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ABSTRACT 

A FRAMEWORK FOR GRAPHICAL ANALYSIS OF A 
HOME-NETWORK ROUTER USING DTRACE 

by Christopher S. Nelson 

Simple network routers used in homes and small offices typically lack tools for 

monitoring and analysis that would be useful to the normally novice users of these 

products. Sophisticated network simulation applications require too much effort for 

typical users to consider, but including simple tools in the router management software 

would enable common users to more quickly and completely understand reasons for 

performance problems. 

DTrace provides the opportunity to gather performance data from the router itself, 

and if presented in an easily understood graphical format, common users will be 

empowered to understand and address problems quickly and without need for additional 

support. This thesis addresses the development of a framework—utilizing DTrace, Java, 

AJAX, and remote procedure calls (RPCs) for client-to-server communication—for 

creating graphical analysis tools for analyzing common home-network routers. A 

reference implementation and test results that validate the framework architecture are 

also provided. 
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GLOSSARY 

back-end An acronym for "server-side. The server software in the 
client-server model. 

client-server model The concept in computing in which one application or 
system (the client) makes requests of another application or 
system (the server)—which services those requests upon 
receipt according to the server software. 

DTrace The dynamic tracing facility introduced in the Solaris 
operating system that allows querying thousands of software 
"probes" for real-time information while the software is 
running. For significant information on DTrace, refer to the 
OpenSolaris community web site (OpenSolaris Community: 
DTrace, 2008). 

front-end Opposite of "back-end." An acronym for "client-side." The 
client software in the client-server model. 

Google Web Toolkit An open-source framework for the development of AJAX 
web applications using Java source code. It also includes 
functionality for remote procedure calls. 

GWT4NB 

home-network router 

A plug-in developed for easy integration of the NetBeans 
IDE and the Google Web Toolkit. 

The multi-function device found in many homes that often 
serves as a cable or ADSL modem, gateway, wireless access 
point, and router for the computing devices on the home 
network. 

xvi 



Java DTrace library A Java library of classes that provides access to the DTrace 
facility on the Solaris operating system from within Java 
classes (as opposed to via the command-line or scripts in a 
shell). 

An open-source integrated development environment 
distributed by Sun Microsystems that simplifies the 
development, debugging, packaging, compilation, and 
distribution of software applications. 

The open-source version of the Solaris operating system 
originally developed by Sun Microsystems. For information 
about OpenSolaris, refer to the OpenSolaris web site 
(OpenSolaris, n.d.). 

remote procedure call The concept in distributed computing in which an 
application or system makes a call to (and often waits for a 
response from) a piece of software functionality (e.g., 
method, function, etc.) that may physically reside on a 
system somewhere remote from the initiating system. 

web application A software application most often designed to be run in a 
web browser. This uses the client-server model, as the 
client-side software executes in the browser, and the server-
side code executes on the web server. 

web server The server-side software that provides the services for 
clients to access—most often through a web browser. Web 
servers host web applications that clients load and execute 
in a browser. 

NetBeans IDE 

OpenSolaris 

xvii 



I. INTRODUCTION 

Many home and non-enterprise network administrators (to use the term loosely), 

lack a set of tools that would enable them to do basic network monitoring and analysis of 

problems. Troubleshooting of a "slow Internet connection" frequently involves steps like 

rebooting the client computer(s) and/or the router and then—if that did not fix the 

problem—calling the service provider for additional help. 

Meanwhile, as a separate issue, the real-time, in-production analysis capabilities 

of Dtrace—the dynamic tracing functionality introduced in the Solaris 10 operating 

system—have only begun to be realized. Apple Inc. has implemented similar analysis 

tools in their recently released "Leopard" operating system and introduced a graphical 

user-interface (GUI) front-end called "Instruments," and ports of DTrace to Linux have 

begun (but have substantial work remaining before becoming pervasive). Still, relatively 

little has been done thus far (except by Apple and a couple of newer OpenSolaris 

projects) to provide graphical front-ends for these tools that would make them helpful to 

the common user. 

The intersection of these issues is at the point of a possible solution for that 

inexperienced network "administrator." By using the capabilities of DTrace at the heart 

of the network—on the router itself, and if the data is presented in such a way 

(graphically) that the user could understand it quickly and easily, one could get a much 
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clearer picture of the true source of the performance problem—whether that be an 

overactive client computer, an issue on the router itself, delays on the Internet Service 

Provider (ISP) side, etc. 

Today's home-network routers are typically Linux-based (or use a proprietary 

operating system) and operate on Multi-Instruction Processing System (MPS) processors 

—an architecture to which Solaris has apparently not been ported. Given a proven 

framework and reference implementation, future applications could include the 

development of productized Solaris-based routers that include this type of analysis tools 

(Solaris would need to be ported to MIPS to use today's hardware) or the development of 

similar graphical front-ends for the Linux version(s) of DTrace (after their development 

is complete) and integration of these into products similar to what is already available in 

today's market. 

Project Goal and Objectives 

Thus the general goal of this project is to develop a framework for and reference 

implementation of a graphical interface for analyzing a Solaris-based network router 

using DTrace. The high-level objectives for the project are as follows: 

1. Develop a software architecture to graphically present the analysis data made 
available by DTrace in an interface similar to the graphical user interfaces 
commonly available in today's home-network routers. 

2. Using the aforementioned architecture, develop a core set of analysis points in the 
graphical interface that form a model to be followed in the development of future 
analysis points. 

2 



3. Thoroughly document the design, architecture, and reference implementation 
code, and make these available to the open-source community in an effort to 
promote future development in this area. 

Overview of this Document 

This thesis reports on the project in chapters: II. Technical and Market 

Background; III. Architecture and Design; IV. Platform Preparation; V. Implementation; 

VI. Testing; VII. Suggestions for Future Development; and lastly, VIII. Conclusions and 

Recommendations. Chapter II, immediately following, discusses the need for this type of 

project in relation to the current technology market. Project requirements, schedules, and 

implementation source code are provided in the appendices for reference. 

3 



II. TECHNICAL AND MARKET BACKGROUND 

Technology Trends 

It is no secret that home computing has moved from nearly nonexistent to 

pervasive in the last two decades, that—in the latter part of that same time—access to the 

Internet has become a necessary part of life for most people in the developed countries of 

the world, and that the number of devices connecting to the Internet is growing at an 

ever-increasing rate. Many of these devices connect from home or other small sub

networks across the world through devices providing routing, network switching, access 

point, and sometimes modem capabilities, and the setup and maintenance of these devices 

is still too cumbersome for the average user. 

As the Home Gateway Initiative—"an industry body that offers an active dialogue 

between telecoms operators, vendors, and manufacturers, and defines technical 

specifications for home gateways (Home Gateway Initiative, 2007, para. 1)"—states in a 

white-paper describing the growing need for such an organization, 

"Multiple devices wish to share the broadband connection [to the 
Internet]. Games consoles, PC's, telephones and IPTV settops all want a 
broadband connection, so the consumer needs to be able to share that 
connection between all devices, simultaneously.... Clearly networking is 
complex to manage for both the customer and for the service provider who 
is often the first point of contact when a customer encounters a problem. 
(Home Gateway Initiative - Vision, 2007, para. 4)" 

As the number of devices in the home connecting to the Internet continues to increase, 
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the need for removing that network-management complexity will increase as well. The 

device manufacturer who can produce a device that is simple to implement and to debug 

when things go wrong, or the service provider who can provide a service offering to 

manage the complexity for the customer will have a business advantage as the number 

and complexity of home networks continues to rise. 

Market Research 

In the home-network router market, a number of recognizable companies exist. A 

quick search on the web sites of Best Buy, Circuit City, or Fry's will reveal products from 

Netgear, D-Link, Belkin, Linksys, Apple, 2Wire, and many others. Nearly all of these 

provide a browser-based interface for management like that in Figure 1, and few—if any 

—debugging tools are provided in the interfaces to help determine the cause of problems. 

The "Help" link from a 2Wire home router, for example, points the user to the 2Wire 

support web page—offering basic troubleshooting tips but nothing specific to the user's 

network or situation. 

Outside of the home-network market, however, efforts are being made to ease the 

pain of troubleshooting computing devices. Sun introduced their new Dynamic Tracing 

(DTrace) technology in their Solaris 10 operating system; the DTrace manual explains 

that "DTrace enables you to explore your system to understand how it works, track down 

performance problems across many layers of software, or locate the cause of aberrant 

behavior" (DTrace - Introduction, 2007, para. 1). Since then, a few OpenSolaris projects 

5 
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Figure I. Linksys Browser Interface 

The Linksys browser interface is similar to those offered by most of the home-network 
router providers. 

—like Chime (OpenSolaris Project: Chime Visualization Tool for DTrace, 2008)—have 

taken up the effort to make graphical front-ends for DTrace, and one has been created for 

integrating with the Sun Studio and NetBeans Integrated Development Environments 

(IDEs) (NetBeans DTrace GUI Plugin, n.d.). Apple has also taken interest in DTrace, and 

in their latest operating system, they implemented a graphical tool called Instruments that 
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utilizes their own version of DTrace. Work is ongoing in the Linux community as well to 

port DTrace to the various distributions of Linux, and other variations—like SystemTap 

—are also developing (SystemTap, n.d.). The development of these tools is in apparent 

recognition of the need for easier debugging of problems in increasingly complex 

computing devices. It seems reasonable to apply these tools to the growing complexity 

of home network devices just the same. 

The current collection of home-network routers are primarily specialized 

hardware making use of a MIPS processor and relatively little memory. The author was 

unable to find any recent version of Solaris that has been compiled for the MIPS 

architecture, so loading Solaris onto the existing products' hardware directly is not 

directly possible. An implementation using DTrace on a router (and thus—at this time— 

requiring Solaris instead of Linux) would have to be made to use some other hardware 

until such a time as Solaris is available for the MIPS architecture. 

With this background information in-hand and the tools described in the current 

state, the author set out to create a framework that would enable the use of DTrace to 

collect useful data from a home-network router and present it to users in an easy-to-

understand graphical format that would enable them to understand problems in their 

home network. It was also necessary to develop an implementation of the framework and 

to test that implementation in order to prove the framework architecturally sound. The 

following chapters describe the framework, the reference implementation developed, and 

the testing performed to validate both. 
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III. ARCHITECTURE AND DESIGN 

General Architecture 

The general architecture for this framework is depicted in Figure 2. A web 

application provides a browser-based user interface as the front end of the application— 

communicating with the back end (i.e., software on the router itself) via remote procedure 

calls. This architecture is further discussed in the following sections which detail the 

design of this framework and a reference implementation that proves its effectiveness and 

functionality. 

Browser-Based User Interface 

As discussed previously in the Market Research section (p. 5), most of today's 

home network routers provide a user interface via a web browser (see Figure 1). In order 

to easily integrate the functionality of this project into routers like those in today's market 

, the logical choice for user interface is to also develop it in a browser-based fashion. 

With this as a design assumption, the user interface for this project is designed as a web 

application. The choice of web server, application language, etc.—though indicated in 

part in Figure 2—is actually implementation-specific and is thus discussed further in the 

following two chapters. The primary functions of the front-end user interface are to 

accept user input and properly format and display data: The front end should not rely on 
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the server side to provide formatting or other control over the user interface display. 

r 

Web Application: 
(written with Google 

Web Toolkit) 

Client-
Side 

AJAX 

(JavaScript 
and XML) 

L J 

"N 
Server-Side: 

Java 

(Web Server: 
Apache/ 
Tomcat) 

Client gets data 
from server via 

GWT RPCs 

DTrace 

ivia Java QTrdce 
1 brary) 

Quagga 

Srlans System 
Calls 

DGRP 
Corf guration 

Res 

T 
Front-End 

Figure 2. High-Level Framework Diagram 

Back-End 

Solaris Kernel 

The general architecture of this application includes a web application pulling data from 
DTrace, Quagga, and the Solaris OS directly 

Front-to-Back-End Communication 

Communication between the front end (i.e., browser-based user interface) and the 

back end (server-side) of this program is achieved using the concept of remote procedure 

calls. RPCs, in summary, allow a software program to use a piece of software 
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functionality (e.g., method, procedure, or function—depending on the programming 

language) as if it was resident with the program on whatever hardware on which it is 

running, though the implementing side of that piece of code is often on a different (and 

perhaps distant) piece of hardware. (For further information on the concept of RPCs, the 

reader is encouraged to reference the many helpful articles available on the Internet and 

elsewhere.) For this application, the client-side code running in the browser interacts 

with data-providing code running on the router via RPCs. The choice of what RPC 

package is used and whether the RPCs should be synchronous (i.e., blocking calls), 

asynchronous (i.e., non-blocking calls), or some combination of the two is an 

implementation-specific discussion and is thus addressed in the following chapter. 

Server-Side Design 

In this design, the "server" is actually the router itself—from which the user 

interface is served as a web application. So, in addition to performing the functions of a 

router, the operating system and software running on the router hardware must also act as 

a web server for the user interface and—as already briefly discussed in the previous 

sections—provide data to client software (running in the user's browser) in response to 

requests in the form of remote procedure calls. While this data may be pulled from the 

operating system (OS) or from software running on top of the OS, the most interesting 

pieces of data in the context of this application are those provided by DTrace—and most 

specifically the DTrace Network Providers. (For a brief introduction to DTrace and the 
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DTrace Network Providers, refer to the next section.) While this design and reference 

implementation rely on DTrace as it is currently (at the time of this writing) made 

available by the Solaris OS, other operating systems or implementations of DTrace could 

be used to provide a similar back end in future implementations: For further discussion 

on this topic, refer to Chapter VII. Suggestions for Future Development (p. 89). 

Introduction to DTrace 

As it is described in the formal DTrace documentation, "DTrace helps you 

understand a software system by enabling you to dynamically modify the operating 

system kernel and user processes to record additional data that you specify at locations of 

interest, called probes. (DTrace - Introduction, 2007, para. 2)" Probes are little pieces of 

code included in operating systems and applications that have implemented them for 

DTrace to use for collecting data when asked; as the formal documentation says, they are 

like "programmable sensors scattered all over your [operating] system in interesting 

places. (DTrace - Introduction, 2007, para. 2)" The modules of the operating systems or 

applications that provide these probes to the DTrace facility are aptly named providers. 

For example, the Solaris operating system makes available send and receive probes in the 

ip Provider (Gregg, B., 2008); the probes fire (i.e., DTrace can collect data) each time the 

kernel sends or receives a packet, and relevant data (e.g., source and destination address, 

packet header flags, number of data bytes included, etc.) can be collected for analysis. 

Additional network-related providers (e.g., TCP, User-Datagram Protocol (UDP), etc.), 
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collectively known as the "Network Providers" are being added to the Solaris operating 

system for future use by DTrace (DTrace Network Providers, 2008). For details on what 

providers and probes are implemented in a given operating system or application, the user 

is directed to the DTrace-relevant documentation for that OS or application. 

Multiple interfaces exist to the DTrace facility. For example, a program can be 

written in DTrace's D programming language to extract data from specified probes and 

format the text-based output, or a programmer could make use of the Java DTrace library 

currently available for the Solaris OS (Java DTrace API, 2007). The analysis that can be 

performed by DTrace is limited only by the providers and probes already implemented in 

a specific application or OS and the imagination of the programmer utilizing the data 

made available by those providers and probes. 

This very brief and high-level introduction to DTrace only touches on the very 

basics, and the reader is encouraged to refer to the available DTrace documentation for 

significant additional detail. 

12 



IV. PLATFORM PREPARATION 

The sections in this chapter describe the choice, installation, and configuration of 

a number of available pieces of hardware and software that create the underlying 

platform on which the reference implementation was developed and tested. The 

following chapter describes in detail the actual implementation. 

Choosing an Operating System 

That DTrace is the source of the data used for this application is an underlying 

assumption and a premise of the entire project, thus when making one of the first 

implementation choices—the choice of which operating system to use—the list of 

options is limited to only those which already provide the DTrace facility. At the time of 

commencing this project, only two operating systems had incorporated DTrace 

functionality—Sun Microsystems' Solaris 10 OS and its subsequent open-source 

derivatives and Apple's Mac OS X 10.5 (Leopard), though work had begun on porting 

DTrace to FreeBSD, and—as of the time of this writing—recent information suggests 

that FreeBSD's DTrace facility is ready for use—at least in its initial form (DTrace for 

FreeBSD, 2008). 

Choosing between Solaris and OS X for this project iteration was a simple 

decision: OpenSolaris—a freely available, open-source derivative of Sun's Solaris 10— 
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includes the latest and greatest features of DTrace, is actively supported by the open-

source community, is regularly updated (biweekly or less frequently—depending on the 

release chosen) (OpenSolaris Download Center, 2008), and works on at least SPARC and 

x86 platforms with the possibility of porting it to other hardware as well, while OS X is 

limited to Apple's hardware only, is not free, and may not include the full DTrace 

functionality (refer to Leventhal, A., 2008, for a discussion of Apple's DTrace 

implementation and its limitations). This simple comparison led the author to choose 

OpenSolaris as the operating system for this iteration of this project. Installing and using 

this operating system is discussed in the Installing and Configuring the Operating System 

section (p. 16). 

Choosing a Hardware Platform 

With the operating system decision made, the choice of hardware platform is next 

to be determined. As the long-term goal of this project is to integrate with existing 

management software on today's common home-network routers, the ideal hardware 

platform for development is the hardware on which those home-network routers are 

currently built. As briefly discussed in Chapter II. Technical and Market Background (p. 

4), research shows that many of today's home-network routers are built on the MIPS 

architecture with a relatively small memory footprint. The OpenWrt Community—an 

"open source project to create a free embedded operating system for network devices 

(OpenWrt, 2008, para. 3)"—tracks the hardware specifications of many home network 

14 



routers. The following table is a sampling of data adapted from OpenWrt's extensive 

Table of Hardware (Table of Hardware, 2008). 

Table 1. Common Home-Network Router Architectures 

Brand Model Processor Architecture Memory 

D-Link 

Linksys 

Linksys 

Netgear 

Belkin 

DSL-G604T 

WAG354G 

WRTSL54GS 

WGT624 

F5D8230-4 

TIAR7 

TIAR7 

Broadcom 4704 

Atheros 2312 

Realtek 8651B 

MIPS 

MIPS 

MIPS 

MIPS 

MlPS-like 

16MB 

16MB 

32MB 

16MB 

16MB 

As shown, many of the big-name home-network router makers use the MIPS 

architecture for today's products. While other architectures exist, most of the mainstream 

products appeared to be based on MIPS at the time of commencing this project. With 

that in mind, it made sense to investigate whether Solaris could be made to run on MIPS. 

Unfortunately, at the time, the author was unable to find any current existing work toward 

porting the Solaris operating system to MIPS. Outdated work existed (see Rational Apex 

Embedded Solaris to MIPS Family Release Note for Tornado, 2001) for an example of 

work over 10 years old in which a previous version of Solaris was made to run on MIPS), 

but nothing was found that indicated Solaris 10 (or later) had run successfully on MIPS 

or was even close to being able to do so. In fact, an e-mail conversation from recent 

years—archived on the OpenSolaris website—discusses in some detail the idea of porting 

Solaris to MIPS but clearly states that that work is not in progress (MPSport of 
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opensolaris, 2005). To be certain, the author contacted the initiator of the OpenSolaris e-

mail conversation who confirmed that her queries had been met with answers and 

discussion but no progress—either at the time of the original conversation or in the 

months since (T. Snyder, personal communication, February 4,2008). 

Without the pre-existing capability to run Solaris on MIPS, a decision was 

necessary whether to begin work on porting Solaris to MIPS to get the functionality of 

DTrace on a currently available home-network router or to defer the Solaris-to-MIPS port 

and concentrate on the other major portions of the project using a different hardware 

platform for this iteration. For the development of this framework, the choice was made 

to use a different hardware platform and to encourage the future porting of Solaris to 

MIPS as a follow-on to this project. For more information on this step, refer to Chapter 

VII. Suggestions for Future Development (p. 89). With MIPS no longer an option for this 

project, the choice of a hardware platform for development was quite simple: Choose a 

common platform that is readily available to developers and on which Solaris can already 

run. The choice of an x86 platform met these simple criteria, so the author developed on 

an Intel Centrino-based laptop and tested on a number simple Intel and AMD-based 

servers. For further information on testing, refer to Chapter VI. Testing (p. 72). 

Installing and Configuring the Operating System 

There are many ways to install the OpenSolaris operating system—from compact 

discs (CDs) or digital video discs (DVDs), from iso images, or via a network connection, 
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for example, so this section will document the basic settings and adaptations necessary 

during the installation of the OpenSolaris operating system for the purposes of this 

project iteration—using a DVD installation as an example. Detailed installation 

instructions are available from the OpenSolaris web site (OpenSolaris, 2008), so only a 

summary of the common steps will be provided here. While development of this project 

iteration commenced on OpenSolaris's Solaris Express Community Edition build 82 and 

later moved to build 96, the installation and modifications process was the same for both 

versions. 

1. Download a DVD image of the required build, burn the image to a DVD, and 
boot the development system from the DVD. 

2. Select the appropriate boot option from the GRUB menu (the default for a local 
install or one of the tty options for a console install, and select from the following 
menu whether to use a windowed or text-based installation process. 

3. Using the menus provided, when prompted, complete the appropriate language, 
networking, time, and password configurations. 

4. Ensure that the installation takes place from the DVD, and accept the license 
agreement when prompted. 

5. Use the default install, or select custom install to configure disk partition 
information and which parts of the OS should be installed. 

6. When the install completes and the system reboots, be sure to eject the DVD so 
that the system will boot from the new operating system on the hard drive. 

For the purposes of this project, very little post-installation configuration of the operating 

system is required. After the reboot, log in using the super-user mot and the password set 

during installation. From this point, the additional installation and configuration steps 

described in the latter sections of this chapter could be followed, but there is one useful 
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step the author preferred to do after the OS installation is complete: Enabling remote 

login of the root user via secure shell (SSH) proved to be very convenient for the author, 

as he frequently used a terminal emulation software to open a remote console on the 

router. While this is considered a security risk in normal deployments, it proved to be 

very useful in development. To enable remote login by root via SSH, edit the 

/etc/ssh/ssd_config file, and change the line 

PermitRootLogin no 

to 

PermitRootLogin yes 

and restart the SSH service using the command 

svcadm restart ssh 

Supporting Wireless 

Wireless support in a home-network router takes two forms: First, a wireless NIC 

must be identified that is supported by the hardware platform and operating system of 

choice—OpenSolaris in the case of this project iteration; second, software must be 

available to make the router act as an access point—not just a member of a wireless 

network but rather the point at which others access the wireless network (e.g., the owner 

and perhaps broadcaster of the service set identifier (SSID), etc.). 

For the first task, the author investigated a few different Universal Serial Bus 

(USB) NICs on the development platform running OpenSolaris—namely the Belkin 
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F5D7050 4001 model, the AirLinklOl AWLL3028 model, and the Linksys WUSBF54G 

model. Using the information available from the subset of the OpenSolaris community 

working toward the development of the zyd wireless NIC driver {Wireless Network 

Driver for ZyDAS, 2008), the author determined that the Belkin and AirLinklOl NICs 

were not yet supported by OpenSolaris. Using the Linksys NIC, however, the author was 

able to install the necessary drivers and configure the interface such that it joined an 

existing wireless network. 

But while the author was able to make a wireless NIC work with OpenSolaris, he 

was unable to find any access point software available for OpenSolaris at the outset of 

this project, and a recent discussion on the OpenSolaris community forums confirmed 

this research, so it was decided that wireless support would be out of the scope of this 

reference implementation (Thread: Solaris as a wireless access point, 2007). The topic is, 

however, discussed in Chapter VII. Suggestions for Future Development (p. 89). 

Choosing Routing Software 

Because of the long-term goal of this project—that the software will be integrated 

into the management software of today's home-network routers, the choice of routing 

software for this initial implementation is not of long-term significance. In other words, 

because the routing functionality is already part of home-network routers, this iteration of 

this project need only find a solution that will provide that functionality until this 

software can be integrated back into the software on the true home-network routers. 
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Given the decision to use Solaris for this iteration's operating system, the routing 

software must function on Solaris. Early in the project, the author's university advisor 

recommended the consideration of a routing software called Zebra—one he knew was 

once available for use on the Solaris OS. Simple research into the recent history of Zebra 

showed that it had been forked and that development for Solaris had continued under the 

name Quagga (OpenSolaris Project: Quagga Routing Protocol Suite Integration, 2007). 

In fact, Quagga is now pre-installed in OpenSolaris, so the use of it is very 

straightforward—as described in the next section. 

Installing and Configuring the Routing Software 

As noted previously, Quagga is pre-installed in OpenSolaris, so only a few steps 

are required to enable and use it—as listed below. For the complete installation and 

configuration documentation, refer to the OpenSolaris Quagga web site (OpenSolaris 

Project: Quagga Routing Protocol Suite Integration, 2007). 

1. Disable the other routing services available on Solaris: 

# svcadm disable route:default 
# svcadm disable ripng:default 

2. Enable the Routing Information Protocol (RIP) using Quagga (and its 
dependencies): 

# svcadm enable -r rip:quagga 

3. Verify the Quagga RIP service is online using either svcadm or routeadm: 

nv96-vbox$ svcs -1 rip:quagga 
finri svc:/network/routing/rip:quagga 
name Quagga: ripd, RIPvl/2 IPv4 routing protocol daemon. 
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enabled 
state 
next_state 
state_time 
logfile 
restarter 
contract_id 
dependency 
(online) 
dependency 
(disabled) 
dependency 
(online) 
dependency 
svc:/networ 
nv96-vbox$ 
nv96-vbox$ 
nv96-vbox$ 

true 
online 
none 
Wed Aug 27 16:53:29 2008 
/var/svc/log/network-routing-rip:quagga.log 
svc:/system/svc/restarter:default 
104 
require_all/none svc:/systern/filesystem/usr:default 

optional_all/refresh svc:/network/ipv4-forwarding 

require_all/refresh svc:/network/routing-setup 

optional_all/restart 
k/routing/zebra:quagga (online) 

routeadm 
Configuration Current 

Option Configuration 
Current 
System State 

IPv4 routing 
IPv6 routing 

IPv4 forwarding 
IPv6 forwarding 

Routing services 

Routing daemons: 

enabled 
disabled 
disabled 
disabled 

enabled 
disabled 
disabled 
disabled 

STATE 
disabled 

routing:ipv4 

routing:ipv6 

"route:default ripng:default" 

FMRI 
svc:/network/routing/legacy-

nv96-vbox$ 

disabled svc:/network/routing/legacy-
online svc:/network/routing/zebra:quagga 
online svc:/network/routing/rip:quagga 

disabled svc:/network/routing/ripng:default 
disabled svc:/network/routing/ripng:quagga 
disabled svc:/network/routing/ospf:quagga 
disabled svc:/network/routing/ospf6:quagga 
disabled svc:/network/routing/bgp:quagga 
online svc:/network/routing/ndp:default 

disabled svc:/network/routing/rdisc:default 
disabled svc:/network/routing/route:default 

Choosing a Web Server 
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The choice of web server was not one based primarily on the comparison of 

available options, rather it was based on the author's experience with previous web 

application development. The author was most familiar with the Apache Tomcat server 

—produced by The Apache Software Foundation (The Apache Software Foundation, 

2008), and its simple integration with the author's primary Integrated Development 

Environment, the NetBeans IDE, made for simple development. Similar to the choice of 

routing software in this initial iteration, the choice of web server is of little long-term 

consequence: When a future iteration integrates this software with existing home-

network router management software, the web server used will be that already in use by 

the existing management software. 

Installing and Configuring the Web Server 

Like Quagga, the Apache and Apache Tomcat web server suite come pre-installed 

in the OpenSolaris operating system. Little preparatory work is necessary to be ready to 

deploy basic web applications, though the Apache Foundation provides detailed 

installation and configuration instructions on their web site (Apache Tomcat 6.0, 2008). 

The following steps are those necessary to prepare Apache Tomcat for use with this 

project iteration's software (as described later in this chapter): 

1. In the directory /var/apache/tomcat/conf/, copy serverxml-example to server.xml 
as in the command 

cp /var/apache/tomcat/conf/server.xml-example /var /apache/ tomcat/ 
conf/server.xml 
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2. In the directory /etc/apache, copy httpdconf-example to httpdconf as in the 
command 

cp /e tc /apache/ht tpd.conf-example /e tc /apache /h t tpd .conf 

3. Edit the file /etc/apache/httpdconf to remove the "#" from the start of the line 
(i.e., uncomment the line) 

•include /etc/apache/tomcat.conf 

4. In the file /var/apache/tomcat/conf/tomcat-users.xml, add manager to the roles for 
user tomcat. 

5. Restart the apache daemon using the series of commands 

/etc/rc3.d/S50apache stop; sleep 1; /etc/rc3.d/S50apache start 

A few remaining steps specific to the deployment of this project's web application are 

discussed later in this chapter in the section Deploying the Complete Web Application (p. 

66). Note that the installation and configuration described here do not make use of the 

authentication, authorization, or other security-related capabilities of the Apache 

software. The assumption exists that the web server used in future iterations when this 

software is integrated with an existing home-network router's management software will 

already be configured to address these security needs. 

Choosing a Web Application Framework 

While web applications can be developed entirely from scratch using any number 

of programming languages, there are a number of development frameworks and toolkits 

available to ease the development and maintenance burden for today's increasingly 

complex web applications. A large list of available web application frameworks is 
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available on Wikipedia (List of web application frameworks, 2008). Examples of these 

frameworks include Struts from the Apache Foundation (Struts, 2008), Stripes (Stripes 

Home, 2008), Ruby on Rails for the Ruby programming language (Ruby on Rails, 2008), 

and several based on the JavaScript client-side programming language—including the 

Google Web Toolkit from Google. The Google Web Toolkit (GWT) is an open-source 

project that promises to "ease [the development and maintenance] burden by allowing 

developers to quickly build and maintain complex yet highly performant JavaScript front-

end applications in the Java programming language. (Google Web Toolkit, 2008, para. 1)" 

Given the author's experience with the Java programming language, this was a quickly a 

leading candidate among the available toolkits for this project iteration. After some 

experimentation with sample web applications provided by the GWT community 

(Building a Sample Application, 2008), the author determined that the Google Web 

Toolkit would suffice for this project iteration. As discussed in Chapter VII. Suggestions 

for Future Development (p. 89), the authors of future iterations of the project may want to 

explore other available and perhaps more fully featured toolkits and frameworks for 

greater flexibility in the user interface. 

Using the Web Application Framework 

The community developing the Google Web Toolkit provides significant 

documentation on the use of GWT in web application development (Google Web Toolkit, 

2008). The reader is encouraged to refer to that documentation for details, though a 
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summary is provided here. The GWT is provided in a package that includes 

documentation, samples, and a collection of Java Archive (JAR) files. These JAR files 

include Java classes that can be used by application developers while writing their code 

along with tools for compiling, hosting, and debugging applications. These tools can be 

used via a command-line interface on a console or through a graphical IDE such as 

Eclipse {Eclipse - an open development platform, 2008) or NetBeans (NetBeans, 2008). 

The author used NetBeans and an open-source plugin called GWT4NB (gwt4nb Project 

Home, n.d.) that allowed for easy integration of Netbeans with the compiler and other 

tools included in GWT. 

