
San Jose State University
SJSU ScholarWorks

Master's Theses Master's Theses and Graduate Research

2008

A framework for graphical analysis of a home-
network router using DTrace
Christopher S. Nelson
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_theses

This Thesis is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been accepted for
inclusion in Master's Theses by an authorized administrator of SJSU ScholarWorks. For more information, please contact scholarworks@sjsu.edu.

Recommended Citation
Nelson, Christopher S., "A framework for graphical analysis of a home-network router using DTrace" (2008). Master's Theses. 3622.
DOI: https://doi.org/10.31979/etd.hry2-b982
https://scholarworks.sjsu.edu/etd_theses/3622

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3622&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_theses/3622?utm_source=scholarworks.sjsu.edu%2Fetd_theses%2F3622&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

A FRAMEWORK FOR GRAPHICAL ANALYSIS OF A

HOME-NETWORK ROUTER USING DTRACE

A Thesis

Presented to

The Faculty of the Department of Computer Engineering

San Jose" State University

In Partial Fulfillment

of the Requirements for the Degree

Master of Science

by

Christopher S. Nelson

December 2008

UMI Number: 1463414

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 1463414

Copyright 2009 by ProQuest LLC.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest LLC
789 E. Eisenhower Parkway

PO Box 1346
Ann Arbor, Ml 48106-1346

©2008

Christopher S. Nelson

ALL RIGHTS RESERVED

SAN JOSE STATE UNIVERSITY

The Undersigned Thesis Committee Approves the Thesis Titled

A FRAMEWORK FOR GRAPHICAL ANALYSIS OF A

HOME-NETWORK ROUTER USING DTRACE

by

Christopher S. Nelson

APPROVED FOR THE DEPARTMENT OF COMPUTER ENGINEERING

ft A L /ZA - 1*1 MB

Dr. Rod Fatoohi, Department of Computer Engineering Date

Dr. Frank Lin, Department of Computer Engineering Date

Dr. Xiao Su, Department of Computer Engineering Date

APPROVED FOR THE UNIVERSITY

Associate Dean Date

ABSTRACT

A FRAMEWORK FOR GRAPHICAL ANALYSIS OF A
HOME-NETWORK ROUTER USING DTRACE

by Christopher S. Nelson

Simple network routers used in homes and small offices typically lack tools for

monitoring and analysis that would be useful to the normally novice users of these

products. Sophisticated network simulation applications require too much effort for

typical users to consider, but including simple tools in the router management software

would enable common users to more quickly and completely understand reasons for

performance problems.

DTrace provides the opportunity to gather performance data from the router itself,

and if presented in an easily understood graphical format, common users will be

empowered to understand and address problems quickly and without need for additional

support. This thesis addresses the development of a framework—utilizing DTrace, Java,

AJAX, and remote procedure calls (RPCs) for client-to-server communication—for

creating graphical analysis tools for analyzing common home-network routers. A

reference implementation and test results that validate the framework architecture are

also provided.

ACKNOWLEDGEMENTS

This thesis represents the capstone of my graduate studies and the fulfillment of

the thesis requirement for a Master of Science in Computer Engineering at San Jose State

University. Although this thesis represents the compilation of my own efforts, I would

like to acknowledge and extend my sincere gratitude to the following persons for their

valuable time and assistance—without whom the completion of this thesis would not

have been possible:

1. Dr. Rod Fatoohi, Professor in the Computer Engineering department at San Jose
State University, for his support and guidance in the organization and
development of this thesis while acting as my faculty advisor.

2. Dr. Frank Lin, Professor in the Computer Engineering department at San Jose
State University, for his support and guidance in the finalization of this thesis as a
member of my department thesis review committee.

3. Dr. Xiao Su, Associate Professor in the Computer Engineering department at San
Jose State University, for her support and guidance in the finalization of this thesis
as a member of my department thesis review committee.

4. Dr. Lee Chang, Professor and Graduate Advisor for the Computer Engineering
department at San Jose" State University, for his guidance through the
requirements of a thesis project at San Jose State University.

5. My friends and family, for patience through the many hours I was occupied with
this project and the support and encouragement to stick with it and get it finished.

v

DEDICATION

To my beautiful wife, Lisa. Thanks for the support,
encouragement, and time to complete this project

and reach this life milestone.

vi

TABLE OF CONTENTS

LIST OF FIGURES xi

LIST OF TABLES xiii

LIST OF ACRONYMS xiv

GLOSSARY xvi

I. INTRODUCTION 1
Project Goal and Objectives 2
Overview of this Document 3

II. TECHNICAL AND MARKET BACKGROUND 4
Technology Trends 4
Market Research 5

III. ARCHITECTURE AND DESIGN 8
General Architecture 8
Browser-Based User Interface 8
Front-to-Back-End Communication 9
Server-Side Design 10
Introduction to DTrace 11

IV. PLATFORM PREPARATION 13
Choosing an Operating System 13
Choosing a Hardware Platform 14
Installing and Configuring the Operating System 16
Supporting Wireless 18
Choosing Routing Software 19
Installing and Configuring the Routing Software 20
Choosing a Web Server 21
Installing and Configuring the Web Server 22
Choosing a Web Application Framework 23
Using the Web Application Framework 24
Choosing a Programming Language 26

vii

V. IMPLEMENTATION 27
Developing DTrace Scripts to Gather Data 27
The Back End: Incorporating DTrace with Application Code 34
The Back End: Other Server-Side Code 42
The Front End: Developing the User Interface 48
RPCs: Tying the Front and Back Ends Together 57
Deploying the Complete Web Application 66

VI. TESTING 72
Testing on a Virtual System 72
Testing on a Real System 82

VII. SUGGESTIONS FOR FUTURE DEVELOPMENT 89
OpenSolaris on MIPS 89
Wireless Support on OpenSolaris 90
DTrace in Linux 90
Cleaning Up the User Interface 91
Additional Features 92
Final Integration 93

VIII. CONCLUSIONS AND RECOMMENDATIONS 94

REFERENCES 96

APPENDICES 99

APPENDIX A: PROJECT REQUIREMENTS 100
Project Deliverables 100
Functional Requirements 100
Non-Functional Requirements 102
Requirements Analysis 103
Hardware, Software, and Skill-Set Requirements 104

APPENDIX B: PROJECT SCHEDULE 107
Initial Schedule 107
Final Schedule 109

APPENDIX C: DEVELOPING WITH THE NETBEANS IDE I l l
Creating a Web Application Project I l l
Using GWT4NB 114
Creating an RPC 115
Using Additional Java Libraries 116

viii

Building and Hosting the Web Application Locally 117
Building the Web Application for Deployment 119

APPENDIX D: SOURCE CODE - GENERAL FILES 121
index.jsp 121
web.xml 121
dgrp.css 122
license.txt 127
context.xml 131
gwtproperties 131

APPENDIX E: SOURCE CODE - PACKAGE org.dgrp 132
DtraceGraphicalRouterProject.gwt.xml 132

APPENDIX F: SOURCE CODE - PACKAGE org.dgrp.client 133
About.java 133
Analysis.java 135
AnalysisMenujava 138
Bandwidthlnfo.java 151
BandwidthMonitor.java 153
BandwidthMonitorAsync.java 153
DGRPEntryPoint.java 154
GetVersionlnfo.java 157
GetVersionlnfoAsync.java 157
ImagePanel.java 158
Settings.java 170
Sidebar.java 171
Sidebarltem.java 173
Topologylnfo.java 174
Version.java 175
VersionContents.java 180
Welcome.java 181

APPENDK G: SOURCE CODE - PACKAGE org.dgrp.server 182
BandwidthMonitorlmpl.java 182
DGRPLogger.java 184
GetVersionlnfoImpl.java 185

APPENDIX H: SOURCE CODE - PACKAGE org.dgip.server.dtraceservices 192
DTraceCountDataBytesService.java 192
DtraceCountPacketsService.java 196
countdatabytes.d 199

IX

count_packets.d 200

SOFT COPY SOURCE CODE in pocket

x

LIST OF FIGURES

Figures

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11

12

13.

14.

15.

16.

17.

Linksys Browser Interface

High-Level Framework Diagram

DTrace Extracting Data

Utilizing DTrace Scripts from Java Classes

Basic Interface Layout

Application Interface Analysis Menu

Graphics Controlled by the ImagePanel Class

RPCs

Results of a Successful Version RPC

Tomcat Web Application Manager

Creating Virtual Network Interfaces

DGRP Welcome Screen

DGRP Settings Screen

DGRP Version Screen

DGRP About Screen

Snoop Capture

DGRP Analysis Screen

Page

6

9

28

36

51

55

56

58

63

71

76

77

78

79

80

81

82

xi

18. DGRP On Real Hardware 84

19. Test Laptop IP Address 85

20. Ordering According to Activity 86

21. DTrace Script Output 87

22. DGRP Analysis Matches DTrace Scripts 88

23. House-of-Quality Diagram 104

24. Original Project Schedule 108

25. Final Project Schedule 110

26. Creating a New Web Application Project in NetBeans 112

27. Choosing a Web Server in NetBeans 113

28. Choosing the GWT Framework in NetBeans 114

29. The GWT4NB Plugin in NetBeans 115

30. Creating an RPC in NetBeans 116

31. Using Additional Java Libraries 117

32. Local Deployment of a Web Application from NetBeans 118

3 3. NetBeans Hosting a Web Application Locally 119

34. A Web Application Ready for Deployment 120

xu

LIST OF TABLES

Tables Page

1. Common Home-Network Router Architectures 15

2. Project Deliverables 100

3. Hardware Requirements 105

4. Software Requirements 105

5. Skill-Set Requirements 106

xiii

LIST OF ACRONYMS

AJAX

API

CD

DGRP

DNS

DVD

GUI

GWT

GWT4NB

HTML

IDE

IP

IPTV

ISP

JAR

JDK

JSP

MIPS

Asynchronous JavaScript and XML

Application Programming Interface

Compact Disc

DTrace Graphical Router Project

Domain Name System

Digital Video Disc

Graphical User Interface

Google Web Toolkit

Google Web Toolkit for NetBeans

HypterText Markup Language

Integrated Development Environment

Internet Protocol

Internet Protocol Television

Internet Service Provider

Java Archive

Java Development Kit

JavaServer Pages

Multi-Instruction Processing System

xiv

NIC

OS

QFD

RIP

RPC

SPARC

SSID

SXCE

TCP

UDP

USB

XML

Network Interface Card

Operating System

Quality Function Design (or Deployment)

Routing Information Protocol

Remote Procedure Call

Scalable Processor Architecture

Service Set Identifier

Solaris Express Community Edition

Transmission Control Protocol

User Datagram Protocol

Universal Serial Bus

Extensible Markup Language

XV

GLOSSARY

back-end An acronym for "server-side. The server software in the
client-server model.

client-server model The concept in computing in which one application or
system (the client) makes requests of another application or
system (the server)—which services those requests upon
receipt according to the server software.

DTrace The dynamic tracing facility introduced in the Solaris
operating system that allows querying thousands of software
"probes" for real-time information while the software is
running. For significant information on DTrace, refer to the
OpenSolaris community web site (OpenSolaris Community:
DTrace, 2008).

front-end Opposite of "back-end." An acronym for "client-side." The
client software in the client-server model.

Google Web Toolkit An open-source framework for the development of AJAX
web applications using Java source code. It also includes
functionality for remote procedure calls.

GWT4NB

home-network router

A plug-in developed for easy integration of the NetBeans
IDE and the Google Web Toolkit.

The multi-function device found in many homes that often
serves as a cable or ADSL modem, gateway, wireless access
point, and router for the computing devices on the home
network.

xvi

Java DTrace library A Java library of classes that provides access to the DTrace
facility on the Solaris operating system from within Java
classes (as opposed to via the command-line or scripts in a
shell).

An open-source integrated development environment
distributed by Sun Microsystems that simplifies the
development, debugging, packaging, compilation, and
distribution of software applications.

