbin/dtrace -s
#pragma D option defaultargs

BEGIN /* Special probe upon script startup */
{

givenSubnet = $51; /* subnet either given or set as
empty string */

printf (M \n\n-———m e e e
-\n") ;

printf ("Counting data bytes sent and received by IP
address...\n");

printf("--————— - ——————————————————————————— \n"
)i
}

ip:::send /* Probe for sent packets (by destination address) */
{ ,
@sndlargs[2]->ip daddr] = sum(args[2]->ip plength);
@tot{args[2]->ip daddr] = sum(args[2]->ip plength);

199

ip:::receive /* Probe for received packets (by source
address) */

{
@rcv[args([2]->ip_saddr] = sum(args[2]->ip plength);
@totlargs([2]->ip_saddr] = sum(args[2]->ip plength);
}

END /* Special probe upon script termination */

{

PrANEE (N o o o e e e e e e e e
-\n") ;
printf ("Printing results...\n");

PE AN (Mo o e e e e e e e e e e \n"
)i

printf ("\nData bytes sent to:\n");
printa (" %$15s %Q@8u\n", @snd);

printf ("\nData bytes received from:\n");
printa (" %$15s %Q@8u\n", @Qrcv);

printf ("\nTotal data bytes received from and sent to:\n");
printa (" %$15s %@8u\n", @tot);

count_packets.d
#!/usr/sbin/dtrace -s
#pragma D option defaultargs

BEGIN /* Special probe upon script startup */
{

givenSubnet = $$1; /* subnet either given or set as
empty string */

printf ("\n\n-—-=-—mm o e e \n
") ;

printf ("Counting packets sent and received by IP address...\
nll) ’.

printf (M- e e e \
n") ;

}

200

file:///nData
file:///nData
file:///nTotal

ip:::send /* Probe for sent packets (by destination address) */

@snd{args{2]~>ip daddr] = count():
@tot[args{2]~>ip daddr] = count{():;

ip:::receive /* Probe for received packets (by source address) */

@rcvlargs([2]->ip_saddr] = count();
@tot[args[2]->ip_saddr] = count();
}

END /* Special probe upon script termination */

{

printf ("\n\n-m = e e e \n
") i

printf ("Printing results...\n"):

printf("————mm e e e e e
n");

printf ("Packets sent to:\n");

printa(" %15s %Q@8u\n", @snd);

printf ("\nPackets received from:\n");

printa(" %15s %@8u\n", Qrcv);

printf ("\nTotal packets received from and sent to:\n");

printa(" %15s %@8ul\n", @tot);

}

201

file:///nPackets
file:///nTotal

	San Jose State University
	SJSU ScholarWorks
	2008

	A framework for graphical analysis of a home-network router using DTrace
	Christopher S. Nelson
	Recommended Citation

	ProQuest Dissertations