It is important to understand what GWT does with the code written by developers: 

GWT produces AJAX code—collections of JavaScript and Extensible Markup Language 

(XML) files that are used by a web browser in the rendering of a web application—from 

Java code written by the application developer. As mentioned before, GWT includes Java 

(note, not JavaScript) classes that are made available for the developer to use; these 

classes provide either identical or very similar functionality to most of the classes in the 

standard Java Development Kit (JDK). This allows developers to code web applications 

in the Java language and use GWT to translate (i.e., compile) that Java code into 

equivalent JavaScript and XML. A complete Application Programming Interface (API) 

and simple sample code is provided for developers to reference in the documentation 

provided in the GWT package-

One other significant function provided by GWT worthy of summarizing here is 
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that of the Remote Procedure Call. GWT's RPC functionality allows web applications 

running in a browser to asynchronously make requests of the server without reloading the 

entire page in the browser. It is important to understand the two sides of this 

communication: The client-side code—the AJAX translated from GWT Java classes and 

running in the browser—requests a function to be performed by the server and listens 

without blocking for a response; the server-side code is true Java (from the JDK—not 

GWT's Java classes) and can perform any function made possible by the Java language 

before returning to the client. Examples of how this works in the context of this project 

are included later in this chapter in the RPCs: Tying the Front and Back Ends Together 

section (p. 57). 

Choosing a Programming Language 

The choice of programming language for this iteration of this project was based 

primarily on the author's previous experience and comfort with the Java language as a 

development language for web applications. The use of Java as the source language in 

the Google Web Toolkit framework also contributed to this decision. While Java is the 

language with which most of this iteration's code is written, future iterations need not be 

tied to Java—especially if using a different web application framework. 
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V. IMPLEMENTATION 

The previous chapter described the choice, installation, configuration, and use of 

hardware and software that collectively formed the platform on which the reference 

implementation was developed and tested. The sections in this chapter describe in detail 

the original work done by the author to implement the framework described in Chapter 

III. Architecture and Design (p. 8). 

Developing DTrace Scripts to Gather Data 

A brief introduction to DTrace is provided in Chapter III. Architecture and Design 

(p. 8), and for detail beyond that introduction, the reader is encouraged to reference 

significant DTrace documentation from Sun Microsystems (BigAdmin System 

Administration Portal. DTrace, 2008) and the OpenSolaris community at (OpenSolaris 

Community: DTrace, 2007). This section will describe two of the most important DTrace 

scripts written to gather data relevant to this project. These scripts provide the 

foundational data that the web application processes and presents to the user. Each of 

these scripts uses DTrace's ip Provider (Gregg, 2008) to extract useful data from the IP 

headers of packets sent and received by the router's operating system's kernel's IP stack; 

this is conceptually depicted in Figure 3. Note that these scripts are written so that they 

can be executed from a console on the router during development and testing and also be 
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used—without modification—by the web application's server-side Java code. All of the 

DTrace scripts written for this project are available in the appendices of this document 

and should be understandable given the descriptions in this section, the available DTrace 

documentation, and the comments in the scripts themselves. 

DTrace 
pulls data from 
IP packet 
headers 

Aggregations 
of Useful 

Data 

Receive 
Packets 

Kernel's IP Stack yg&g. 

Router 
Figure 3. DTrace Extracting Data 

The DTrace scripts activate probes in the kernel's IP 
stack to collect useful data into aggregations. 

The first of the two important DTrace scripts in this project iteration which will be 

described in detail here is named countdatabytes.d. The ".d" extension in the file name 

indicates that this is a script written in DTrace's D programming language. The first line 

in this DTrace script 

#!/usr/sbin/dtrace -s 

is similar to the first line in many shell scripting languages: When executing this file, this 

indicates to the operating system which program should be used to process it; in this case, 

a program called dtrace in the directory /usr/sbin is used and is passed one parameter, -s 
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(which indicates to dtrace that the remainder of the file should be interpreted as D code). 

The next line 

•pragma D option defaul ta rgs 

indicates to DTrace that it should use default values for any parameters referenced in the 

D code that were not explicitly defined when the script was executed. When executed 

from a console, parameters are defined by adding additional items after the script name 

when executing it—as in the following example: 

$ ./count_data_bytes.d paraml param2 

How parameters can be defined when using the DTrace script with Java code is discussed 

in the following section, The Back End: Incorporating DTrace with Application Code (p. 

34). 

The next several lines of code in count_data_bytes.d 

BEGIN /* Special probe upon script startup */ 
{ 
givenSubnet = $$1; /* subnet either given or set 

as empty string */ 

printf ("\n\n " + 
« \n- j . 

printf("Counting data bytes sent and received by IP" + 
" address...\n"); 

printf (" " + 
« \n») . 

} 

define the actions to be taken when the BEGIN probe—a special probe that DTrace 

triggers when the script begins execution—fires. In this script, two things occur in the 

BEGIN probe: A variable givenSubnet is created and set to the value of the first 

parameter given to this script or—because of the defaultargs setting—set to the default 
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value of an empty string, and an informational heading is printed describing what this 

script is doing. 

Following the definition of actions for the BEGIN probe, actions are defined for 

two additional probes—send and receive in the ip provider. These probes fire whenever 

the network stack in the OS kernel sends or receives—respectively—an Internet Protocol 

packet. (For a full discussion of the ip provider, the reader is encouraged to refer to the 

DTrace ip provider web site (Gregg, 2008.) 

ip:::send /* Probe for sent packets (by destination address) */ 
{ 

@snd[args[2]->ip_daddr] = sum(args[2]->ip_plength); 
@tot[args[2]->ip_daddr] = sum(args[2]->ip_plength); 

} 

ip:::receive /* Probe for received packets (by source address) */ 
{ 

@rcv[args[2]->ip_saddr] = sum(args[2]->ip_plength); 
@tot[args[2]->ip_saddr] = sum(args[2]->ip_plength); 

} 

Whenever the send probe fires, two aggregations are updated: @snd and @tot. In 

DTrace, an aggregation is something like an array in other programming languages— 

indexed by something called a tuple. In this case, the tuple is the ipdaddr—the 

destination IP address—of the structure provided in args[2]. The ip provider provides a 

series of structures containing information in an array called args whenever a probe fires; 

it is from these structures that DTrace scripts can obtain and analyze data. args[2J 

contains a simple structure of the type ipinfoj—which is defined as follows (Gregg, B., 

2008): 

typedef struct ipinfo { 
uint8_t ip_ver; /* IP version (4, 6) */ 
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uintl6_t ip_plength; /* payload length */ 
string ip_saddr; /* source address */ 
string ip_daddr; /* destination address */ 

} ipinfo_t; 

Thus, when the send probe fires, the entries in aggregations @snd and @tot for the 

destination IP address provided in the args[2] structure are updated with the value in the 

payload length field of the same structure according to DTraces's sum function. The sum 

function adds to an existing value whatever new value is provided to it. So, in summary, 

the actions in the send probe add the payload length of a packet to two aggregations 

which are indexed by destination IP address. The receive probe actions work very much 

the same way, though the aggregations are indexed by the source IP address, ipsaddr, 

and the aggregations updated are @rcv and @tot. The observant reader may notice that 

the @tot aggregation is updated in both the send and receive probe actions—thus its 

values are a sum of the number of data bytes sent to and received from each IP address, 

whereas the @snd and @rcv aggregations track only the data bytes sent to and received 

from—respectively—each IP address. 

There is no code in the script to cause it to terminate on its own, so it will 

continue to run and to count the data bytes sent and received until the user stops it 

manually (such as with Cntl-C on the console). When the script is terminated, a special 

END probe is triggered—similar to the BEGIN probe which fired at the start of the script. 

END /* Special probe upon script termination */ 
{ 

printf ("\n\n " + 
« \n..) . 

printf("Printing results...\n"); 
printf (" " + 

« \n") ; 
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printf("\nData bytes sent to:\n"); 
printa(" %15s %@8u\n", @snd); 

printf("\nData bytes received from:\n"); 
printa(" %15s %@8u\n", Srcv); 

printf("\nTotal data bytes received from and sent to:\n"); 
printaC %15s %@8u\n", @tot) ; 

} 

These actions in the END probe print an informational header and then use DTrace's 

printa function to print each aggregation, @snd, @rcv, and @tot, according to the 

formatting specified. For a complete discussion of formatting output from DTrace, the 

reader is encouraged to reference the online DTrace manual's description of output 

formatting (Output Formatting, 2007). Essentially, these statements provide a formatted 

printing of each aggregation's tuples and corresponding values—sorted by the value. 

Using the count data bytes, d script from a console on a very quiet system may 

provide output similar to this: 

nv96-vbox$ ./count_data_bytes.d 
dtrace: script './count_data_bytes.d' matched 21 probes 
CPU ID FUNCTION:NAME 

0 1 :BEGIN 

Count: 

AC 
0 

Print: 

Lng 

Lng 

data 

2 

bytes 

results... 

sent and received by IP 

:END 

address... 

Data bytes sent to: 
10.0.1.50 160 
10.0.2.50 160 
10.0.0.50 320 
10.0.3.50 320 
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file:///nData
file:///nData
file:///nTotal


Data bytes received from: 
10.0.1.50 160 
10.0.2.50 160 
10.0.0.50 320 
10.0.3.50 320 

Total data bytes received from and sent to: 
10.0.1.50 320 
10.0.2.50 320 
10.0.0.50 640 
10.0.3.50 640 

nv96-vbox$ 

Similar to count_data_bytes.d, the DTrace script count jackets.duses the send 

and receive probes from the ip provider but simply counts the number of packets sent and 

received rather than the number of data bytes in each packet. The BEGIN and END 

probes are very similar and can be understood from the explanations of those in 

count databytes.d, and the actions of the send and receive probes use DTrace's count 

function instead of sum—as shown here: 

i p : : : s e n d /* Probe for sent packets (by des t ina t ion address) */ 
{ 

@snd[args[2]->ip_daddr] = count ( ) ; 
@tot[args[2]->ip_daddr] = count ( ) ; 

} 

i p : : : r e c e i v e /* Probe for received packets (by source address) */ 
{ 

@rev[args[2]->ip_saddr] = count ( ) ; 
@tot[args[2]->ip_saddr] = count ( ) ; 

} 

Output from this script on a quiet system my look something like this: 

nv96-vbox$ ./count_packets.d 
dtrace: script './count_packets.d' matched 21 probes 
CPU ID FUNCTION:NAME 

0 1 :BEGIN 
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Counting packets sent and received by IP address... 

Ac 
0 2 :END 

Printing results... 

Packets sent to: 
10.0.2.50 
10.0.3.50 
10.0.0.50 
10.0.1.50 

Packets received from: 
10.0.2.50 
10.0.3.50 
10.0.0.50 
10.0.1.50 

Total packets rece 
10.0.2.50 
10.0.3.50 
10.0.0.50 
10.0.1.50 

lived 

4 
4 
8 
12 

4 
4 
8 
12 

from and sent to: 
8 
8 
16 
24 

nv96-vbox$ 

How these scripts are used from within the web application's server-side Java code is 

discussed in the following section. 

The Back End: Incorporating DTrace with Application Code 

With working DTrace scripts written, the next step in implementation is to 

incorporate those scripts with application code. In the case of this project iteration, the 

application code is written in Java, so this means using DTrace from a Java class. 

Fortunately, the OpenSolaris community has developed a Java DTrace library that 

provides this capability: By including the Java Archive dtrace.jar that includes all of the 
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Java DTrace functionality from the OpenSolaris community, this project's code can 

utilize DTrace's data-collecting features in its server-side (i.e., back-end) code. Complete 

documentation for the use of Java DTrace is provided online (Java DTrace API, 2007), 

but the discussion of some of this project's back-end code here will provide an overview 

of how to use this library as well. This interaction is conceptualized in Figure 4. 

The Java class DtraceCountDataBytesService in the package 

org.dgrp.server.dtraceservices utilizes the DTrace count_data_bytes.dscript described in 

the previous section to provide the data collected by the script to Java classes via a typical 

Java method interface. This Java class will be described in detail in this section, and the 

reader is encouraged to refer to the full set of source code in the appendices of this 

document for the details of other Java classes written for this project iteration. The public 

interface to this Java class includes no constructor but does include the following 

methods: 

public void startService(String subnet); 
public boolean isRunningO; 
public void stopService (); 
public String[] getBusiestlPsByDataBytes(); 

Each will be described line-by-line along with the other portions of code that make up 

this Java class. 

As is typical in Java code, this Java class is assigned to a package—in this case 

named org.dgrp.server.dtraceservices. The acronym DGRP is short for DTrace 

Graphical Router Project; server indicates that this is server-side code; and 

dtraceservices is a simple package for those Java classes which provide DTrace-related 
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Server-Side Java Code 
DTrace Script 

Import org.opensolaris.os.dt race.*; 

Consumer consumer = new LocalConsumerQ; 

consumer. open(); 
consumer. compllefscriptFile, macroArgs); 
consumer.enableO; 
consumer. go(); 

Figure 4. Utilizing DTrace Scripts from Java Classes 

The OpenSolaris community provides a Java library that enables Java classes to compile 
and use standard DTrace scripts. 

data (as opposed to some other server-side code which has nothing to do with DTrace and 

will be discussed in the following section). Following the assignment of this class to a 

package, several common import statements are used to include necessary Java classes 

from other libraries: java.io.FileJava.net.URL, andjava.util. * are all from the standard 

Java Development Kit; org.dgrp.server.DGRPLogger is a simple class written for this 

project that provides a rudimentary logging facility for the server-side code; and 

org.opensolaris.dtrace. * is from the Java DTrace library written by the OpenSolaris 

community. These lines of source code are as follows: 

package org.dgrp.server.dtraceservices; 

import Java.io.File; 
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import java.net.URL; 
import j a v a . u t i l . * ; 
import org.dgrp.server.DGRPLogger; 
import o r g . o p e n s o l a r i s . o s . d t r a c e . * ; 

Following these opening lines of code is the start of the actual class definition— 

including a number of private class variables as seen here: 

public c lass DTraceCountDataBytesService { 

p r i va t e URL u r l = DtraceCountDataBytesService.class. 
GetResource( 
" /o rg /dgrp / se rve r /d t r acese rv ices / coun t_da ta_by tes .d" ) ; 

p r i va t e Consumer consumer; 
p r i va t e boolean isRunning = f a l s e ; 

The variable url provides the location of the DTrace script used by this Java class— 

count_data_bytes.d'in this case—which is also included in the same package. The 

variable consumer is a DTrace consumer—an object which collects and can provide data 

from DTrace according to the interfaces in the Java DTrace library; this variable is used 

extensively throughout this Java class as will be apparent in the following lines of source 

code. The final private variable, isRunning, is a simple boolean variable that is used to 

provide a client of this service an indicator of whether or not this service has been started 

(i.e., whether or not an instance of this Java class has an active DTrace consumer that is 

collecting data). 

The first of the public methods in this class is simple enough to be described all at 

once. The source is provided here: 

public void startService(String subnet) { 
try { 

DGRPLogger.log("Entering DtraceCoutnDataBytesService. 
startService()...\n"); 

File scriptFile = new File (url.toURI()); 
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String macroArgs = new String(subnet); 
DGRPLogger.log("Creating DTrace consumer.\n"); 
consumer = new LocalConsumer(); 
DGRPLogger.log("Opening DTrace consumer.\n"); 
consumer.open(); 
DGRPLogger.log("Compiling DTrace script.\n"); 
consumer.compile(scriptFile, macroArgs); 
DGRPLogger.log("Enabling DTrace consumer.\n"); 
consumer.enable (); 
DGRPLogger.log("Starting DTrace consumer.\n"); 
consumer.go(); 
isRunning = true; 
DGRPLogger.log("Leaving DtraceCoutnDataBytesService. 

startService().\n"); 
} 
catch (Exception e) { 

e.printStackTrace() ; 
} 

} 

First, the several DGRPLogger.logQ function calls make use of the simple logging 

facility mentioned already in this section to provide some basic log messages. Second, 

the reader will notice that the private variable url is used to create a File object, named 

scriptFile, that provides access to the relevant DTrace script to be used by consumer. 

Third, the string parameter subnet is indirectly passed to the the consumer as a parameter 

of the DTrace script. Finally, the reader can see in this code the typical series of method 

calls used when starting a DTrace consumer: the creation of a LocalConsumer object, 

openQ, compileQ—to which a DTrace script file and its parameters are passed as 

parameters, enableQ, and finally goQ—which starts the consumer collecting data 

according to the DTrace script. Following the creation, compilation, enabling, and 

starting of the consumer, the private class variable isRunning is updated to indicate that 

this object's consumer is indeed running, and—of course—the requisite try-catch code is 

included to manage exceptions thrown during the execution of any of the method calls 
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(though some additional intelligence in the try-catch code regarding actions for specific 

exceptions would be a recommended modification in future refactoring of this code. 

The next two public methods in the DTraceCountDataBytesService Java class are 

even more straightforward. First, isRunningQ simply returns the value of the private 

variable isRunning. Second, stopServiceQ does essentially the opposite of the 

startServiceQ method just discussed: It stops and closes the DTrace consumer and sets 

the isRunning variable to indicate that the service is no longer running. The code for both 

methods is provided here: 

public boolean isRunning() { 

return isRunning; 
} 

public void stopService() { 
consumer.stop(); 
consumer.close(); 
isRunning = false; 

} 

The last of the public methods in this class, getBusiestlPsByDataBytesQ, returns a 

string array of all of the IP addresses which the DTrace consumer has added to the @tot 

aggregation—sorted according to the number of total data bytes sent to or received from 

each IP address. (For details about the @tot aggregation or other code internal to the 

DTrace script, refer to the previous section; the sorting mechanism will be discussed later 

in this section.) The first several lines provide a simple log message and then check to 

ensure that it is relevant to call this method by ensuring the service is running: 

public String[] getBusiestlPsByDataBytes() { 
DGRPLogger.log("Entering getBusiestlPsByDataBytes()...\n"); 

if (!isRunning()) { //consumer not running, data not available 
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DGRPLogger.log("Consumer not running; returning null from 
getBusiestlPsByDataBytes().\n"); 

return null; 
} 

Next, a series of variables are created and used to get the current @tot aggregation from 

the DTrace consumer and store it in a local Aggregation object for processing: 

final String totAgg = "tot"; 
List ipAddrs = new ArrayListO; 
Set<String> aggSet = new HashSetO; 
aggSet.add(totAgg); 
Aggregation aggregation; 
try { 

DGRPLogger.log("Getting aggregation from consumer...\n"); 
aggregation = consumer.getAggregate(aggSet). 

getAggregation(totAgg); 
} catch (Exception e) { 

//consumer is probably not running, return null 
return null; 

} 

With the aggregation is successfully retrieved from the DTrace consumer, it is first 

checked for being empty—in which case the method returns immediately rather than 

attempting to process it: 

if (aggregation.equals(null)) { 
return null; 

} 

If the aggregation is not empty, the code continues to process it. First, a List object is 

created that contains the records from the aggregation. Each record includes a tuple (in 

this case, a string representation of an IP address) and a value (in this case the number of 

total bytes sent to and received from the corresponding IP address). The records in the 

list are sorted according to a custom sorting algorithm, and then the IP addresses from the 

sorted list's records are put—in order—into a string array for returning. The code for all 

of these steps—not including the sorting algorithm—is provided here: 
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else { //aggregation exists 
DGRPLogger.log("Aggregation existed...\n"); 
List list = aggregation.getRecords(); 
Collections.sort(list, new AggRecordComparator ()); 
Iterator iterator = list.iterator(); 
while (iterator.hasNext ()) { 

AggregationRecord aggRec = (AggregationRecord) 
iterator.next (); 

String ip = (String) aggRec.getTuple(). 
iterator ().next().getValue(); 

ipAddrs.add(ip) ; 
DGRPLogger.log("Adding IP: " + ip) ; 
long val = (long) aggRec.getValue(). 

getValue().longValue(); 
DGRPLogger.log(" (value is " + val + ").\n"); 

} 
} 

String[] ipAddrsStrings = (String[]) ipAddrs.toArray(new 
String[0]); 

DGRPLogger.log("Returning from getBusiestlPsByDataBytes().\n"); 
return ipAddrsStrings; 

} //end of method 
} //end of class 

The sorting algorithm used to sort the aggregation's records is an implementation 

of the JDK's Comparator interface and defines the compare() method such that records 

with a larger value (i.e., number of data bytes) will come before those with a smaller 

value in the sorted list of aggregation records. The code for this Comparator 

implementation is provided here: 

class AggRecordComparator implements Comparator { 
public int compare(Object objl, Object obj2) { 

DGRPLogger.log("Using AggRecordComparator.compare.\n"); 
AggregationRecord aggRecl = (AggregationRecord) objl; 
AggregationRecord aggRec2 = (AggregationRecord) obj2; 
long vail = aggRecl.getValue().getValue().longValue(); 
long val2 = aggRec2.getValue().getValue().longValue(); 
if (vail < val2) 

return 1; 
else if (vail == val2) 

return 0; 
else 

return -1; 
} 
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} 

Other Java classes in this project that provide DTrace services by utilizing a 

DTrace script written in the D language follow a pattern similar to 

DTraceCountDataBytesService, and the reader is encouraged to review them in the 

appendices. Other server-side code that is not DTrace-related is described in the next 

section. 

The Back End: Other Server-Side Code 

The previous two sections described the DTrace scripts and DTrace-related Java 

classes written for this project—all of which are packaged in the 

org.dgrp.server.dtraceservices Java package. This section will describe the other server-

side Java classes in the org.dgrp.server Java package. 

The DGRPLogger class—mentioned briefly in the previous section—is a simple 

logging facility designed to output simple strings to a log file on the server (i.e., the 

router). The code is simple: There is no constructor; the log file is set in a private string 

variable; and there is one public method for outputting log messages—log(). The code is 

provided here: 

package org.dgrp.server; 

import java.io.*; 

public class DGRPLogger { 

private static String logfile = "/var/tmp/dgrplog.txt"; 

public static void log(String string) { 
try { 
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BufferedWriter out = new BufferedWriter(new 
FileWriter(logfile, true)); 

out.write(string); 
out.close(); 

} catch (IOException e) {//ignore 
} 

} 
} 

Also in the org.dgrp.server package is the GetVersionlnfoImpl class—the server-

side class in a set of classes that follow a strict pattern provided by the Google Web 

Toolkit for Remote Procedure Calls. How the various client-side and server-side pieces 

of the different RPCs fit together will be discussed in the RPCs: Tying the Front and 

Back Ends Together section (p. 57), so the following comments will deal only with 

explaining what the server-side code in this class does—not how it interacts with the 

client-side classes. 

First, necessary package and import statements are made and the class is defined: 

package org .dgrp . se rver ; 

import j a v a . i o . * ; 
import j a v a . u t i l . * ; 
import com.google.gwt.user .server .rpc.RemoteServiceServlet ; 
import o rg .dgrp .c l ien t .GetVers ionlnfo ; 
import org .dgrp .c l ien t .Vers ionContents ; 
import java.net.URL; 

publ ic c lass GetVersionlnfoImpl extends RemoteServiceServlet 
implements GetVersionlnfo { 

Refer to the RPCs section (p. 57) for details of RemoteServiceServlet statements and the 

org.dgrp.client.GetVersionlnfo class, and refer to the Front End section (p. 48) for details 

of the org.dgrp.client. VersionContents class. Following these opening lines of code, a 

single public method is defined—getVersionlnfoQ. The complete source of that method 

is provided here with explanations following: 
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public VersionContents getVersionlnfo() { 

DGRPLogger.log("Entering getVersionlnfo()...\n"); 

VersionContents ver = new VersionContents (); 

InputStream in = null; 
Properties props = new Properties(); 

try { 
in = getClass().getResourceAsStream 

("/appinfo.properties"); 
props.load(in); 

//Solaris info 
ver.solarisRelease = getSolarisRelease(); 
ver.solarisInstallDate = getSolarisInstallDate(); 
ver.solarisArch = System.getProperty("os.arch"); 
ver.solarisUptime = getSolarisUptime(); 

//Quagga info 
ver.quaggaVersion = getQuaggaVersion() ; 
ver.quaggalnsDate = getQuaggalnstallDate(); 

//This software info 
ver.dgrpAuthor = props.getProperty("program.AUTHOR"); 
ver.dgrpBuildDate = props. 

getProperty("program.BUILDDATE"); 
ver.dgrpBuildNumber = props. 

getProperty("program.BUILDNUM"); 
ver.dgrpDescription = props. 

getProperty("program.DESCRIPTION"); 
ver.dgrpVersion = props. 

getProperty("program.VERSION"); 

//Java info 
ver.javaVMName = System.getProperty("Java.vm.name"); 
ver.javaVMVendor = System. 

getProperty("Java.vm.vendor"); 
ver.javaVMVersion = System. 

getProperty("Java.vm.version"); 
ver.javaVendor = System.getProperty("Java.vendor"); 
ver.javaVersion = System.getProperty("Java.version"); 

//Browser info 
ver.browserlnfo = null; //determined client-side 

//Web-Server info 
ver.tomcatVersion = getTomcatVersion(); 
ver.apacheVersion = getApacheVersion(); 
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//Remove this test 
ver.removeThis = removeThisMethodf); 

in.close(); 
} 
catch (IOException e) { 

e.printStackTrace() ; 
} 

DGRPLogger.log("Returning from getVersionlnfo().\n"); 
return ver; 

} 

First, an object of the client-side class VersionContents is created that will be populated 

with all of the version info retrieved from the server and will then be returned at the end 

of the method. The rest of the method—up to the point of returning—is a series of 

method calls used to populate bits of version information in the VersionContents object. 

Rather than describing each line of code in the remainder of the class, the three major 

forms of retrieving version information will be described by example, and the reader is 

encouraged to review the full source of this class in the appendices for further detail. The 

first of the three methods by which version information is retrieved is via the 

props.getPropertyQ method, props is created near the start of the class code and is an 

object of the Properties class that refers to the file appinfo.properties—which is modified 

by the build process when the whole web application is compiled, built, and packaged for 

deployment. This file follows the format of a properties file according to the 

Properties class specification in the JDK, thus props.getPropertyQ can retrieve values 

from name-value pairs in this file by passing the name as a parameter to the method—as 

seen in lines like the following: 

ver.dgrpAuthor = props.getProperty("program.AUTHOR"); 
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v e r . d g r p B u i l d D a t e = props .getProper ty("program.BUILDDATE") ; 
ver .dgrpBui ldNumber = props .getProper ty("program.BUILDNUM"); 

The second of the three methods is the retrieval of system properties from the Java 

Virtual Machine (JVM) via the System.getProperty() method call. This is similar to the 

properties method discussed already except that the source of these properties is the JVM 

itself rather than a properties file. Examples of this method can be seen in lines like 

these: 

ver.javaVMName = System.getProperty("Java.vm.name"); 
ver.javaVMVendor = System.getProperty("Java.vm.vendor"); 
ver.javaVMVersion = System.getProperty("Java.vm.version"); 

The last of the three methods for retrieving version information from the server is through 

a series of private methods also defined in this class. These methods all follow a similar 

pattern: Either open a file or execute a command and then extract the relevant text from 

the output for return and eventual placement into the VersionContents object. Examples 

of these method-calls can be seen here: 

ver.solarisRelease = getSolarisRelease(); 
ver.solarisInstallDate = getSolarisInstallDate(); 
ver.solarisUptime = getSolarisUptime(); 

The code that defines each of these methods is very basic, so the reader is encouraged to 

simply review it in its entirety in the appendices of this document. 

Finally, the BandwidthMonitorlmpl Java class in the org.dgrp.server package 

defines the server-side part of another RPC—the RPC by which the client-side code 

requests information from the DTrace services running on the server (i.e., router). As 

will become obvious to the reader in the next section, the client-side code does not 

interact directly with the classes in the org.dgrp.server.dtraceservices package; rather, the 
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server-side code of the RPCs starts, stops, and gets updates from the DTrace services. 

(This whole interaction will be described more fully in the RPCs: Tying the Front and 

Back Ends Together section, p. 57.) 

Looking more closely at the code, the reader will see that the package and import 

statements are as expected and that the class definition is similar to other server-side 

classes in other RPCs: 

package org.dgrp.server; 
import com.google.gwt.user.server.rpc.RemoteServiceServlet; 
import java.util.Random; 
import org.dgrp.client.Bandwidthlnfo; 
import org.dgrp.client.BandwidthMonitor; 
import org.dgrp.server.dtraceservices.*; 

public class BandwidthMonitorlmpl extends RemoteServiceServlet 
implements BandwidthMonitor { 

private DTraceCountDataBytesService countDataBytesService; 
private DTraceCountPacketsService countPacketsService; 

The reader will also notice that there are two private objects created—one of each of the 

DTrace service classes in the org.dgrp.server.dtraceservices package previously 

described. The remaining methods in this class utilize these objects so that the client-side 

code need not have any knowledge of them; the client-side code need only be concerned 

with the interfaces defined for each RPC. For each service, there are start, stop, and other 

relevant methods defined—as in the examples here: 

public void startServiceCountDataBytes(String subnet) { 
DGRPLogger.log("Entering BandwidthMonitorlmpl. 

StartServiceCountDataBytes()...\n"); 
countDataBytesService = new DTraceCountDataBytesService(); 
countDataBytesService.startService(subnet); 

} 

public void stopServiceCountDataBytes() { 
DGRPLogger.log("Entering BandwidthMonitorlmpl. 
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stopServiceCountDataBytes()...\n"); 
countDataBytesService.stopService(); 

} 

public String[] getRefreshedlPs() { 
DGRPLogger.log("Entering BandwidthMonitorImpl. 

getRef reshedlPs () . . An") ; 
return countDataBytesService.getBusiestlPsByDataBytes(); 

} 

While these examples (and most of the methods in this class in this iteration of the 

project) do little more than call and return methods directly from the DTrace services 

classes, this design offers the flexibility to implement more sophisticated wrapper 

methods or to change the implementation of the DTrace services classes without 

necessitating an alteration to the RPC interface on which the client-side code depends. 

For the source of all of the methods in this Java class, the reader is encouraged to refer to 

the appendices. 

The Front End: Developing the User Interface 

While the previous two sections described server-side or back-end code in the 

org.dgrp.server and org.dgrp.server.dtraceservices packages, this section will discuss the 

front-end, client-side code in the org.dgrp. client package. Many of the Java classes in 

this package utilize the various widgets provided by the Google Web Toolkit to create the 

graphical interface through which the user interacts with this web application. Other 

classes are used in the process of analyzing and processing the data provided by the 

server-side code, and still others are responsible for the client-side portion of the RPCs 

that communicate between the front and back end. One of the key classes used for 
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creating the graphical interface, DGRPEntryPoint, will be described in detail, and the 

reader is encouraged to view the complete source code for this class in the appendices 

and to refer to the available GWT documentation to understand the rest of the code in 

similar classes {Google Web Toolkit, 2007). The analysis classes will be described in 

detail, and the classes related to the RPCs will be covered in the next section, RPCs: 

Tying the Front and Back Ends Together. 

The graphical interface for this iteration of this project is created entirely by the 

use of GWT widgets. Examples of the creation, placement, and modification of these 

widgets can be found in this project source code and in the examples included with the 

GWT (see Using the Application Framework). Various types of panels—one of the GWT 

widgets—make up the conceptual map that lays out the graphics in the interface. Panels 

are included within panels, and the base panel is defined in the DGRPEntryPoint class. 