The open-source version of the Solaris operating system
originally developed by Sun Microsystems. For information
about OpenSolaris, refer to the OpenSolaris web site
(OpenSolaris, n.d.).

remote procedure call The concept in distributed computing in which an
application or system makes a call to (and often waits for a
response from) a piece of software functionality (e.g.,
method, function, etc.) that may physically reside on a
system somewhere remote from the initiating system.

web application A software application most often designed to be run in a
web browser. This uses the client-server model, as the
client-side software executes in the browser, and the server-
side code executes on the web server.

web server The server-side software that provides the services for
clients to access—most often through a web browser. Web
servers host web applications that clients load and execute
in a browser.

NetBeans IDE

OpenSolaris

xvii

I. INTRODUCTION

Many home and non-enterprise network administrators (to use the term loosely),

lack a set of tools that would enable them to do basic network monitoring and analysis of

problems. Troubleshooting of a "slow Internet connection" frequently involves steps like

rebooting the client computer(s) and/or the router and then—if that did not fix the

problem—calling the service provider for additional help.

Meanwhile, as a separate issue, the real-time, in-production analysis capabilities

of Dtrace—the dynamic tracing functionality introduced in the Solaris 10 operating

system—have only begun to be realized. Apple Inc. has implemented similar analysis

tools in their recently released "Leopard" operating system and introduced a graphical

user-interface (GUI) front-end called "Instruments," and ports of DTrace to Linux have

begun (but have substantial work remaining before becoming pervasive). Still, relatively

little has been done thus far (except by Apple and a couple of newer OpenSolaris

projects) to provide graphical front-ends for these tools that would make them helpful to

the common user.

The intersection of these issues is at the point of a possible solution for that

inexperienced network "administrator." By using the capabilities of DTrace at the heart

of the network—on the router itself, and if the data is presented in such a way

(graphically) that the user could understand it quickly and easily, one could get a much

1

clearer picture of the true source of the performance problem—whether that be an

overactive client computer, an issue on the router itself, delays on the Internet Service

Provider (ISP) side, etc.

Today's home-network routers are typically Linux-based (or use a proprietary

operating system) and operate on Multi-Instruction Processing System (MPS) processors

—an architecture to which Solaris has apparently not been ported. Given a proven

framework and reference implementation, future applications could include the

development of productized Solaris-based routers that include this type of analysis tools

(Solaris would need to be ported to MIPS to use today's hardware) or the development of

similar graphical front-ends for the Linux version(s) of DTrace (after their development

is complete) and integration of these into products similar to what is already available in

today's market.

Project Goal and Objectives

Thus the general goal of this project is to develop a framework for and reference

implementation of a graphical interface for analyzing a Solaris-based network router

using DTrace. The high-level objectives for the project are as follows:

1. Develop a software architecture to graphically present the analysis data made
available by DTrace in an interface similar to the graphical user interfaces
commonly available in today's home-network routers.

2. Using the aforementioned architecture, develop a core set of analysis points in the
graphical interface that form a model to be followed in the development of future
analysis points.

2

3. Thoroughly document the design, architecture, and reference implementation
code, and make these available to the open-source community in an effort to
promote future development in this area.

Overview of this Document

This thesis reports on the project in chapters: II. Technical and Market

Background; III. Architecture and Design; IV. Platform Preparation; V. Implementation;

VI. Testing; VII. Suggestions for Future Development; and lastly, VIII. Conclusions and

Recommendations. Chapter II, immediately following, discusses the need for this type of

project in relation to the current technology market. Project requirements, schedules, and

implementation source code are provided in the appendices for reference.

3

II. TECHNICAL AND MARKET BACKGROUND

Technology Trends

It is no secret that home computing has moved from nearly nonexistent to

pervasive in the last two decades, that—in the latter part of that same time—access to the

Internet has become a necessary part of life for most people in the developed countries of

the world, and that the number of devices connecting to the Internet is growing at an

ever-increasing rate. Many of these devices connect from home or other small sub

networks across the world through devices providing routing, network switching, access

point, and sometimes modem capabilities, and the setup and maintenance of these devices

is still too cumbersome for the average user.

As the Home Gateway Initiative—"an industry body that offers an active dialogue

between telecoms operators, vendors, and manufacturers, and defines technical

specifications for home gateways (Home Gateway Initiative, 2007, para. 1)"—states in a

white-paper describing the growing need for such an organization,

"Multiple devices wish to share the broadband connection [to the
Internet]. Games consoles, PC's, telephones and IPTV settops all want a
broadband connection, so the consumer needs to be able to share that
connection between all devices, simultaneously.... Clearly networking is
complex to manage for both the customer and for the service provider who
is often the first point of contact when a customer encounters a problem.
(Home Gateway Initiative - Vision, 2007, para. 4)"

As the number of devices in the home connecting to the Internet continues to increase,

4

the need for removing that network-management complexity will increase as well. The

device manufacturer who can produce a device that is simple to implement and to debug

when things go wrong, or the service provider who can provide a service offering to

manage the complexity for the customer will have a business advantage as the number

and complexity of home networks continues to rise.

Market Research

In the home-network router market, a number of recognizable companies exist. A

quick search on the web sites of Best Buy, Circuit City, or Fry's will reveal products from

Netgear, D-Link, Belkin, Linksys, Apple, 2Wire, and many others. Nearly all of these

provide a browser-based interface for management like that in Figure 1, and few—if any

—debugging tools are provided in the interfaces to help determine the cause of problems.

The "Help" link from a 2Wire home router, for example, points the user to the 2Wire

support web page—offering basic troubleshooting tips but nothing specific to the user's

network or situation.

Outside of the home-network market, however, efforts are being made to ease the

pain of troubleshooting computing devices. Sun introduced their new Dynamic Tracing

(DTrace) technology in their Solaris 10 operating system; the DTrace manual explains

that "DTrace enables you to explore your system to understand how it works, track down

performance problems across many layers of software, or locate the cause of aberrant

behavior" (DTrace - Introduction, 2007, para. 1). Since then, a few OpenSolaris projects

5

Be felt Sew History ggotetarts look adp

* $ >r t2|Qhttp;//i9zi68.i,y "_ __ _ ;._".."I;b!i:)l83*lr.iI_I,~-\h
Gmai|QjGoogje|G|Mi|x Q SpartPwpte jjjf* FremntFtraaet g ^ flmtwis Forecast St Marwftiffcr Q ARNRW* E tawatlm

Q &

I IIMKRYC8

kitamat Connection Type

Optional Setting*

(required By some ISPs)

RoutsrlP

Network Address
Server Settings (DHCP)

a

I Automatic Configuration - DHCP v

RouterName jNELSONS

Host Name ,

Domain Name |

MTU Auto v

Size '•• > j

Local IP Address 192 , ^68 1 ; 1

Subnet Mask 256 265 265 0 v |

DHCP Server O Enable 0 UsaHe

r r *•< q
Maximum Number r,;—|

O <* nmmmmmm

Figure I. Linksys Browser Interface

The Linksys browser interface is similar to those offered by most of the home-network
router providers.

—like Chime (OpenSolaris Project: Chime Visualization Tool for DTrace, 2008)—have

taken up the effort to make graphical front-ends for DTrace, and one has been created for

integrating with the Sun Studio and NetBeans Integrated Development Environments

(IDEs) (NetBeans DTrace GUI Plugin, n.d.). Apple has also taken interest in DTrace, and

in their latest operating system, they implemented a graphical tool called Instruments that

6

utilizes their own version of DTrace. Work is ongoing in the Linux community as well to

port DTrace to the various distributions of Linux, and other variations—like SystemTap

—are also developing (SystemTap, n.d.). The development of these tools is in apparent

recognition of the need for easier debugging of problems in increasingly complex

computing devices. It seems reasonable to apply these tools to the growing complexity

of home network devices just the same.

The current collection of home-network routers are primarily specialized

hardware making use of a MIPS processor and relatively little memory. The author was

unable to find any recent version of Solaris that has been compiled for the MIPS

architecture, so loading Solaris onto the existing products' hardware directly is not

directly possible. An implementation using DTrace on a router (and thus—at this time—

requiring Solaris instead of Linux) would have to be made to use some other hardware

until such a time as Solaris is available for the MIPS architecture.

With this background information in-hand and the tools described in the current

state, the author set out to create a framework that would enable the use of DTrace to

collect useful data from a home-network router and present it to users in an easy-to-

understand graphical format that would enable them to understand problems in their

home network. It was also necessary to develop an implementation of the framework and

to test that implementation in order to prove the framework architecturally sound. The

following chapters describe the framework, the reference implementation developed, and

the testing performed to validate both.

7

III. ARCHITECTURE AND DESIGN

General Architecture

The general architecture for this framework is depicted in Figure 2. A web

application provides a browser-based user interface as the front end of the application—

communicating with the back end (i.e., software on the router itself) via remote procedure

calls. This architecture is further discussed in the following sections which detail the

design of this framework and a reference implementation that proves its effectiveness and

functionality.

Browser-Based User Interface

As discussed previously in the Market Research section (p. 5), most of today's

home network routers provide a user interface via a web browser (see Figure 1). In order

to easily integrate the functionality of this project into routers like those in today's market

, the logical choice for user interface is to also develop it in a browser-based fashion.

With this as a design assumption, the user interface for this project is designed as a web

application. The choice of web server, application language, etc.—though indicated in

part in Figure 2—is actually implementation-specific and is thus discussed further in the

following two chapters. The primary functions of the front-end user interface are to

accept user input and properly format and display data: The front end should not rely on

8

the server side to provide formatting or other control over the user interface display.

r

Web Application:
(written with Google

Web Toolkit)

Client-
Side

AJAX

(JavaScript
and XML)

L J

"N
Server-Side:

Java

(Web Server:
Apache/
Tomcat)

Client gets data
from server via

GWT RPCs

DTrace

ivia Java QTrdce
1 brary)

Quagga

Srlans System
Calls

DGRP
Corf guration

Res

T
Front-End

Figure 2. High-Level Framework Diagram

Back-End

Solaris Kernel

The general architecture of this application includes a web application pulling data from
DTrace, Quagga, and the Solaris OS directly

Front-to-Back-End Communication

Communication between the front end (i.e., browser-based user interface) and the

back end (server-side) of this program is achieved using the concept of remote procedure

calls. RPCs, in summary, allow a software program to use a piece of software

9

functionality (e.g., method, procedure, or function—depending on the programming

language) as if it was resident with the program on whatever hardware on which it is

running, though the implementing side of that piece of code is often on a different (and

perhaps distant) piece of hardware. (For further information on the concept of RPCs, the

reader is encouraged to reference the many helpful articles available on the Internet and

elsewhere.) For this application, the client-side code running in the browser interacts

with data-providing code running on the router via RPCs. The choice of what RPC

package is used and whether the RPCs should be synchronous (i.e., blocking calls),

asynchronous (i.e., non-blocking calls), or some combination of the two is an

implementation-specific discussion and is thus addressed in the following chapter.

Server-Side Design

In this design, the "server" is actually the router itself—from which the user

interface is served as a web application. So, in addition to performing the functions of a

router, the operating system and software running on the router hardware must also act as

a web server for the user interface and—as already briefly discussed in the previous

sections—provide data to client software (running in the user's browser) in response to

requests in the form of remote procedure calls. While this data may be pulled from the

operating system (OS) or from software running on top of the OS, the most interesting

pieces of data in the context of this application are those provided by DTrace—and most

specifically the DTrace Network Providers. (For a brief introduction to DTrace and the

10

DTrace Network Providers, refer to the next section.) While this design and reference

implementation rely on DTrace as it is currently (at the time of this writing) made

available by the Solaris OS, other operating systems or implementations of DTrace could

be used to provide a similar back end in future implementations: For further discussion

on this topic, refer to Chapter VII. Suggestions for Future Development (p. 89).

Introduction to DTrace

As it is described in the formal DTrace documentation, "DTrace helps you

understand a software system by enabling you to dynamically modify the operating

system kernel and user processes to record additional data that you specify at locations of

interest, called probes. (DTrace - Introduction, 2007, para. 2)" Probes are little pieces of

code included in operating systems and applications that have implemented them for

DTrace to use for collecting data when asked; as the formal documentation says, they are

like "programmable sensors scattered all over your [operating] system in interesting

places. (DTrace - Introduction, 2007, para. 2)" The modules of the operating systems or

applications that provide these probes to the DTrace facility are aptly named providers.

For example, the Solaris operating system makes available send and receive probes in the

ip Provider (Gregg, B., 2008); the probes fire (i.e., DTrace can collect data) each time the

kernel sends or receives a packet, and relevant data (e.g., source and destination address,

packet header flags, number of data bytes included, etc.) can be collected for analysis.

Additional network-related providers (e.g., TCP, User-Datagram Protocol (UDP), etc.),

11

collectively known as the "Network Providers" are being added to the Solaris operating

system for future use by DTrace (DTrace Network Providers, 2008). For details on what

providers and probes are implemented in a given operating system or application, the user

is directed to the DTrace-relevant documentation for that OS or application.

Multiple interfaces exist to the DTrace facility. For example, a program can be

written in DTrace's D programming language to extract data from specified probes and

format the text-based output, or a programmer could make use of the Java DTrace library

currently available for the Solaris OS (Java DTrace API, 2007). The analysis that can be

performed by DTrace is limited only by the providers and probes already implemented in

a specific application or OS and the imagination of the programmer utilizing the data

made available by those providers and probes.

This very brief and high-level introduction to DTrace only touches on the very

basics, and the reader is encouraged to refer to the available DTrace documentation for

significant additional detail.

12

IV. PLATFORM PREPARATION

The sections in this chapter describe the choice, installation, and configuration of

a number of available pieces of hardware and software that create the underlying

platform on which the reference implementation was developed and tested. The

following chapter describes in detail the actual implementation.

Choosing an Operating System

That DTrace is the source of the data used for this application is an underlying

assumption and a premise of the entire project, thus when making one of the first

implementation choices—the choice of which operating system to use—the list of

options is limited to only those which already provide the DTrace facility. At the time of

commencing this project, only two operating systems had incorporated DTrace

functionality—Sun Microsystems' Solaris 10 OS and its subsequent open-source

derivatives and Apple's Mac OS X 10.5 (Leopard), though work had begun on porting

DTrace to FreeBSD, and—as of the time of this writing—recent information suggests

that FreeBSD's DTrace facility is ready for use—at least in its initial form (DTrace for

FreeBSD, 2008).

Choosing between Solaris and OS X for this project iteration was a simple

decision: OpenSolaris—a freely available, open-source derivative of Sun's Solaris 10—

13

includes the latest and greatest features of DTrace, is actively supported by the open-

source community, is regularly updated (biweekly or less frequently—depending on the

release chosen) (OpenSolaris Download Center, 2008), and works on at least SPARC and

x86 platforms with the possibility of porting it to other hardware as well, while OS X is

limited to Apple's hardware only, is not free, and may not include the full DTrace

functionality (refer to Leventhal, A., 2008, for a discussion of Apple's DTrace

implementation and its limitations). This simple comparison led the author to choose

OpenSolaris as the operating system for this iteration of this project. Installing and using

this operating system is discussed in the Installing and Configuring the Operating System

section (p. 16).

Choosing a Hardware Platform

With the operating system decision made, the choice of hardware platform is next

to be determined. As the long-term goal of this project is to integrate with existing

management software on today's common home-network routers, the ideal hardware

platform for development is the hardware on which those home-network routers are

currently built. As briefly discussed in Chapter II. Technical and Market Background (p.

4), research shows that many of today's home-network routers are built on the MIPS

architecture with a relatively small memory footprint. The OpenWrt Community—an

"open source project to create a free embedded operating system for network devices

(OpenWrt, 2008, para. 3)"—tracks the hardware specifications of many home network

14

routers. The following table is a sampling of data adapted from OpenWrt's extensive

Table of Hardware (Table of Hardware, 2008).

Table 1. Common Home-Network Router Architectures

Brand Model Processor Architecture Memory

D-Link

Linksys

Linksys

Netgear

Belkin

DSL-G604T

WAG354G

WRTSL54GS

WGT624

F5D8230-4

TIAR7

TIAR7

Broadcom 4704

Atheros 2312

Realtek 8651B

MIPS

MIPS

MIPS

MIPS

MlPS-like

16MB

16MB

32MB

16MB

16MB

As shown, many of the big-name home-network router makers use the MIPS

architecture for today's products. While other architectures exist, most of the mainstream

products appeared to be based on MIPS at the time of commencing this project. With

that in mind, it made sense to investigate whether Solaris could be made to run on MIPS.

Unfortunately, at the time, the author was unable to find any current existing work toward

porting the Solaris operating system to MIPS. Outdated work existed (see Rational Apex

Embedded Solaris to MIPS Family Release Note for Tornado, 2001) for an example of

work over 10 years old in which a previous version of Solaris was made to run on MIPS),

but nothing was found that indicated Solaris 10 (or later) had run successfully on MIPS

or was even close to being able to do so. In fact, an e-mail conversation from recent

years—archived on the OpenSolaris website—discusses in some detail the idea of porting

Solaris to MIPS but clearly states that that work is not in progress (MPSport of

15

opensolaris, 2005). To be certain, the author contacted the initiator of the OpenSolaris e-

mail conversation who confirmed that her queries had been met with answers and

discussion but no progress—either at the time of the original conversation or in the

months since (T. Snyder, personal communication, February 4,2008).

Without the pre-existing capability to run Solaris on MIPS, a decision was

necessary whether to begin work on porting Solaris to MIPS to get the functionality of

DTrace on a currently available home-network router or to defer the Solaris-to-MIPS port

and concentrate on the other major portions of the project using a different hardware

platform for this iteration. For the development of this framework, the choice was made

to use a different hardware platform and to encourage the future porting of Solaris to

MIPS as a follow-on to this project. For more information on this step, refer to Chapter

VII. Suggestions for Future Development (p. 89). With MIPS no longer an option for this

project, the choice of a hardware platform for development was quite simple: Choose a

common platform that is readily available to developers and on which Solaris can already

run. The choice of an x86 platform met these simple criteria, so the author developed on

an Intel Centrino-based laptop and tested on a number simple Intel and AMD-based

servers. For further information on testing, refer to Chapter VI. Testing (p. 72).

Installing and Configuring the Operating System

There are many ways to install the OpenSolaris operating system—from compact

discs (CDs) or digital video discs (DVDs), from iso images, or via a network connection,

16

for example, so this section will document the basic settings and adaptations necessary

during the installation of the OpenSolaris operating system for the purposes of this

project iteration—using a DVD installation as an example. Detailed installation

instructions are available from the OpenSolaris web site (OpenSolaris, 2008), so only a

summary of the common steps will be provided here. While development of this project

iteration commenced on OpenSolaris's Solaris Express Community Edition build 82 and

later moved to build 96, the installation and modifications process was the same for both

versions.

1. Download a DVD image of the required build, burn the image to a DVD, and
boot the development system from the DVD.

2. Select the appropriate boot option from the GRUB menu (the default for a local
install or one of the tty options for a console install, and select from the following
menu whether to use a windowed or text-based installation process.

3. Using the menus provided, when prompted, complete the appropriate language,
networking, time, and password configurations.

4. Ensure that the installation takes place from the DVD, and accept the license
agreement when prompted.

5. Use the default install, or select custom install to configure disk partition
information and which parts of the OS should be installed.

6. When the install completes and the system reboots, be sure to eject the DVD so
that the system will boot from the new operating system on the hard drive.

For the purposes of this project, very little post-installation configuration of the operating

system is required. After the reboot, log in using the super-user mot and the password set

during installation. From this point, the additional installation and configuration steps

described in the latter sections of this chapter could be followed, but there is one useful

17

step the author preferred to do after the OS installation is complete: Enabling remote

login of the root user via secure shell (SSH) proved to be very convenient for the author,

as he frequently used a terminal emulation software to open a remote console on the

router. While this is considered a security risk in normal deployments, it proved to be

very useful in development. To enable remote login by root via SSH, edit the

/etc/ssh/ssd_config file, and change the line

PermitRootLogin no

to

PermitRootLogin yes

and restart the SSH service using the command

svcadm restart ssh

Supporting Wireless

Wireless support in a home-network router takes two forms: First, a wireless NIC

must be identified that is supported by the hardware platform and operating system of

choice—OpenSolaris in the case of this project iteration; second, software must be

available to make the router act as an access point—not just a member of a wireless

network but rather the point at which others access the wireless network (e.g., the owner

and perhaps broadcaster of the service set identifier (SSID), etc.).

For the first task, the author investigated a few different Universal Serial Bus

(USB) NICs on the development platform running OpenSolaris—namely the Belkin

18

F5D7050 4001 model, the AirLinklOl AWLL3028 model, and the Linksys WUSBF54G

model. Using the information available from the subset of the OpenSolaris community

working toward the development of the zyd wireless NIC driver {Wireless Network

Driver for ZyDAS, 2008), the author determined that the Belkin and AirLinklOl NICs

were not yet supported by OpenSolaris. Using the Linksys NIC, however, the author was

able to install the necessary drivers and configure the interface such that it joined an

existing wireless network.

But while the author was able to make a wireless NIC work with OpenSolaris, he

was unable to find any access point software available for OpenSolaris at the outset of

this project, and a recent discussion on the OpenSolaris community forums confirmed

this research, so it was decided that wireless support would be out of the scope of this

reference implementation (Thread: Solaris as a wireless access point, 2007). The topic is,

however, discussed in Chapter VII. Suggestions for Future Development (p. 89).

Choosing Routing Software

Because of the long-term goal of this project—that the software will be integrated

into the management software of today's home-network routers, the choice of routing

software for this initial implementation is not of long-term significance. In other words,

because the routing functionality is already part of home-network routers, this iteration of

this project need only find a solution that will provide that functionality until this

software can be integrated back into the software on the true home-network routers.

19

Given the decision to use Solaris for this iteration's operating system, the routing

software must function on Solaris. Early in the project, the author's university advisor

recommended the consideration of a routing software called Zebra—one he knew was

once available for use on the Solaris OS. Simple research into the recent history of Zebra

showed that it had been forked and that development for Solaris had continued under the

name Quagga (OpenSolaris Project: Quagga Routing Protocol Suite Integration, 2007).

In fact, Quagga is now pre-installed in OpenSolaris, so the use of it is very

straightforward—as described in the next section.

Installing and Configuring the Routing Software

As noted previously, Quagga is pre-installed in OpenSolaris, so only a few steps

are required to enable and use it—as listed below. For the complete installation and

configuration documentation, refer to the OpenSolaris Quagga web site (OpenSolaris

Project: Quagga Routing Protocol Suite Integration, 2007).

1. Disable the other routing services available on Solaris:

svcadm disable route:default
svcadm disable ripng:default

2. Enable the Routing Information Protocol (RIP) using Quagga (and its
dependencies):

svcadm enable -r rip:quagga

3. Verify the Quagga RIP service is online using either svcadm or routeadm:

nv96-vbox$ svcs -1 rip:quagga
finri svc:/network/routing/rip:quagga
name Quagga: ripd, RIPvl/2 IPv4 routing protocol daemon.

20

enabled
state
next_state
state_time
logfile
restarter
contract_id
dependency
(online)
dependency
(disabled)
dependency
(online)
dependency
svc:/networ
nv96-vbox$
nv96-vbox$
nv96-vbox$

true
online
none
Wed Aug 27 16:53:29 2008
/var/svc/log/network-routing-rip:quagga.log
svc:/system/svc/restarter:default
104
require_all/none svc:/systern/filesystem/usr:default

optional_all/refresh svc:/network/ipv4-forwarding

require_all/refresh svc:/network/routing-setup

optional_all/restart
k/routing/zebra:quagga (online)

routeadm
Configuration Current

Option Configuration
Current
System State

IPv4 routing
IPv6 routing

IPv4 forwarding
IPv6 forwarding

Routing services

Routing daemons:

enabled
disabled
disabled
disabled

enabled
disabled
disabled
disabled

STATE
disabled

routing:ipv4

routing:ipv6

"route:default ripng:default"

FMRI
svc:/network/routing/legacy-

nv96-vbox$

disabled svc:/network/routing/legacy-
online svc:/network/routing/zebra:quagga
online svc:/network/routing/rip:quagga

disabled svc:/network/routing/ripng:default
disabled svc:/network/routing/ripng:quagga
disabled svc:/network/routing/ospf:quagga
disabled svc:/network/routing/ospf6:quagga
disabled svc:/network/routing/bgp:quagga
online svc:/network/routing/ndp:default

disabled svc:/network/routing/rdisc:default
disabled svc:/network/routing/route:default

Choosing a Web Server

21

The choice of web server was not one based primarily on the comparison of

available options, rather it was based on the author's experience with previous web

application development. The author was most familiar with the Apache Tomcat server

—produced by The Apache Software Foundation (The Apache Software Foundation,

2008), and its simple integration with the author's primary Integrated Development

Environment, the NetBeans IDE, made for simple development. Similar to the choice of

routing software in this initial iteration, the choice of web server is of little long-term

consequence: When a future iteration integrates this software with existing home-

network router management software, the web server used will be that already in use by

the existing management software.