DGRPEntryPoint imports a number of necessary widget classes from the 

com.google.gwt.user.client package and is defined to implement the Entry Point and 

HistoryListener interfaces as shown here: 

package org.dgrp.client; 

import org.dgrp.client.SidebarItem.Sidebarltemlnfo; 
import com.google.gwt.core.client.EntryPoint; 
import com.google.gwt.user.client.ui.RootPanel; 
import com.google.gwt.user.client.History; 
import com.google.gwt.user.client.HistoryListener; 
import com.google.gwt.user.client.ui.DockPanel; 
import com.google.gwt.user.client.ui.HasAlignment; 
import com.google.gwt.user.client.ui.HTML; 
import com.google.gwt.user.client.ui.VerticalPanel; 

public class DGRPEntryPoint implements EntryPoint, 
HistoryListener { 
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As the entry point Java class, GWT configures the web application when compiling and 

building it to start the loading and display of the application from this class; all other 

graphics are initiated from this class. As an implementation of HistoryListener, this class 

enables browser history to work correctly with the AJAX application. The class then 

creates a number of object instances and defines the onHistoryChanged() function 

according to the HistoryListener interface: 

public DGRPEntryPoint() { 
} 

protected Sidebar list = new Sidebar(); 
private Sidebarltemlnfo curlnfo; 
private Sidebarltem curltem; 
private HTML description = new HTMLO; 
private DockPanel panel = new DockPanel(); 
private DockPanel mainPanel; 

public void onHistoryChanged(String token) { 
Sidebarltemlnfo info = list.find(token); 
if (info == null) { 

showlnfo(); 
return; 

} 
show(info, false); 

} 

The next method defined, onModuleLoadQ, is responsible for the layout of the panels on 

the browser that make up the graphical interface. Since this is in the entry point Java 

class, this method is called almost immediately when a user points the browser to the web 

application's URL. Utilizing this method and the others called from it, the client-side 

code lays out an interface that looks like that in Figure 5. 
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Figure 5. Basic Interface Layout 

This is an example of the layout created by the entry point Java class. 

The first step in this process is adding items to the Sidebar object named list. This occurs 

in the following method call: 
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loadSidebarltems(); 

This method is defined as follows: 

protected void loadSidebarltems() { 
list.addltem(Welcome.init()); 
list.addltem(Analysis.init()) ; 
list.addltem(Settings.init() ) ; 
list.addltem(Version.init()); 
list.addltem(About.init()); 

} 

These addltemQ method calls create instances of each of the classes shown: Welcome, 

Analysis, Settings, Version, and About—all of which are extensions of the abstract 

Sidebarltem class. This is responsible for creating the links in the left-hand side of the 

interface shown in Figure 5. The next several lines of code create other panels, set their 

styles, and add them in the appropriate order: 

mainPanel = new DockPanel (); 
mainPanel.setStyleName("dgrp-MainPanel"); 

VerticalPanel vp = new VerticalPanel(); 
vp.setWidth("100%"); 
vp.add(description); 
vp.add(mainPanel); 

description.setStyleName("dgrp-Heading") ; 

panel.add(list, DockPanel.WEST); 
panel.add(vp, DockPanel.CENTER); 

panel.setCellVerticalAlignment(list, HasAlignment.ALIGN_TOP); 
panel.setCellWidth(vp, "100%"); 
panel.setCellHeight(vp, "100%"); 

History.addHistoryListener(this) ; 
RootPanel.get().add(panel); 

Each call to setStyleName() assigns one of the Cascading Style Sheets (CSS) styles 

included in the project to the object. Working essentially backwards through the other 

lines, the main DockPanel widget, panel, is added to GWT's default RootPanel; panel 

52 



includes the sidebar menu object, list, on the left and a VerticalPanel, vp, which in turn 

includes an HTML object, description, at the top and then mainPanel beneath that. In 

Figure 5, description can be seen as the space containing the text, "Welcome to the 

DTrace Graphical Router Project...," while mainPanel contains the repeat of that 

welcome with the additional text, "Click a link to the left to continue...." By clicking a 

link in the sidebar, the user invokes the next method defined in this class—showQ. The 

show() method quite simply tells the sidebar object to highlight the selected choice, 

updates the text in description, removes the current widget from mainPanel, and loads 

the selected item into mainPanel instead. The code for this is relatively straightforward: 

public void show(SidebarItemInfo info, boolean affectHistory) { 
i f (info == curlnfo) { 

r e tu rn ; 
} 
curlnfo = info; 

i f (curltem != null) { 
curl tem.onHide(); 
mainPanel.remove(curltem); 

} 

curltem = in fo .ge t lns tance ( ) ; 
l i s t . s e t l t emSe lec t ion ( in fo .ge tName( ) ) ; 
description.setHTML(info.getDescription() ) ; 

i f (affectHistory) { 
History.newltem(info.getName()); 

} 

mainPanel.add(curltem, DockPanel.CENTER); 
mainPanel.setCellWidth(curltem, "100%"); 
mainPanel.setCellHeight(curl tem, "100%"); 
mainPanel.setCellVerticalAlignment(curl tem, 

DockPanel.ALIGN_TOP); 
curltem.onShow() ; 

Given the explanation of DGRPEntryPoint and the source code available in the 
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appendices, the reader should be well-equipped to understand the Sidebar, Sidebarltem, 

About, Welcome, and Settings classes as well. 

Two other classes in the org.dgrp.client package, AnalysisMenu and ImagePanel, 

are also similar to the classes just discussed. They involve code primarily responsible for 

the creation, layout, and modification of widgets, though there are a couple of things in 

each worth special mention here. First, AnalysisMenu creates a menu of choices for the 

user when the Analysis sidebar options is clicked. The menu is like that in Figure 6, and 

each selection in the menu corresponds to a command that triggers other code to execute. 

An example of a command that presents the user with an informational window warning 

that the selected feature is not yet implemented is shown in the following code: 

Command notSupported = new Command () { 
public void execute () { 

Window.alert("This feature is not yet supported."); 
} 

}; 

By passing this Command object as a parameter in the creation of a Menultem, as in 

menu_general_int_status = new Menultem(notsup + 
" In te r face S ta tus" , t r u e , notSupported); 

an option in the menu is created that will execute the notSupported command when 

selected. Similar to the AnalsysiMenu class, ImagePanel is used by the Analysis class 

when it is selected in the sidebar. ImagePanel controls the layout of a number of other 

graphics used by the Analysis class—several of which can be seen in Figure 7. 
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Figure 6. Application Interface Analysis Menu 

The AnalysisMenu class creates a menu of choices during analysis. 

ImagePanel also provides a number of methods that allow other code to control the 

visibility of or otherwise edit the graphics in this class. For example, the following 

method, hideLaptop(), is used to hide the laptop graphics seen in Figure 7: 

public void hideLaptop(int position) { 
switch (position) { 

case 0: 
laptopO.setUrl("images/placeholder.png"); 
laptop0.setWidth("131px"); 
laptop0.setHeight("104px"); 
laptopO.setStyleName("dgrp-Images-Image"); 
break; 

case 1: 
laptopl.setUrl("images/placeholder.png"); 
laptopl.setWidth("131px"); 
laptopl.setHeight("104px"); 
laptopl.setStyleName("dgrp-Images-Image"); 
break; 

case 2: 
laptop2.setUrl("images/placeholder.png"); 
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laptop2.setWidth("131px"); 
laptop2.setHeight("104px"); 
laptop2.setStyleName("dgrp-Images-Image"); 
break; 

case 3: 
laptop3.setUrl("images/placeholder.png"); 
laptop3.setWidth("131px"); 
laptop3.setHeight("104px"); 
laptop3.setStyleName("dgrp-Images-Image"); 
break; 

default: 
break; //ignore others for now 
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Figure 7. Graphics Controlled by the ImagePanel Class 

The ImagePanel class provides controls for many of the graphics used by the Analysis 
class. 

The rest of the code mAnalysisMenu and ImagePanel should be understandable given the 

detailed description of DGRPEntryPoint and the complete source code in the appendices. 

Of the remaining classes in org.dgrp.client, three are simple and should be 
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understood by the reader without any special explanation: Topologylnfo objects are used 

to determine the placement and keep track of which IP addresses appear on the analysis 

graphics (where the "IP Address Placeholder" text appears in Figure 7); VersionContents 

contains a number of public string objects that are used to pass information regarding 

software versions from the server to the client when the Version link is chosen from the 

sidebar; and Bandwidthlnfo objects are used to communicate how much available 

bandwidth is being used by a given connection. The remaining classes in this package 

either directly utilize or are a necessary part of Remote Procedure Calls and will thus be 

described in the next section. 

RPCs: Tying the Front and Back Ends Together 

Much has been discussed in the previous sections about creating DTrace scripts, 

utilizing those scripts from server-side Java code, and creating the client-side graphical 

interface, but the real power of this software comes from the tying together of these 

pieces: By enabling the front-end code to get information from the back-end code and 

act accordingly, the web application is enabled to provide useful and current information. 

This is achieved through Remote Procedure Calls; see Figure 8. Two of the sidebar 

choices not yet discussed—Version and Analysis—will be described in detail here along 

with the corresponding RPCs through which each class is able to get useful information 

from the server-side code. 
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RPCs provide a way of allowing code interaction between the client-side code and the 
server-side code through asynchronous method calls. 

As the simpler example, the Version class will be described first. The goal of the 

Version link in the interface sidebar is simple: Provide the user with version information 

relevant to this web application. Of course, much of the relevant software is outside the 

control of this web application, so its versions must be retrieved from the server (i.e., 

router). In the code, like other Sidebarltem classes, necessary package and import 

statements are included, and an initQ function is defined: 

package org.dgrp.client; 

import com.google.gwt.user.client.ui.HTML; 
import com.google.gwt.core.client.GWT; 
import com.google.gwt.user.client.rpc.AsyncCallback; 
import com.google.gwt.user.client.rpc.ServiceDefTarget; 

public class Version extends Sidebarltem { 

private HTML verlnfo = new HTML( 
"<div class='dgrp-About-Prose'>" + 
"Retrieving version information from the server. 
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"</div>", 
true); 

public static Sidebarltemlnfo init() { 
return new Sidebarltemlnfo("Version Info", 

"Version Information for the DTrace Graphical Router 
Project...") { 

public Sidebarltem createlnstance () { 
return new Version)); 

} 
}; 

} 

As seen, a placeholder HTML object is also created and used in the constructor to display 

an initial message to the user—as seen here: 

public Version() { 
initWidget(verlnfo) ; 

The constructor then creates an asynchronous callback object; this will be used to react to 

the return of the RPC once it is made. It is important to remember that the GWT RPC 

implementation is asynchronous, thus when an RPC call is made, the code continues to 

execute without blocking until the RPC returns—at which point the code in the callback 

object will be executed according to the success (execute onSuccess()) or failure (execute 

onFailureQ) of the RPC. In the case of Version, onSuccessQ is defined to update the 

HTML object with the version information returned from the server—as seen partially 

here: 

final AsyncCallback callback = new AsyncCallback() { 
public void onSuccess(Object result) { 

VersionContents verResults = (VersionContents) result; 

verlnfo.setHTML( 

); 
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} 

public void onFailure(Throwable caught) { 
verInfo.setHTML( 

"<div class='dgrp-About-Prose'>" + 
"Failed to r e t r i e v e version information from the " + 
"server .</div>" 

) ; 
} 

} ; 

In the case of an RPC failure, the HTML object is updated to display an appropriate 

failure message. The result of a successful RPC call can be seen in Figure 9. Following 

the definition of the callback object, the RPC call can actually be made—as in the 

following method call 

getService().getVersionlnfo(callback); 

where getServiceQ is defined as 

public static GetVersionlnfoAsync getService(){ 
GetVersionlnfoAsync service = (GetVersionlnfoAsync) 

GWT.create(GetVersionlnfo.class); 
ServiceDefTarget endpoint = (ServiceDefTarget) service; 
String moduleRelativeURL = GWT.getModuleBaseURL() + 

"getversioninfo"; 
endpoint.setServiceEntryPoint(moduleRelativeURL); 
return service; 

} 

This method refers to the GWT-prescribed configuration of this R P C as a servlet in the 

web application's web.xml file—as seen here: 

<servlet> 
<servlet-name>GetVersionInfo</servlet-name> 
<servlet-class> 

org.dgrp.server.GetVersionlnfolmpl 
</servlet-class> 

</servlet> 
<servlet-mapping> 

<servlet-name>GetVersionInfo</servlet-name> 
<url-pattern> 

/org.dgrp.DTraceGraphicalRouterProject/getversioninfo 
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</url-pattern> 
</servlet-mapping> 

One last useful point that can taken from the Version class is seen in the following 

method: 

public static native String getBrowserlnfo() /*-{ 
return $wnd.navigator.userAgent; 

This method shows an example of how raw JavaScript can be used from within client-

side GWT code. The exact syntax is required, but this makes it possible to do things with 

JavaScript that the GWT cannot do, though the need for this was quite sparse in the 

course of this project iteration. 

For the RPC in the Version class to work correctly, two other classes must also be 

defined. Recall that the RPC called the method getVersionlnfoQ. This prototype for this 

method is in the class, GetVersionlnfo—as seen in the code here: 

package org.dgrp.client; 
import com.google.gwt.user.client.rpc.RemoteService; 

public interface GetVersionlnfo extends RemoteServicef 
public VersionContents getVersionlnfo(); 

} 

According to the GWT RPC implementation, another—almost identical—class must also 

be defined: In this case, that class is GetVersionlnfoAsync: 

package org.dgrp.client; 
import com.google.gwt.user.client.rpc.AsyncCallback; 

public interface GetVersionlnfoAsync { 
public void getVersionlnfo(AsyncCallback callback); 

} 

Finally, the actual implementation of the getVersionlnfoQ method is defined in the class 

GetVersionlnfoImpl in the server-side package org.dgrp.server. For a discussion of this 
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class, refer to the The Back End: Other Server-Side Code section (p. 42). So, in order for 

the Version class to use an RPC, an asynchronous callback object must be created and 

passed to the RPC call—which uses a servlet configured in web.xml to call a method 

prototyped in GetVersionlnfo and GetVersionlnfoAsync and actually implemented in the 

server-side class GetVersionlnfoImpl. Note that these names were not arbitrary but were 

chosen according to the requirements of the GWT RPC {Remote Procedure Calls, 2008). 

Note also that the GWT4NB plugin to the NetBeans IDE automatically configures the 

web.xml file and creates templates for the necessary Java classes—both on the client and 

server side—greatly simplifying the creation of RPCs. 

The RPC used by the Analysis class is very similar in concept to that used by the 

Version class, though the interface classes highlight one important point—that a single 

RPC implementation can accommodate multiple method definitions—as seen here from 

the BandwidthMonitor and BandwidthMonitorlmpl interfaces: 

public interface BandwidthMonitor extends RemoteService{ 
public void startServiceCountPackets(String s); 
public void startServiceCountDataBytes(String s) ; 
public void stopServiceCountPackets(); 
public void stopServiceCountDataBytes(); 
public Bandwidthlnfo getBandwidthlnUse(String s) ; 
public Bandwidthlnfo getRandomBandwidthlnUse(String s); 
public String[] getRefreshedlPs(); 

} 
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Figure 9. Results of a Successful Version RPC 

In the Version class, a successful RPC return provides version information from the 
server. 

public interface BandwidthMonitorAsync { 
public void startServiceCountPackets(String s, AsyncCallback 

asyncCallback); 
public void startServiceCountDataBytes(String s, AsyncCallback 

asyncCallback); 
public void stopServiceCountPackets(AsyncCallback 

asyncCallback); 
public void stopServiceCountDataBytes(AsyncCallback 

asyncCallback); 
public void getBandwidthlnUse(String s, AsyncCallback 
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ca l lback) ; 
publ ic void getRandomBandwidthlnUse(String s, AsyncCallback 

ca l lback) ; 
publ ic void getRefreshedlPs(AsyncCallback ca l lback) ; 

The implementation of these methods in the BandwidthMonitorlmpl class in 

org.dgrp.server has already been described in the The Back End: Other Server-Side 

Code section (p. 42). Outside of the use of these RPCs in Has Analysis class—which the 

reader can now undoubtedly understand by reviewing the full source code in the 

appendices, a few other parts of the class are worth describing here. 

First, GWT's Timer class is used to make RPC calls on a regular and repeated 

interval—as seen here: 

bwMonitorService.getRefreshedlPs(ipCallback) ; 
Timer ipRefresh = new Timer() { 

publ ic void run() { 
bwMonitorService.getRefreshedlPs(ipCallback); 

} 
}; 
ipRefresh.scheduleRepeating(10000) ; 

In this code, the RPC getRefreshedlPsQ is called once, and a timer is then created which 

will trigger the same RPC to be called again every 10,000 milliseconds—or 10 seconds. 

The definition of the ipCallback parameter describes what this client-side code will do 

with the result of this RPC: 

final AsyncCallback ipCallback = new AsyncCallback() { 
public void onSuccess(Object result) { 

processIPUpdates(result); 
} 
public void onFailure(Throwable caught) { 

//ignore for now 
} 

}; 

Looking then to the definition of the processIPUpdates() function, 
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private void processIPUpdates(Object result) { 
String[] newAddrs = (StringH) result; 
for (int i=0; i<MAX_NODES; i++) { 

imgPanel.hideLaptop(i); 
imgPanel.hideLaptopPipe(i); 
imgPanel.setLaptopIPAddrLabel(i, null); 

} 
topolnfo = new TopologyInfo(MAX_NODES); 
for (int i=0; KnewAddrs.length; i++) { 

try { 
topolnfo.setAddress(i, newAddrs[i]); 
imgPanel.setLaptopIPAddrLabel(i, newAddrs[i]); 
imgPanel.showLaptop(i); 

} catch (Exception e) { 
//ignore for now 

} 
} 

} 

it can be seen that the graphical interface is updated once every 10 seconds to show 

laptop graphics on imgPanel—up to a maximum number (MAX_NODES)—and to 

display an IP address label for each each laptop graphic according to the array of strings 

that is returned by the server-side RPC code for getRefreshedlPsQ. Similarly, the 

following code shows a once-per-second update to the pipe graphics displayed for each 

laptop: 

Timer pipeUpdate = new Timer() { 
public void run() { 

for (int i=0; i<=topoInfo.getMaxNodes(); i++) { 
if (!(topolnfo.getAddress(i).eguals(null))) { 

bwMonitorService.getBandwidthlnUse( 
topolnfo.getAddress(i), pipeCallback); 

} 
} 

} 
}; 
pipeUpdate.scheduleRepeating(1000); 

final AsyncCallback pipeCallback = new AsyncCallback() { 
public void onSuccess(Object result) { 

processPipeUpdates(result); 
} 
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public void onFailure(Throwable caught) { 

//ignore for now 
} 

}; 

private void processPipeUpdates(Object result) { 
Bandwidthlnfo bwlnfo = (Bandwidthlnfo) result; 
try { 

imgPanel.showLaptopPipe(topolnfo.findPosition( 
bwlnfo.getlPAddress() ) , bwlnfo.getBandwidthlnUse()); 

} catch (Exception e) { 
//skip addresses not currently tracked 

} 
) 

With this explanation of the Version and Analysis classes, it should be clear to the reader 

how client-side code can interact with server-side code via RPCs to retrieve information 

and act accordingly. With all of these pieces together, the final step in implementation is 

actually creating and deploying the complete web application—which is discussed in the 

following section. 

Deploying the Complete Web Application 

With all of the pieces discussed in this and the previous chapters in place, a few 

final things are necessary to bring them all together in a complete web application. Note 

that—where noted—the NetBeans IDE provided the author a simplified process that may 

be more complicated in a different development environment. These items are provided 

in the following list in no particular order: 

1. To version-control the web application, code was added to the build.xml file in the 

NetBeans project directory: 
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<target name="-pre-dist"> 
<buildnumber f i le="bui ldnumber .proper t ies" /> 
<proper tyf i le f i l e="appinfo .p roper t i es" 

comment="Everything can be manually updated except 
buildnum and bui lddate ."> 

<entry key="program.PROGNAME" defaul t="${main.c lass}" /> 
<entry key="program.AUTHOR" default="" /> 
<entry key="program.COMPANY" defau l t - "" /> 
<entry key="program.COPYRIGHT" default="now" type="date" 

pattern="yyyy" /> 
<entry key="program.DESCRIPTION" defaul t="" /> 
<entry key="program.VERSION" de fau l t=" l . 0 .0" /> 
<entry key="program.BUILDNUM" value="${build.number}" /> 
<entry key="program.BUILDDATE" type="date" value="now" 

pattern="EEEEE, MMMMM dd, yyyy, hh:mm:ss a z" /> 
</proper tyf i le> 
<copy f i l e="app info .p roper t i e s" 

tod i r="${bu i ld . c l a s ses .d i r}" /> 
</ target> 

A new file, appinfo.proper ties, was also created in the same directory: 

program.PROGNAME=The DTrace Graphical Router Project 
program.BUILDNUM=22 
program.AUTHOR=Chris Nelson 
program.BUILDDATE=Tuesday, September 16, 2008, 07\:49\:55 PM PDT 
program.DESCRIPTION=See the About page in the web application. 
program.COPYRIGHT=2 008 
program.VERSION=0.9.0 
program.COMPANY=San Jose State University 

With this in place, the program-BUILDNUM and program.BUILDDATE 

properties are updated automatically with each build of the web application 

{HOWTO: use ANT with JAVA to dynamically create build numbers, 2007). 

2. An index.jsp file is included in the web application and is the default page loaded 

when a user points a browser to the web application root address. This page 

includes only a simple HypterText Markup Language (HTML) header, a pointer 

to the web application's CSS file, and the necessary JavaScript entry to load the 

67 



GWTAJAXcode: 

<script language="javascript" src="org.dgrp.DTraceGraphicalRouter 
Project/org.dgrp.DTraceGraphicalRouterProj ect.nocache.j s"> 
</script> 

3. All of the images used in the web application are included in an images directory. 

4. Code run by a web application served by Apache Tomcat's web server on the 

Solaris operating system executes as user nobody by default. Because of the 

detail of information that DTrace can provide, Solaris—by default—only allows 

the root super-user to utilize the full set of DTrace probes. To give user nobody 

permission to use all of DTrace's functionality, the following line was added to the 

file /etc/user_attr: 

nobody::::defaultpriv=basic,dtrace_kernel 

5. NetBeans provides the ability to build and package a web application into a Java 

Archive .war file that can be immediately deployed on a web server. The author 

used this function regularly. 

6. In the author's opinion, the simplest way to deploy a pre-packaged .war file 

containing a web application on an Apache Tomcat web server is through the 

Tomcat Web Application Manager interface; see Figure 10. If the edits in the 

Configuring the Web Server section (p. 22) were made, this interface can be 
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loaded in a web browser at http://<server IP address>/manager/html. The .war 

file can be directly uploaded from that interface and will automatically be 

deployed. In the case of this project, the DGRP web application can then be 

accessed at http://<router IP address>/DTraceGraphicalRouterProject. There are a 

couple of possible sub-steps necessary in this process: 

a. The directory /var/apache/tomcat/webapps—where the .war file will be placed 

during deployment—may not allow writing of files by default, so write 

permissions may need to be added before uploading a .war file. 

b. Tomcat 5.5.26, the version included in OpenSolaris SXCE build 94, is missing 

a library, commons-io, in the directory 

/usr/apache/tomcat/server/webapps/manager/WEB-INF/lib. This is fixed in 

future versions, but for this iteration, it was necessary to obtain a copy of that 

library, place it in the specified directory, and restart the apache daemon to 

enable uploading a .war file for deployment. 

c. In order to use the DTrace library from a web application, it is necessary to 

add the appropriate path to Java's library path. The following series of 

commands stops the apache daemon, sets an environmental variable 

appropriately, and restarts the daemon so that it can access the DTrace library 
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as needed: 

/etc/rc3.d/S50apache stop 
export JAVA_OPTS=-Djava.library.path=/usr/lib 
/etc/rc3.d/S50apache start 
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Figure 10. Tomcat Web Application Manager 

The Tomcat Web Application Manager allows for simple deployment and management of 
web applications. 
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VI. TESTING 

The purpose of testing in the development of this framework and its reference 

implementation is to ensure that the design proposed here does indeed work—that a web 

application can dynamically provide network information via remote procedure calls 

from a router utilizing DTrace to collect this data. During this development, two forms of 

testing have been performed: The first used a virtual installation of the OpenSolaris 

operating system sending and receiving network traffic through virtual network interfaces 

to virtual interfaces on the host operating system; the second used real hardware with 

other systems physically connected via real network interfaces. These two forms of 

testing are discussed in this chapter. For each form of testing, one important assumption 

is made: The accuracy of DTrace is already proven and is thus out of scope for this 

testing, so these tests will not attempt to validate the data shown in the browser interface 

by comparing it to what could be captured by independent network analyzers. 

Testing on a Virtual System 

Virtualization technology has seen rapid improvement in recent years, and 

software from companies like VMWare and others now offers stable and generally very 

usable methods by which one or more "guest operating systems" can exist on a "host 

operating system." The virtualization software makes it appear to the guest OS that it is 
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actually running native on the system hardware—but without requiring a true installation 

of the OS onto the system memory (e.g., hard drive) in place of the original OS. One of 

these virtualization software programs is VirtualBox, an open-source software distributed 

by Sun Microsystems (VirtualBox, 2008). VirtualBox offers the capability to run a large 

variety of guest operating systems on many different host operating systems. For the 

purpose of this project, the author was able to utilize VirtualBox to install OpenSolaris as 

a guest operating system on a laptop running Microsoft Windows XP as the host OS. 

The installation of VirtualBox itself is simple and follows the pattern of most 

software application installations. Complete installation and user-guide instructions are 

available on the VirtualBox download web site {Download VirtualBox, 2008). Once 

VirtualBox was installed, the addition of OpenSolaris as a guest operating system was 

also quite straightforward. The author downloaded a single DVD disc image (in .iso 

format) of OpenSolaris (build nv_96) from the OpenSolaris download web site 

{OpenSolaris Download Center, 2008), mounted it as a virtual DVD-ROM for the 

OpenSolaris guest OS in VirtualBox, and "powered on" the OpenSolaris OS to begin 

installation just as if a real DVD had been inserted into real hardware. For additional 

information about the OpenSolaris installation process, refer to the Installing and 

Configuring the Operating System section (p. 16) in Chapter IV. Platform Preparation. 

Two important notes should be made about the setup of OpenSolaris in VirtualBox on the 

author's development laptop. First, although the VirtualBox documentation indicated that 

OpenSolaris should function with only 512MB of system memory allocated for it, the 

73 



author found that the installation failed unless 1GB of system memory was allocated; 

second, the author also installed the "Solaris guest additions" provided with the 

VirtualBox software for making the transition between host and guest operating systems 

more seamless (for the mouse and keyboard, etc.) during development and testing. After 

the installation was complete, configuration and the deployment of the web application 

followed the steps outlined in the following sections from Chapter IV. Platform 

Preparation and Chapter V. Implementation with the additions to be described: 

1. Installing and Configuring the Operating System (p. 16) 

2. Installing and Configuring the Routing Software (p. 20) 

3. Installing and Configuring the Web Server (p. 22) 

4. Deploying the Complete Web Application (p. 66) 

The additions to this process included the special configuration of virtual network 

interfaces on the host and guest operating systems. The VirtualBox software provides 

this functionality. The author first created four virtual interfaces on the host (Windows 

XP) OS using the following commands in a console: 

vboxmanage createhostif "VirtualBox ifl" 
vboxmanage createhostif "VirtualBox if2" 
vboxmanage createhostif "VirtualBox if3" 
vboxmanage createhostif "VirtualBox if4" 

Next, each interface was assigned an IP address on a different subnet: 

VirtualBox ifl: 10.0.0.50 (netmask: 255.255.255.0) 
VirtualBox i£2: 10.0.1.50 (netmask 255.255.255.0) 
VirtualBox iB: 10.0.2.50 (netmask 255.255.255.0) 
VirtualBox if4: 10.0.3.50 (netmask 255.255.255.0) 

Then, in the VirtualBox settings for the guest OS, four virtual interfaces were created for 
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the the guest OS, and each was paired with one of the virtual interfaces on the host OS— 

as shown in Figure 11. After powering on the OpenSolaris guest OS, each interface was 

assigned an IP address on the same subnet as its paired interface: 

ifconfig elOOOgO plumb; ifconfig elOOOgO 10.0.0.1 netmask 
255.255.255.0 up 

ifconfig elOOOgl plumb; ifconfig elOOOgO 10.0.1.1 netmask 
255.255.255.0 up 

ifconfig el000g2 plumb; ifconfig elOOOgO 10.0.2.1 netmask 
255.255.255.0 up 

ifconfig el000g3 plumb; ifconfig elOOOgO 10.0.3.1 netmask 
255.255.255.0 up 

In this configuration, the guest OS has four virtual physical ports—each configured on a 

different subnet, and there is exactly one other system active on each subnet—the 

corresponding virtual port on the host OS. 

With everything set up, some simple tests were performed. First, the author 

verified that the simple features worked. The following several screen shots in Figures 

12, 13, 14, and 15 show the output as expected from all of the screens except for 

Analysis. 
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Figure 11. Creating Virtual Network Interfaces 

VirtualBox allows the creating of virtual network interfaces on both the host and guest 
operating systems and the pairing of them to allow network traffic between the two. 
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With these basic functions proven working, the author moved on to the Analysis 

page. By just loading the DGRP web application and performing no extra tasks, one 

should see some activity: The expected activity would include just basic ARP traffic on 

three of the subnets and some additional traffic on the subnet over which the RPC calls 

are occurring for the web application itself. In fact, this is exactly what was seen. Figure 

16 is a snapshot of the minimal traffic observed with the Solaris snoop command on the 

10.0.3.0 subnet, and Figure 17 shows the output on the DGRP Analysis screen (with the 

IP packet and data byte features turned on). 

ether 8:8:27:d8:25:dd 
el808g2: flags=28188e843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1586 index 4 

inet 18.8.2.1 netroask ffffffee broadcast 18.9.2.255 
ether 8:8:27:c7:99:ff 

elB08g3: flags=281888843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1588 index 5 
inet 18.8.3.1 netmask ffffff88 broadcast 18.8.3.255 
ether 8:8:27:23:6e:db 

lo8: flags=2O82908849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL? mtu 8252 index 1 
inet6 ::1/128 

nv96-vbox$ ifconfig elB88g8 down; sleep lj ifconfig el888g8 up 
nv96-vbox$ ping 18.8.8.58 
no answer from 18.8.8.58 
nv96-vbox$ ping 18.8.8.58 
AC 
nv96-vbox$ snoop -d el888g3 
Using device el089g3 (promiscuous node) 

Figure 16. Snoop Capture 

Solaris's snoop command can capture traffic received on an interface. 
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Figure 17. DGRP Analysis Screen 

DGRP's Analysis screen shows network information from the busiest nodes on the 
connected subnets. 

With this confirmation of functionality in place, though the software running on the 

virtual OpenSolaris system is exactly the same as that running on a real piece of 

hardware, the author turned his attention to repeating these tests on real hardware. 

Testing on a Real System 

The setup for testing on real hardware was very similar to that of the virtual 

hardware. OpenSolaris nv_96 was installed on a simple x86 server, and the same 
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configuration steps—minus the setup of virtual interfaces—as used in the virtual testing 

were followed. The OpenSolaris system had one physical interface—which was 

configured with IP address 10.4.32.184. The network to which the OpenSolaris system 

was attached was very large and active, but the 10.4.32.0 subnet was kept relatively quiet 

during this testing to allow for the observation of expected network traffic. Figure 18 

shows the DGRP Analysis screen as it observed normal network activity. The author's 

laptop was connected to the network using IP address 129.150.192.18—as seen in Figure 

19—and was running the DGRP application in a browser; this correlated with the laptop's 

IP address showing as the most active system on the DGRP application. 