Installing and Configuring the Web Server

Like Quagga, the Apache and Apache Tomcat web server suite come pre-installed

in the OpenSolaris operating system. Little preparatory work is necessary to be ready to

deploy basic web applications, though the Apache Foundation provides detailed

installation and configuration instructions on their web site (Apache Tomcat 6.0, 2008).

The following steps are those necessary to prepare Apache Tomcat for use with this

project iteration's software (as described later in this chapter):

1. In the directory /var/apache/tomcat/conf/, copy serverxml-example to server.xml
as in the command

cp /var/apache/tomcat/conf/server.xml-example /var /apache/ tomcat/
conf/server.xml

22

2. In the directory /etc/apache, copy httpdconf-example to httpdconf as in the
command

cp /e tc /apache/ht tpd.conf-example /e tc /apache /h t tpd .conf

3. Edit the file /etc/apache/httpdconf to remove the "#" from the start of the line
(i.e., uncomment the line)

•include /etc/apache/tomcat.conf

4. In the file /var/apache/tomcat/conf/tomcat-users.xml, add manager to the roles for
user tomcat.

5. Restart the apache daemon using the series of commands

/etc/rc3.d/S50apache stop; sleep 1; /etc/rc3.d/S50apache start

A few remaining steps specific to the deployment of this project's web application are

discussed later in this chapter in the section Deploying the Complete Web Application (p.

66). Note that the installation and configuration described here do not make use of the

authentication, authorization, or other security-related capabilities of the Apache

software. The assumption exists that the web server used in future iterations when this

software is integrated with an existing home-network router's management software will

already be configured to address these security needs.

Choosing a Web Application Framework

While web applications can be developed entirely from scratch using any number

of programming languages, there are a number of development frameworks and toolkits

available to ease the development and maintenance burden for today's increasingly

complex web applications. A large list of available web application frameworks is

23

available on Wikipedia (List of web application frameworks, 2008). Examples of these

frameworks include Struts from the Apache Foundation (Struts, 2008), Stripes (Stripes

Home, 2008), Ruby on Rails for the Ruby programming language (Ruby on Rails, 2008),

and several based on the JavaScript client-side programming language—including the

Google Web Toolkit from Google. The Google Web Toolkit (GWT) is an open-source

project that promises to "ease [the development and maintenance] burden by allowing

developers to quickly build and maintain complex yet highly performant JavaScript front-

end applications in the Java programming language. (Google Web Toolkit, 2008, para. 1)"

Given the author's experience with the Java programming language, this was a quickly a

leading candidate among the available toolkits for this project iteration. After some

experimentation with sample web applications provided by the GWT community

(Building a Sample Application, 2008), the author determined that the Google Web

Toolkit would suffice for this project iteration. As discussed in Chapter VII. Suggestions

for Future Development (p. 89), the authors of future iterations of the project may want to

explore other available and perhaps more fully featured toolkits and frameworks for

greater flexibility in the user interface.

Using the Web Application Framework

The community developing the Google Web Toolkit provides significant

documentation on the use of GWT in web application development (Google Web Toolkit,

2008). The reader is encouraged to refer to that documentation for details, though a

24

summary is provided here. The GWT is provided in a package that includes

documentation, samples, and a collection of Java Archive (JAR) files. These JAR files

include Java classes that can be used by application developers while writing their code

along with tools for compiling, hosting, and debugging applications. These tools can be

used via a command-line interface on a console or through a graphical IDE such as

Eclipse {Eclipse - an open development platform, 2008) or NetBeans (NetBeans, 2008).

The author used NetBeans and an open-source plugin called GWT4NB (gwt4nb Project

Home, n.d.) that allowed for easy integration of Netbeans with the compiler and other

tools included in GWT.

It is important to understand what GWT does with the code written by developers:

GWT produces AJAX code—collections of JavaScript and Extensible Markup Language

(XML) files that are used by a web browser in the rendering of a web application—from

Java code written by the application developer. As mentioned before, GWT includes Java

(note, not JavaScript) classes that are made available for the developer to use; these

classes provide either identical or very similar functionality to most of the classes in the

standard Java Development Kit (JDK). This allows developers to code web applications

in the Java language and use GWT to translate (i.e., compile) that Java code into

equivalent JavaScript and XML. A complete Application Programming Interface (API)

and simple sample code is provided for developers to reference in the documentation

provided in the GWT package-

One other significant function provided by GWT worthy of summarizing here is

25

that of the Remote Procedure Call. GWT's RPC functionality allows web applications

running in a browser to asynchronously make requests of the server without reloading the

entire page in the browser. It is important to understand the two sides of this

communication: The client-side code—the AJAX translated from GWT Java classes and

running in the browser—requests a function to be performed by the server and listens

without blocking for a response; the server-side code is true Java (from the JDK—not

GWT's Java classes) and can perform any function made possible by the Java language

before returning to the client. Examples of how this works in the context of this project

are included later in this chapter in the RPCs: Tying the Front and Back Ends Together

section (p. 57).

Choosing a Programming Language

The choice of programming language for this iteration of this project was based

primarily on the author's previous experience and comfort with the Java language as a

development language for web applications. The use of Java as the source language in

the Google Web Toolkit framework also contributed to this decision. While Java is the

language with which most of this iteration's code is written, future iterations need not be

tied to Java—especially if using a different web application framework.

26

V. IMPLEMENTATION

The previous chapter described the choice, installation, configuration, and use of

hardware and software that collectively formed the platform on which the reference

implementation was developed and tested. The sections in this chapter describe in detail

the original work done by the author to implement the framework described in Chapter

III. Architecture and Design (p. 8).

Developing DTrace Scripts to Gather Data

A brief introduction to DTrace is provided in Chapter III. Architecture and Design

(p. 8), and for detail beyond that introduction, the reader is encouraged to reference

significant DTrace documentation from Sun Microsystems (BigAdmin System

Administration Portal. DTrace, 2008) and the OpenSolaris community at (OpenSolaris

Community: DTrace, 2007). This section will describe two of the most important DTrace

scripts written to gather data relevant to this project. These scripts provide the

foundational data that the web application processes and presents to the user. Each of

these scripts uses DTrace's ip Provider (Gregg, 2008) to extract useful data from the IP

headers of packets sent and received by the router's operating system's kernel's IP stack;

this is conceptually depicted in Figure 3. Note that these scripts are written so that they

can be executed from a console on the router during development and testing and also be

27

used—without modification—by the web application's server-side Java code. All of the

DTrace scripts written for this project are available in the appendices of this document

and should be understandable given the descriptions in this section, the available DTrace

documentation, and the comments in the scripts themselves.

DTrace
pulls data from
IP packet
headers

Aggregations
of Useful

Data

Receive
Packets

Kernel's IP Stack yg&g.

Router
Figure 3. DTrace Extracting Data

The DTrace scripts activate probes in the kernel's IP
stack to collect useful data into aggregations.

The first of the two important DTrace scripts in this project iteration which will be

described in detail here is named countdatabytes.d. The ".d" extension in the file name

indicates that this is a script written in DTrace's D programming language. The first line

in this DTrace script

#!/usr/sbin/dtrace -s

is similar to the first line in many shell scripting languages: When executing this file, this

indicates to the operating system which program should be used to process it; in this case,

a program called dtrace in the directory /usr/sbin is used and is passed one parameter, -s

28

(which indicates to dtrace that the remainder of the file should be interpreted as D code).

The next line

•pragma D option defaul ta rgs

indicates to DTrace that it should use default values for any parameters referenced in the

D code that were not explicitly defined when the script was executed. When executed

from a console, parameters are defined by adding additional items after the script name

when executing it—as in the following example:

$./count_data_bytes.d paraml param2

How parameters can be defined when using the DTrace script with Java code is discussed

in the following section, The Back End: Incorporating DTrace with Application Code (p.

34).

The next several lines of code in count_data_bytes.d

BEGIN /* Special probe upon script startup */
{
givenSubnet = $$1; /* subnet either given or set

as empty string */

printf ("\n\n " +
« \n- j .

printf("Counting data bytes sent and received by IP" +
" address...\n");

printf (" " +
« \n») .

}

define the actions to be taken when the BEGIN probe—a special probe that DTrace

triggers when the script begins execution—fires. In this script, two things occur in the

BEGIN probe: A variable givenSubnet is created and set to the value of the first

parameter given to this script or—because of the defaultargs setting—set to the default

29

value of an empty string, and an informational heading is printed describing what this

script is doing.

Following the definition of actions for the BEGIN probe, actions are defined for

two additional probes—send and receive in the ip provider. These probes fire whenever

the network stack in the OS kernel sends or receives—respectively—an Internet Protocol

packet. (For a full discussion of the ip provider, the reader is encouraged to refer to the

DTrace ip provider web site (Gregg, 2008.)

ip:::send /* Probe for sent packets (by destination address) */
{

@snd[args[2]->ip_daddr] = sum(args[2]->ip_plength);
@tot[args[2]->ip_daddr] = sum(args[2]->ip_plength);

}

ip:::receive /* Probe for received packets (by source address) */
{

@rcv[args[2]->ip_saddr] = sum(args[2]->ip_plength);
@tot[args[2]->ip_saddr] = sum(args[2]->ip_plength);

}

Whenever the send probe fires, two aggregations are updated: @snd and @tot. In

DTrace, an aggregation is something like an array in other programming languages—

indexed by something called a tuple. In this case, the tuple is the ipdaddr—the

destination IP address—of the structure provided in args[2]. The ip provider provides a

series of structures containing information in an array called args whenever a probe fires;

it is from these structures that DTrace scripts can obtain and analyze data. args[2J

contains a simple structure of the type ipinfoj—which is defined as follows (Gregg, B.,

2008):

typedef struct ipinfo {
uint8_t ip_ver; /* IP version (4, 6) */

30

uintl6_t ip_plength; /* payload length */
string ip_saddr; /* source address */
string ip_daddr; /* destination address */

} ipinfo_t;

Thus, when the send probe fires, the entries in aggregations @snd and @tot for the

destination IP address provided in the args[2] structure are updated with the value in the

payload length field of the same structure according to DTraces's sum function. The sum

function adds to an existing value whatever new value is provided to it. So, in summary,

the actions in the send probe add the payload length of a packet to two aggregations

which are indexed by destination IP address. The receive probe actions work very much

the same way, though the aggregations are indexed by the source IP address, ipsaddr,

and the aggregations updated are @rcv and @tot. The observant reader may notice that

the @tot aggregation is updated in both the send and receive probe actions—thus its

values are a sum of the number of data bytes sent to and received from each IP address,

whereas the @snd and @rcv aggregations track only the data bytes sent to and received

from—respectively—each IP address.

There is no code in the script to cause it to terminate on its own, so it will

continue to run and to count the data bytes sent and received until the user stops it

manually (such as with Cntl-C on the console). When the script is terminated, a special

END probe is triggered—similar to the BEGIN probe which fired at the start of the script.

END /* Special probe upon script termination */
{

printf ("\n\n " +
« \n..) .

printf("Printing results...\n");
printf (" " +

« \n") ;

31

printf("\nData bytes sent to:\n");
printa(" %15s %@8u\n", @snd);

printf("\nData bytes received from:\n");
printa(" %15s %@8u\n", Srcv);

printf("\nTotal data bytes received from and sent to:\n");
printaC %15s %@8u\n", @tot) ;

}

These actions in the END probe print an informational header and then use DTrace's

printa function to print each aggregation, @snd, @rcv, and @tot, according to the

formatting specified. For a complete discussion of formatting output from DTrace, the

reader is encouraged to reference the online DTrace manual's description of output

formatting (Output Formatting, 2007). Essentially, these statements provide a formatted

printing of each aggregation's tuples and corresponding values—sorted by the value.

Using the count data bytes, d script from a console on a very quiet system may

provide output similar to this:

nv96-vbox$./count_data_bytes.d
dtrace: script './count_data_bytes.d' matched 21 probes
CPU ID FUNCTION:NAME

0 1 :BEGIN

Count:

AC
0

Print:

Lng

Lng

data

2

bytes

results...

sent and received by IP

:END

address...

Data bytes sent to:
10.0.1.50 160
10.0.2.50 160
10.0.0.50 320
10.0.3.50 320

32

file:///nData
file:///nData
file:///nTotal

Data bytes received from:
10.0.1.50 160
10.0.2.50 160
10.0.0.50 320
10.0.3.50 320

Total data bytes received from and sent to:
10.0.1.50 320
10.0.2.50 320
10.0.0.50 640
10.0.3.50 640

nv96-vbox$

Similar to count_data_bytes.d, the DTrace script count jackets.duses the send

and receive probes from the ip provider but simply counts the number of packets sent and

received rather than the number of data bytes in each packet. The BEGIN and END

probes are very similar and can be understood from the explanations of those in

count databytes.d, and the actions of the send and receive probes use DTrace's count

function instead of sum—as shown here:

i p : : : s e n d /* Probe for sent packets (by des t ina t ion address) */
{

@snd[args[2]->ip_daddr] = count () ;
@tot[args[2]->ip_daddr] = count () ;

}

i p : : : r e c e i v e /* Probe for received packets (by source address) */
{

@rev[args[2]->ip_saddr] = count () ;
@tot[args[2]->ip_saddr] = count () ;

}

Output from this script on a quiet system my look something like this:

nv96-vbox$./count_packets.d
dtrace: script './count_packets.d' matched 21 probes
CPU ID FUNCTION:NAME

0 1 :BEGIN

33

Counting packets sent and received by IP address...

Ac
0 2 :END

Printing results...

Packets sent to:
10.0.2.50
10.0.3.50
10.0.0.50
10.0.1.50

Packets received from:
10.0.2.50
10.0.3.50
10.0.0.50
10.0.1.50

Total packets rece
10.0.2.50
10.0.3.50
10.0.0.50
10.0.1.50

lived

4
4
8
12

4
4
8
12

from and sent to:
8
8
16
24

nv96-vbox$

How these scripts are used from within the web application's server-side Java code is

discussed in the following section.

The Back End: Incorporating DTrace with Application Code

With working DTrace scripts written, the next step in implementation is to

incorporate those scripts with application code. In the case of this project iteration, the

application code is written in Java, so this means using DTrace from a Java class.

Fortunately, the OpenSolaris community has developed a Java DTrace library that

provides this capability: By including the Java Archive dtrace.jar that includes all of the

34

Java DTrace functionality from the OpenSolaris community, this project's code can

utilize DTrace's data-collecting features in its server-side (i.e., back-end) code. Complete

documentation for the use of Java DTrace is provided online (Java DTrace API, 2007),

but the discussion of some of this project's back-end code here will provide an overview

of how to use this library as well. This interaction is conceptualized in Figure 4.

The Java class DtraceCountDataBytesService in the package

org.dgrp.server.dtraceservices utilizes the DTrace count_data_bytes.dscript described in

the previous section to provide the data collected by the script to Java classes via a typical

Java method interface. This Java class will be described in detail in this section, and the

reader is encouraged to refer to the full set of source code in the appendices of this

document for the details of other Java classes written for this project iteration. The public

interface to this Java class includes no constructor but does include the following

methods:

public void startService(String subnet);
public boolean isRunningO;
public void stopService ();
public String[] getBusiestlPsByDataBytes();

Each will be described line-by-line along with the other portions of code that make up

this Java class.

As is typical in Java code, this Java class is assigned to a package—in this case

named org.dgrp.server.dtraceservices. The acronym DGRP is short for DTrace

Graphical Router Project; server indicates that this is server-side code; and

dtraceservices is a simple package for those Java classes which provide DTrace-related

35

Server-Side Java Code
DTrace Script

Import org.opensolaris.os.dt race.*;

Consumer consumer = new LocalConsumerQ;

consumer. open();
consumer. compllefscriptFile, macroArgs);
consumer.enableO;
consumer. go();

Figure 4. Utilizing DTrace Scripts from Java Classes

The OpenSolaris community provides a Java library that enables Java classes to compile
and use standard DTrace scripts.

data (as opposed to some other server-side code which has nothing to do with DTrace and

will be discussed in the following section). Following the assignment of this class to a

package, several common import statements are used to include necessary Java classes

from other libraries: java.io.FileJava.net.URL, andjava.util. * are all from the standard

Java Development Kit; org.dgrp.server.DGRPLogger is a simple class written for this

project that provides a rudimentary logging facility for the server-side code; and

org.opensolaris.dtrace. * is from the Java DTrace library written by the OpenSolaris

community. These lines of source code are as follows:

package org.dgrp.server.dtraceservices;

import Java.io.File;

36

#!/usr/sbin/dtrace -s

BEGIN { }

ip:::send
{

import java.net.URL;
import j a v a . u t i l . * ;
import org.dgrp.server.DGRPLogger;
import o r g . o p e n s o l a r i s . o s . d t r a c e . * ;

Following these opening lines of code is the start of the actual class definition—

including a number of private class variables as seen here:

public c lass DTraceCountDataBytesService {

p r i va t e URL u r l = DtraceCountDataBytesService.class.
GetResource(
" /o rg /dgrp / se rve r /d t r acese rv ices / coun t_da ta_by tes .d") ;

p r i va t e Consumer consumer;
p r i va t e boolean isRunning = f a l s e ;

The variable url provides the location of the DTrace script used by this Java class—

count_data_bytes.d'in this case—which is also included in the same package. The

variable consumer is a DTrace consumer—an object which collects and can provide data

from DTrace according to the interfaces in the Java DTrace library; this variable is used

extensively throughout this Java class as will be apparent in the following lines of source

code. The final private variable, isRunning, is a simple boolean variable that is used to

provide a client of this service an indicator of whether or not this service has been started

(i.e., whether or not an instance of this Java class has an active DTrace consumer that is

collecting data).

The first of the public methods in this class is simple enough to be described all at

once. The source is provided here:

public void startService(String subnet) {
try {

DGRPLogger.log("Entering DtraceCoutnDataBytesService.
startService()...\n");

File scriptFile = new File (url.toURI());

37

http://ava.net

String macroArgs = new String(subnet);
DGRPLogger.log("Creating DTrace consumer.\n");
consumer = new LocalConsumer();
DGRPLogger.log("Opening DTrace consumer.\n");
consumer.open();
DGRPLogger.log("Compiling DTrace script.\n");
consumer.compile(scriptFile, macroArgs);
DGRPLogger.log("Enabling DTrace consumer.\n");
consumer.enable ();
DGRPLogger.log("Starting DTrace consumer.\n");
consumer.go();
isRunning = true;
DGRPLogger.log("Leaving DtraceCoutnDataBytesService.

startService().\n");
}
catch (Exception e) {

e.printStackTrace() ;
}

}

First, the several DGRPLogger.logQ function calls make use of the simple logging

facility mentioned already in this section to provide some basic log messages. Second,

the reader will notice that the private variable url is used to create a File object, named

scriptFile, that provides access to the relevant DTrace script to be used by consumer.

Third, the string parameter subnet is indirectly passed to the the consumer as a parameter

of the DTrace script. Finally, the reader can see in this code the typical series of method

calls used when starting a DTrace consumer: the creation of a LocalConsumer object,

openQ, compileQ—to which a DTrace script file and its parameters are passed as

parameters, enableQ, and finally goQ—which starts the consumer collecting data

according to the DTrace script. Following the creation, compilation, enabling, and

starting of the consumer, the private class variable isRunning is updated to indicate that

this object's consumer is indeed running, and—of course—the requisite try-catch code is

included to manage exceptions thrown during the execution of any of the method calls

38

(though some additional intelligence in the try-catch code regarding actions for specific

exceptions would be a recommended modification in future refactoring of this code.

The next two public methods in the DTraceCountDataBytesService Java class are

even more straightforward. First, isRunningQ simply returns the value of the private

variable isRunning. Second, stopServiceQ does essentially the opposite of the

startServiceQ method just discussed: It stops and closes the DTrace consumer and sets

the isRunning variable to indicate that the service is no longer running. The code for both

methods is provided here:

public boolean isRunning() {

return isRunning;
}

public void stopService() {
consumer.stop();
consumer.close();
isRunning = false;

}

The last of the public methods in this class, getBusiestlPsByDataBytesQ, returns a

string array of all of the IP addresses which the DTrace consumer has added to the @tot

aggregation—sorted according to the number of total data bytes sent to or received from

each IP address. (For details about the @tot aggregation or other code internal to the

DTrace script, refer to the previous section; the sorting mechanism will be discussed later

in this section.) The first several lines provide a simple log message and then check to

ensure that it is relevant to call this method by ensuring the service is running:

public String[] getBusiestlPsByDataBytes() {
DGRPLogger.log("Entering getBusiestlPsByDataBytes()...\n");

if (!isRunning()) { //consumer not running, data not available

39

DGRPLogger.log("Consumer not running; returning null from
getBusiestlPsByDataBytes().\n");

return null;
}

Next, a series of variables are created and used to get the current @tot aggregation from

the DTrace consumer and store it in a local Aggregation object for processing:

final String totAgg = "tot";
List ipAddrs = new ArrayListO;
Set<String> aggSet = new HashSetO;
aggSet.add(totAgg);
Aggregation aggregation;
try {

DGRPLogger.log("Getting aggregation from consumer...\n");
aggregation = consumer.getAggregate(aggSet).

getAggregation(totAgg);
} catch (Exception e) {

//consumer is probably not running, return null
return null;

}

With the aggregation is successfully retrieved from the DTrace consumer, it is first

checked for being empty—in which case the method returns immediately rather than

attempting to process it:

if (aggregation.equals(null)) {
return null;

}

If the aggregation is not empty, the code continues to process it. First, a List object is

created that contains the records from the aggregation. Each record includes a tuple (in

this case, a string representation of an IP address) and a value (in this case the number of

total bytes sent to and received from the corresponding IP address). The records in the

list are sorted according to a custom sorting algorithm, and then the IP addresses from the

sorted list's records are put—in order—into a string array for returning. The code for all

of these steps—not including the sorting algorithm—is provided here:

40

else { //aggregation exists
DGRPLogger.log("Aggregation existed...\n");
List list = aggregation.getRecords();
Collections.sort(list, new AggRecordComparator ());
Iterator iterator = list.iterator();
while (iterator.hasNext ()) {

AggregationRecord aggRec = (AggregationRecord)
iterator.next ();

String ip = (String) aggRec.getTuple().
iterator ().next().getValue();

ipAddrs.add(ip) ;
DGRPLogger.log("Adding IP: " + ip) ;
long val = (long) aggRec.getValue().

getValue().longValue();
DGRPLogger.log(" (value is " + val + ").\n");

}
}

String[] ipAddrsStrings = (String[]) ipAddrs.toArray(new
String[0]);

DGRPLogger.log("Returning from getBusiestlPsByDataBytes().\n");
return ipAddrsStrings;

} //end of method
} //end of class

The sorting algorithm used to sort the aggregation's records is an implementation

of the JDK's Comparator interface and defines the compare() method such that records

with a larger value (i.e., number of data bytes) will come before those with a smaller

value in the sorted list of aggregation records. The code for this Comparator

implementation is provided here:

class AggRecordComparator implements Comparator {
public int compare(Object objl, Object obj2) {

DGRPLogger.log("Using AggRecordComparator.compare.\n");
AggregationRecord aggRecl = (AggregationRecord) objl;
AggregationRecord aggRec2 = (AggregationRecord) obj2;
long vail = aggRecl.getValue().getValue().longValue();
long val2 = aggRec2.getValue().getValue().longValue();
if (vail < val2)

return 1;
else if (vail == val2)

return 0;
else

return -1;
}

41

}

Other Java classes in this project that provide DTrace services by utilizing a

DTrace script written in the D language follow a pattern similar to

DTraceCountDataBytesService, and the reader is encouraged to review them in the

appendices. Other server-side code that is not DTrace-related is described in the next

section.