To validate the dynamic updating of the web application—including the 

reordering of the systems shown according to how busy they are, the author copied two 

large files from another system on the network (assigned IP address 10.4.32.180) to the 

router. As expected, the screen updated with the now-busiest system showing in the far-

left position and the author's laptop in the second-to-the-left position—as shown in 

Figure 20. 

Finally, to validate the data shown in the browser interface with that of a typical 

DTrace script, the author refreshed the web application (to reset the counters) and—as 

close to simultaneously as possible—started the equivalent DTrace script in a console 

window to observe if the counters would match. As seen in Figure 21 and Figure 22, the 

counters for the relatively quiet systems do indeed match, and the slight difference in the 

data for the busiest system (the author's laptop) can easily be accounted for in the 
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difference of start and stop time in the browser and script tests. 

To conclude, simple testing—both on virtual and real hardware—shows that the 

reference implementation of this framework does indeed correctly utilize DTrace to 

capture information about the network traffic processed by the OpenSolaris router and 

display it in a graphical interface for the user. In future iteration of this project, as the 

number of features built on this framework grows larger, a more structured test plan 

should be developed and executed to ensure bugs in the user interface or data processing 

logic are identified and fixed. 

Eh 6 * $ m hup** ****••"» ->** a » „ , , ^ i m i r i. r .,..._. ^ 
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Figure 18. DGRP On Real Hardware 

The author's laptop—running the DGRP web application—was the most active system on 
the network under normal conditions. 
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Figure 19. Test Laptop IP Address 

The author's laptop was assigned IP address 129.150.192.18 during the testing. 
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Figure 20. Ordering According to Activity 

The DGRP web application reorders the systems according to how busy each is— 
assuming that the busiest systems are those of most interest to the users. 
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Figure 21. DTrace Script Output 

"typical DTrace scripts are run in a console. 
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Figure 22. DGRP Analysis Matches DTrace Scripts 

The DGRP application relies on DTrace scripts in the background, and the data 
displayed in the browser interface matches that of a typical script on a console. 
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VII. SUGGESTIONS FOR FUTURE DEVELOPMENT 

While significant work has been completed in the development of this framework 

and the reference implementation provided in this iteration of this project, the long-term 

goals has not yet been realized: Integrating the type of tool discussed in this paper into a 

true home-network router like those sold to consumers today will require some additional 

work. The major remaining pieces of work are discussed in the following sections; some 

are dependent upon each other, and some present an implementation choice that must be 

made work in that area continues. 

OpenSolaris on MIPS 

Porting the OpenSolaris operating system to the MIPS architecture would enable 

the use of DTrace on the hardware platforms already in use in today's home-network 

routers. This type of port is obviously non-trivial, but some support already exists for the 

idea within the open-source OpenSolaris community {MPSport ofopensolaris, 2005). 

Significant positive aspects of this port exist: The full functionality of DTrace would be 

available, and the full framework and reference implementation developed for this project 

would be directly applicable and immediately usable. However, the negative parts 

include the amount of work required not only to port Solaris to MIPS but to reduce the 

memory footprint to a size appropriate for the typically small memory sizes available in 
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common home-network routers; in addition, the management interface functionality that 

already exists for Linux on today's routers would need to be either ported or re-developed 

(or at least recompiled) for Solaris as well. The effort to port OpenSolaris to MIPS would 

probably be a good fit for a small group of computer Engineering graduate students—as a 

knowledge of both hardware architecture and its interaction with software is required. 

Wireless Support on OpenSolaris 

As discussed earlier in this document, the support for wireless networking on 

OpenSolaris is immature at best. Yet even with a small number of wireless chipsets 

supported, this application could work in a wireless setting using OpenSolaris—save for 

one missing piece of functionality: Code must be written to allow OpenSolaris to act as a 

wireless access point. Today's common home-network routers actually server a number 

of roles: They are routers, gateways, and wireless access points—at least. At the outset 

of developing this framework, the author was unable to find any software available for 

using a Solaris system as a wireless access point, so that functionality would need to be 

developed by—likely—a pair of software or computer engineering graduate students in 

order to make OpenSolaris a truly viable option for the long-term solution. 

DTrace in Linux 

The choice to develop DTrace for Linux is really the second of two options—the 

first of which is the porting of OpenSolaris to the MIPS architecture. While OpenSolaris 
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on MIPS provides the ability to use DTrace and this framework on the hardware platform 

in use by today's home-network routers, adding DTrace to Linux would enable the use of 

DTrace and this framework on both the hardware platform and operating system of 

today's routers. On the positive side, all of the work to get the operating system working 

on the hardware platform (including wireless support) is already complete, and this 

framework—and even the code from the reference implementation—would be quite easy 

to use in the Linux OS. The downside to this choice is the non-trivial effort required to 

implement DTrace in (at least) the Linux kernel and to develop the Java DTrace library 

for Linux necessary for the server-side code to utilize DTrace after it is implemented. 

Since both the DTrace implementation in OpenSolaris and the Java DTrace library are 

open-source, there is plenty of reference code available for this effort. Still, this task 

would probably be appropriate for a small group of computer and software Engineering 

graduate students. 

Cleaning Up the User Interface 

The team behind the Google Web Toolkit makes a true statement about the 

development of user interfaces: "As developers, we tend to be more interested in elegant 

algorithms and clever optimizations, but remember that the user's opinion of our 

application will be formed almost entirely on the interface's appearance and how well it 

works. Don't neglect it! {Add Styling, 2008, last para.)." Indeed, during the course of 

developing this framework and its reference implementation, the author placed relatively 
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little emphasis on the appearance of the graphical interface. Significant improvements 

could be made to it through the judicious modification of the cascading style sheet, the 

use of better clip art images, the rearrangement or integration of additional GWT widgets 

or even those from add-on GWT widget libraries like those from the GWT Widget 

Library project (GWT Widget Library, 2008) or GWT-Ext (GWT-Ext, 2008). If necessary, 

the Google Web Toolkit could even be replaced by a different web application framework 

that provides greater flexibility and capability for developing good-looking applications. 

Note, however, that GWT provides not only the widgets and automated AJAX code 

development but also the facility for Remote Procedure Calls, so choosing another web 

application framework would necessitate finding other ways to provide those functions as 

well. This effort is almost entirely software-related, so a single software engineer or 

perhaps a pair would be appropriate for this task. 

Additional Features 

The reference implementation documented in this paper provides a few of the 

most basic and arguable most useful data points that a tool of this nature could provide, 

but an almost endless list of possibly useful features remains. A list of many potential 

future features is provided in the Functional Requirements section (p. 100) of the 

Requirements appendix, though future developers are encouraged to consider other ideas 

as well. Development of additional features requires a firm understanding of the entire 

architecture presented in this paper, so it is most likely applicable for computer 
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engineering graduate students, though software engineering students with a good 

background in networking would also be appropriate for this task. 

Final Integration 

This effort is really the last step in achieving the goal set out in the introduction to 

this project. It is dependent up on the other suggestions in this chapter—either porting 

OpenSolaris to MIPS and adding wireless support or adding DTrace to Linux, improving 

the user interface, and adding additional features. When these are complete, a single 

graduate student—either a computer or software engineer—could pull these pieces 

together to actually produce a home-network router that provides a user with a graphical 

tool that utilized DTrace for analyzing his or her home-network. Depending on how well 

the dependencies are completed, this final integration effort could range from somewhat 

trivial to a larger amount of work; it could even potentially be combined with the 

previous suggestion of developing more analysis features. 
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VIII. CONCLUSIONS AND RECOMMENDATIONS 

The technology of DTrace offers a way to solve the need for simple, user-friendly 

tools for home-network analysis. By collecting the detailed network traffic information 

offered by DTrace and presenting it in an easy-to-understand graphical format, common 

users can quickly identify and address problems in their networks without the need to 

understand the many details of computer networking. The framework developed in this 

project and its reference implementation provide a clear picture of how to piece together 

DTrace with the other necessary technologies to make this type of easy-to-understand 

graphical tool a reality. 

In this project, several technologies have been pulled together to form a 

framework and reference implementation for a DTrace-based graphical network analysis 

tool. Because DTrace is only available at this time in the Solaris and Mac operating 

systems, and because Mac OS X is not free and is only available on specific hardware, 

the free, open-source OpenSolaris operating system was chosen for this implementation. 

While many home-network routers use the MIPS architecture, because Solaris is not 

currently available for MIPS, the x86 platform was chosen for this implementation. On 

top of OpenSolaris running on x86, the Apache Tomcat web server was used, and the web 

application—both client-side and server-side code—was written in the Java programming 

language utilizing the Google Web Toolkit to translate the client-side code into fast 
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Asynchronous Java and XML (AJAX) code that can be executed in a browser without 

reloading web pages. Asynchronous remote procedure calls (RPCs) were used to provide 

the means of communication between the front-end (client-side) code executing in the 

user's browser and the back-end (server-side) code executing on the router. 

This framework—a client-side web application pulling data through RPCs from 

server-side code utilizing Dtrace—is well defined in this document and is clearly 

validated by the reference implementation also documented here. Even so, the ultimate 

goal of integrating this functionality with a real home-network router (running on its 

MIPS architecture and integrating into its web application management interface) has not 

yet been achieved. To achieve this, there remain a few additional significant pieces of 

work that must be completed. These pieces—including the porting of OpenSolaris to 

MIPS or developing DTrace in the Linux kernel—may form the basis of future graduate 

work that enhances what has been already completed in this project; for a complete 

discussion of these pieces of suggested future development, refer to Chapter VII. 

Suggested Future Development (p. 89). 

In conclusion, a framework to meet the stated goal has been developed and proven 

by a reference implementation, and a roadmap is provided for future development that 

shows the path between this iteration and the achievement of the final goal. 
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APPENDIX A. REQUIREMENTS 

Project Deliverables 

The deliverables for this project are as described in Table 2: 

Table 2. Project Deliverables 

Deliverable Description 

Proven Framework and 
Reference Implementation 

Complete Source Code 
(hard and soft copy) 

Portable Presentation and 
Demonstration 

Formal Presentation 

Thesis Report 

A working implementation of the graphical analysis 
interface—including capability to provide a basic set 
of datapoints—must be completed. 

The source code for all components of the reference 
implementation will be provided with the final report 
—both in hard and soft copy. 

A digital presentation of the project and a 
demonstration of its functionality (likely as a 
screencast) will be created and made available in soft 
copy with the final report. 

A formal presentation of the project and a live 
demonstration will be given to faculty members of the 
university and other graduate students. 

A formal report (this document)—formatted according 
to university requirements and thoroughly 
documenting the project background, design, 
implementation, and suggestions for future work— 
will be submitted to the university for approval and 
binding. 

Functional Requirements 

The primary customers of this framework and reference implementation project 
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will be the makers of home-network routers who would see a business advantage by 

including a tool of this sort with their product(s) in order to make analysis of the home 

network and debugging of common problems easier for the typical customer. Other 

customers include the open-source community who may be encouraged to continue the 

effort to port DTrace to Linux and/or work to port Solaris to the MIPS architecture— 

either way enabling this tool to be used on routers like those currently in production. 

As a framework, the functional requirements for this project are somewhat loose. 

The following list (in no particular order) provides a set of features and a subset of the 

data-points that may be of interest in future implementations of this framework. As 

described in the discussion of project deliverables, this framework and reference 

implementation should make available some—but not all—of this data in order to prove 

the usefulness of the design. 

1. Indication of current version information (of thesis and other relevant software) 

2. Indication of basic network interface settings (e.g., Internet Protocol (IP) address, 

netmask) 

3. Indication of other relevant system settings (e.g., Domain Name Service (DNS) 

servers, gateway) 

4. Indication of a new connection (in the case of Transmission Control Protocol 

(TCP)) or a new address from which data is received or to which data should be 

sent 

5. Indication of connection termination (explicit in the case of TCP or after a period 
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of no traffic for other "connections") 

6. Connection speed (theoretical maximum and actual) 

7. Bandwidth (theoretical maximum and actual being used) 

8. Response time (maximum, minimum, average) 

9. Number of packets/frames received or sent (total or per period of time) 

10. Number of bits/bytes received or sent (total or per period of time) 

11. Number of checksum errors (total or per period of time) 

12. Some indication of overall connection quality (likely as an aggregation of several 

data points) 

13. User-tunable parameters for data points 

14. Indication of router's CPU and memory (real and virtual) utilization 

15. Indication of network buffer overflows 

16. Ability to modify system and interface settings (e.g., IP addresses, DNS servers, 

etc.) 

17. Ability to easily integrate into the existing interfaces provided in common home-

network routers (e.g., exist as a browser-based application) 

Non-Functional Requirements 

As a framework project, performance, compliance, security, and similar 

nonfunctional requirements are—for the most part—not applicable. It is worth 

mentioning that much of the DTrace functionality requires super-user privileges on the 
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Solaris operating system, so some form of authentication and authorization would 

probably be required to ensure an appropriate user is the one using the graphical 

interface, but this form of authentication already exists in most of the existing routers' 

interfaces and is outside the scope of this project. 

In general, this reference implementation software should perform quickly enough 

and be stable enough to make obvious its usefulness. The interface should not crash in 

normal operating conditions, and if errors do occur, they should be handled gracefully 

with proper notification given to the user to enable him or her to take necessary action. 

Requirements Analysis 

As mentioned previously, the functional requirements for this framework project 

are rather loose, so a an in-depth requirements analysis—in the form of a multi-level 

quality-function-design (QFD) analysis or some other format—is not applicable. 

Nonetheless, a single-level house of quality is provided in Figure 23 to offer some basic 

correlation between the assumed customer requirements and the initial technical 

requirements. 
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Figure 23. House-of-Quality Diagram 

This House-of-Quality diagram shows some correlation between the basic customer 
requirements and the initial technical requirements 

Hardware, Software, and Skill-Set Requirements 

Tables 3,4, and 5 provide lists of the high-level hardware, software, and skill-set 

requirements for the completion of this project. Brief comments are provided about the 

choice of some of the components, and these choices are discussed in more detail in the 
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Architecture and Design (p. 8) and Implementation (p. 27) chapters of this document. 

Table 3. Hardware Requirements 

Component Comments 

X86 System to Serve as Router 

Multi-port PCI-E Ethernet Network 
Interface Card (NIC) 

Monitors, Keyboards, Mice, Power 
Cables, Ethernet Cables 

Two or Three Other Computers for 
Testing 

Laptop for Portable Development 
Environment 

Any basic x86 or x64 system will work to run 
Solaris. (A SPARC system would work too.) 

Needed to provide additional Ethernet ports 
for multiple connections to the router 

Available as needed during development and 
testing 

Needed to connect to router and 
generate/receive traffic during testing 

Developer will be mobile and will load 
snapshots of code onto the router from 
development laptop at various intervals for 
testing 

Table 4. Software Requirements 

Component Comments 

Operating System for Router 
(must provide DTrace functionality) 

Individual Development 
Environment 

Web Server 

Routing Software 

Using OpenSolaris Solaris Express 
Community Edition (SXCE). New builds are 
provided bi-weekly, though development of 
this project will likely sync only as needed for 
major bug fixes or feature enhancements 

Using NetBeans IDE 

Using Apache Tomcat Web Server to serve 
web application for browser-based interface 

Using Quagga-
Solaris) 

-a fork of Zebra (supports 
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Table 5. Skill-Set Requirements 

Skill-Set 

Knowledge of DTrace 

Basic Administrative Knowledge of 
the Chosen Operating System 

Java Programming Skills 

Web-Application Development Skills 

Knowledge of AJAX 

Knowledge of Networking Basics 

Willingness to Learn 

Comments 

DTrace scripting relies on knowledge of C 
programming language and Unix-style shell 
scripting 

Using OpenSolaris 

Used in JavaServer Pages (JSPs), servlets, and 
other web-application coding 

Used for fast updating of graphics in the 
browser 

As in many architecture projects, the need for 
additional skills will arise during the course of 
the project. 
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APPENDIX B. PROJECT SCHEDULE 

Initial Schedule 
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APPENDIX C. DEVELOPING WITH THE NETBEANS IDE 

For the development of the reference implementation code in this project, the 

author made use of the NetBeans Integrated Development Environment. NetBeans is an 

open-source IDE distributed by Sun Microsystems, Inc. A significant amount of 

information regarding the installation and use of NetBeans is available on the NetBeans 

web site {NetBeans, 2008), but this appendix will provide a brief overview of several of 

the common steps the author used in the course of developing this framework and 

reference implementation. 

Creating a Web Application Project 

To create a web application project in NetBeans, select File —• New Project, and 

choose Web Application as in Figure 26. Name the project appropriately, and select the 

desired web server for association with this project. The author used Apache Tomcat—as 

shown in Figure 27. Finally, to use the Google Web Toolkit web application framework, 

select it from the available frameworks—as shown in Figure 28; this requires installation 

of the GWT4NB plug-in—as described in the following section. 
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1. Choose Project 

Choose Project 

Categories: 

LZJ Java 

C3 Enterprise 
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[.".} NetBeans Modules 
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Description: 

H I 
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jtyt Web Free-Form Project 

X* 

Creates an empty Web application In a standard IDE project. A standard project uses an 
IDE-generated build script to build, run, and debug your project, 

<8ackJ N**';> | - &*JT f Cancel | a * | 

Figure 26. Creating a New Web Application Project in NetBeans 

Creating a web application project in NetBeans will automatically include and configure 
necessary files for a web application. 
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I t New Web Application 

Steps 

1. Choose Project 
2. Name and Location 

3. Server and Settings 
4. Frameworks 

M\ 
Server and Setting* 

Add to Enterprise Application: I : V n e > * ) 

Server; [ ^ ^ ^ ^ ^ ^ ^ I ^ I ^ H I ^ H B O J Add- [ 

I - 5"diJr3 M'lbrwj'J V" f»irsi-"er lARtle.. 

Java EE Version: J Java EE 5 j » J 
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<Back Next > | Finish j Cancel | Help | 

Figure 27. Choosing a Web Server in NetBeans 

The author used the Apache Tomcat web server for development. 
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% New Web Application JSl 
Steps 

1. Choose Project 
2. Name and Location 
3. Server and Settings 
4. Frameworks 

Frameworks 

-elect the franjeworks you want to use in your web application, 

n Visual Web JavaServer Faces 

O Spring Web MVC 2.5 
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f~ <&n ihc 1 7 q 

Google Web Toolkit Configuration 

GWT Installation Folder: |C:\Program Files\Google\gwt-windows-l A Browse 
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____J. (| Finish "] Cancel ( Help | 

Figure 28. Choosing the GWTFramework in NetBeans 

Integration between NetBeans and the Google Web Toolkit was made easy by the 
GWT4NB plug-in. 

Using GWT4NB 

To create a web application project using the Google Web Toolkit framework as 

described in the previous section, it is required that the GWT4NB plug-in be installed. 

This is handled via the plug-in wizard in NetBeans—as shown in Figure 29. 

114 



i ^ f inims 

Updates (1) | AvalaWe Plugns (87) | 

Reload Catalog [ 

Ur«n...| Name 

I™" Ruby and Raiis 

r SM 
r™ BPEL 
| ~ Composite Application 

r UMI-

r Visual 3SF 

r IBM WebSphere Applicatio. 

r~ Web Applications 

r Java EE 

P Struts 

P XMt and Schema 

P GlassFish 

P Identity 

P BEA WebLoglc Server 

P JBoss Application Server 
P Spring Web MVC 

P RESTful Web Services 
P Web Services 

r Tomcat 

P WSDL 

Uyistell J 

Downloaded Insta 

| Category T | 

Ruby 

SOA 

SOA 

SOA 

UML 

Web & Java EE 

. Web & Java EE 

Web & Java EE 

Webb Java EE 

Web & Java EE 

Web & Java EE 

Web & Java EE 

Web & Java EE 

Web & Java EE 

Web & Java EE 

Web & Java EE 
Web & Java EE 
Web Si Java EE 

Web & Java EE 
Web & Java EE 

tod(4S)|5 ettmgsj 

Search: | 

Acbve) 

.at * l 

© 
© 

© 

© 

© 
© 
© 
© 
© 
© 
© 
© 
© 
© 
0 
© 
© .d 

GWT4NB QeactFate 

Version: 2.0,1 
Source: NetBeans Beta 

i l l 

Plugin Description 

The GWT4NB project aims to enable developers to take advantage of 
both: the superior support For creating Web Applications built Into the 
NetBeans IDE and the power of GWT (Google Web Toolkit). Provided 
functionality includes.' - Using GWT with new or existing Web Projects -
Deployment, running and debugging GWT-enabled Web Apps using 
arbitrary Application Server • Assistance to deal with some code editing 
nuances such as creating RPC services efficiently Project Home Page: 
http://gwt4nb.dev.java.net/ 

. Cjose J- Help 

Figure 29. The GWT4NB Plugin in NetBeans 

With the GWT4NB plugin installed in NetBeans, development of web applications using 
the GWT framework is significantly easier. 

Creating an RPC 

To create a remote procedure call in a web application project using the GWT4NB 

plugin in NetBeans, select File —»New File, and choose the GWT RPC Service from the 

available options—as shown in Figure 30. According to configuration options selected 

on the following wizard screen, the necessary modifications will be made to files like 
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web.xml, and the necessary front and back-end Java classes will be created with 

placeholders for code development. 

TlNew File 

Steps 

1. Choose File Type 
2, ,.. 

Choose Fte Type 

>& DTraceGraphicalRouterProject 

Categories: FjleTvpesr 

- J 

D Web 

2 ] JavaServer Faces 

C l Struts 

'"*.l Spring Framework 

L3 Java 

CU JavaBeans Objects 

•J3 JUnit 

111 Persistence 

BescfipwoR: 

d 

• J GWTRPT Service 

GWT Service allowing remote procedure calls, 

M 

H. 

" . J '* Next > | r '••». I Cancel j •*• 1 

Figure 30. Creating an RFC in NetBeans 

Creating an RPC is made rather simple in NetBeans with the GWT4NB plugin. 

Using Additional Java Libraries 

To use additional Java libraries—often packaged in JavaArchive jar files, add 

them using the project properties wizard—as seen in Figure 31. 
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Figure 31. Using Additional Java Libraries 

To use additional Java libraries in a NetBeans project, add them in the project properties 
wizard. 

Building and Hosting the Web Application Locally 

For basic verification of functionality or simple debugging, the author frequently 

found it useful to build the web application and host it locally on the development 

machine using the Apache Tomcat web server (as specified in the Project creation, see the 

Creating a Web Application Project section in this appendix, p. 111). To do this in 

NetBeans, select Run —• Run Main Project. Output like that in Figure 32 will be 

displayed in the NetBeans console, and the web application will launch in a local browser 

window—like in Figure 33. 
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Deploy is in progress... 

deploy?config=file:/C:/Temp/contextl0918.xml£paths/DTracaGraphicalP.outerProjact 

JU 

a 
Figure 32. Local Deployment of a Web Application from NetBeans 

NetBeans can build and host a web application on the development machine using a web 
server specified during the creation of the project. 
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Figure 33. NetBeans Hosting a Web Application Locally 

NetBeans can build and host a web application on the local machine using a web server 
specified during the creation of the project. 

Building the Web Application for Deployment 

When ready to deploy the complete web application, NetBeans can build and 

create a JavaArchive .war file that can be deployed using a web server like Apache 

Tomcat. To do this, select Build —> Clean and Build Main Project. This will produce 

a .war file in the project's dist directory—as seen in Figure 34. 
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Figure 34. A Web Application Ready for Deployment 

NetBeans can build a web application and package it in a .war file for deployment on a 
web server. 
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APPENDIX D. SOURCE CODE - GENERAL FILES 

The complete source code for the reference implementation of this framework is 

provided in this and other appendices to this document for the reader's easy reference. 

For the simplest viewing experience or to use the code without copying and pasting it 

into a new source file, the reader is encouraged to review the soft-copy files available on 

the CD-ROM included with this document. 

index.jsp 

<%@page contentType="text/html" pageEncoding="UTF-8"%> 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" 

"http://www.w3.org/TR/html4/loose.dtd"> 

<html> 
<head> 

<meta name='gwt:module' 
content='org.dgrp.DTraceGraphicalRouterProj ect=org.dgrp.DTraceGra 
phicalRouterProj ect'> 

<title>The DTrace Graphical Router Project</title> 
<link rel="stylesheet" href="dgrp.css"> 

</head> 
<body> 

<iframe src="javascript:''" id=' gwt_historyFrame' 
style='width :0; height: 0,"border: 0 'x/iframe> 

<center><img src=" images/dgrp-header .png"X/center> 
<hr> 
<br><br> 
<script language="javascript" 

src="org.dgrp.DTraceGraphicalRouterProj ect/org.dgrp.DTraceGraphic 
alRouterPro ject. nocache. j s"x/script> 

</body> 
</html> 

web.xml 
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<?xml version="1.0" encoding="UTF-8"?> 
<web-app version="2.5" xmlns="http://Java.sun.com/xml/ns/javaee" 
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 
xsi:schemaLocation="http://j ava.sun.com/xml/ns/j avaee 
http://java.sun.com/xml/ns/j avaee/web-app_2_5.xsd"> 

<servlet> 
<servlet-name>GetVersionInfo</servlet-name> 
<servlet-

class>org.dgrp.server.GetVersionInfoImpl</servlet-class> 
</servlet> 
<servlet> 

<servlet-name>BandwidthMonitor</servlet-name> 
<servlet-

class>org.dgrp.server.BandwidthMonitorImpl</servlet-class> 
</servlet> 
<servlet-mapping> 

<servlet-name>GetVersionInfo</servlet-name> 
<url-

pattern>/org.dgrp.DTraceGraphicalRouterProject/getversioninfo</ur 
l-pattern> 

</servlet-mapping> 
<servlet-mapping> 

<servlet-name>BandwidthMonitor</servlet-name> 
<url-

pattern>/org.dgrp.DTraceGraphicalRouterProj ect/bandwidthmonitor</ 
url-pattern> 

</servlet-mapping> 
<session-config> 

<session-timeout> 
30 

</session-timeout> 
</session-config> 
<welcome-file-list> 

<welcome-file>index.jsp</welcome-file> 
</welcome-file-list> 

</web-app> 

CSS 

body { 
background-color: black; 
color: white; 
font-family: Arial, sans-serif; 
font-weight: bold; 
font-size: medium; 
margin: 20px 20px 20px 20px; 

} 

122 

http://Java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-
http://j
http://java.sun.com/xml/ns/j


code { 

a { 
color: white; 

a:visited { 
color: white; 

.gwt-BorderedPanel { 

.gwt-Button { 

.gwt-Canvas { 

.gwt-CheckBox { 

.gwt-DialogBox { 

.gwt-DialogBox .Caption { 

.gwt-FileUpload { 

.gwt-Frame { 

.gwt-HorizontalSplitter .Bar { 

.gwt-VerticalSplitter .Bar { 

.gwt-HTML { 

font-size: smaller; 

.gwt-Hyperlink { 

.gwt-Image { 
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.gwt-Label { 
} 

.gwt-ListBox { 
} 

.gwt-MenuBar { 
background-color: #444444; 
color: white; 
border: lpx solid white; 
cursor: default; 

} 

.gwt-MenuBar .gwt-MenuItem { 
padding: lpx 4px lpx 4px; 
font-size: smaller; 
cursor: default; 
color: white; 

} 

.gwt-MenuBar .gwt-MenuItem-selected { 
background-color: #222222; 
color: white; 

} 

.gwt-PasswordTextBox { 
} 

.gwt-RadioButton { 
} 

.gwt-TabPanel { 
} 

.gwt-TabPanelBottom { 
} 

.gwt-TabBar { 
> 

.gwt-TabBar .gwt-TabBarFirst { 
} 

.gwt-TabBar .gwt-TabBarRest { 
} 

.gwt-TabBar .gwt-TabBarItem { 
} 

.gwt-TabBar .gwt-TabBarltem-selected { 
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} 

.gwt-TextArea { 
} 

.gwt-TextBox { 
} 

.gwt-Tree { 
} 

.gwt-Tree .gwt-Treeltem { 
} 

.gwt-Tree .gwt-Treeltem-selected { 
} 

.gwt-StackPanel { 
} 

.gwt-StackPanel .gwt-StackPanelltem { 
} 

.gwt-StackPanel .gwt-StackPanelltem-selected { 
} 

/* 

* Styling added for the DTrace Graphical Router Project 
* / 

.dgrp-MainPanel { 
border: 8px solid white; 
background-color: fcccccc; 
color: black; 
width: 100%; 
height: 35em; 

} 

.dgrp-Heading { 
background-color: white; 
color: black; 
padding: lOpx lOpx 2px lOpx; 
font-size: small; 

} 

.dgrp-Sidebar-List { 
margin-top: 8px; 
margin-bottom: 8px; 
font-size: smaller; 
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} 

.dgrp-Sidebar-List .dgrp-Sidebar-Item { 
width: 100%; 
padding: 0.3em; 
padding-right: 16px; 
cursor: pointer; 
cursor: hand; 

} 

.dgrp-Sidebar-List .dgrp-Sidebar-Item-Selected { 
background-color: #999999; 
color: black; 
font-weight: bold; 
font-style: italic; 

.dgrp-Images-Image { 
margin: lOpx; 

.dgrp-Images-Wireless { 
margin-left: 75px; 

.dgrp-Images-RouterStats { 
margin-right: 75px; 

.dgrp-Images-LaptopOPipe { 
margin-left: lOOpx; 

.dgrp-Images-LaptoplPipe { 
margin: Opx; 

.dgrp-Images-Laptop2Pipe { 
margin: Opx; 

.dgrp-Images-Laptop3Pipe { 
margin-right: lOOpx; 

.dgrp-Images-Button { 

.dgrp-Layouts { 

126 



dgrp-Layouts-Label { 

dgrp-Layouts-Scroller { 

dgrp-Popups-Popup { 

dgrp-About-Prose { 
margin: 8px; 

dgrp-Stat-Table { 
font-size: small; 

license.txt 

Apache License 
Version 2.0, January 2004 

http://www.apache.org/licenses/ 

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 

1. Definitions. 

"License" shall mean the terms and conditions for use, 
reproduction, and distribution as defined by Sections 1 through 9 
of this document. 

"Licensor" shall mean the copyright owner or entity 
authorized by the copyright owner that is granting the License. 

"Legal Entity" shall mean the union of the acting entity 
and all other entities that control, are controlled by, or are 
under common control with that entity. For the purposes of this 
definition, "control" means (i) the power, direct or indirect, to 
cause the direction or management of such entity, whether by 
contract or otherwise, or (ii) ownership of fifty percent (50%) 
or more of the outstanding shares, or (iii) beneficial ownership 
of such entity. 

"You" (or "Your") shall mean an individual or Legal Entity 
exercising permissions granted by this License. 

"Source" form shall mean the preferred form for making 
modifications, including but not limited to software source code, 

127 

http://www.apache.org/licenses/


documentation source, and configuration files. 

"Object" form shall mean any form resulting from mechanical 
transformation or translation of a Source form, including but not 
limited to compiled object code, generated documentation, and 
conversions to other media types. 

"Work" shall mean the work of authorship, whether in Source 
or Object form, made available under the License, as indicated by 
a copyright notice that is included in or attached to the work 
(an example is provided in the Appendix below). 