The Back End: Other Server-Side Code

The previous two sections described the DTrace scripts and DTrace-related Java

classes written for this project—all of which are packaged in the

org.dgrp.server.dtraceservices Java package. This section will describe the other server-

side Java classes in the org.dgrp.server Java package.

The DGRPLogger class—mentioned briefly in the previous section—is a simple

logging facility designed to output simple strings to a log file on the server (i.e., the

router). The code is simple: There is no constructor; the log file is set in a private string

variable; and there is one public method for outputting log messages—log(). The code is

provided here:

package org.dgrp.server;

import java.io.*;

public class DGRPLogger {

private static String logfile = "/var/tmp/dgrplog.txt";

public static void log(String string) {
try {

42

BufferedWriter out = new BufferedWriter(new
FileWriter(logfile, true));

out.write(string);
out.close();

} catch (IOException e) {//ignore
}

}
}

Also in the org.dgrp.server package is the GetVersionlnfoImpl class—the server-

side class in a set of classes that follow a strict pattern provided by the Google Web

Toolkit for Remote Procedure Calls. How the various client-side and server-side pieces

of the different RPCs fit together will be discussed in the RPCs: Tying the Front and

Back Ends Together section (p. 57), so the following comments will deal only with

explaining what the server-side code in this class does—not how it interacts with the

client-side classes.

First, necessary package and import statements are made and the class is defined:

package org .dgrp . se rver ;

import j a v a . i o . * ;
import j a v a . u t i l . * ;
import com.google.gwt.user .server .rpc.RemoteServiceServlet ;
import o rg .dgrp .c l ien t .GetVers ionlnfo ;
import org .dgrp .c l ien t .Vers ionContents ;
import java.net.URL;

publ ic c lass GetVersionlnfoImpl extends RemoteServiceServlet
implements GetVersionlnfo {

Refer to the RPCs section (p. 57) for details of RemoteServiceServlet statements and the

org.dgrp.client.GetVersionlnfo class, and refer to the Front End section (p. 48) for details

of the org.dgrp.client. VersionContents class. Following these opening lines of code, a

single public method is defined—getVersionlnfoQ. The complete source of that method

is provided here with explanations following:

43

http://java.net

public VersionContents getVersionlnfo() {

DGRPLogger.log("Entering getVersionlnfo()...\n");

VersionContents ver = new VersionContents ();

InputStream in = null;
Properties props = new Properties();

try {
in = getClass().getResourceAsStream

("/appinfo.properties");
props.load(in);

//Solaris info
ver.solarisRelease = getSolarisRelease();
ver.solarisInstallDate = getSolarisInstallDate();
ver.solarisArch = System.getProperty("os.arch");
ver.solarisUptime = getSolarisUptime();

//Quagga info
ver.quaggaVersion = getQuaggaVersion() ;
ver.quaggalnsDate = getQuaggalnstallDate();

//This software info
ver.dgrpAuthor = props.getProperty("program.AUTHOR");
ver.dgrpBuildDate = props.

getProperty("program.BUILDDATE");
ver.dgrpBuildNumber = props.

getProperty("program.BUILDNUM");
ver.dgrpDescription = props.

getProperty("program.DESCRIPTION");
ver.dgrpVersion = props.

getProperty("program.VERSION");

//Java info
ver.javaVMName = System.getProperty("Java.vm.name");
ver.javaVMVendor = System.

getProperty("Java.vm.vendor");
ver.javaVMVersion = System.

getProperty("Java.vm.version");
ver.javaVendor = System.getProperty("Java.vendor");
ver.javaVersion = System.getProperty("Java.version");

//Browser info
ver.browserlnfo = null; //determined client-side

//Web-Server info
ver.tomcatVersion = getTomcatVersion();
ver.apacheVersion = getApacheVersion();

44

//Remove this test
ver.removeThis = removeThisMethodf);

in.close();
}
catch (IOException e) {

e.printStackTrace() ;
}

DGRPLogger.log("Returning from getVersionlnfo().\n");
return ver;

}

First, an object of the client-side class VersionContents is created that will be populated

with all of the version info retrieved from the server and will then be returned at the end

of the method. The rest of the method—up to the point of returning—is a series of

method calls used to populate bits of version information in the VersionContents object.

Rather than describing each line of code in the remainder of the class, the three major

forms of retrieving version information will be described by example, and the reader is

encouraged to review the full source of this class in the appendices for further detail. The

first of the three methods by which version information is retrieved is via the

props.getPropertyQ method, props is created near the start of the class code and is an

object of the Properties class that refers to the file appinfo.properties—which is modified

by the build process when the whole web application is compiled, built, and packaged for

deployment. This file follows the format of a properties file according to the

Properties class specification in the JDK, thus props.getPropertyQ can retrieve values

from name-value pairs in this file by passing the name as a parameter to the method—as

seen in lines like the following:

ver.dgrpAuthor = props.getProperty("program.AUTHOR");

45

v e r . d g r p B u i l d D a t e = props .getProper ty("program.BUILDDATE") ;
ver .dgrpBui ldNumber = props .getProper ty("program.BUILDNUM");

The second of the three methods is the retrieval of system properties from the Java

Virtual Machine (JVM) via the System.getProperty() method call. This is similar to the

properties method discussed already except that the source of these properties is the JVM

itself rather than a properties file. Examples of this method can be seen in lines like

these:

ver.javaVMName = System.getProperty("Java.vm.name");
ver.javaVMVendor = System.getProperty("Java.vm.vendor");
ver.javaVMVersion = System.getProperty("Java.vm.version");

The last of the three methods for retrieving version information from the server is through

a series of private methods also defined in this class. These methods all follow a similar

pattern: Either open a file or execute a command and then extract the relevant text from

the output for return and eventual placement into the VersionContents object. Examples

of these method-calls can be seen here:

ver.solarisRelease = getSolarisRelease();
ver.solarisInstallDate = getSolarisInstallDate();
ver.solarisUptime = getSolarisUptime();

The code that defines each of these methods is very basic, so the reader is encouraged to

simply review it in its entirety in the appendices of this document.

Finally, the BandwidthMonitorlmpl Java class in the org.dgrp.server package

defines the server-side part of another RPC—the RPC by which the client-side code

requests information from the DTrace services running on the server (i.e., router). As

will become obvious to the reader in the next section, the client-side code does not

interact directly with the classes in the org.dgrp.server.dtraceservices package; rather, the

46

server-side code of the RPCs starts, stops, and gets updates from the DTrace services.

(This whole interaction will be described more fully in the RPCs: Tying the Front and

Back Ends Together section, p. 57.)

Looking more closely at the code, the reader will see that the package and import

statements are as expected and that the class definition is similar to other server-side

classes in other RPCs:

package org.dgrp.server;
import com.google.gwt.user.server.rpc.RemoteServiceServlet;
import java.util.Random;
import org.dgrp.client.Bandwidthlnfo;
import org.dgrp.client.BandwidthMonitor;
import org.dgrp.server.dtraceservices.*;

public class BandwidthMonitorlmpl extends RemoteServiceServlet
implements BandwidthMonitor {

private DTraceCountDataBytesService countDataBytesService;
private DTraceCountPacketsService countPacketsService;

The reader will also notice that there are two private objects created—one of each of the

DTrace service classes in the org.dgrp.server.dtraceservices package previously

described. The remaining methods in this class utilize these objects so that the client-side

code need not have any knowledge of them; the client-side code need only be concerned

with the interfaces defined for each RPC. For each service, there are start, stop, and other

relevant methods defined—as in the examples here:

public void startServiceCountDataBytes(String subnet) {
DGRPLogger.log("Entering BandwidthMonitorlmpl.

StartServiceCountDataBytes()...\n");
countDataBytesService = new DTraceCountDataBytesService();
countDataBytesService.startService(subnet);

}

public void stopServiceCountDataBytes() {
DGRPLogger.log("Entering BandwidthMonitorlmpl.

47

stopServiceCountDataBytes()...\n");
countDataBytesService.stopService();

}

public String[] getRefreshedlPs() {
DGRPLogger.log("Entering BandwidthMonitorImpl.

getRef reshedlPs () . . An") ;
return countDataBytesService.getBusiestlPsByDataBytes();

}

While these examples (and most of the methods in this class in this iteration of the

project) do little more than call and return methods directly from the DTrace services

classes, this design offers the flexibility to implement more sophisticated wrapper

methods or to change the implementation of the DTrace services classes without

necessitating an alteration to the RPC interface on which the client-side code depends.

For the source of all of the methods in this Java class, the reader is encouraged to refer to

the appendices.

The Front End: Developing the User Interface

While the previous two sections described server-side or back-end code in the

org.dgrp.server and org.dgrp.server.dtraceservices packages, this section will discuss the

front-end, client-side code in the org.dgrp. client package. Many of the Java classes in

this package utilize the various widgets provided by the Google Web Toolkit to create the

graphical interface through which the user interacts with this web application. Other

classes are used in the process of analyzing and processing the data provided by the

server-side code, and still others are responsible for the client-side portion of the RPCs

that communicate between the front and back end. One of the key classes used for

48

creating the graphical interface, DGRPEntryPoint, will be described in detail, and the

reader is encouraged to view the complete source code for this class in the appendices

and to refer to the available GWT documentation to understand the rest of the code in

similar classes {Google Web Toolkit, 2007). The analysis classes will be described in

detail, and the classes related to the RPCs will be covered in the next section, RPCs:

Tying the Front and Back Ends Together.

The graphical interface for this iteration of this project is created entirely by the

use of GWT widgets. Examples of the creation, placement, and modification of these

widgets can be found in this project source code and in the examples included with the

GWT (see Using the Application Framework). Various types of panels—one of the GWT

widgets—make up the conceptual map that lays out the graphics in the interface. Panels

are included within panels, and the base panel is defined in the DGRPEntryPoint class.

DGRPEntryPoint imports a number of necessary widget classes from the

com.google.gwt.user.client package and is defined to implement the Entry Point and

HistoryListener interfaces as shown here:

package org.dgrp.client;

import org.dgrp.client.SidebarItem.Sidebarltemlnfo;
import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.user.client.ui.RootPanel;
import com.google.gwt.user.client.History;
import com.google.gwt.user.client.HistoryListener;
import com.google.gwt.user.client.ui.DockPanel;
import com.google.gwt.user.client.ui.HasAlignment;
import com.google.gwt.user.client.ui.HTML;
import com.google.gwt.user.client.ui.VerticalPanel;

public class DGRPEntryPoint implements EntryPoint,
HistoryListener {

49

As the entry point Java class, GWT configures the web application when compiling and

building it to start the loading and display of the application from this class; all other

graphics are initiated from this class. As an implementation of HistoryListener, this class

enables browser history to work correctly with the AJAX application. The class then

creates a number of object instances and defines the onHistoryChanged() function

according to the HistoryListener interface:

public DGRPEntryPoint() {
}

protected Sidebar list = new Sidebar();
private Sidebarltemlnfo curlnfo;
private Sidebarltem curltem;
private HTML description = new HTMLO;
private DockPanel panel = new DockPanel();
private DockPanel mainPanel;

public void onHistoryChanged(String token) {
Sidebarltemlnfo info = list.find(token);
if (info == null) {

showlnfo();
return;

}
show(info, false);

}

The next method defined, onModuleLoadQ, is responsible for the layout of the panels on

the browser that make up the graphical interface. Since this is in the entry point Java

class, this method is called almost immediately when a user points the browser to the web

application's URL. Utilizing this method and the others called from it, the client-side

code lays out an interface that looks like that in Figure 5.

50

! The DI race L.raphical Router Protect Mozilla FirefoK m~> JQLsl
Ete 6 * a«» HWory BookmarKs Ioob_Uefp _

M > i .-* C f X u 10!hrtp-//localhcst 8C80/DTraceGrjphicalRouterPro|ect/ \j~- | | Q ' i r y "™>

, Gma* & Google £ Maps F~" Fremont Forecast • * NameFnder J ARNPIWM _ . DGRP-to&lh&st 0DGRP-VBax J

k§Ml i-^Pf • ' l i j Now KiFlushng: Clear, 56* F ' Tue.47«F Wed:75*F IWed:47»F
• * ft

Figure 5. Basic Interface Layout

This is an example of the layout created by the entry point Java class.