"Derivative Works" shall mean any work, whether in Source 
or Object form, that is based on (or derived from) the Work and 
for which the editorial revisions, annotations, elaborations, or 
other modifications represent, as a whole, an original work of 
authorship. For the purposes of this License, Derivative Works 
shall not include works that remain separable from, or merely 
link (or bind by name) to the interfaces of, the Work and 
Derivative Works thereof. 

"Contribution" shall mean any work of authorship, including 
the original version of the Work and any modifications or 
additions to that Work or Derivative Works thereof, that is 
intentionally submitted to Licensor for inclusion in the Work by 
the copyright owner or by an individual or Legal Entity 
authorized to submit on behalf of the copyright owner. For the 
purposes of this definition, "submitted" means any form of 
electronic, verbal, or written communication sent to the Licensor 
or its representatives, including but not limited to 
communication on electronic mailing lists, source code control 
systems, and issue tracking systems that are managed by, or on 
behalf of, the Licensor for the purpose of discussing and 
improving the Work, but excluding communication that is 
conspicuously marked or otherwise designated in writing by the 
copyright owner as "Not a Contribution." 

"Contributor" shall mean Licensor and any individual or 
Legal Entity on behalf of whom a Contribution has been received 
by Licensor and subsequently incorporated within the Work. 

2. Grant of Copyright License. Subject to the terms and 
conditions of this License, each Contributor hereby grants to You 
a perpetual, worldwide, non-exclusive, no-charge, royalty-free, 
irrevocable copyright license to reproduce, prepare Derivative 
Works of, publicly display, publicly perform, sublicense, and 
distribute the Work and such Derivative Works in Source or Object 
form. 

3. Grant of Patent License. Subject to the terms and 
conditions of this License, each Contributor hereby grants to You 
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a perpetual, worldwide, non-exclusive, no-charge, royalty-free, 
irrevocable (except as stated in this section) patent license to 
make, have made, use, offer to sell, sell, import, and otherwise 
transfer the Work, where such license applies only to those 
patent claims licensable by such Contributor that are necessarily 
infringed by their Contribution(s) alone or by combination of 
their Contribution(s) with the Work to which such Contribution (s) 
was submitted. If You institute patent litigation against any 
entity (including a cross-claim or counterclaim in a lawsuit) 
alleging that the Work or a Contribution incorporated within the 
Work constitutes direct or contributory patent infringement, then 
any patent licenses granted to You under this License for that 
Work shall terminate as of the date such litigation is filed. 

4. Redistribution. You may reproduce and distribute copies of 
the Work or Derivative Works thereof in any medium, with or 
without modifications, and in Source or Object form, provided 
that You meet the following conditions: 

(a) You must give any other recipients of the Work or 
Derivative Works a copy of this License; and 

(b) You must cause any modified files to carry prominent 
notices stating that You changed the files; and 

(c) You must retain, in the Source form of any Derivative 
Works that You distribute, all copyright, patent, trademark, and 
attribution notices from the Source form of the Work, excluding 
those notices that do not pertain to any part of the Derivative 
Works; and 

(d) If the Work includes a "NOTICE" text file as part of 
its distribution, then any Derivative Works that You distribute 
must include a readable copy of the attribution notices contained 
within such NOTICE file, excluding those notices that do not 
pertain to any part of the Derivative Works, in at least one of 
the following places: within a NOTICE text file distributed as 
part of the Derivative Works; within the Source form or 
documentation, if provided along with the Derivative Works; or, 
within a display generated by the Derivative Works, if and 
wherever such third-party notices normally appear. The contents 
of the NOTICE file are for informational purposes only and do not 
modify the License. You may add Your own attribution notices 
within Derivative Works that You distribute, alongside or as an 
addendum to the NOTICE text from the Work, provided that such 
additional attribution notices cannot be construed as modifying 
the License. 

You may add Your own copyright statement to Your 
modifications and may provide additional or different license 
terms and conditions for use, reproduction, or distribution of 
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Your modifications, or for any such Derivative Works as a whole, 
provided Your use, reproduction, and distribution of the Work 
otherwise complies with the conditions stated in this License. 

5. Submission of Contributions. Unless You explicitly state 
otherwise, any Contribution intentionally submitted for inclusion 
in the Work by You to the Licensor shall be under the terms and 
conditions of this License, without any additional terms or 
conditions. Notwithstanding the above, nothing herein shall 
supersede or modify the terms of any separate license agreement 
you may have executed with Licensor regarding such Contributions. 

6. Trademarks. This License does not grant permission to use 
the trade names, trademarks, service marks, or product names of 
the Licensor, except as required for reasonable and customary use 
in describing the origin of the Work and reproducing the content 
of the NOTICE file. 

7. Disclaimer of Warranty. Unless required by applicable law 
or agreed to in writing, Licensor provides the Work (and each 
Contributor provides its Contributions) on an "AS IS" BASIS, 
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 
implied, including, without limitation, any warranties or 
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or 
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for 
determining the appropriateness of using or redistributing the 
Work and assume any risks associated with Your exercise of 
permissions under this License. 

8. Limitation of Liability. In no event and under no legal 
theory, whether in tort (including negligence), contract, or 
otherwise, unless required by applicable law (such as deliberate 
and grossly negligent acts) or agreed to in writing, shall any 
Contributor be liable to You for damages, including any direct, 
indirect, special, incidental, or consequential damages of any 
character arising as a result of this License or out of the use 
or inability to use the Work (including but not limited to 
damages for loss of goodwill, work stoppage, computer failure or 
malfunction, or any and all other commercial damages or losses), 
even if such Contributor has been advised of the possibility of 
such damages. 

9. Accepting Warranty or Additional Liability. While 
redistributing the Work or Derivative Works thereof, You may 
choose to offer, and charge a fee for, acceptance of support, 
warranty, indemnity, or other liability obligations and/or rights 
consistent with this License. However, in accepting such 
obligations, You may act only on Your own behalf and on Your sole 
responsibility, not on behalf of any other Contributor, and only 
if You agree to indemnify, defend, and hold each Contributor 
harmless for any liability incurred by, or claims asserted 
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against, such Contributor by reason of your accepting any such 
warranty or additional liability. 

END OF TERMS AND CONDITIONS 

context.xml 

<?xml version="1.0" encoding="UTF-8"?> 
<Context path="/DTraceGraphicalRouterProject"/> 

gwt.properties 

# The name of the module to compile 
gwt.module=org.dgrp.DTraceGraphicalRouterProj ect 
# Path of the GWT installation directory.Use Internet-Standard of 
forward slases for this path 
gwt.install.dir=C:/Program Files/Google/gwt-windows-1.4.62 
# Folder within the web app context path where the output 
# of the GWT module compilation will be stored. 
gwt.output.dir=/org.dgrp.DTraceGraphicalRouterProj ect 
# Script output style: OBF[USCATED], PRETTY, or DETAILED 
gwt.compiler.output.style=OBF 
# The level of logging detail: ERROR, WARN, INFO, TRACE, DEBUG, 
gwt.compiler.logLevel=WARN 
# Script output style: OBF[USCATED], PRETTY, or DETAILED 
gwt.shell.output.style=OBF 
# The level of logging detail: ERROR, WARN, INFO, TRACE, DEBUG, 
gwt.shell.logLevel=WARN 
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APPENDIX E. SOURCE CODE - PACKAGE org.dgrp 

The complete source code for the reference implementation of this framework is 

provided in this and other appendices to this document for the reader's easy reference. 

For the simplest viewing experience or to use the code without copying and pasting it 

into a new source file, the reader is encouraged to review the soft-copy files available on 

the CD-ROM included with this document. 

DTraceGraphicalRouterProject.gwt.xml 

<?xml version="1.0" encoding="UTF-8"?> 
<module> 

<inherits name="com.google.gwt.user.User"/> 
<entry-point class="org.dgrp.client.DGRPEntryPoint"/> 
<!— Do not define servlets here, use web.xml — > 

</module> 
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APPENDIX F. SOURCE CODE - PACKAGE org.dgrp.client 

The complete source code for the reference implementation of this framework is 

provided in this and other appendices to this document for the reader's easy reference. 

For the simplest viewing experience or to use the code without copying and pasting it 

into a new source file, the reader is encouraged to review the soft-copy files available on 

the CD-ROM included with this document. 

About.java 

package org.dgrp.client; 

import com.google.gwt.user.client.ui.HTML; 

/** 

* About page. 
*/ 

public class About extends Sidebarltem { 

public static Sidebarltemlnfo init() { 
return new Sidebarltemlnfo("About", "About the DTrace 

Graphical Router Project...") { 
public Sidebarltem createlnstance() { 

return new About(); 
} 

}; 
} 

public About() { 
initWidget(new HTML( 
"<div class='dgrp-About-Prose'>" + 
"<p>The DTrace Graphical Router Project was created by 

Chris Nelson " + 
"in partial fulfillment of the requirements of the San Jose 

State " + 
"University Computer Engineering Master's Degree Program.</ 

p><br>" + 
"<h2>Project Title</b></center></h2>" + 
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"<p><i>A Framework for Graphical Analysis of a Home-Network 
" + 

"Router Using DTrace</ix/p><br>" + 
"<h2>Project Abstract</h2>" + 
"<p><i>Simple network routers used in homes and small 

offices " + 
"typically lack tools for performance monitoring and 

analysis that " + 
"would be useful to the normally novice users of these 

products. " + 
"Sophisticated network simulation and analysis applications 

require too " + 
"much effort for a typical user to consider, but including 

some simple " + 
"tools in the router software would enable the common user 

to more " + 
"quickly and completely understand the reason or reasons 

for " + 
"performance problems.</p>" + 
"<p>DTrace—a dynamic tracing framework first released in 

Solaris 10 " + 
"and currently being ported to Linux—provides the 

opportunity to " + 
"gather relevant performance data from the router itself, 

and if " + 
"presented in an easily understood graphical format, the 

common user " + 
"will be empowered to understand and address problems more 

quickly and " + 
"with less need for additional support. This thesis 

addresses the " + 
"This thesis addresses the development of a framework for 

and " + 
"reference implementation of graphical analysis tools for 

analyzing " + 
"common network routers using DTrace.</i></p><br>" + 
"<h2>Useful Links</h2>" + 
"<a href=\"http://unknown\">Open-Source Project 

Code</axbr>" + 
"<a href=\"http://unknown\">Online Documentation</a>" + 
"</div>", 
true)); 

} 

public void onShow() { 
} 

} 
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Analysis.java 

package org.dgrp.client; 

import com.google.gwt.core.client.GWT; 
import com.google.gwt.user.client.Timer; 
import com.google.gwt.user.client.rpc.AsyncCallback; 
import com.google.gwt.user.client.rpc.ServiceDefTarget; 
import com.google.gwt.user.client.ui.VerticalPanel; 

public class Analysis extends Sidebarltem { 

public static Sidebarltemlnfo init() { 
return new Sidebarltemlnfo("Analysis", 

"Use the Menu Below to Select Available Analysis 
Features...") { 

public Sidebarltem createlnstance() { 
return new Analysis(); 

} 
}; 

} 
private ImagePanel imgPanel; 
private AnalysisMenu analysisMenu; 
private Topologylnfo topolnfo; 
private BandwidthMonitorAsync bwMonitorService; 
private String subnet = "10.0.0.0"; 

private final int MAX_NODES = 4; 

public Analysis() { 

imgPanel = new ImagePanel(); 

analysisMenu = new AnalysisMenu(imgPanel); 
VerticalPanel vp = new VerticalPanel(); 
vp.setWidth("100%"); 
vp.setHeight("100%"); 
vp.add(analysisMenu); 
vp.add(imgPanel); 
initWidget(vp); 

// Create asynchronous callbacks to handle results 
final AsyncCallback ipCallback = new AsyncCallback() { 

public void onSuccess(Object result) { 
processIPUpdates(result); 

} 
public void onFailure(Throwable caught) { 

//ignore for now 
} 

}; 
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final AsyncCallback statCallback = new AsyncCallback() { 
public void onSuccess(Object result) { 

processStatUpdates(result); 
} 

public void onFailure (Throwable caught) { 
//ignore for now 

} 
}; 

final AsyncCallback emptyCallback = new AsyncCallback() { 
public void onSuccess (Object result) { 

//ignore 
} 
public void onFailure(Throwable caught) { 

//ignore 
} 

}; 

bwMonitorService = getBandwidthMonitorService(); 
bwMonitorService.startServiceCountDataBytes(subnet, 

emptyCallback); 
bwMonitorService.startServiceCountPackets(subnet, 

emptyCallback); 
topolnfo = new Topologylnfo (MAXJSTODES) ; 

//Create timers to repeatedly trigger updates 
bwMonitorService.getRefreshedlPs(ipCallback); 
Timer ipRefresh = new Timer() { 

public void run() { 
bwMonitorService.getRefreshedlPs(ipCallback); 

} 
}; 
ipRefresh.scheduleRepeating(10000); 

Timer statUpdate = new Timer() { 
public void run() { 

for (int i=0; i<=topoInfo.getMaxNodes(); i++) { 
if (! (topolnfo.getAddress(i).equals (null))) { 

bwMonitorService.getBandwidthlnUse( 
topolnfo.getAddress(i), 

statCallback); 
} 

} 
} 

}; 
statUpdate.scheduleRepeating(1000); 

} 

136 



public static BandwidthMonitorAsync 
getBandwidthMonitorService(){ 

BandwidthMonitorAsync service = 
(BandwidthMonitorAsync) GWT.create(BandwidthMonitor.class); 

ServiceDefTarget endpoint = (ServiceDefTarget) 
service; 

String moduleRelativeURL = GWT.getModuleBaseURL() + 
"bandwidthmonitor"; 

endpoint.setServiceEntryPoint(moduleRelativeURL); 
return service; 

} 

private void processIPUpdates(Object result) { 
String!] newAddrs = (String []) result; 
for (int i=0; i<MAX_NODES; i++) { 

imgPanel.hideLaptop(i); 
imgPanel.hideLaptopPipe(i); 
imgPanel.setLaptopIPAddrLabel(i, null); 

} 
topolnfo = new Topologylnfo(MAX_NODES); 
for (int i=0; i<newAddrs.length; i++) { 

try { 
topolnfo.setAddress(i, newAddrs[i]); 
imgPanel.setLaptopIPAddrLabel(i, newAddrs[i]); 
imgPanel.showLaptop(i); 

} catch (Exception e) { 
//ignore for now 

} 
} 

} 

private void processStatUpdates(Object result) { 
Bandwidthlnfo bwlnfo = (Bandwidthlnfo) result; 
try { 

imgPanel.showLaptopPipe(topolnfo.findPosition( 
bwlnfo.getlPAddress()), 

bwlnfo.getBandwidthlnUse()); 
imgPanel.setLaptopStatValue(topolnfo.findPosition(bwl 

nfo. 
getlPAddress()), imgPanel.NUM_PACKETS, "" + 
bwlnfo.getTotalPacketsSentToAndReceivedFrom() 

); 
imgPanel.setLaptopStatValue(topolnfo.findPosition(bwl 

nfo. 
getlPAddress()), imgPanel.NUM_DATA_BYTES, "" + 
bwlnfo.getTotalDataBytesSentToAndReceivedFrom 

0); 
} catch (Exception e) { 

//skip addresses not currently tracked 
} 

} 
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} 

publ ic void onShowO { 
} 

AnalysisMenu.java 

package org.dgrp.client; 

import com.google.gwt.user.client.ui.Composite; 
import com.google.gwt.user.client.ui.MenuBar; 
import com.google.gwt.user.client.ui.MenuItem; 
import com.google.gwt.user.client.Command; 
import com.google.gwt.user.client.Window; 

* @author chrisne 
*/ 

public class AnalysisMenu extends Composite { 

// Declare menu bars and items 
private MenuBar menu = new MenuBar(); 
private MenuBar menu_router = new MenuBar(true); 
private Menultem routerStatsOnOff; 
private Menultem menu_router_int_status; 
private Menultem menu_router_int_max_bw; 
private Menultem menu_router_int_cur_bw; 
private Menultem menu_router_int_speed; 
private MenuBar menu_router_CPUUtil = new MenuBar(true); 
private Menultem menu_router_CPUUtil_tot; 
private Menultem menu_router_CPUUtil_byproc; 
private MenuBar menu_router_memUtil = new MenuBar(true); 
private MenuBar menu_router_memUtil_total = new MenuBar(true); 
private Menultem menu_router_memUtil_total_real; 
private Menultem menu_router_memUtil_total_virtual; 
private MenuBar menu_router_memUtil_byProc = new MenuBar(true); 
private Menultem menu_router_memUtil_byProc_real; 
private Menultem menu_router_memUtil_byProc_virtual; 
private MenuBar menu_TCP = new MenuBar(true); 
private Menultem menu_TCP_inboundDrops; 
private Menultem menu_TCP_connState; 
private MenuBar menu_TCP_packets = new MenuBar(true); 
private Menultem menu_TCP_packets_recvd; 
private Menultem menu_TCP_packets_sent; 
private Menultem menu_TCP_packets_recvdByTime; 
private Menultem menu_TCP_packets_sentByTime; 
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private MenuBar menu_TCP_bytes = new MenuBar(true); 
private Menultem menu_TCP__bytes_recvd; 
private Menultem menu_TCP__bytes_sent; 
private Menultem menu_TCP_bytes_recvdByTime; 
private Menultem menu_TCP_bytes_sentByTime; 
private MenuBar menu_TCP__bits = new MenuBar (true); 
private Menultem menu__TCP_bits_recvd; 
private Menultem menu_TCP_bits_sent; 
private Menultem menu_TCP_bits_recvdByTime; 
private Menultem menu_TCP_bits_sentByTime; 
private MenuBar menu_TCP_errors = new MenuBar (true); 
private Menultem menu_TCP_errors_hdr; 
private Menultem menu_TCP_errors_chksum; 
private Menultem menu_TCP_errors_hdrByTime; 
private Menultem menu_TCP_errors_chksumByTime; 
private MenuBar menu_TCP_buffers = new MenuBar (true); 
private MenuBar menu_TCP_buffers_send = new MenuBar(true); 
private Menultem menu_TCP_buffers_send_status; 
private Menultem menu_TCP_buffers_send_overflows; 
private MenuBar menu_TCP_buffers_receive = new MenuBar(true); 
private Menultem menu_TCP_buffers_receive_status; 
private Menultem menu_TCP_buffers_receive_overflows; 
private MenuBar menu_UDP = new MenuBar(true); 
private MenuBar menu_UDP_packets = new MenuBar(true); 
private Menultem menu_UDP_packets_recvd; 
private Menultem menu_UDP_packets_sent; 
private Menultem menu_UDP_packets_recvdByTime; 
private Menultem menu_UDP_packets_sentByTime; 
private MenuBar menu_UDP_bytes = new MenuBar(true); 
private Menultem menu_UDP_bytes_recvd; 
private Menultem menu_UDP_bytes_sent; 
private Menultem menu_UDP_bytes_recvdByTime; 
private Menultem menu_UDP_bytes_sentByTime; 
private MenuBar menu_UDP_bits = new MenuBar(true); 
private Menultem menu_UDP_bits_recvd; 
private Menultem menu_UDP_bits_sent; 
private Menultem menu__UDP__bits_recvdByTime; 
private Menultem menu_UDP_bits_sentByTime; 
private MenuBar menu_UDP_errors = new MenuBar(true); 
private Menultem menu_UDP_errors_hdr; 
private Menultem menu_UDP_errors_chksum; 
private Menultem menu_UDP_errors_hdrByTime; 
private Menultem menu_UDP_errors_chksumByTime; 
private MenuBar menu_UDP_buffers = new MenuBar(true); 
private MenuBar menu_UDP_buffers_send = new MenuBar(true); 
private Menultem menu_UDP_buffers_send_status; 
private Menultem menu_UDP_buffers_send_overflows; 
private MenuBar menu_UDP_buffers_receive = new MenuBar (true); 
private Menultem menu_UDP_buffers_receive_status; 
private Menultem menu_UDP_buffers_receive_overflows; 
private MenuBar menu_IPv4 = new MenuBar(true); 
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private MenuBar menu_IPv4_packets = new MenuBar(true); 
private Menultem menu_IPv4_packets_recvd; 
private Menultem menu_IPv4_packets_sent; 
private Menultem menu_IPv4_packets_sent_and_rcvd; 
private Menultem menu_IPv4_packets_recvdByTime; 
private Menultem menu_IPv4_packets_sentByTime; 
private MenuBar menu_IPv4_bytes = new MenuBar(true); 
private Menultem menu_IPv4_bytes_recvd; 
private Menultem menu_IPv4_bytes_sent; 
private Menultem menu_IPv4_bytes_sent_and_rcvd; 
private Menultem menu_IPv4_bytes_recvdByTime; 
private Menultem menu_IPv4_bytes_sentByTime; 
private MenuBar menu_IPv4_bits = new MenuBar (true); 
private Menultem menu_IPv4_bits_recvd; 
private Menultem menu_IPv4_bits_sent; 
private Menultem menu_IPv4_bits_sent_and_rcvd; 
private Menultem menu_IPv4_bits_recvdByTime; 
private Menultem menu_IPv4_bits_sentByTime; 
private MenuBar menu_IPv4_errors = new MenuBar(true); 
private Menultem menu__IPv4_errors_hdr; 
private Menultem menu_IPv4_errors_chksum; 
private Menultem menu_IPv4_errors_hdrByTime; 
private Menultem menu_IPv4_errors_chksumByTime; 
private MenuBar menu_IPv4_buffers = new MenuBar(true); 
private MenuBar menu_IPv4_buffers_send = new MenuBar(true); 
private Menultem menu_IPv4_buffers_send_status; 
private Menultem menu_IPv4_buffers_send_overflows; 
private MenuBar menu_IPv4_buffers_receive = new MenuBar(true); 
private Menultem menu_IPv4_buffers_receive_status; 
private Menultem menu_IPv4_buffers_receive_overflows,• 
private MenuBar menu_IPv4_responseTime = new MenuBar(true); 
private Menultem menu_IPv4_responseTime_max; 
private Menultem menu_IPv4_responseTime_min; 
private Menultem menu_IPv4_responseTime_avg; 
private MenuBar menu_IPv6 = new MenuBar(true); 
private MenuBar menu_rawIP = new MenuBar(true); 
private MenuBar menu_SCTP = new MenuBar(true); 
private MenuBar menu_wireless = new MenuBar(true); 
private Menultem wirelessOnOff; 
private MenuBar menu_legend = new MenuBar(true); 
private MenuBar menu_test = new MenuBar(true); 
private Menultem testltem; 

//Strings for special menu characters 
p u b l i c s t a t i c f i n a l S t r i n g no t sup = "&nbsp;<DGRP-NOTSUPXDGRP-

SPLITXFONT color=\"white\">S#8855;</FONT>&nbsp;Snbsp;<DGRP-
SPLIT>"; 

p u b l i c s t a t i c f i n a l S t r i n g on = "&nbsp;<DGRP-ONXDGRP-
SPLITXFONT color=\"green\">&#8730;</FONT>&nbsp;&nbsp;<DGRP-
SPLIT>"; 

p u b l i c s t a t i c f i n a l S t r i n g off = "&nbsp;<DGRP-OFFXDGRP-
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SPLITXFONT color=\"red\">&#8855;</FONT>&nbsp;&nbsp;<DGRP-SPLIT>"; 
public static final String submen = "&nbsp;&nbsp;&#187;"; 

public AnalysisMenu(final ImagePanel imgPanel) { 
/* Create the not-supported command */ 

Command notSupported = new Command () { 
public void execute() { 

Window.alert("This feature is not yet implemented."); 
} 

}; 

/* Create the legendlnfo command */ 
Command legendlnfo = new Command () { 

public void execute () { 
Window.alert("The menu items in the legend perform no 

action."); 
} 

}; 

/* Create the test command */ 
Command testCmd = new Command () { 

public void execute () { 
testItem.setHTML(changeMenuStatus(testltem.getHTML()) 

); 
imgPanel. showAHGraphics () ; 

} 
}; 

/* Create the wireless command */ 
Command wirelessCmd = new Command () { 

public void execute () { 
wirelessOnOff.setHTML(changeMenuStatus(wirelessOnOff. 

getHTML())); 
if (imgPanel.isWirelessVisible() == true) { 

imgPanel.hideWireless(); 
} 
else { 

imgPanel.showWireless(); 
} 

} 
}; 

/* Create the routerStats command */ 
Command routerStatsCmd = new Command () { 

public void execute () { 
routerStatsOnOff.setHTML(changeMenuStatus(routerStats 

OnOff.getHTML())); 
if (imgPanel.isRouterStatsVisible() == true) { 

imgPanel.hideRouterStats(); 
} 
else { 
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imgPanel.showRouterStats(); 
} 

} 
}; 

/* Create the IPv4 Packets Sent and Received command */ 
Command IPv4PacketsSentAndRcvdCmd = new Command () { 

public void execute)) { 
menu_IPv4_packets_sent_and_rcvd.setHTML(changeMenuSta 

tus(menu_IPv4_packets_sent_and_rcvd.getHTML())); 
if (imgPanel.isIPv4PacketsSentAndRcvdVisible() == 

true) { 
imgPanel.hideIPv4PacketsSentAndRcvd(); 

} 
else { 

imgPanel.showIPv4PacketsSentAndRcvd(); 
} 

} 
}; 

/* Create the IPv4 Data Bytes Sent and Received command */ 
Command IPv4BytesSentAndRcvdCmd = new Command () { 

public void execute() { 
menu__IPv4_bytes_sent_and_rcvd.setHTML(changeMenuStatu 

s(menu_IPv4_bytes_sent_and_rcvd.getHTML())); 
if (imgPanel.isIPv4BytesSentAndRcvdVisible() == true) 

{ 
imgPanel.hideIPv4BytesSentAndRcvd(); 

} 
else { 

imgPanel.showIPv4BytesSentAndRcvd(); 
} 

} 
}; 

/* Create the "Router" menu */ 
menu_router.setAutoOpen(true); 
menu_router_CPUUtil.setAutoOpen(true); 
menu_router_memUtil.setAutoOpen(true); 
menu_router_memUtil__total.setAutoOpen(true); 
menu_router_memUtil_byProc.setAutoOpen(true); 
routerStatsOnOff = new MenuItem(off + "Enable/Disable", true, 

routerStatsCmd); 
menu_router.addItem(routerStatsOnOff); 
menu_router_int_status = new MenuItem(notsup + "Interface 

Status", true, notSupported); 
menu_router.addltem(menu_router_int_status); 
menu_router_int_max_bw = new MenuItem(notsup + "Interface 

Maximum Bandwidth", true, 
notSupported); 
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menu_router.addltem(menu_router_int_max_bw); 
menu__router_int_cur_bw = new MenuItem(notsup + "Interface 

Current Bandwidth Usage", true, 
notSupported); 

menu_router.addltem(menu_router_int_cur_bw); 
menu_router__int_speed = new MenuItem(notsup + "Interface 

Speed", true, notSupported); 
menu_router.addltem(menu_router_int_speed); 
menu_router_CPUUtil_tot = new MenuItem(notsup + "Total", 

true, notSupported); 
menu_router_CPUUtil.addltem(menu_router_CPUUtil_tot); 
menu_router_CPUUtil_byproc = new Menultem(notsup + "By 

Process", true, notSupported); 
menu_router_CPUUtil.addltem(menu_router_CPUUtil_byproc); 
menu_router.addltem("CPU Utilization" + submen, true, 

menu_router_CPUUtil); 
menu_router_memUtil_total_real = new Menultem(notsup + 

"Real", true, notSupported); 
menu_router_memUtil_total.addltem(menu_router_memUtil_total_r 

eal) ; 
menu_router_memUtil_total_virtual = new Menultem(notsup + 

"Virtual", true, notSupported); 
menu_router_memUtil_total.addltem(menu_router_memUtil_total_v 

irtual); 
menu_router_memUtil.addltem("Total" + submen, true, 

menu_router_memUtil_total); 
menu_router_memUtil__byProc_real = new Menultem(notsup + 

"Real", true, notSupported); 
menu_router_memUtil_byProc.addltem(menu_router_memUtil_byProc 

_real); 
menu_router_memUtil_byProc_virtual = new Menultem(notsup + 

"Virtual", true, notSupported); 
menu_router_memUtil_byProc.addltem(menu__router_memUtil_byProc 

_virtual); 
menu_router_memUtil.addltem("By Process" + submen, true, 

menu_router_memUtil_byProc); 
menu_router.addltem("Memory Utilization" + submen, true, 

menu router memUtil); 

/* Create the "TCP" menu */ 
menu_TCP.setAutoOpen(true); 
menu_TCP_packets.setAutoOpen(true); 
menu_TCP_bytes.setAutoOpen(true); 
menu_TCP_bits.setAutoOpen(true); 
menu_TCP_errors.setAutoOpen(true); 
menu_TCP_buffers.setAutoOpen(true); 
menu_TCP_buffers_send.setAutoOpen(true) ; 
menu_TCP_buffers_receive.setAutoOpen(true); 
menu_TCP_inboundDrops = new Menultem(notsup "+ "Inbound TCP 
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Connection Drops", true, 
notSupported); 

menu_TCP.addItem(menu_TCP_inboundDrops); 
inenu_TCP_connState = new MenuItem(notsup + "Connection 

State", true, 
notSupported); 

menu_TCP.addltem(menu_TCP_connState); 
menu_TCP_packets_recvd = new MenuItem(notsup + "Received", 

true, notSupported); 
menu_TCP_packets.addltem(menu_TCP_packets_recvd); 
menu_TCP_packets_sent = new MenuItem(notsup + "Sent", true, 

notSupported); 
menu_TCP_packets.addltem(menu_TCP_packets_sent); 
menu_TCP_packets_recvdByTime = new Menultemfnotsup + 

"Received per Unit of Time", true, 
notSupported); 

menu_TCP_packets.addltem(menu_TCP_packets_recvdByTime); 
menu_TCP_packets_sentByTime = new Menultemfnotsup + "Sent per 

Unit of Time", true, 
notSupported); 

menu_TCP_packets.addltem(menu_TCP_packets_sentByTime); 
menu_TCP.addItem("Packets" + submen, true, menu_TCP_packets); 
menu_TCP_bytes_recvd = new MenuItem(notsup + "Received", 

true, notSupported); 
menu_TCP_bytes.addltem(menu_TCP_bytes_recvd); 
menu_TCP_bytes_sent = new Menultemfnotsup + "Sent", true, 

notSupported); 
menu_TCP_bytes.addltem(menu_TCP_bytes_sent); 
menu_TCP_bytes_recvdByTime = new Menultemfnotsup + "Received 

per Unit of Time", true, 
notSupported); 

menu_TCP_bytes.addltem(menu_TCP_bytes_recvdByTime); 
menu_TCP_bytes_sentByTime = new Menultemfnotsup + "Sent per 

Unit of Time", true, 
notSupported); 

menu_TCP_bytes.addltem(menu_TCP_bytes_sentByTime); 
menu_TCP.addltem("Bytes" + submen, true, menu_TCP_bytes); 
menu_TCP_bits_recvd = new Menultemfnotsup + "Received", true, 

notSupported); 
menu_TCP_bits.addltem(menu_TCP_bits_recvd); 
menu_TCP_bits_sent = new Menultemfnotsup + "Sent", true, 

notSupported); 
menu_TCP_bits.addltem(menu_TCP_bits_sent); 
menu_TCP_bits_recvdByTime = new Menultemfnotsup + "Received 

per Unit of Time", true, 
notSupported); 

menu_TCP_bits.addltem(menu_TCP_bits_recvdByTime); 
menu_TCP_bits_sentByTime = new Menultemfnotsup + "Sent per 