The first step in this process is adding items to the Sidebar object named list. This occurs

in the following method call:

51

loadSidebarltems();

This method is defined as follows:

protected void loadSidebarltems() {
list.addltem(Welcome.init());
list.addltem(Analysis.init()) ;
list.addltem(Settings.init()) ;
list.addltem(Version.init());
list.addltem(About.init());

}

These addltemQ method calls create instances of each of the classes shown: Welcome,

Analysis, Settings, Version, and About—all of which are extensions of the abstract

Sidebarltem class. This is responsible for creating the links in the left-hand side of the

interface shown in Figure 5. The next several lines of code create other panels, set their

styles, and add them in the appropriate order:

mainPanel = new DockPanel ();
mainPanel.setStyleName("dgrp-MainPanel");

VerticalPanel vp = new VerticalPanel();
vp.setWidth("100%");
vp.add(description);
vp.add(mainPanel);

description.setStyleName("dgrp-Heading") ;

panel.add(list, DockPanel.WEST);
panel.add(vp, DockPanel.CENTER);

panel.setCellVerticalAlignment(list, HasAlignment.ALIGN_TOP);
panel.setCellWidth(vp, "100%");
panel.setCellHeight(vp, "100%");

History.addHistoryListener(this) ;
RootPanel.get().add(panel);

Each call to setStyleName() assigns one of the Cascading Style Sheets (CSS) styles

included in the project to the object. Working essentially backwards through the other

lines, the main DockPanel widget, panel, is added to GWT's default RootPanel; panel

52

includes the sidebar menu object, list, on the left and a VerticalPanel, vp, which in turn

includes an HTML object, description, at the top and then mainPanel beneath that. In

Figure 5, description can be seen as the space containing the text, "Welcome to the

DTrace Graphical Router Project...," while mainPanel contains the repeat of that

welcome with the additional text, "Click a link to the left to continue...." By clicking a

link in the sidebar, the user invokes the next method defined in this class—showQ. The

show() method quite simply tells the sidebar object to highlight the selected choice,

updates the text in description, removes the current widget from mainPanel, and loads

the selected item into mainPanel instead. The code for this is relatively straightforward:

public void show(SidebarItemInfo info, boolean affectHistory) {
i f (info == curlnfo) {

r e tu rn ;
}
curlnfo = info;

i f (curltem != null) {
curl tem.onHide();
mainPanel.remove(curltem);

}

curltem = in fo .ge t lns tance () ;
l i s t . s e t l t emSe lec t ion (in fo .ge tName()) ;
description.setHTML(info.getDescription()) ;

i f (affectHistory) {
History.newltem(info.getName());

}

mainPanel.add(curltem, DockPanel.CENTER);
mainPanel.setCellWidth(curltem, "100%");
mainPanel.setCellHeight(curl tem, "100%");
mainPanel.setCellVerticalAlignment(curl tem,

DockPanel.ALIGN_TOP);
curltem.onShow() ;

Given the explanation of DGRPEntryPoint and the source code available in the

53

appendices, the reader should be well-equipped to understand the Sidebar, Sidebarltem,

About, Welcome, and Settings classes as well.

Two other classes in the org.dgrp.client package, AnalysisMenu and ImagePanel,

are also similar to the classes just discussed. They involve code primarily responsible for

the creation, layout, and modification of widgets, though there are a couple of things in

each worth special mention here. First, AnalysisMenu creates a menu of choices for the

user when the Analysis sidebar options is clicked. The menu is like that in Figure 6, and

each selection in the menu corresponds to a command that triggers other code to execute.

An example of a command that presents the user with an informational window warning

that the selected feature is not yet implemented is shown in the following code:

Command notSupported = new Command () {
public void execute () {

Window.alert("This feature is not yet supported.");
}

};

By passing this Command object as a parameter in the creation of a Menultem, as in

menu_general_int_status = new Menultem(notsup +
" In te r face S ta tus" , t r u e , notSupported);

an option in the menu is created that will execute the notSupported command when

selected. Similar to the AnalsysiMenu class, ImagePanel is used by the Analysis class

when it is selected in the sidebar. ImagePanel controls the layout of a number of other

graphics used by the Analysis class—several of which can be seen in Figure 7.

54

mntmt>v*.t--t-- MM
B* d * #*» "WW g j u w * ladi 3 *

PLACEHOLDER
FOR

ROUTER
STATISTICS

1
1
\

WIRELESS
NOT i

- *v SUPPORTED /

Figure 6. Application Interface Analysis Menu

The AnalysisMenu class creates a menu of choices during analysis.

ImagePanel also provides a number of methods that allow other code to control the

visibility of or otherwise edit the graphics in this class. For example, the following

method, hideLaptop(), is used to hide the laptop graphics seen in Figure 7:

public void hideLaptop(int position) {
switch (position) {

case 0:
laptopO.setUrl("images/placeholder.png");
laptop0.setWidth("131px");
laptop0.setHeight("104px");
laptopO.setStyleName("dgrp-Images-Image");
break;

case 1:
laptopl.setUrl("images/placeholder.png");
laptopl.setWidth("131px");
laptopl.setHeight("104px");
laptopl.setStyleName("dgrp-Images-Image");
break;

case 2:
laptop2.setUrl("images/placeholder.png");

55

laptop2.setWidth("131px");
laptop2.setHeight("104px");
laptop2.setStyleName("dgrp-Images-Image");
break;

case 3:
laptop3.setUrl("images/placeholder.png");
laptop3.setWidth("131px");
laptop3.setHeight("104px");
laptop3.setStyleName("dgrp-Images-Image");
break;

default:
break; //ignore others for now

yiiinBinwroiMnainnpnm^ i »w& '•• -. - -aw
«$ •- e « . Rir^u*— r=- FI

U M the Menu Below to Select AfiBeble Afletydo F

PLACEHOLDER
FOR

ROUTER
STATISTICS

41
•P Addrau PltuholdM-

Mturet...

m

41
PMOniPlnhsldar

^ "

s
IP tdd-Mf PIUtoUM

WIRELESS
NOT

SUPPORTED

*
-P Adetw P'ictliaMw

M |T ^ kmwl • » ••••»• ARM* »•"• | • r i - a f aw V *

Figure 7. Graphics Controlled by the ImagePanel Class

The ImagePanel class provides controls for many of the graphics used by the Analysis
class.

The rest of the code mAnalysisMenu and ImagePanel should be understandable given the

detailed description of DGRPEntryPoint and the complete source code in the appendices.

Of the remaining classes in org.dgrp.client, three are simple and should be

56

http://laptop3.se

understood by the reader without any special explanation: Topologylnfo objects are used

to determine the placement and keep track of which IP addresses appear on the analysis

graphics (where the "IP Address Placeholder" text appears in Figure 7); VersionContents

contains a number of public string objects that are used to pass information regarding

software versions from the server to the client when the Version link is chosen from the

sidebar; and Bandwidthlnfo objects are used to communicate how much available

bandwidth is being used by a given connection. The remaining classes in this package

either directly utilize or are a necessary part of Remote Procedure Calls and will thus be

described in the next section.

RPCs: Tying the Front and Back Ends Together

Much has been discussed in the previous sections about creating DTrace scripts,

utilizing those scripts from server-side Java code, and creating the client-side graphical

interface, but the real power of this software comes from the tying together of these

pieces: By enabling the front-end code to get information from the back-end code and

act accordingly, the web application is enabled to provide useful and current information.

This is achieved through Remote Procedure Calls; see Figure 8. Two of the sidebar

choices not yet discussed—Version and Analysis—will be described in detail here along

with the corresponding RPCs through which each class is able to get useful information

from the server-side code.

57

Network

i Front-End
Code in

Web Browser
Back-End Code

on Router 4

Figure 8. RPCs

RPCs provide a way of allowing code interaction between the client-side code and the
server-side code through asynchronous method calls.

As the simpler example, the Version class will be described first. The goal of the

Version link in the interface sidebar is simple: Provide the user with version information

relevant to this web application. Of course, much of the relevant software is outside the

control of this web application, so its versions must be retrieved from the server (i.e.,

router). In the code, like other Sidebarltem classes, necessary package and import

statements are included, and an initQ function is defined:

package org.dgrp.client;

import com.google.gwt.user.client.ui.HTML;
import com.google.gwt.core.client.GWT;
import com.google.gwt.user.client.rpc.AsyncCallback;
import com.google.gwt.user.client.rpc.ServiceDefTarget;

public class Version extends Sidebarltem {

private HTML verlnfo = new HTML(
"<div class='dgrp-About-Prose'>" +
"Retrieving version information from the server.

58

"</div>",
true);

public static Sidebarltemlnfo init() {
return new Sidebarltemlnfo("Version Info",

"Version Information for the DTrace Graphical Router
Project...") {

public Sidebarltem createlnstance () {
return new Version));

}
};

}

As seen, a placeholder HTML object is also created and used in the constructor to display

an initial message to the user—as seen here:

public Version() {
initWidget(verlnfo) ;

The constructor then creates an asynchronous callback object; this will be used to react to

the return of the RPC once it is made. It is important to remember that the GWT RPC

implementation is asynchronous, thus when an RPC call is made, the code continues to

execute without blocking until the RPC returns—at which point the code in the callback

object will be executed according to the success (execute onSuccess()) or failure (execute

onFailureQ) of the RPC. In the case of Version, onSuccessQ is defined to update the

HTML object with the version information returned from the server—as seen partially

here:

final AsyncCallback callback = new AsyncCallback() {
public void onSuccess(Object result) {

VersionContents verResults = (VersionContents) result;

verlnfo.setHTML(

);

59

}

public void onFailure(Throwable caught) {
verInfo.setHTML(

"<div class='dgrp-About-Prose'>" +
"Failed to r e t r i e v e version information from the " +
"server .</div>"

) ;
}

} ;

In the case of an RPC failure, the HTML object is updated to display an appropriate

failure message. The result of a successful RPC call can be seen in Figure 9. Following

the definition of the callback object, the RPC call can actually be made—as in the

following method call

getService().getVersionlnfo(callback);

where getServiceQ is defined as

public static GetVersionlnfoAsync getService(){
GetVersionlnfoAsync service = (GetVersionlnfoAsync)

GWT.create(GetVersionlnfo.class);
ServiceDefTarget endpoint = (ServiceDefTarget) service;
String moduleRelativeURL = GWT.getModuleBaseURL() +

"getversioninfo";
endpoint.setServiceEntryPoint(moduleRelativeURL);
return service;

}

This method refers to the GWT-prescribed configuration of this R P C as a servlet in the

web application's web.xml file—as seen here:

<servlet>
<servlet-name>GetVersionInfo</servlet-name>
<servlet-class>

org.dgrp.server.GetVersionlnfolmpl
</servlet-class>

</servlet>
<servlet-mapping>

<servlet-name>GetVersionInfo</servlet-name>
<url-pattern>

/org.dgrp.DTraceGraphicalRouterProject/getversioninfo

60

</url-pattern>
</servlet-mapping>

One last useful point that can taken from the Version class is seen in the following

method:

public static native String getBrowserlnfo() /*-{
return $wnd.navigator.userAgent;

This method shows an example of how raw JavaScript can be used from within client-

side GWT code. The exact syntax is required, but this makes it possible to do things with

JavaScript that the GWT cannot do, though the need for this was quite sparse in the

course of this project iteration.