Unit of Time", true, 
notSupported); 

menu_TCP_bits.addltem(menu_TCP_bits_sentByTime); 
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menu_TCP.addItem("Bits" + submen, true, menu_TCP_bits); 
menu_TCP_errors_chksum = new MenuItem(notsup + "Checksum", 

true, notSupported); 
menu_TCP_errors.addltem(menu_TCP_errors_chksum); 
menu_TCP_errors_hdr = new Menultem(notsup + "Header", true, 

notSupported); 
menu_TCP_errors.addltem(menu_TCP_errors_hdr); 
menu_TCP_errors_chksumByTime = new MenuItem(notsup + 

"Checksum per Unit of Time", true, 
notSupported); 

menu_TCP_errors.addltem(menu_TCP_errors_chksumByTime); 
menu_TCP_errors_hdrByTime = new MenuItem(notsup + "Header per 

Unit of Time", true, 
notSupported); 

menu_TCP_errors.addltem(menu_TCP_errors_hdrByTime); 
menu_TCP.addltem("Errors" + submen, true, menu_TCP_errors); 
menu_TCP_buffers_send_status = new MenuItem(notsup + 

"Status", true, notSupported); 
menu_TCP_buffers_send.addltem(menu_TCP_buffers_send_status); 
menu_TCP_buffers_send_overflows = new Menultem(notsup + 

"Overflows", true, notSupported); 
menu_TCP_buffers_send.addltem(menu_TCP_buffers_send_overflows 

); 
menu_TCP_buffers.addltem("Send" + submen, true, 

menu_TCP_buffers_send); 
menu_TCP_buffers_receive_status = new Menultem(notsup + 

"Status", true, notSupported); 
menu_TCP_buffers_receive.addltem(menu_TCP_buffers_receive_sta 

tus) ; 
menu_TCP_buffers_receive_overflows = new Menultem(notsup + 

"Overflows", true, notSupported); 
menu_TCP_buffers_receive.addltem(menu_TCP_buffers_receive_ove 

rflows); 
menu_TCP_buffers.addltem("Receive" + submen, true, 

menu_TCP_buffers_receive); 
menu_TCP.addltem("Buffers" + submen, true, menu TCP buffers); 

/* Create the "UDP" menu */ 
menu_UDP.setAutoOpen (true); 
menu_UDP_packets.setAutoOpen(true); 
menu_UDP_bytes.setAutoOpen(true); 
menu_UDP_bits.setAutoOpen(true); 
menu_UDP_errors.setAutoOpen(true); 
menu_UDP_buffers.setAutoOpen(true); 
menu_UDP_buffers_send.setAutoOpen(true); 
menu_UDP_buffers_receive.setAutoOpen(true); 
menu_UDP_packets_recvd = new Menultem(notsup + "Received", 

true, notSupported); 
menu_UDP_packets.addltem(menu_UDP_packets_recvd); 
menu_UDP_packets_sent = new Menultem(notsup + "Sent", true, 

145 



notSupported) ; 
menu_UDP_packets.addltem(menu_UDP_packets_sent); 
menu_UDP_packets_recvdByTime = new MenuItem(notsup + 

"Received per Unit of Time", true, 
notSupported); 

menu_UDP_packets.addltem(menu_UDP_packets_recvdByTime); 
menu_UDP_packets_sentByTime = new Menultem(notsup + "Sent per 

Unit of Time", true, 
notSupported); 

menu_UDP_packets.addltem(menu_UDP_packets_sentByTime); 
menu_UDP.addltem("Packets" + submen, true, menu_UDP_packets); 
menu_UDP_bytes_recvd = new Menultem(notsup + "Received", 

true, notSupported); 
menu_UDP_bytes.addltem(menu_UDP_bytes_recvd); 
menu_UDP_bytes_sent = new Menultem(notsup + "Sent", true, 

notSupported); 
menu_UDP_bytes.addltem(menu_UDP_bytes_sent); 
menu_UDP_bytes_recvdByTime = new Menultem(notsup + "Received 

per Unit of Time", true, 
notSupported); 

menu_UDP_bytes.addltem(menu_UDP_bytes_recvdByTime); 
menu_UDP_bytes_sentByTime = new Menultem(notsup + "Sent per 

Unit of Time", true, 
notSupported); 

menu_UDP_bytes.addltem(menu_UDP_bytes_sentByTime); 
menu_UDP.addltem("Bytes" + submen, true, menu_UDP_bytes); 
menu_UDP_bits_recvd = new Menultem(notsup + "Received", true, 

notSupported); 
menu_UDP_bits.addltem(menu_UDP_bits_recvd); 
menu_UDP_bits_sent = new Menultem(notsup + "Sent", true, 

notSupported); 
menu_UDP_bits.addltem(menu_UDP_bits_sent); 
menu_UDP_bits_recvdByTime = new Menultem(notsup + "Received 

per Unit of Time", true, 
notSupported); 

menu_UDP_bits.addltem(menu_UDP_bits_recvdByTime); 
menu_UDP_bits_sentByTime = new Menultem(notsup + "Sent per 

Unit of Time", true, 
notSupported); 

menu_UDP_bits.addltem(menu_UDP_bits_sentByTime); 
menu_UDP.addltem("Bits" + submen, true, menu_UDP_bits); 
menu_UDP_errors_chksum = new Menultem(notsup + "Checksum", 

true, notSupported); 
menu_UDP_errors.addltem(menu_UDP_errors_chksum); 
menu_UDP_errors_hdr = new Menultem(notsup + "Header", true, 

notSupported); 
menu_UDP_errors.addltem(menu_UDP_errors__hdr); 
menu_UDP_errors_chksumByTime = new Menultem(notsup + 

"Checksum per Unit of Time", true, 
notSupported); 

menu_UDP_errors.addltem(menu_UDP_errors_chksumByTime); 
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menu_UDP_errors_hdrByTime = new MenuItem(notsup + "Header per 
Unit of Time", true, 

notSupported); 
menu_UDP_errors.addltem(menu_UDP_errors_hdrByTime); 
menu_UDP.addItem("Errors" + submen, true, menu_UDP_errors); 
menu_UDP_buffers_send_status = new MenuItem(notsup + 

"Status", true, notSupported); 
menu_UDP_buffers_send.addltem(menu_UDP_buffers_send_status); 
menu_UDP_buffers_send_overflows = new MenuItem(notsup + 

"Overflows", true, notSupported); 
menu_UDP_buffers_send.addltem(menu_UDP_buffers_send_overflows 

); 
menu_UDP_buffers.addltem("Send" + submen, true, 

menu_UDP_buffers_send) ; 
menu_UDP_buffers_receive_status = new MenuItem(notsup + 

"Status", true, notSupported); 
menu_UDP_buffers_receive.addltem(menu_UDP_buffers_receive_sta 

tus) ; 
menu_UDP_buffers_receive_overflows = new MenuItem(notsup + 

"Overflows", true, notSupported); 
menu_UDP_buffers_receive.addltem(menu_UDP_buffers_receive_ove 

rflows); 
menu_UDP_buffers.addltem("Receive" + submen, true, 

menu_UDP_buffers_receive); 
menu_UDP.addltem("Buffers" + submen, true, menu_UDP_buffers); 

/* Create the "IPv4" menu */ 
menu_IPv4.setAutoOpen(true) ; 
menu_IPv4_packets.setAutoOpen(true); 
menu_IPv4_bytes.setAutoOpen(true); 
menu_IPv4_bits.setAutoOpen(true) ; 
menu_IPv4_errors.setAutoOpen(true); 
menu_IPv4_buffers.setAutoOpen(true); 
menu_IPv4_buffers_send.setAutoOpen(true); 
menu_IPv4_buffers_receive.setAutoOpen(true); 
menu_IPv4_responseTime.setAutoOpen(true); 
menu_IPv4_packets_recvd = new MenuItem(notsup + "Received", 

true, notSupported); 
menu_IPv4_packets.addltem(menu_IPv4_packets_recvd); 
menu_IPv4_packets_sent = new Menultem(notsup + "Sent", true, 

notSupported); 
menu_IPv4_packets.addltem(menu_IPv4_packets_sent); 
menu_IPv4_packets_sent_and_rcvd = new Menultem(off + "Sent 

and Received", true, IPv4PacketsSentAndRcvdCmd); 
menu_IPv4_packets.addltem(menu_IPv4_packets_sent_and_rcvd); 
menu_IPv4_packets_recvdByTime = new Menultem(notsup + 

"Received per Unit of Time", true, 
notSupported); 

menu_IPv4_packets.addltem(menu_IPv4_packets_recvdByTime); 
menu_IPv4_packets_sentByTime = new Menultem(notsup + "Sent 
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per Unit of Time", true, 
notSupported); 

menu_IPv4_packets.addltem(menu_IPv4_packets_sentByTime); 
menu_IPv4.addltem("Packets" + submen, true, 

menu_IPv4_packets); 
menu_IPv4_bytes_recvd = new MenuItem(notsup + "Received", 

true, notSupported); 
menu_IPv4_bytes.addltem(menu_IPv4_bytes_recvd); 
menu_IPv4_bytes_sent = new MenuItem(notsup + "Sent", true, 

notSupported); 
menu_IPv4_bytes.addltem(menu_IPv4_bytes_sent); 
menu_IPv4_bytes_sent_and_rcvd = new MenuItem(off + "Sent and 

Received", true, IPv4BytesSentAndRcvdCmd); 
menu_IPv4_bytes.addltem(menu_IPv4_bytes_sent_and_rcvd); 
menu_IPv4_bytes_recvdByTime = new MenuItem(notsup + "Received 

per Unit of Time", true, 
notSupported); 

menu_IPv4_bytes.addltem(menu__IPv4_bytes_recvdByTime); 
menu_IPv4_bytes_sentByTime = new MenuItem(notsup + "Sent per 

Unit of Time", true, 
notSupported); 

menu_IPv4_bytes.addltem(menu_IPv4_bytes_sentByTime) ; 
menu_IPv4.addltem("Bytes" + submen, true, menu_IPv4_bytes); 
menu_IPv4_bits_recvd = new MenuItem(notsup + "Received", 

true, notSupported); 
menu_IPv4_bits.addltem(menu_IPv4_bits_recvd); 
menu_IPv4_bits_sent = new Menultem(notsup + "Sent", true, 

notSupported); 
menu_IPv4_bits.addltem(menu_IPv4_bits_sent); 
menu_IPv4_bits_sent_and_rcvd = new Menultem(notsup + "Sent 

and Received", true, notSupported); 
menu_IPv4_bits.addltem(menu_IPv4_bits_sent_and__rcvd); 
menu_IPv4_bits_recvdByTime = new Menultem(notsup + "Received 

per Unit of Time", true, 
notSupported); 

menu_IPv4_bits.addltem(menu_IPv4_bits_recvdByTime); 
menu_IPv4_bits_sentByTime = new Menultem(notsup + "Sent per 

Unit of Time", true, 
notSupported); 

menu_IPv4_bits.addltem(menu_IPv4_bits_sentByTime); 
menu_IPv4.addltem("Bits" + submen, true, menu_IPv4_bits); 
menu_IPv4_errors_chksum = new Menultem(notsup + "Checksum", 

true, notSupported); 
menu_IPv4_errors.addltem(menu_IPv4_errors_chksum); 
menu_IPv4_errors_hdr = new Menultem(notsup + "Header", true, 

notSupported); 
menu_IPv4_errors.addltem(menu_IPv4_errors_hdr); 
menu_IPv4_errors_chksumByTime = new Menultem(notsup + 

"Checksum per Unit of Time", true, 
notSupported); 

menu_IPv4_errors.addltem(menu_IPv4_errors_chksumByTime); 
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menu_IPv4_errors_hdrByTime = new MenuItem(notsup + "Header 
per Unit of Time", true, 

notSupported); 
menu_IPv4_errors.addItem(menu_IPv4_errors_hdrByTime); 
menu_IPv4.addltem("Errors" + submen, true, menu_IPv4_errors); 
menu_IPv4_buffers_send_status = new MenuItem(notsup + 

"Status", true, notSupported); 
menu_IPv4__buffers_send.addltem(menu_IPv4_buffers_send_status); 
menu_IPv4_buffers_send_overflows = new Menultem(notsup + 

"Overflows", true, notSupported); 
menu_IPv4_buffers_send.addltem(menu_IPv4_buffers_send_overflo 

ws) ; 
menu_IPv4_buffers.addltem("Send" + submen, true, 

menu_IPv4_buffers_send); 
menu_IPv4_buffers_receive_status = new Menultem(notsup + 

"Status", true, notSupported); 
menu_IPv4_buffers_receive.addltem(menu_IPv4_buffers_receive_s 

tatus); 
menu_IPv4_buffers_receive_overflows = new Menultem(notsup + 

"Overflows", true, notSupported); 
menu_IPv4_buffers_receive.addltem(menu_IPv4_buffers_receive_o 

verflows); 
menu_IPv4_buffers.addltem("Receive" + submen, true, 

menu_IPv4_buffers_receive); 
menu_IPv4.addltem("Buffers" + submen, true, 

menu_IPv4_buffers); 
menu_IPv4_responseTime_max = new Menultem(notsup + "Maximum", 

true, 
notSupported); 

menu_IPv4_responseTime.addltem(menu_IPv4_responseTime_max); 
menu_IPv4_responseTime_min = new Menultem(notsup + "Minimum", 

true, 
notSupported); 

menu_IPv4_responseTime.addltem(menu_IPv4_responseTime_min); 
menu_IPv4_responseTime_avg = new Menultem(notsup + "Average", 

true, 
notSupported); 

menu_IPv4_responseTime.addltem(menu_IPv4_responseTime_avg); 
menu_IPv4.addltem("Response Time" + submen, true, 

menu_IPv4_responseTime); 

/* Create the "IPv6" menu */ 
menu_IPv6.setAutoOpen(true); 
menu_IPv6.addltem("(PLACEHOLDER)", true, notSupported); 

/* Create the "Raw IP" menu */ 
menu_rawIP.setAutoOpen(true); 
menu_rawIP.addltem("(PLACEHOLDER)", true, notSupported); 
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/* Create the "SCTP" menu */ 
menu_SCTP.setAutoOpen(true); 
menu_SCTP.addltem("(PLACEHOLDER)", true, notSupported); 

/* Create the "Wireless" menu */ 
menu_wireless.setAutoOpen(true); 
wirelessOnOff = new MenuItem(off + "Enable/Disable", true, 

wirelessCmd); 
menu wireless.addltem(wirelessOnOff); 

/* Create the "LEGEND" menu */ 
menu_legend.setAutoOpen(true); 
menu_legend.addltem(notsup + "Feature Not Yet Supported", 

true, legendlnfo); 
menu_legend.addltem(on + "Feature Turned On", true, 

legendlnfo); 
menu_legend.addltem(off + "Feature Turned Off", true, 

legendlnfo); 

/* Create the "TEST" menu */ 
menu_test.setAutoOpen(true); 
testItern = new MenuItem(off + "Show All Graphics", true, 

testCmd); 
menu_test.addltem(testltem); 
//System.out.println("HTML: " + testltem.getHTML()); 

/* Add menu items to the top horizontal menu */ 
menu.addltem(new MenuItem("Router", menu_router)); 
menu.addltem(new MenuItem("TCP", menu_TCP)); 
menu.addltem(new MenuItem("UDP", menu_UDP)); 
menu.addltem(new MenuItem("IPv4", menu_IPv4)); 
menu.addltem(new Menultem("IPv6", menu_IPv6)); 
menu.addltem(new Menultem("Raw IP", menu_rawIP)); 
menu.addltem(new Menultem("SCTP", menu_SCTP)); 
menu.addltem(new Menultem("Wireless", menu_wireless)); 
menu.addltem(new Menultem("LEGEND", menu_legend)); 
menu.addltem(new Menultem("TEST", menu_test)); 

menu.setWidth("100%"); 
initWidget(menu); 

public static String changeMenuStatus(String origHTML) { 
System.out.println("Original HTML: " + origHTML); 

String[] tokens = origHTML.split("<DGRP-SPLIT>"); 
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if (tokens[0].equals("&nbsp;<DGRP-ON>")) { 
System.out.println("Returning HTML: " + off + 

tokens[2]); 
return (off + tokens[2]); 

} 
else if (tokens[0].equals("&nbsp;<DGRP-OFF>")) { 

System.out.println("Returning HTML: " + on + tokens[2]); 
return (on + tokens[2]); 

} 
else { 

System.out.println("Returning original HTML."); 
return (origHTML); 

} 
} 

} 

Bandwidthlnfo.java 

package org.dgrp.client; 

import com.google.gwt.user.client.rpc.IsSerializable; 

/** 
* 
* @author chrisne 
*/ 

public class Bandwidthlnfo implements IsSerializable { 

private final double LOW_BW_THRESHOLD = 0.33; 
private final double MED_BW_THRESHOLD = 0.67; 
private final double HIGH_BW_THRESHOLD = 0.9; 

private String ipAddress; 
private String bandwidthlnUse; 

private int pktsSentTo, pktsRcvdFrom, dataBytesSentTo, 
dataBytesRcvdFrom, 

pktsSentAndRcvd, dataBytesSentAndRcvd; 

public Bandwidthlnfo(String ipAddress) { 
this.ipAddress = ipAddress; 
bandwidthlnUse = null; 

} 
public Bandwidthlnfo() { //no-argument constructor required 

for GWT serialization 
this.ipAddress = "0.0.0.0"; 
bandwidthlnUse = null; 
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} 

public String getlPAddress() { 

return ipAddress; 
} 

public void setBandwidthlnUse(int current, int max) { 
double percentage = current / max; 

if (percentage < LOW_BW_THRESHOLD) { 
bandwidthlnUse = "low"; 

} 
else if (percentage < MED_BW_THRESHOLD) { 

bandwidthlnUse = "medium"; 
} 
else if (percentage < HIGH_BW_THRESHOLD) { 

bandwidthlnUse = "high"; 
} 
else { //bandwidth usage nearing maximum 

bandwidthlnUse = "blocked"; 
} 

public String getBandwidthlnUse() { 
return bandwidthlnUse; 

} 

public void setTotalPacketsSentTo(int totalPackets) { 
pktsSentTo = totalPackets; 

} 
public void setTotalPacketsReceivedFrom(int totalPackets) { 

pktsRcvdFrom = totalPackets; 
} 
public void setTotalDataBytesSentTo(int totalDataBytes) { 

dataBytesSentTo = totalDataBytes; 
} 
public void setTotalDataBytesReceivedFrom(int totalDataBytes) 

{ 
dataBytesRcvdFrom = totalDataBytes; 

} 
public void setTotalPacketsSentToAndReceivedFrom(int 

totalPackets) { 
pktsSentAndRcvd = totalPackets; 

} 
public void setTotalDataBytesSentToAndReceivedFrom(int 

totalDataBytes) { 
dataBytesSentAndRcvd = totalDataBytes; 

} 

public int getTotalPacketsSentTo() { 
return pktsSentTo; 
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} 
public int getTotalPacketsReceivedFrom() { 

return pktsRcvdFrom; 
} 
public int getTotalDataBytesSentTo() { 

return dataBytesSentTo; 
} 
public int getTotalDataBytesReceivedFrom() { 

return dataBytesRcvdFrom; 
} 
public int getTotalPacketsSentToAndReceivedFrom() { 

return pktsSentAndRcvd; 
} 
public int getTotalDataBytesSentToAndReceivedFrom() { 

return dataBytesSentAndRcvd; 
} 

BandwidthMonitor.java 

package org.dgrp.client; 
import com.google.gwt.user.client.rpc.RemoteService; 

/** 
* 

* @author chrisne 
*/ 

public interface BandwidthMonitor extends RemoteService{ 
public void startServiceCountPackets(String s); 
public void startServiceCountDataBytes(String s); 
public void stopServiceCountPackets(); 
public void stopServiceCountDataBytes(); 
public Bandwidthlnfo getBandwidthlnUse(String s); 
public Bandwidthlnfo getRandomBandwidthlnUse(String s); 
public String[] getRefreshedlPs(); 

} 

BandwidthMonitorAsync.Java 

package org.dgrp.client; 
import com.google.gwt.user.client.rpc.AsyncCallback; 
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* @author chrisne 
*/ 

public interface BandwidthMonitorAsync { 
public void startServiceCountPackets(String s, AsyncCallback 

asyncCallback); 
public void startServiceCountDataBytes(String s, 

AsyncCallback asyncCallback); 
public void stopServiceCountPackets(AsyncCallback 

asyncCallback); 
public void stopServiceCountDataBytes(AsyncCallback 

asyncCallback); 
public void getBandwidthlnUse(String s, AsyncCallback 

callback); 
public void getRandomBandwidthlnUse(String s, AsyncCallback 

callback); 
public void getRefreshedlPs(AsyncCallback callback); 

} 

DGKPEntryPoint.java 

package org.dgrp.client; 

import org.dgrp.client.Sidebarltem.Sidebarltemlnfo; 
import com.google.gwt.core.client.EntryPoint; 
import com.google.gwt.user.client.ui.RootPanel; 
import com.google.gwt.user.client.History; 
import com.google.gwt.user.client.HistoryListener; 
import com.google.gwt.user.client.ui.DockPanel; 
import com.google.gwt.user.client.ui.HasAlignment; 
import com.google.gwt.user.client.ui.HTML; 
import com.google.gwt.user.client.ui.VerticalPanel; 

* 

* @author Christopher Nelson 
*/ 

public class DGRPEntryPoint implements EntryPoint, 
HistoryListener { 

/** Creates a new instance of DGRPEntryPoint */ 
public DGRPEntryPoint() { 
} 
protected Sidebar list = new Sidebar(); 
private Sidebarltemlnfo curlnfo; 
private Sidebarltem curltem; 
private HTML description = new HTMLO; 
private DockPanel panel = new DockPanel(); 
private DockPanel mainPanel; 
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public void onHistoryChanged(String token) { 
// Find the Sidebarltemlnfo associated with the history 

context. If one 
// is found, show it (It may not be found, for example, 

when the user 
// mis-types a URL, or on startup, when the first context 

will be " " ) . 
Sidebarltemlnfo info = list.find(token); 
if (info == null) { 

showlnfo(); 
return; 

} 
show(info, false); 

public void onModuleLoad() { 
// Load all the sidebar items. 
loadSidebarltems() ; 

// Put the sidebar on the left, and add the outer dock 
panel to the 

// root. 
mainPanel = new DockPanel (); 
mainPanel.setStyleName("dgrp-MainPanel"); 

VerticalPanel vp = new VerticalPanel (); 
vp.setWidth("100%"); 
vp.add(description); 
vp.add(mainPanel); 

description.setStyleName("dgrp-Heading"); 

panel.add(list, DockPanel.WEST); 
panel.add(vp, DockPanel.CENTER); 

panel.setCellVerticalAlignment(list, 
HasAlignment.ALIGN_TOP); 

panel.setCellWidth(vp, "100%"); 
panel.setCellHeight(vp, "100%"); 

History.addHistoryListener(this); 
RootPanel.get().add(panel); 

// Show the initial screen. 
String initToken = History.getToken(); 
if (initToken.length () > 0) { 

onHistoryChanged(initToken); 
} else { 

showlnfo(); 
} 
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} 

public void show(Sidebarltemlnfo info, boolean affectHistory) 
{ 

// Don't bother re-displaying the existing item. This can 
be an issue 

// in practice, because when the history context is set, 
our 

// onHistoryChanged() handler will attempt to show the 
currently-visible 

// item. 
if (info == curlnfo) { 

return; 
} 
curlnfo = info; 

// Remove the old item from the display area, 
if (curltem != null) { 

curItem.onHide(); 
mainPanel.remove(curltem); 

} 

// Get the new item instance, and display its description 
in the 

// item list. 
curltem = info.getlnstance(); 
list.setltemSelection(info.getName() ) ; 
description.setHTML(info.getDescription()); 

// If affectHistory is set, create a new item on the 
history stack. This 

// will ultimately result in onHistoryChanged() being 
called. It will 

// call show() again, but nothing will happen because it 
will request 

// the exact same item we're already showing. 
if (affectHistory) { 

History.newltem(info.getName()); 
} 

// Display the new item. 
mainPanel.add(curltem, DockPanel.CENTER); 
mainPanel.setCellWidth(curltem, "100%"); 
mainPanel.setCellHeight(curltem, "100%"); 
mainPanel.setCellVerticalAlignment(curltem, 

DockPanel.ALIGNJTOP); 
curltem.onShow(); 

* Adds all items to the list. Note that this does not create 
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actual instances 
* of all items yet (they are created on-demand). This can 

make a significant 
* difference in startup time. 
*/ 

protected void loadSidebarltems() { 
list.addltem(Welcome.init()); 
list.addltem(Analysis.init()); 
list.addltem(Settings.init()); 
list.addltem(Version.init()); 
list.addltem(About.init()); 

} 

private void showInfo() { 
show(list.find("Welcome"), false); 

} 

GetVersionlnfo.java 

package org.dgrp.client; 
import com.google.gwt.user.client.rpc.RemoteService; 

* 

* @author Christopher Nelson 
*/ 

public interface GetVersionlnfo extends RemoteService{ 
public VersionContents getVersionlnfo(); 

} 

GetVersionlnfoAsync.java 

package org.dgrp.client; 
import com.google.gwt.user.client.rpc.AsyncCallback; 

* 

* @author Christopher Nelson 
*/ 

public interface GetVersionlnfoAsync { 
public void getVersionlnfo(AsyncCallback callback); 

} 
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ImagePanel.java 

package org.dgrp.client; 

import com.google.gwt.user.client.ui.DockPanel; 
import com.google.gwt.user.client.ui.HorizontalPanel; 
import com.google.gwt.user.client.ui.Label; 
import com.google.gwt.user.client.ui.Image; 
import com.google.gwt.user.client.ui.Composite; 
import com.google.gwt.user.client.ui.Grid; 

/** 
* 
* @author chrisne 
*/ 

public class ImagePanel extends Composite { 

private final String NUM_PACKETS_LABEL = "# Packets"; 
public final int NUM_PACKETS = 0; 
private final String NUM_DATA_BYTES_LABEL = "# Data Bytes"; 
public final int NUM_DATA_BYTES = 1; 

private boolean isIPv4PacketsSentAndRcvdVisible = false; 
private boolean isIPv4BytesSentAndRcvdVisible = false; 

DockPanel dock, routerStatsDock, wirelessDock, laptopODock, 
laptoplDock, 

laptop2Dock, laptop3Dock; 
HorizontalPanel ispPanel, routerPanel, pipePanel, laptopPanel; 
Image laptopO, laptopl, laptop2, laptop3, router, wireless, 

routerStats, 
laptopOPipe, laptoplPipe, laptop2Pipe, laptop3Pipe; 

Label laptopOIPAddrLabel, laptoplIPAddrLabel, 
laptop2IPAddrLabel, 

laptop3IPAddrLabel; 
Grid laptopOgrid, laptoplgrid, laptop2grid, laptop3grid; 

public ImagePanel() { 

laptopO = new Image("images/placeholder.png"); 
laptop0.setWidth("131px"); 
laptopO.setHeight("104px"); 
laptopO.setStyleName("dgrp-Images-Image"); 

laptopl = new Image("images/placeholder.png"); 
laptopl.setWidth("131px"); 
laptopl.setHeight("104px"); 
laptopl.setStyleName("dgrp-Images-Image"); 
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laptop2 = new Image("images/placeholder.png"); 
laptop2.setWidth("131px"); 
laptop2.setHeight("104px"); 
laptop2.setStyleName("dgrp-Images-Image"); 

laptop3 = new Image("images/placeholder.png"); 
laptop3.setWidth("131px"); 
laptop3.setHeight("104px"); 
laptop3.setStyleName("dgrp-Images-Image"); 

router = new Image("images/router.png"); 
router.setWidth("188px"); 
router.setHeight("166px"); 
router.setStyleName("dgrp-Images-Image"); 

wireless = new Image("images/placeholder.png"); 
wireless.setWidth("384px"); 
wireless.setHeight("231px"); 
wireless.setStyleName("dgrp-Images-Wireless"); 

routerStats = new Image("images/placeholder.png"); 
routerStats.setWidth("255px"); 
routerStats.setHeight("275px"); 
routerStats.setStyleName("dgrp-Images-RouterStats"); 

laptopOPipe = new Image("images/placeholder.png"); 
laptopOPipe.setWidth("371px"); 
laptopOPipe.setHeight("54px"); 
laptopOPipe.setStyleName("dgrp-Images-LaptopOPipe"); 
laptoplPipe = new Image("images/placeholder.png"); 
laptoplPipe.setWidth("102px"); 
laptoplPipe.setHeight("54px"); 
laptoplPipe.setStyleName("dgrp-Images-LaptoplPipe"); 
laptop2Pipe = new Image("images/placeholder.png"); 
laptop2Pipe.setStyleName("dgrp-Images-Laptop2Pipe"); 
laptop2Pipe.setWidth("102px"); 
laptop2Pipe.setHeight("54px"); 
laptop3Pipe = new Image("images/placeholder.png"); 
laptop3Pipe.setWidth("371px"); 
laptop3Pipe.setHeight("54px"); 
laptop3Pipe.setStyleName("dgrp-Images-Laptop3Pipe"); 

dock = new DockPanel(); 
wirelessDock = new DockPanel(); 
routerStatsDock = new DockPanel(); 
pipePanel = new HorizontalPanel(); 
laptopODock = new DockPanel(); 
laptopOIPAddrLabel = new Label(); 
laptopOIPAddrLabel.setHorizontalAlignment(Label.ALIGN_CEN 

TER) ; 
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laptopOgrid = new Grid(2, 2); 
laptopOgrid.setVisible(false); 
//laptopOgrid.setBorderWidth(l); 
laptopOgrid.setCellPadding(2); 
laptopOgrid.setStyleName ("dgrp-Stat-Table"); 
//laptopOgrid.setHTML(0, 0, "# Packets"); 
//laptopOgrid.setHTMLd, 0, "# Data Bytes"); 
//laptopOgrid.setHTML(0, 1, "0"); 
//laptopOgrid. setHTMLd, 1, "0") ; 
laptoplDock = new DockPanel (); 
laptoplIPAddrLabel = new Label(); 
laptoplIPAddrLabel.setHorizontalAlignment(Label.ALIGN_CEN 

TER) ; 
laptoplgrid = new Grid(2, 2); 
laptoplgrid.setVisible(false); 
//laptoplgrid.setBorderWidth(l); 
laptoplgrid.setCellPadding(2); 
laptoplgrid.setStyleName("dgrp-Stat-Table"); 
//laptoplgrid.setHTML(0, 0, "# Packets"); 
//laptoplgrid. setHTMLd, 0, "# Data Bytes"); 
//laptoplgrid.setHTML(0, 1, "0"); 
//laptoplgrid.setHTML(l, 1, "0") ; 
laptop2Dock = new DockPanel(); 
laptop2IPAddrLabel = new Label(); 
laptop2IPAddrLabel.setHorizontalAlignment(Label.ALIGN__CEN 

TER) ; 
laptop2grid = new Grid(2, 2); 
laptop2grid.setVisible(false); 
//laptop2grid.setBorderWidth(l); 
laptop2grid.setCellPadding(2); 
laptop2grid.setStyleName("dgrp-Stat-Table"); 
//laptop2grid.setHTML(0, 0, "# Packets"); 
//laptop2grid. setHTMLd, 0, "# Data Bytes"); 
//laptop2grid.setHTML(0, 1, "0"); 
//laptop2gr id. setHTMLd, 1, "0"); 
laptop3Dock = new DockPanel(); 
laptop3IPAddrLabel = new Label(); 
laptop3IPAddrLabel.setHorizontalAlignment(Label.ALIGN_CEN 

TER) ; 
laptop3grid = new Grid(2, 2); 
laptop3grid.setVisible(false); 
//laptop3grid.setBorderWidth(l); 
laptop3grid.setCellPadding(2); 
laptop3grid.setStyleName("dgrp-Stat-Table"); 
//laptop3grid.setHTML(0, 0, "# Packets"); 
//laptop3grid. setHTMLd, 0, "# Data Bytes"); 
//laptop3grid.setHTML(0, 1, "0"); 
//laptop3grid.setHTML(1, 1, "0"); 
ispPanel = new HorizontalPanel(); 
routerPanel = new HorizontalPanel(); 
laptopPanel = new HorizontalPanel(); 
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laptopPanel.setHeight("150px"); 

ispPanel.setHeight("100px"); 
wirelessDock.setWidth("500px"); 
routerStatsDock.setWidth("500px"); 
laptopODock.setWidth("300px"); 
laptopODock.setHeight("100%"); 
laptoplDock.setWidth("300px"); 
laptoplDock.setHeight("100%"); 
laptop2Dock.setWidth("300px"); 
laptop2Dock.setHeight("100%") ; 
laptop3Dock.setWidth("300px"); 
laptop3Dpck.setHeight("100%"); 

dock.setWidth("100%"); 
dock.setHeight("100%"); 
dock.setHorizontalAlignment(DockPanel.ALIGN_CENTER); 

routerStatsDock.add(routerStats, DockPanel.CENTER); 
wirelessDock.add(wireless, DockPanel.CENTER); 
routerPanel.add(routerStatsDock); 
routerPanel.add(router); 
routerPanel.setCellVerticalAlignment(router, 

HorizontalPanel.ALIGN_BOTTOM); 
routerPanel.add(wirelessDock); 

pipePanel.add(laptopOPipe); 
pipePanel.setCellWidth(laptopOPipe, "475px"); 
pipePanel.setCellHorizontalAlignment(laptopOPipe, 

HorizontalPanel.ALIGN_CENTER); 
pipePanel.add(laptoplPipe); 
pipePanel.setCellWidth(laptoplPipe, "125px"); 
pipePanel.setCellHorizontalAlignment(laptoplPipe, 

HorizontalPanel.ALIGN_CENTER); 
pipePanel.add(laptop2Pipe); 
pipePanel.setCellWidth(laptop2Pipe, "125px"); 
pipePanel.setCellHorizontalAlignment(laptop2Pipe, 

HorizontalPanel.ALIGN_CENTER); 
pipePanel.add(laptop3Pipe); 
pipePanel.setCellWidth(laptop3Pipe, "475px"); 
pipePanel.setCellHorizontalAlignment(laptop3Pipe, 

HorizontalPanel.ALIGN_CENTER); 

laptopODock.add(laptopOIPAddrLabel, DockPanel.SOUTH); 
laptopODock.add(laptopOgrid, DockPanel.WEST); 
laptopODock.add(laptopO, DockPanel.CENTER); 
laptopODock.setCellHorizontalAlignment(laptopO, 

DockPanel.ALIGN_CENTER); 
laptoplDock.add(laptoplIPAddrLabel, DockPanel.SOUTH); 
laptoplDock.add(laptoplgrid, DockPanel.WEST); 
laptoplDock.add(laptopl, DockPanel.CENTER); 
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laptoplDock.setCellHorizontalAlignment(laptopl, 
DockPanel.ALIGN_CENTER); 

laptop2Dock.add(laptop2IPAddrLabel, DockPanel.SOUTH); 
laptop2Dock.add(laptop2grid, DockPanel.WEST); 
laptop2Dock.add(laptop2, DockPanel.CENTER); 
laptop2Dock.setCellHorizontalAlignment(laptop2, 

DockPanel.ALIGN_CENTER); 
laptop3Dock.add(laptop3IPAddrLabel, DockPanel.SOUTH); 
laptop3Dock.add(laptop3grid, DockPanel.WEST); 
laptop3Dock.add(laptop3, DockPanel.CENTER); 
laptop3Dock.setCellHorizontalAlignment(laptop3, 

DockPanel.ALIGN_CENTER); 

laptopPanel.add(laptopODock); 
laptopPanel.add(laptoplDock); 
laptopPanel.add(laptop2Dock); 
laptopPanel.add(laptop3Dock); 

dock.add(ispPanel, DockPanel.NORTH); 
dock.add(routerPanel, DockPanel.NORTH); 
dock.add(pipePanel, DockPanel.NORTH); 
dock.adddaptopPanel, DockPanel.NORTH) ; 
dock.setCellWidth(ispPanel, "100%"); 
dock.setCellWidth(routerPanel, "100%"); 
dock.setCellWidth(pipePanel, "100%"); 
dock.setCellWidth(laptopPanel, "100%"); 

initWidget(dock); 

public void hideWireless() { 
wireless.setUrl("images/placeholder.png"); 
wireless.setWidth("384px"); 
wireless.setHeight("231px"); 
wireless.setStyleName("dgrp-Images-Wireless"); 

public void showWireless() { 
wireless.setUrl("images/wireless_cloud.png"); 
wireless.setWidth("384px"); 
wireless.setHeight("231px"); 
wireless.setStyleName("dgrp-Images-Wireless"); 

public boolean isWirelessVisible() { 
if (wireless.getUrl().endsWith("placeholder.png")) { 

return false; 
} 
else { 

return true; 
} 
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} 

public void hideRouterStats() { 
routerStats.setUrl("images/placeholder.png"); 
routerStats.setWidth("255px"); 
routerStats.setHeight("275px"); 
routerStats.setStyleName("dgrp-Images-RouterStats"); 

} 

public void showRouterStats () { 
routerStats.setUrl("images/placeholder_for__router_stats.p 

ng"); 
routerStats.setWidth("255px"); 
routerStats.setHeight("275px"); 
routerStats.setStyleName("dgrp-Images-RouterStats"); 

public boolean isRouterStatsVisible() { 
if (routerStats.getUrl().endsWith("placeholder.png")) { 

return false; 
} 
else { 

return true; 
} 

public void hideIPv4PacketsSentAndRcvd() { 
isIPv4PacketsSentAndRcvdVisible = false; 

} 
public void showIPv4PacketsSentAndRcvd() { 

isIPv4PacketsSentAndRcvdVisible = true; 
} 
public boolean isIPv4PacketsSentAndRcvdVisible() { 

return isIPv4PacketsSentAndRcvdVisible; 
} 

public void hideIPv4BytesSentAndRcvd() { 
isIPv4BytesSentAndRcvdVisible = false; 

} 
public void showIPv4BytesSentAndRcvd() { 

isIPv4BytesSentAndRcvdVisible = true; 
} 
public boolean isIPv4BytesSentAndRcvdVisible() { 

return isIPv4BytesSentAndRcvdVisible; 
} 

public void hideLaptop(int position) { 
switch (position) { 

case 0: 
laptopO.setUrl("images/placeholder.png"); 
laptopO.setWidth("131px"); 
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laptop0.setHeight("104px"); 
laptopO.setStyleName("dgrp-Images-Image"); 
laptopOgrid.setVisible(false); 
break; 

case 1: 
laptopl.setUrl("images/placeholder.png"); 
laptopl.setWidth("131px"); 
laptopl.setHeight("104px"); 
laptopl.setStyleName("dgrp-Images-Image"); 
laptoplgrid.setVisible(false); 
break; 

case 2: 
laptop2.setUrl("images/placeholder.png"); 
laptop2.setWidth("131px"); 
laptop2.setHeight("104px"); 
laptop2.setStyleName("dgrp-Images-Image"); 
laptop2grid.setVisible(false); 
break; 

case 3: 
laptop3.setUrl("images/placeholder.png"); 
laptop3.setWidth("131px"); 
laptop3.setHeight("104px"); 
laptop3.setStyleName("dgrp-Images-Image"); 
laptop3grid.setVisible(false); 
break; 

default: 
break; //ignore others for now 

) 
} 

public void showLaptop(int position) { 
switch (position) { 

case 0: 
laptopO.setUrl("images/laptop.png"); 
laptop0.setWidth("131px"); 
laptopO.setHeight("104px"); 
laptopO.setStyleName("dgrp-Images-Image"); 
laptopOgrid.setVisible(true); 
laptopOgrid.setHTML(0, 1, " " ) ; 
laptopOgrid.setHTML(l, 1, " " ) ; 
break; 

case 1: 
laptopl.setUrl("images/laptop.png"); 
laptopl.setWidth("131px"); 
laptopl.setHeight ("104px"); 
laptopl.setStyleName("dgrp-Images-Image"); 
laptoplgrid.setVisible(true); 
laptoplgrid.setHTML(0, 1, " " ) ; 
laptoplgrid.setHTMLd, 1, "") ; 
break; 
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laptop2.setUrl("images/laptop.png"); 
laptop2.setWidth("131px"); 
laptop2.setHeight("104px"); 
laptop2.setStyleName("dgrp-Images-Image"); 
laptop2grid.setVisible(true); 
laptop2grid.setHTML(0, 1, " " ) ; 
laptop2grid.setHTML(l, 1, " " ) ; 
break; 

case 3: 
laptop3.setUrl("images/laptop.png"); 
laptop3.setWidth("131px"); 
laptop3.setHeight("104px"); 
laptop3.setStyleName("dgrp-Images-Image"); 
laptop3grid.setVisible(true); 
laptop3grid.setHTML(0, 1, " " ) ; 
laptop3grid.setHTML(l, 1, " " ) ; 
break; 

default: 
break; //ignore others for now 

} 
} 

public boolean isLaptopVisible(int position) { 
switch (position) { 

case 0: 
if (laptopO.getUrl().endsWith("placeholder.png")) 

return false; 
} 
break; 

case 1: 
if (laptopl.getUrl().endsWith("placeholder.png")) 

return false; 
} 
break; 

case 2: 
if (laptop2.getUrl().endsWith("placeholder.png")) 

return false; 
} 
break; 

case 3: 
if (laptop3.getUrl().endsWith("placeholder.png")) 

return false; 
} 
break; 

default: 
break; //ignore others for now 

165 



return true; 
} 

public void showLaptopPipe(int position, String bwUsage) { 
switch (position) { 

case 0: 
if (bwUsage.equals("low")) { 

laptopOPipe.setUrl("images/laptopO_pipe_small 
•png") 

m.png"); 

.png"); 

ng") 

LaptopOPipe"); 
break; 

} 
else if (bwUsage.equals("medium")) { 

laptopOPipe.setUrl("images/laptopO_pipe_mediu 

} 
else if (bwUsage.equals("high")) { 

laptopOPipe.setUrl("images/laptopO_pipe_large 

} 
else if (bwUsage.equals("blocked")) { 

laptopOPipe.setUrl("images/laptopO_pipe_red.p 

} 
laptopOPipe.setWidth("37lpx"); 
laptopOPipe.setHeight("54px"); 
laptopOPipe.setStyleName("dgrp-Images-

•png"); 

m.png"); 

•png"); 

ng"); 

LaptoplPipe"); 
break; 

case 2: 

case 1: 
if (bwUsage.equals ("low")) { 

laptopiPipe.setUrl("images/laptopl_pipe_small 

} 
else if (bwUsage.equals("medium")) { 

laptoplPipe.setUrl("images/laptopl_pipe_mediu 

} 
else if (bwUsage.equals("high")) { 

laptoplPipe.setUrl("images/laptopl_pipe_large 

} 
else if (bwUsage.equals("blocked")) { 

laptoplPipe.setUrl("images/laptopl_pipe_red.p 

} 
laptoplPipe.setWidth("102px"); 
laptoplPipe.setHeight("54px"); 
laptoplPipe.setStyleName("dgrp-Images-
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if (bwUsage.equals("low")) { 
laptop2Pipe.setUrl("images/laptop2_pipe_small 

.png"); 
} 
else if (bwUsage.equals("medium")) { 

laptop2Pipe.setUrl("images/laptop2_pipe_mediu 
m.png"); 

} 
else if (bwUsage.equals("high")) { 

laptop2Pipe.setUrl("images/laptop2_pipe_large 
.png"); 

} 
else if (bwUsage.equals("blocked")) { 

laptop2Pipe.setUrl("images/laptop2_pipe_red.p 
ng"); 

} 
laptop2Pipe.setWidth("102px"); 
laptop2Pipe.setHeight("54px") ; 
laptop2Pipe.setStyleName("dgrp-Images-

Laptop2Pipe"); 
break; 

case 3: 
if (bwUsage.equals("low")) { 

laptop3Pipe.setUrl("images/laptop3_pipe_small 
.png"); 

} 
else if (bwUsage.equals("medium")) { 

laptop3Pipe.setUrl("images/laptop3_pipe_mediu 
m.png"); 

} 
else if (bwUsage.equals("high")) { 

laptop3Pipe.setUrl("images/laptop3_pipe_large 
.png"); 

} 
else if (bwUsage.equals("blocked")) { 

laptop3Pipe.setUrl("images/laptop3_pipe_red.p 
ng"); 

} 
laptop3Pipe.setWidth("371px"); 
laptop3Pipe.setHeight("54px"); 
laptop3Pipe.setStyleName("dgrp-Images-

Laptop3Pipe"); 
break; 

default: 
break; 

} 
} 
public void hideLaptopPipe(int position) { 

switch (position) { 
case 0: 
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laptopO.setUrl("images/placeholder.png"); 
laptop0.setWidth("131px"); 
laptopO.setHeight("104px"); 
laptopO.setStyleName("dgrp-Images-Image"); 
break; 

case 1: 
laptopl.setUrl("images/placeholder.png"); 
laptopl.setWidth("131px"); 
laptopl.setHeight("104px"); 
laptopl.setStyleName("dgrp-Images-Image"); 
break; 

case 2: 
laptop2.setUrl("images/placeholder.png"); 
laptop2.setWidth("131px"); 
laptop2.setHeight("104px"); 
laptop2.setStyleName("dgrp-Images-Image"); 
break; 

case 3: 
laptop3.setUrl("images/placeholder.png"); 
laptop3.setWidth("131px"); 
laptop3.setHeight("104px"); 
laptop3.setStyleName("dgrp-Images-Image"); 
break; 

default: 
break; //ignore for now 

} 

public void setLaptopIPAddrLabel(int position, String text) { 
switch (position) { 

case 0: 
laptopOIPAddrLabel.setText(text); 
break; 

case 1: 
laptoplIPAddrLabel.setText(text); 
break; 

case 2: 
laptop2IPAddrLabel.setText(text); 
break; 

case 3: 
laptop3IPAddrLabel.setText(text); 
break; 

default: 
break; 

} 
} 

public void setLaptopStatValue(int position, int stat, String 
value) { 

String label = "", valueUsed = ""; 
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switch (stat) { 
case NUM_PACKETS: 

if (isIPv4PacketsSentAndRcvdVisible) { 
label = NUM_PACKETS_LABEL; 
valueUsed = value; 

} 
break; 

case NUM_DATA_BYTES: 
if (isIPv4BytesSentAndRcvdVisible) { 

label = NUM_DATA_BYTES_LABEL; 
valueUsed = value; 

} 
break; 

default: //ignore; invalid statistic 
break; 

} 

switch (position) { 
case 0: 

if (stat == NUM_PACKETS) { 
laptopOgrid.setHTML(0, 0, label); 
laptopOgrid.setHTML(0, 1, valueUsed); 

) else if (stat == NUM_DATA_BYTES) { 
laptopOgrid.setHTML(1, 0, label); 
laptopOgrid.setHTML(1, 1, valueUsed); 

} else { 
//ignore for now; invalid statistic 

} 
break; 

case 1: 
if (stat == NUM_PACKETS) { 

laptoplgrid.setHTML(0, 0, label); 
laptoplgrid.setHTML(0, 1, valueUsed); 

} else if (stat == NUM_DATA_BYTES) { 
laptoplgrid.setHTML(1, 0, label); 
laptoplgrid.setHTML(1, 1, valueUsed); 

} else { 
//ignore for now; invalid statistic 

} 
break; 

case 2: 
if (stat == NUM_PACKETS) { 

laptop2grid.setHTML(0, 0, label); 
laptop2grid.setHTML(0, 1, valueUsed); 

} else if (stat == NUM_DATA__BYTES) { 
laptop2grid.setHTML(1, 0, label); 
laptop2grid.setHTML(1, 1, valueUsed); 

) else { 
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//ignore for now; invalid statistic 
} 
break; 

case 3: 
if (Stat == NUM_PACKETS) { 

laptop3grid.setHTML(0, 0, label); 
laptop3grid.setHTML(0, 1, valueUsed); 

} else if (stat == NUM_DATA_BYTES) { 
laptop3grid.setHTML(l, 0, label); 
laptop3grid.setHTML(1, 1, valueUsed); 

} else { 
//ignore for now; invalid statistic 

} 
break; 

default: //ignore for now; invalid position 
break; 

} 

void showAllGraphics() { 
showWireless(); 
showLaptop(0); 
showLaptop(1); 
showLaptop(2); 
showLaptop(3); 
showLaptopPipe(0, "small") 
showLaptopPipe(1, "small") 
showLaptopPipe(2, "small") 
showLaptopPipe(3, "smal1") 
setLaptopIPAddrLabel(0, "IP 
setLaptopIPAddrLabel(1, "IP 
setLaptopIPAddrLabel(2, "IP 
setLaptopIPAddrLabel(3, "IP 

Address 
Address 
Address 
Address 

Placeholder") 
Placeholder") 
Placeholder") 
Placeholder") 

Settings.Java 

package org.dgrp.client; 

import com.google.gwt.user.client.ui.HTML; 

/** 
* Settings page. 
*/ 

public class Settings extends Sidebarltem { 
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public static Sidebarltemlnfo init() { 
return new Sidebarltemlnfo("Settings", "System Settings...") { 
public Sidebarltem createlnstance() { 

return new Settings(); 
} 

}; 
} 

public Settings() { 
initWidget(new HTML( 

"<div class='dgrp-About-Prose'>" + 
"This is a placeholder for the future implementation of 

system settings." + 
"<br><br>Examples of settings that may be included:" + 
"<ul>" + 
"<li>Interface IP Addresses</li>" + 
"<li>Interface Netmasks</li>" + 
"<li>Interfaces Enabled or Disabled</li>" + 
"<li>Default Gateways (Routers)</li>" + 
"<li>DNS settings</li>" + 
"<li>Quagga routing protocol</li>" + 
"<li>Quagga packet filtering</li>" + 
"<li>Tunable DGRP Settings</li>" + 
"</ul>" + 
"</div>", 
true)); 

} 

public void onShow() { 
} 

} 

Sidebar.java 

package org.dgrp.client; 

import org.dgrp.client.Sidebarltem.Sidebarltemlnfo; 
import com.google.gwt.user.client.ui.Composite; 
import com.google.gwt.user.client.ui.Hyperlink; 
import com.google.gwt.user.client.ui.VerticalPanel; 

import java.util.ArrayList; 

/** 

* The left panel that contains all of the sidebar items along 
with a short 
* description of each. 
*/ 
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public class Sidebar extends Composite { 

private VerticalPanel list = new VerticalPanel(); 
private ArrayList items = new ArrayList(); 
private int selectedltem = -1; 

public Sidebar() { 
initWidget(list); 
setStyleName("dgrp-Sidebar-List"); 

} 

public void addltem(final Sidebarltemlnfo info) { 
String name = info.getName(); 
Hyperlink link = new Hyperlink(name, name); 
link.setStyleName("dgrp-Sidebar-Item"); 

list.add(link); 
items.add(info); 

public Sidebarltemlnfo find(String sidebarltemName) { 
for (int i = 0; i < items.size(); ++i) { 
Sidebarltemlnfo info = (Sidebarltemlnfo) items.get (i); 
if (info.getName().equals(sidebarltemName)) { 
return info; 

} 
} 

return null; 

public void setltemSelection(String name) { 
if (selectedltem != -1) { 
list.getWidget(selectedltem).removeStyleName("dgrp-Sidebar-

Item-Selected"); 
} 

for (int i = 0; i < items.size(); ++i) { 
Sidebarltemlnfo info = (Sidebarltemlnfo) items.get(i); 
if (info.getName().equals(name)) { 
selectedltem = i; 
list.getWidget(selectedltem).addStyleName("dgrp-Sidebar-

Item-Selected"); 
return; 

} 
} 

} 
) 
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Sidebarltem.java 

package org.dgrp.client; 

import com.google.gwt.user.client.ui.Composite; 

/** 

* A 'Sidebarltem' is a single panel of the application. They are 
meant to be 
* lazily instantiated so that the application doesn't pay for 

all of them 
* on startup. 
*/ 

public abstract class Sidebarltem extends Composite { 

/** 

* Encapsulated information about an item. Each item is 
expected to have 

* a static init() method that will be called at startup. 
*/ 

public abstract static class Sidebarltemlnfo { 
private Sidebarltem instance; 
private String name, description; 

public Sidebarltemlnfo(String name, String desc) { 
this.name = name; 
description = desc; 

} 

public abstract Sidebarltem createlnstance() ; 

public String getDescription() { 
return description; 

} 

public final Sidebarltem getlnstance() { 
if (instance != null) { 
return instance; 

} 
return (instance = createlnstance()); 

} 

public String getName() { 
return name; 

} 

* Called just before this item is hidden. 
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*/ 
public void onHideO { 
} 

/** 

* Called just after this item is shown. 
*/ 

public void onShow() { 
} 

} 

Topologylnfo.java 

package org.dgrp.client; 

* 

* Sauthor chrisne 
*/ 

public class Topologylnfo { 

private int maxNodes; 
String[] nodeAddresses; 

public Topologylnfo (int maxNodes) { 
this.maxNodes = maxNodes; 
nodeAddresses = new String[maxNodes]; 

} 

public int getMaxNodes() { 
return maxNodes; 

} 

public String getAddress(int position) { 
return nodeAddresses[position]; 

} 
public void setAddress(int position, String address) throws 

Exception { 
try { //excpect exception if address is new to the list 

int tempPosition = findPosition(address); 
if (position == tempPosition) { //this is OK 

nodeAddresses[position] = address; 
} 
else { 

throw new Exception("ERROR: Cannot add the same 
address again."); 

} 
} 
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catch (Exception e) { 
if (e.getMessage().equals("ERROR: Address not 

found.")) { //expected 
nodeAddresses[position] = address; 

} 
else { //do not catch exceptions we did not expect 

throw e; 
} 

} 

} 
public int findPosition(String address) throws Exception { 

for (int i=0; KnodeAddresses .length; i++) { 
if (nodeAddresses[i].equals(address) ) { 

return i; 
} 

} 
throw new Exception("ERROR: Address not found."); 

} 

Version.java 

package org.dgrp.client; 

import com.google.gwt.user.client.ui.HTML; 
import com.google.gwt.core.client.GWT; 
import com.google.gwt.user.client.rpc.AsyncCallback; 
import com.google.gwt.user.client.rpc.ServiceDefTarget; 

* Version page. 
*/ 

public class Version extends Sidebarltem { 

private HTML verlnfo = new HTML( 
"<div class='dgrp-About-Prose'>" + 
"Retrieving version information from the server..." + 
"</div>", 
true); 

public static Sidebarltemlnfo init() { 
return new Sidebarltemlnfo("Version Info", 

"Version Information for the DTrace Graphical Router 
Project...") { 

public Sidebarltem createlnstance() { 
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return new Version(); 
} 

}; 
} 

public Version() { 

initWidget(verlnfo); 

// Create an asynchronous callback to handle the result, 
final AsyncCallback callback = new AsyncCallbacM) { 

public void onSuccess(Object result) { 

VersionContents verResults = (VersionContents) result; 

verlnfo.setHTML( 
"<div class='dgrp-About-Prose'>" + 
"<table>" + 

//This software info 
" < t r x t h colspan=\"4\" 

bgco lo r= \ "b lack \ "x fon t " + 
"color=\"white\">DTrace Graphical Router 

P ro jec t : " + 
" < / f o n t > < / t h x / t r > " + 
" < t r x t d w id th= \ "10 \ "x / t dx td>Ver s ion :< / td>" 

+ 
"<td wid th= \"10 \ "x / td>" + 
"<td>" + verResults.dgrpVersion + 

" < t r x t d width=\"10\"></td><td>Build 

"<td wid th= \"10 \"x / td>" + 
"<td>" + verResults.dgrpBuildNumber + 

" < t r x t d w i d t h = \ " 1 0 \ " x / t d x t d > B u i l d 

"<td wid th= \"10 \"x / td>" + 
verResul t s . dgrpBuildDate + " < / t d x / t r > " + 

" < t r x t d wid th=\"10 \"x / tdXtd>Author :< / td>" + 
"<td wid th= \"10 \"x / td>" + 
"<td>" + verResul ts . dgrpAuthor + " < / t d x / t r > " 

"<tr h e i g h t = \ " 1 0 \ " x t d 
c o l s p a n = \ " 3 \ " X / t d X / t r > " + 

/ / S o l a r i s Info 
" < t r x t h colspan=\"4\" 

bgco lo r= \ "b lack \ "x fon t " + 
" c o l o r = \ " w h i t e \ " > O p e n S o l a r i s : < / f o n t x / t h x / t r 

" < / t d x / t r > " + 

Number:</td>" + 

" < / t d x / t r > " + 

Date:</td>" + 
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>" + 
" < t r x t d wid th= \"10 \ "X/ tdx td>Vers ion :< / td>" 

+ 
"<td wid th= \ "10 \ "x / td>" + 
"<td>" + ve rResu l t s . so la r i sRe lease + " < / t d x / 

t r>" + 
" < t r x t d 

w i d t h = \ " 1 0 \ " x / t d x t d > A r c h i t e c t u r e : < / t d > " + 
"<td wid th= \ "10 \ "x / td>" + 
"<td>" + verResul t s . so la r i sArch + 

" < / t d x / t r > " + 
" < t r x t d w i d t h = \ " 1 0 \ " x / t d x t d > I n s t a l l 

Date:</td>" + 
"<td wid th= \ "10 \ "x / td>" + 
"<td>" + verResults.solarisInstallDate + 

"</td></tr>" + 
"<tr><td wid th= \ "10 \ "X/ tdx td>Cur ren t 

Uptime:</td>" + 
"<td wid th= \ "10 \ "x / td>" + 
"<td>" + verResul ts .solar isUpt ime + 

" < / t d x / t r > " + 

"<tr h e i g h t = \ " 1 0 \ " x t d 
c o l s p a n = \ " 3 \ " x / t d x / t r > " + 

//Quagga info 
" < t r x t h colspan=\"4\" 

bgco lo r= \ "b lack \ "x fon t " + 
"co lo r= \ "wh i t e \ ">Quagga :< / fon tx / thx / t r>" + 
" < t r x t d width=\" 10\"></ tdxtd>Vers ion:</ td>" 

+ 
"<td width=\"10\"X/ td>" + 
"<td>" + verResults.quaggaVersion + 

" < / t d x / t r > " + 
" < t r x t d w i d t h = \ " 1 0 \ " x / t d x t d > I n s t a l l 

Date:</td>" + 
"<td wid th= \ "10 \ "x / td>" + 
"<td>" + verResults.quaggalnsDate + 

" < / t d x / t r > " + 

"<tr he igh t= \ "10 \ "Xtd 
c o l s p a n = \ " 3 \ " x / t d x / t r > " + 

/ / Java info 
" < t r x t h colspan=\"4\" 

bgco lo r= \ "b lack \ "x fon t " + 
"color=\ "white\ "> Java: </f o n t x / t h x / t r > " + 
"<tr><td w id th= \ "10 \ "x / t dx td>Ver s ion :< / td>" 

+ 
"<td width=\"10\"x/td>" + 
"<td>" + verResults.javaVersion + 
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" < / t d x / t r > " + 
" < t r x t d wid th= \"10 \"x / tdx td>Vendor :< / td>" + 
"<td width=\"10\"X/ td>" + 
"<td>" + verResul t s . javaVendor + " < / t d x / t r > " 

+ 
" < t r x t d w i d t h = \ " 1 0 \ " x / t d x t d > V i r t u a l 

Machine (VM):</td>" + 
"<td wid th= \ "10 \ "x / td>" + 
"<td>" + verResul t s . javaVMName + " < / t d x / t r > " 

+ 
" < t r x t d width=\"10\"x/ tdxtd>VM 

Version:</td>" + 
"<td width=\"10\"X/ td>" + 
"<td>" + verResults.javaVMVersion + 

" < / t d x / t r > " + 
" < t r x t d width=\"10\"x/ tdxtd>VM 

Vendor:</td>" + 
"<td wid th= \ "10 \ "x / td>" + 
"<td>" + verResults.javaVMVendor + 

" < / t d x / t r > " + 

"<tr he igh t= \ "10 \ "Xtd 
c o l s p a n = \ " 3 \ " X / t d x / t r > " + 

//Web-Server info 
" < t r x t h colspan=\"4\" 

bgcolor=\"b lack\"Xfont " + 
"color=\"white\">Apache/Tomcat Web 

Server : < f o n t x / t h x / t r > " + 
" < t r x t d wid th=\"10 \"x / tdx td>Apache :< / td>" + 
"<td wid th= \"10 \"x / td>" + 
"<td>" + verResults.apacheVersion + 

" < / t d x / t r > " + 
" < t r x t d wid th=\"10 \"x / tdx td>Tomcat :< / td>" + 
"<td width=\"10\"X/ td>" + 
"<td>" + verResults. tomcatVersion + 

" < / t d x / t r > " + 

"<tr h e i g h t = \ " 1 0 \ " x t d 
c o l s p a n = \ " 3 \ " x / t d x / t r > " + 

//Browser info 
" < t r x t h colspan=\"4\" 

bgcolor=\"b lack\"Xfont " + 
" co lo r= \ "wh i t e \ ">Browse r :< / fon tx / t hx / t r>" + 
"<tr><td wid th= \ "10 \ "x / tdx td>Vers ion :< / td>" 

+ 
"<td width=\"10\"X/ td>" + 
"<td>" + getBrowserlnfoO + " < / t d x / t r > " + 

"</table>" + 
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"</div>" 
); 

} 

public void onFailure(Throwable caught) { 
verInfo.setHTML( 

"<div class='dgrp-About-Prose'>" + 
"Failed to retrieve version information from 

the server." + 
"</div>" 
); 

} 
}; 

// Make remote call. Control flow will continue immediately 
and later 

// 'callback' will be invoked when the RPC completes. 
getService().getVersionlnfo(callback); 

} 

public static GetVersionlnfoAsync getService (){ 
// Create the client proxy. Note that although you are 

creating the 
// service interface proper, you cast the result to the 

asynchronous 
// version of 
// the interface. The cast is always safe because the 

generated proxy 
// implements the asynchronous interface automatically. 
GetVersionlnfoAsync service = (GetVersionlnfoAsync) 

GWT.create(GetVersionlnfo.class); 
// Specify the URL at which our service implementation is 

running. 
// Note that the target URL must reside on the same 

domain and port from 
// which the host page was served. 
// 
ServiceDefTarget endpoint = (ServiceDefTarget) service; 
String moduleRelativeURL = GWT.getModuleBaseURL() + 

"getversioninfo"; 
endpoint.setServiceEntryPoint(moduleRelativeURL); 
return service; 

} 

public static native String getBrowserlnfo() /*-{ 
return $wnd.navigator.userAgent; 

}-*/; 

public void onShow() { 
} 

} 
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VersionContents.java 

package org.dgrp.client; 

import Java.io.Serializable; 

/' 

* Qauthor Christopher Nelson 
*/ 

public class VersionContents implements Serializable { 

//Solaris info 
public String solarisRelease; 

release 
public String solarisInstallDate; 
public String solarisArch; 
public String solarisUptime; 

//Quagga info 
public String quaggaVersion; 
public String quaggalnsDate; 

//This software info 
public String dgrpBuildNumber; 

appinfo.properties 
public String dgrpAuthor; 

appinfo.properties 
public String dgrpBuildDate; 

appinfo.properties 
public String dgrpVersion; 

appinfo.properties 
public String dgrpDescription; 

appinfo.properties 

//Java info 
public String javaVersion; 
public String javaVendor; 
public String javaVMName; 
public String javaVMVersion; 
public String javaVMVendor; 

//first line of /etc/ 

//from SUNWcsr 
//os.arch 
//uptime 

//from SUNWquaggar 
//from SUNWquaggar 

//from 

//from 

//from 

//from 

//from 

//Java.version 
//java.vendor 
/ / j ava.vm.name 
//j ava.vm.version 
//j ava.vm.vendor 

//Browser info 
public String browserlnfo; 

//Web-Server info 
public String tomcatVersion; 

//determined on client 

//from SUNWtcatr 
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public String apacheVersion; //from SUNWapchr 
} 

Welcome.java 

package org.dgrp.client; 

import com.google.gwt.user.client.ui.VerticalPanel; 
import com.google.gwt.user.client.ui.HTMLPanel; 

public class Welcome extends Sidebarltem { 

public static Sidebarltemlnfo init() { 
return new Sidebarltemlnfo("Welcome", 

"Welcome to the DTrace Graphical Router Project...") { 
public Sidebarltem createlnstance() { 

return new Welcome(); 
} 

}; 
} 

public Welcome() { 
HTMLPanel welcomeHTML = new HTMLPanel( 

"<h3>Welcome to the DTrace Graphical Router 
Project</h3>" + 

"<p>Click a link to the left to continue...</p>" 
); 

VerticalPanel welcomePanel = new VerticalPanel (); 
welcomePanel.setSpacing(8) ; 
welcomePanel.setHorizontalAlignment(VerticalPanel.ALIGN_CENTE 

R); 
welcomePanel.setWidth("100%") ; 

welcomePanel.add(welcomeHTML); 
welcomePanel.setCellWidth(welcomeHTML, "100%"); 

initWidget(welcomePanel); 
} 

public void onShow() { 
} 

} 
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APPENDIX G. SOURCE CODE - PACKAGE org.dgrp.server 

The complete source code for the reference implementation of this framework is 

provided in this and other appendices to this document for the reader's easy reference. 

For the simplest viewing experience or to use the code without copying and pasting it 

into a new source file, the reader is encouraged to review the soft-copy files available on 

the CD-ROM included with this document. 

BandwidthMonitorlmpl.java 

package org.dgrp.server; 
import com.google.gwt.user.server.rpc.RemoteServiceServlet; 
import java.util.Random; 
import org.dgrp.client.Bandwidthlnfo; 
import org.dgrp.client.BandwidthMonitor; 
import org.dgrp.server.dtraceservices.*; 

/** 
* 

* @author chrisne 
*/ 

public class BandwidthMonitorlmpl extends RemoteServiceServlet 
implements 

BandwidthMonitor { 

private DTraceCountDataBytesService countDataBytesService; 
private DTraceCountPacketsService countPacketsService; 

public void startServiceCountPackets(String subnet) { 
DGRPLogger.log("Entering 

BandwidthMonitorlmpl.startServiceCountPackets()...\n"); 
countPacketsService = new DTraceCountPacketsService(); 
countPacketsService.startService(subnet); 

} 

public void stopServiceCountPackets() { 
DGRPLogger.log("Entering 

BandwidthMonitorlmpl.stopServiceCountPackets()...\n"); 

182 



countPacketsService.stopService(); 
} 

public void startServiceCountDataBytes(String subnet) { 
DGRPLogger.log("Entering 

BandwidthMonitorlmpl.StartServiceCountDataBytes()...\n"); 
countDataBytesService = new DTraceCountDataBytesService(); 
countDataBytesService.startService(subnet); 

} 

public void stopServiceCountDataBytes() { 
DGRPLogger.log("Entering 

BandwidthMonitorlmpl.StopServiceCountDataBytes()...\n"); 
countDataBytesService.stopService(); 

} 

public Bandwidthlnfo getBandwidthlnUse(String ipAddr) { 
DGRPLogger.log("Entering 

BandwidthMonitorlmpl.getBandwidthlnUse()...\n"); 
Bandwidthlnfo bwlnfo = new Bandwidthlnfo(ipAddr); 
DGRPLogger.log("Created bwlnfo...done\n"); 
DGRPLogger.log("Setting Total Packets Received From..."); 
bwlnfo.setTotalPacketsReceivedFrom(countPacketsService. 

getNumberPacketsByIP(ipAddr, 
countPacketsService.DIRECTION_RCVD)); 

DGRPLogger.log("done.\nSetting Total Packets Sent To..."); 
bwlnfo.setTotalPacketsSentTo(countPacketsService. 

getNumberPacketsByIP(ipAddr, 
countPacketsService.DIRECTION_SENT)); 

DGRPLogger.log("done.\nSetting Total Packets Received 
From and Sent To..."); 

bwlnfo.setTotalPacketsSentToAndReceivedFrom(countPacketsS 
ervice. 

getNumberPacketsByIP(ipAddr, 
countPacketsService.DIRECTION_TOTAL)); 

DGRPLogger.log("done.\nSetting Total Data Bytes Received 
From..."); 

bwlnfo.setTotalDataBytesReceivedFrom(countDataBytesServic 
e. 

getNumberDataBytesByIP(ipAddr, 
countDataBytesService.DIRECTION_RCVD)); 

DGRPLogger.log("done.\nSetting Total Data Bytes Sent 
To..."); 

bwlnfo.setTotalDataBytesSentTo(countDataBytesService. 
getNumberDataBytesByIP(ipAddr, 

countDataBytesService.DIRECTION_SENT)); 
DGRPLogger.log("done.\nSetting Total Data Bytes Received 

From and Sent To..."); 
bwlnfo.setTotalDataBytesSentToAndReceivedFrom(countDataBy 

tesService. 
getNumberDataBytesByIP(ipAddr, 
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countDataBytesService.DIRECTION_TOTAL)); 
DGRPLogger.log("done.\n"); 

//This is a fake for now... 
bwInfo.setBandwidthlnUse(1, 4); 

DGRPLogger.log("Returning from 
BandwidthMonitorlmpl.getBandwidthlnUse()\n") ; 

return bwlnfo; 
} 

public String[] getRefreshedlPs() { 
DGRPLogger.log("Entering 

BandwidthMonitorlmpl.getRefreshedlPs()...\n"); 
return countDataBytesService.getBusiestlPsByDataBytes(); 

} 

/*********************************************************** 
************* 

* The following methods exist for the purpose of 
demonstration and 

* testing and are not useful for the retrieval or display of 
real data. 

************************************************************ 
************/ 

public Bandwidthlnfo getRandomBandwidthlnUse(String ipAddr) { 
// Return a random bandwidth for testing/demo 
int maxBandwidth = 4 ; 
Random r = new Random(); 
int bandwidth = r.nextlnt(maxBandwidth) + 1; 

Bandwidthlnfo bwlnfo = new Bandwidthlnfo(ipAddr); 
bwlnfo.setBandwidthlnUse(bandwidth, maxBandwidth); 

return bwlnfo; 
} 

} 

DGRPLogger.java 

package org.dgrp.server; 

import java.io.*; 

/** 
* 

* Sauthor chrisne 
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* / 
public class DGRPLogger { 

private static String logfile = "/var/tmp/dgrplog.txt"; 

public static void log(String string) { 
try { 

BufferedWriter out = new BufferedWriter (new 
FileWriter(logfile, true)); 

out.write(string); 
out.close(); 

} catch (IOException e) { 
} 

} 
} 

GetVersionlnfoImpl.java 

package org.dgrp.server; 

import java.io.*; 
import java.util.*; 
import com.google.gwt.user.server.rpc.RemoteServiceServlet; 
import org.dgrp.client.GetVersionlnfo; 
import org.dgrp.client.VersionContents; 
import java.net.URL;; 

I -k-k 

•k 

* @author Christopher Nelson 
*/ 

public class GetVersionlnfoImpl extends RemoteServiceServlet 
implements 

GetVersionlnfo { 

public VersionContents getVersionlnfo() { 

DGRPLogger.log("Entering getVersionlnfo()...\n"); 

VersionContents ver = new VersionContents (); 

InputStream in = null; 
Properties props = new Properties(); 

try { 
in = 

getClass () .getResourceAsStream("/appinfo.properties"); 
props.load(in); 
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//Solaris info 
ver.solarisRelease = getSolarisRelease (); 
ver.solarisInstallDate = getSolarisInstallDate (); 
ver.solarisArch = System.getProperty("os.arch"); 
ver.solarisUptime = getSolarisUptime(); 

//Quagga info 
ver.quaggaVersion = getQuaggaVersion(); 
ver.quaggalnsDate = getQuaggalnstallDate(); 

//This software info 
ver.dgrpAuthor = props.getProperty("program.AUTHOR"); 
ver.dgrpBuildDate = 

props.getProperty("program.BUILDDATE"); 
ver.dgrpBuildNumber = 

props.getProperty("program.BUILDNUM"); 
ver.dgrpDescription = 

props.getProperty("program.DESCRIPTION"); 
ver.dgrpVersion = 

props.getProperty("program.VERSION"); 

//Java info 
ver.javaVMName = System.getProperty("Java.vm.name"); 
ver.javaVMVendor = 

System.getProperty("Java.vm.vendor"); 
ver.javaVMVersion = 

System.getProperty("java.vm.version"); 
ver.javaVendor = System.getProperty("Java.vendor"); 
ver.javaVersion = System.getProperty("Java.version"); 

//Browser info 
ver.browserlnfo = null; //determined client-side 

//Web-Server info 
ver.tomcatVersion = getTomcatVersion(); 
ver.apacheVersion = getApacheVersion (); 

in.close () ; 
} 
catch (IOException e) { 

e.printStackTrace(); 
} 

DGRPLogger.log("Returning from getVersionlnfo ().\n"); 
return ver; 

private String getSolarisRelease() { 
try { 

BufferedReader rel = new BufferedReader(new 
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FileReader( 
"/etc/release")); 

StringTokenizer st = new 
StringTokenizer(rel.readLine()); 

String solRel = ""; 
while (st.hasMoreTokens()) { 

solRel = solRel + st.nextToken() + " "; 
} 
return solRel; 

} 
catch (FileNotFoundException e) { 

return "<font color=\"red\"xi>Retrieval of this 
property is " + 

"only supported when running this software on 
" + 

"Solaris</iX/f ont>" ; 
} 
catch (IOException e) { 

re turn "<font co lo r= \ " r ed \ "Xi>Fa i l ed to r e t r i e v e " + 
" p r o p e r t y < / i x / f o n t > " ; 

} 
} 

private String getSolarisInstallDate() { 
try { 

String cmd = "pkginfo -1 SUNWcsr"; 
Process p = Runtime.getRuntime().exec(cmd); 
BufferedReader stdlnput = new BufferedReader(new 

InputStreamReader( 
p.getInputStream())); 

String curLine = stdlnput.readLine(); 

while (curLine != null) { 
StringTokenizer st = new StringTokenizer(curLine); 
if (st.nextToken().equals("INSTDATE:")) { 

return(st.nextToken() + " " + st.nextToken() 
+ " " + 

st.nextToken() + " " + 
st.nextToken ()); 

} 
curLine = stdlnput.readLine (); 

} 

re turn "<font co lo r= \ " red \ "Xi>Fa i l ed to r e t r i e v e " + 
" p r o p e r t y < / i x / f o n t > " ; 

} 
catch (IOException e) { 

return "<font color=\"red\"xi>Retrieval of this 
property is " + 

"only supported when running this software on 
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" + 
"Solaris</ix/f ont>" ; 

} 
catch (NoSuchElementException e) { 

return "<font color=\"red\"Xi>Failed to retrieve 
"property</ix/f ont>" ; 

} 
} 

private String getSolarisUptime() { 
try { 

String cmd = "uptime"; 
Process p = Runtime.getRuntime().exec(cmd); 
BufferedReader stdlnput = new BufferedReader(new 

InputStreamReader( 
p.getlnputstream())); 

StringTokenizer st = new 
StringTokenizer(stdlnput.readLine()); 

st.nextToken (); //skip the first 
st.nextToken(); //...and the second 
String days = st.nextToken(); 
st.nextToken(); //skip the fourth 
String hours = st.nextToken(","); 

//assumes more than one day 
return(days + " day(s) and " + hours + " hour(s)") 

} 
catch (IOException e) { 

re turn "<font c o l o r = \ " r e d \ " x i > R e t r i e v a l of t h i s 
property i s " + 

"only supported when running this software 
" + 

"Solaris</iX/font>"; 
} 
catch (NoSuchElementException e) { 

return "<font color=\"red\"xi>Failed to retrieve 
"property</ix/f ont>" ; 

} 
} 

private String getQuaggaVersion() { 
try { 

String cmd = "pkginfo -1 SUNWquaggar"; 
Process p = Runtime.getRuntime().exec(cmd); 
BufferedReader stdlnput = new BufferedReader(new 

InputStreamReader( 
p.getlnputStream() ) ) ; 

String curLine = stdlnput.readLine(); 
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while (curLine != null) { 
StringTokenizer st = new StringTokenizer (curLine); 
if (st.nextToken().equals("DESC:")) { 

return(st.nextToken() + " " + st.nextToken() 
+ " " + 

st.nextToken() + " " + 
st.nextToken()); 

} 
curLine = stdlnput.readLine(); 

} 

return "<font color=\"red\"Xi>Failed to retrieve " + 
"property</i></font>"; 

} 
catch (IOException e) { 

return "<font color=\"red\"xi>Retrieval of this 
property is " + 

"only supported when running this software on 
" + 

" Solar is</ix/font>" ; 
} 
catch (NoSuchElementException e) { 

return "<font color=\"red\"><i>Failed to retrieve " + 
"property</i></font>" ; 

} 
} 

private String getQuaggalnstallDate() { 
try { 

String cmd = "pkginfo -1 SUNWquaggar"; 
Process p = Runtime.getRuntime().exec(cmd); 
BufferedReader stdlnput = new BufferedReader(new 

InputStreamReader( 
p.getInputStream())); 

String curLine = stdlnput.readLine(); 

while (curLine != null) { 
StringTokenizer st = new StringTokenizer(curLine); 
if (st.nextToken().equals("INSTDATE:")) { 

return(st.nextToken() + " " + st.nextToken() 
+ " " + 

st.nextToken() + " " + 
st.nextToken()); 

} 
curLine = stdlnput.readLine(); 

} 

return "<font color=\"red\"Xi>Failed to retrieve " + 
"property</i></font>"; 

} 
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catch (IOException e) { 
return "<font color=\"red\"Xi>Retrieval of this 

property is " + 
"only supported when running this software on 

" + 
"Solaris</iX/font>"; 

} 
catch (NoSuchElementException e) { 

re turn "<font co lo r= \ " r ed \ "Xi>Fa i l ed to r e t r i e v e " + 
" p r o p e r t y < / i x / f o n t > " ; 

} 
} 

private String getTomcatVersion() { 
try { 

String cmd = "pkginfo -1 SUNWtcatr"; 
Process p = Runtime.getRuntime().exec(cmd); 
BufferedReader stdlnput = new BufferedReader(new 

InputStreamReader( 
p.getlnputStream())); 

String curLine = stdlnput.readLine(); 

while (curLine != null) { 
StringTokenizer st = new StringTokenizer(curLine); 
if (st.nextTokenO .equals ("DESC:") ) { 

return(st.nextToken() + " " + st.nextToken() 
+ " " + 

st.nextTokenO + " " + 
st.nextToken()); 

} 
curLine = stdlnput.readLine(); 

} 

return "<font color=\"red\"Xi>Failed to retrieve " + 
"property</ix/font>" ; 

} 
catch (IOException e) { 

return "<font color=\"red\"Xi>Retrieval of this 
property is " + 

"only supported when running this software on 
" + 

"Solaris</ix/font>"; 
} 
catch (NoSuchElementException e) { 

return "<font color=\"red\"xi>Failed to retrieve " + 
"property</i></font>"; 

} 
} 

private String getApacheVersion() { 
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try { 
String cmd = "pkginfo -1 SUNWapchr"; 
Process p = Runtime.getRuntime().exec(cmd); 
BufferedReader stdlnput = new BufferedReader(new 

InputStreamReader( 
p.getlnputStream())); 

String curLine = stdlnput.readLine(); 

while (curLine != null) { 
StringTokenizer st = new StringTokenizer(curLine); 
if (st.nextToken().equals("DESC:")) { 

return(st.nextToken() + " " + st.nextToken() 
+ " " + 

st.nextToken() + " " + st.nextToken() 
+ " " + 

st.nextToken() + " " + st.nextToken() 
+ " " + 

st.nextToken() + " " + 
st.nextToken()); 

} 
curLine = stdlnput.readLine() ; 

} 

return "<font color=\"red\"xi>Failed to retrieve " + 
"property</ix/font>" ; 

} 
catch (IOException e) { 

return "<font color=\"red\"xi>Retrieval of this 
property is " + 

"only supported when running this software on 
" + 

"Solaris</ix/font>"; 
} 
catch (NoSuchElementException e) { 

return "<font color=\"red\"Xi>Failed to retrieve " + 
"property</ix/font>"; 

} 
} 

} 
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APPENDIX H. SOURCE CODE - PACKAGE org.dgrp.server.dtraceservices 

The complete source code for the reference implementation of this framework is 

provided in this and other appendices to this document for the reader's easy reference. 

For the simplest viewing experience or to use the code without copying and pasting it 

into a new source file, the reader is encouraged to review the soft-copy files available on 

the CD-ROM included with this document. 

DTraceCountDataBytesService.java 

package org.dgrp.server.dtraceservices; 

import java.io.File; 
import java.net.URL; 
import java.util.*; 
import org.dgrp.server.DGRPLogger; 
import org.opensolaris.os.dtrace.*; 

/** 
* 

* @author chrisne 
*/ 

public class DTraceCountDataBytesService { 

public final int DIRECTION_SENT = 0; 
public final int DIRECTION_RCVD = 1; 
public final int DIRECTIONJTOTAL = 2; 

private URL url = DTraceCountDataBytesService.class. 
getResource("/org/dgrp/server/dtraceservices/count_da 

ta_bytes.d"); 

private Consumer consumer; 
private boolean isRunning = false; 

public void startService(String subnet) { 
try { 

DGRPLogger.log("Entering 
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DTraceCountDataBytesService.startServi.ee () . . .\n") ; 
File scriptFile = new File(url.toURI()); 
String macroArgs = new String(subnet); 
DGRPLogger.log("Creating DTrace consumer.\n"); 
consumer = new LocalConsumer(); 
DGRPLogger.log("Opening DTrace consumer.\n"); 
consumer.open(); 
DGRPLogger.log("Compiling DTrace script.\n"); 

consumer.compile(scriptFile, macroArgs); 
DGRPLogger.log("Enabling DTrace consumer.\n"); 

consumer.enable(); 
DGRPLogger.log("Starting DTrace consumer.\n"); 

consumer.go(); 
isRunning = true; 
DGRPLogger.log("Leaving 

DTraceCountDataBytesService.startService().\n"); 
} 
catch (Exception e) { 

e.printStackTrace(); 
} 

} 

public boolean isRunning() { 
return isRunning; 

} 

public void stopService () { 
consumer.stop(); 
consumer.close(); 
isRunning = false; 

} 

public String[] getBusiestlPsByDataBytes() { 
DGRPLogger.log("Entering 

getBusiestlPsByDataBytes()...\n"); 

if (!isRunning()) { //consumer not running, data not 
available 

DGRPLogger.log("Consumer not running; returning null 
from getBusiestlPsByDataBytes().\n"); 

return null; 
} 

final String totAgg = "tot"; 
List ipAddrs = new ArrayListO; 
Set<String> aggSet = new HashSetf); 
aggSet.add(totAgg); 
Aggregation aggregation; 
try { 

DGRPLogger.log("Getting aggregation from consumer...\ 
n"); 
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aggregation = 
consumer.getAggregate(aggSet).getAggregation(totAgg); 

} catch (Exception e) { 
//consumer is probably not running, return null 
return null; 

} 

if (aggregation.equals(null)) { 
return null; 

} 
else { //aggregation exists 

DGRPLogger.log("Aggregation existed...\n"); 
List list = aggregation.getRecords(); 
Collections.sort(list, new AggRecordComparator()); 
Iterator iterator = list.iterator(); 
while (iterator.hasNext ()) { 

AggregationRecord aggRec = (AggregationRecord) 
iterator.next(); 

String ip = (String) 
aggRec.getTuple() .iterator ().next() .getValue(); 

ipAddrs.add(ip); 
DGRPLogger.log("Adding IP: " + ip) ; 
long val = (long) 

aggRec.getValue().getValue().longValue(); 
DGRPLogger.log(" (value is " + val + ").\n"); 

} 
} 

String[] ipAddrsStrings = (StringH) ipAddrs.toArray(new 
String[0]); 

DGRPLogger.log("Returning from 
getBusiestlPsByDataBytes().\n"); 

return ipAddrsStrings; 
} //end of method 

public int getNumberDataBytesByIP(String ipAddr, int 
direction) { 

DGRPLogger.log("Entering getNumberDataBytesByIP(" + 
ipAddr + ", " + 

direction + ") . . An") ; 

if (!isRunning()) { //consumer not running, data not 
available 

DGRPLogger.log("Consumer not running; returning zero 
from getNumberDataBytesByIP().\n"); 

return 0; 
} 

final String sndAgg = "snd", rcvAgg = "rev", totAgg = 
"tot"; 

Set<String> aggSet = new HashSetO; 
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aggSet.add(sndAgg); 
aggSet.add(rcvAgg); 
aggSet.add(totAgg); 
Aggregation aggregation; 

DGRPLogger.log("Getting aggregation from consumer...\n"); 
try { 

if (direction == DIRECTION_SENT) { 
aggregation = 

consumer.getAggregate(aggSet).getAggregation(sndAgg); 
} 
else if (direction == DIRECTION_RCVD) { 

aggregation = 
consumer.getAggregate(aggSet).getAggregation(rcvAgg); 

} 
else if (direction == DIRECTION_TOTAL) { 

aggregation = 
consumer.getAggregate(aggSet).getAggregation(totAgg); 

} 
else { 

DGRPLogger.log ("Invalid direction, returning 
zero.\n"); 

DGRPLogger.log("Returning from 
getNumberDataBytesBylPO.\n"); 

return 0; 
} 

} 
catch (Exception e) { 

//consumer is probably not running, return 0 
return 0; 

} 

if (aggregation.equals(null) ) { 
return 0; 

} 
else { //aggregation exists 

DGRPLogger.log("Aggregation existed...\n"); 
List list = aggregation.getRecords(); 
Iterator iterator = list.iterator (); 
while (iterator.hasNext()) { 

AggregationRecord aggRec = (AggregationRecord) 
iterator.next(); 

String tuplelP = (String) 
aggRec.getTuple().iterator().next().getValue(); 

if (ipAddr.equals(tuplelP)) { 
int val = (int) 

aggRec.getValue().getValue().intValue(); 
DGRPLogger.log("Matched IP, value is " + val 

+ "\n"); 
DGRPLogger.log("Returning from 

getNumberDataBytesBylPO.\n"); 
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return val; 
} 

} 
} 

DGRPLogger.log("IP not matched, returning zero.\n"); 
DGRPLogger.log("Returning from getNumberDataBytesByIP().\ 

n"); 
return 0; 

} //end of method 

} //end of class 

class AggRecordComparator implements Comparator { 
public int compare(Object objl, Object obj2) { 

DGRPLogger.log("Using AggRecordComparator.compare.\n"); 
AggregationRecord aggRecl = (AggregationRecord) objl; 
AggregationRecord aggRec2 = (AggregationRecord) obj2; 
long vail = aggRecl.getValue().getValue().longValue(); 
long val2 = aggRec2.getValue().getValue().longValue(); 
if (vail < val2) 

return 1; 
else if (vail == val2) 

return 0; 
else 

return -1; 
} 

} 

DTraceCountPackets Service.Java 

package org.dgrp.server.dtraceservices; 

import java.io.File; 
import java.net.URL; 
import org.opensolaris.os.dtrace.*; 
import java.util.*; 
import org.dgrp.server.DGRPLogger; 

/** 
* 
* Sauthor chrisne 
*/ 

public class DTraceCountPacketsService { 

public final int DIRECTION_SENT = 0; 
public final int DIRECTION_RCVD = 1; 
public final int DIRECTIONJTOTAL = 2; 
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private URL url = DTraceCountPacketsService.class. 
getResource("/org/dgrp/server/dtraceservices/count_pa 

ckets.d"); 

private Consumer consumer; 
private boolean isRunning = false; 

public void startService(String subnet) { 
try { 

DGRPLogger.log("Entering 
DTraceCountPacketsService.startService()...\n"); 

File scriptFile = new File(url.toURI()); 
String macroArgs = new String(subnet); 
DGRPLogger.log("Creating DTrace consumer.\n"); 
consumer = new LocalConsumer(); 
DGRPLogger.log("Opening DTrace consumer.\n"); 
consumer.open (); 
DGRPLogger.log("Compiling DTrace script.\n"); 

consumer.compile(scriptFile, macroArgs); 
DGRPLogger.log("Enabling DTrace consumer.\n"); 

consumer.enable(); 
DGRPLogger.log("Starting DTrace consumer.\n"); 

consumer.go(); 
isRunning = true; 
DGRPLogger.log("Leaving 

DTraceCountPacketsService.startService().\n"); 
} 
catch (Exception e) { 

e.printStackTrace(); 
} 

} 

public boolean isRunning() { 
return isRunning; 

} 

public void stopService() { 
consumer.stop(); 
consumer.close(); 
isRunning = false; 

} 

public int getNumberPacketsByIP(String ipAddr, int direction) 
{ 

DGRPLogger.log("Entering getNumberPacketsByIP(" + ipAddr 
+ ", " + 

direction + ")...\n"); 

if (!isRunning()) { //consumer not running, data not 
available 
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DGRPLogger.log("Consumer not running; returning zero 
from getNumberPacketsByIP().\n"); 

return 0; 
} 

final String sndAgg = "snd", rcvAgg = "rev", totAgg = 
"tot"; 

Set<String> aggSet = new HashSetO; 
aggSet.add(sndAgg); 
aggSet.add(rcvAgg); 
aggSet.add(totAgg); 
Aggregation aggregation; 

DGRPLogger.log("Getting aggregation from consumer...\n"); 
try { 

if (direction == DIRECTION_SENT) { 
aggregation = 

consumer.getAggregate(aggSet).getAggregation(sndAgg); 
} 
else if (direction == DIRECTION_RCVD) { 

aggregation = 
consumer.getAggregate(aggSet).getAggregation(rcvAgg); 

} 
else if (direction == DIRECTION_TOTAL) { 

aggregation = 
consumer.getAggregate(aggSet).getAggregation(totAgg); 

} 
else { 

DGRPLogger.log("Invalid direction, returning 
zero.\n"); 

DGRPLogger.log("Returning from 
getNumberPacketsByIP().\n"); 

return 0; 
} 

} 
catch (Exception e) { 

//consumer is probably not running, return 0 
return 0; 

} 

if (aggregation.equals(null)) { 
return 0; 

} 
else { //aggregation exists 

DGRPLogger.log("Aggregation existed...\n"); 
List list = aggregation.getRecords(); 
Iterator iterator = list.iterator (); 
while (iterator.hasNext()) { 

AggregationRecord aggRec = (AggregationRecord) 
iterator.next (); 

String tuplelP = (String) 
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aggRec.getTuple().iterator().next().getValue(); 
if (ipAddr.equals(tuplelP)) { 

int val = (int) 
aggRec.getValue().getValue().intValue(); 

DGRPLogger.log("Matched IP, value is " + val 
+ "\n"); 

DGRPLogger.log("Returning from 
getNumberPacketsBylPO .\n"); 

return val; 
} 

} 
} 

DGRPLogger.log("IP not matched, returning zeroAn"); 
DGRPLogger.log("Returning from 

getNumberPacketsBylPO An") ; 
return 0; 

} //end of method 

} //end of class 

count dataJbytes. d 

#!/usr/sbin/dtrace -s 

#pragma D option defaultargs 

BEGIN /* Special probe upon script startup */ 
{ 

givenSubnet = $$1; /* subnet either given or set as 
empty string */ 

printf ("\n\n 
-An"); 

printf("Counting data bytes sent and received by IP 
address . . An") ; 

printf (" \n" 
); 
} 

ip:::send /* Probe for sent packets (by destination address) */ 
{ 

@snd[args[2]->ip_daddr] = sum(args[2]->ip_plength); 
@tot[args[2]->ip_daddr] = sum(args[2]->ip_plength); 

} 
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ip:::receive /* Probe for received packets (by source 
address) */ 
{ 

@rcv[args[2]->ip_saddr] = sura(args[2]->ip_plength); 
@tot[args[2]->ip_saddr] = sum(args[2]->ip_plength); 

} 

END /* Special probe upon script termination */ 
{ 

printf("\n\n 
-\n"); 

printf("Printing results..An"); 

printf (" 
); 

printf("\nData bytes sent to:\n"); 
printa(" %15s %@8u\n", @snd); 

printf("\nData bytes received from:\n"); 
printa(" %15s %@8u\n", @rcv); 

printf("\nTotal data bytes received from and sent to:\n"); 
printa(" %15s %@8u\n", @tot); 

count_packets.d 

#!/usr/sbin/dtrace -s 

•pragma D option defaultargs 

BEGIN /* Special probe upon script startup */ 
{ 

givenSubnet = $$1; /* subnet either given or set as 
empty string */ 

printf ("\n\n \n 
" ) ; 

printf("Counting packets sent and received by IP address...\ 
n"); 

printf (" \ 
n"); 
} 
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lp: 

{ 

::send /* Probe for sent packets (by destination address) */ 

@snd[args[2]->ip_daddr] = count (); 
@tot[args[2]~>ip_daddr] = count (); 

} 

ip:::receive /* Probe for received packets (by source address) */ 
{ 

@rcv[args[2]->ip_saddr] = count(); 
@tot[args[2]->ip_saddr] = count (); 

} 

END /* Special probe upon script termination */ 
{ 

printf ("\n\n \n 
" ) ; 

printf("Printing results...\n"); 
printf (" \ 

n"); 

printf("Packets sent to:\n"); 
printa(" %15s %@8u\n", @snd); 

printf("\nPackets received from:\n"); 
printa(" %15s %@8u\n", @rcv); 

printf("\nTotal packets received from and sent to:\n"); 
printa(" %15s %@8u\n", @tot); 
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