For the RPC in the Version class to work correctly, two other classes must also be

defined. Recall that the RPC called the method getVersionlnfoQ. This prototype for this

method is in the class, GetVersionlnfo—as seen in the code here:

package org.dgrp.client;
import com.google.gwt.user.client.rpc.RemoteService;

public interface GetVersionlnfo extends RemoteServicef
public VersionContents getVersionlnfo();

}

According to the GWT RPC implementation, another—almost identical—class must also

be defined: In this case, that class is GetVersionlnfoAsync:

package org.dgrp.client;
import com.google.gwt.user.client.rpc.AsyncCallback;

public interface GetVersionlnfoAsync {
public void getVersionlnfo(AsyncCallback callback);

}

Finally, the actual implementation of the getVersionlnfoQ method is defined in the class

GetVersionlnfoImpl in the server-side package org.dgrp.server. For a discussion of this

61

class, refer to the The Back End: Other Server-Side Code section (p. 42). So, in order for

the Version class to use an RPC, an asynchronous callback object must be created and

passed to the RPC call—which uses a servlet configured in web.xml to call a method

prototyped in GetVersionlnfo and GetVersionlnfoAsync and actually implemented in the

server-side class GetVersionlnfoImpl. Note that these names were not arbitrary but were

chosen according to the requirements of the GWT RPC {Remote Procedure Calls, 2008).

Note also that the GWT4NB plugin to the NetBeans IDE automatically configures the

web.xml file and creates templates for the necessary Java classes—both on the client and

server side—greatly simplifying the creation of RPCs.

The RPC used by the Analysis class is very similar in concept to that used by the

Version class, though the interface classes highlight one important point—that a single

RPC implementation can accommodate multiple method definitions—as seen here from

the BandwidthMonitor and BandwidthMonitorlmpl interfaces:

public interface BandwidthMonitor extends RemoteService{
public void startServiceCountPackets(String s);
public void startServiceCountDataBytes(String s) ;
public void stopServiceCountPackets();
public void stopServiceCountDataBytes();
public Bandwidthlnfo getBandwidthlnUse(String s) ;
public Bandwidthlnfo getRandomBandwidthlnUse(String s);
public String[] getRefreshedlPs();

}

62

r fc £ * S«w Hjtory SP** " * 1 * I<s* l i *

I n • C? *>V | , | 3 jhttp ' I130L 1 ̂ LSC/CTraceGripm.dlPajterProiect.'fVe'Sionlrfo - | Q * y > -

Figure 9. Results of a Successful Version RPC

In the Version class, a successful RPC return provides version information from the
server.

public interface BandwidthMonitorAsync {
public void startServiceCountPackets(String s, AsyncCallback

asyncCallback);
public void startServiceCountDataBytes(String s, AsyncCallback

asyncCallback);
public void stopServiceCountPackets(AsyncCallback

asyncCallback);
public void stopServiceCountDataBytes(AsyncCallback

asyncCallback);
public void getBandwidthlnUse(String s, AsyncCallback

63

ca l lback) ;
publ ic void getRandomBandwidthlnUse(String s, AsyncCallback

ca l lback) ;
publ ic void getRefreshedlPs(AsyncCallback ca l lback) ;

The implementation of these methods in the BandwidthMonitorlmpl class in

org.dgrp.server has already been described in the The Back End: Other Server-Side

Code section (p. 42). Outside of the use of these RPCs in Has Analysis class—which the

reader can now undoubtedly understand by reviewing the full source code in the

appendices, a few other parts of the class are worth describing here.

First, GWT's Timer class is used to make RPC calls on a regular and repeated

interval—as seen here:

bwMonitorService.getRefreshedlPs(ipCallback) ;
Timer ipRefresh = new Timer() {

publ ic void run() {
bwMonitorService.getRefreshedlPs(ipCallback);

}
};
ipRefresh.scheduleRepeating(10000) ;

In this code, the RPC getRefreshedlPsQ is called once, and a timer is then created which

will trigger the same RPC to be called again every 10,000 milliseconds—or 10 seconds.

The definition of the ipCallback parameter describes what this client-side code will do

with the result of this RPC:

final AsyncCallback ipCallback = new AsyncCallback() {
public void onSuccess(Object result) {

processIPUpdates(result);
}
public void onFailure(Throwable caught) {

//ignore for now
}

};

Looking then to the definition of the processIPUpdates() function,

64

private void processIPUpdates(Object result) {
String[] newAddrs = (StringH) result;
for (int i=0; i<MAX_NODES; i++) {

imgPanel.hideLaptop(i);
imgPanel.hideLaptopPipe(i);
imgPanel.setLaptopIPAddrLabel(i, null);

}
topolnfo = new TopologyInfo(MAX_NODES);
for (int i=0; KnewAddrs.length; i++) {

try {
topolnfo.setAddress(i, newAddrs[i]);
imgPanel.setLaptopIPAddrLabel(i, newAddrs[i]);
imgPanel.showLaptop(i);

} catch (Exception e) {
//ignore for now

}
}

}

it can be seen that the graphical interface is updated once every 10 seconds to show

laptop graphics on imgPanel—up to a maximum number (MAX_NODES)—and to

display an IP address label for each each laptop graphic according to the array of strings

that is returned by the server-side RPC code for getRefreshedlPsQ. Similarly, the

following code shows a once-per-second update to the pipe graphics displayed for each

laptop:

Timer pipeUpdate = new Timer() {
public void run() {

for (int i=0; i<=topoInfo.getMaxNodes(); i++) {
if (!(topolnfo.getAddress(i).eguals(null))) {

bwMonitorService.getBandwidthlnUse(
topolnfo.getAddress(i), pipeCallback);

}
}

}
};
pipeUpdate.scheduleRepeating(1000);

final AsyncCallback pipeCallback = new AsyncCallback() {
public void onSuccess(Object result) {

processPipeUpdates(result);
}

65

public void onFailure(Throwable caught) {

//ignore for now
}

};

private void processPipeUpdates(Object result) {
Bandwidthlnfo bwlnfo = (Bandwidthlnfo) result;
try {

imgPanel.showLaptopPipe(topolnfo.findPosition(
bwlnfo.getlPAddress()) , bwlnfo.getBandwidthlnUse());

} catch (Exception e) {
//skip addresses not currently tracked

}
)

With this explanation of the Version and Analysis classes, it should be clear to the reader

how client-side code can interact with server-side code via RPCs to retrieve information

and act accordingly. With all of these pieces together, the final step in implementation is

actually creating and deploying the complete web application—which is discussed in the

following section.

Deploying the Complete Web Application

With all of the pieces discussed in this and the previous chapters in place, a few

final things are necessary to bring them all together in a complete web application. Note

that—where noted—the NetBeans IDE provided the author a simplified process that may

be more complicated in a different development environment. These items are provided

in the following list in no particular order:

1. To version-control the web application, code was added to the build.xml file in the

NetBeans project directory:

66

<target name="-pre-dist">
<buildnumber f i le="bui ldnumber .proper t ies" />
<proper tyf i le f i l e="appinfo .p roper t i es"

comment="Everything can be manually updated except
buildnum and bui lddate .">

<entry key="program.PROGNAME" defaul t="${main.c lass}" />
<entry key="program.AUTHOR" default="" />
<entry key="program.COMPANY" defau l t - "" />
<entry key="program.COPYRIGHT" default="now" type="date"

pattern="yyyy" />
<entry key="program.DESCRIPTION" defaul t="" />
<entry key="program.VERSION" de fau l t=" l . 0 .0" />
<entry key="program.BUILDNUM" value="${build.number}" />
<entry key="program.BUILDDATE" type="date" value="now"

pattern="EEEEE, MMMMM dd, yyyy, hh:mm:ss a z" />
</proper tyf i le>
<copy f i l e="app info .p roper t i e s"

tod i r="${bu i ld . c l a s ses .d i r}" />
</ target>

A new file, appinfo.proper ties, was also created in the same directory:

program.PROGNAME=The DTrace Graphical Router Project
program.BUILDNUM=22
program.AUTHOR=Chris Nelson
program.BUILDDATE=Tuesday, September 16, 2008, 07\:49\:55 PM PDT
program.DESCRIPTION=See the About page in the web application.
program.COPYRIGHT=2 008
program.VERSION=0.9.0
program.COMPANY=San Jose State University

With this in place, the program-BUILDNUM and program.BUILDDATE

properties are updated automatically with each build of the web application

{HOWTO: use ANT with JAVA to dynamically create build numbers, 2007).

2. An index.jsp file is included in the web application and is the default page loaded

when a user points a browser to the web application root address. This page

includes only a simple HypterText Markup Language (HTML) header, a pointer

to the web application's CSS file, and the necessary JavaScript entry to load the

67

GWTAJAXcode:

<script language="javascript" src="org.dgrp.DTraceGraphicalRouter
Project/org.dgrp.DTraceGraphicalRouterProj ect.nocache.j s">
</script>

3. All of the images used in the web application are included in an images directory.

4. Code run by a web application served by Apache Tomcat's web server on the

Solaris operating system executes as user nobody by default. Because of the

detail of information that DTrace can provide, Solaris—by default—only allows

the root super-user to utilize the full set of DTrace probes. To give user nobody

permission to use all of DTrace's functionality, the following line was added to the

file /etc/user_attr:

nobody::::defaultpriv=basic,dtrace_kernel

5. NetBeans provides the ability to build and package a web application into a Java

Archive .war file that can be immediately deployed on a web server. The author

used this function regularly.

6. In the author's opinion, the simplest way to deploy a pre-packaged .war file

containing a web application on an Apache Tomcat web server is through the

Tomcat Web Application Manager interface; see Figure 10. If the edits in the

Configuring the Web Server section (p. 22) were made, this interface can be

68

loaded in a web browser at http://<server IP address>/manager/html. The .war

file can be directly uploaded from that interface and will automatically be

deployed. In the case of this project, the DGRP web application can then be

accessed at http://<router IP address>/DTraceGraphicalRouterProject. There are a

couple of possible sub-steps necessary in this process:

a. The directory /var/apache/tomcat/webapps—where the .war file will be placed

during deployment—may not allow writing of files by default, so write

permissions may need to be added before uploading a .war file.

b. Tomcat 5.5.26, the version included in OpenSolaris SXCE build 94, is missing

a library, commons-io, in the directory

/usr/apache/tomcat/server/webapps/manager/WEB-INF/lib. This is fixed in

future versions, but for this iteration, it was necessary to obtain a copy of that

library, place it in the specified directory, and restart the apache daemon to

enable uploading a .war file for deployment.

c. In order to use the DTrace library from a web application, it is necessary to

add the appropriate path to Java's library path. The following series of

commands stops the apache daemon, sets an environmental variable

appropriately, and restarts the daemon so that it can access the DTrace library

69

http://%3cserver
http://%3crouter

as needed:

/etc/rc3.d/S50apache stop
export JAVA_OPTS=-Djava.library.path=/usr/lib
/etc/rc3.d/S50apache start

70

-JTJJSJ
Fjle £d* Vnw History Bookmarks loots Hp%»

| @ Ktp/yio O/manager/html 15
Gmaf g Google g Flaps f~~ Fremont Forecast t* NameHnder ' WNPIWfe j DGRP - kxafost 0 DGP.P - VBox . . ' GWTAPI »

Software Foundation ^8&*r -ill
h t t p : / / w w w . a p a c h e . o r g /

Tomcat Web Application Manager

Message:

List Applications HTML Manager Help Man w r Help 9?fver Status

p«fl»

f
jOTraCeOraoWcaRouterProlect

/admin

fofaney

Aiost-manaqer

«»rtm*i t»:
Ananaaer

MtffltMWBlS
*omcat-docs

te&dsK

DiapftyHaBMt

Welcome to Tomcat

Tomcat AdmMstration Application

Tomcat Simple LoscJ Balancer Example App

Tomcat Manager Application

JSP 2.0 Example*

Tomcat Manager Application

Sarmzt&mtto*
Tomcat Documentation

Webdav Content Management

true

true

true

true

true

tru»

true

true

true

true

Q
a
Q

• t
Q
a
a
a
Q

.. a-

- • CmiuiiejM$ft. '* '

Start Stop Reload Undeplov

Start Stop Rejagjt Undantov

Start Stqp, Reload Undeplpy

start siaa se&ast iisstnt-
Start Stoo Reload Undeolov

Start Stop ftetoad Undeolov -

Start Stop Reload Undeploy

Start Sjfifi MM UQ&tte '
Start SJSB Reload Undeplov

sMrt 3aa BstesKl Ungate

Deploy darpdoiy or WAR file located on «erter ^

Context Path (optional):

XML Configuration file URL: £

WAR or Directory URL: |~

Deptoy j

WARfto to deploy

Select WAR file to upload [

IDono

Deploy I I d

£ j f t j < Now m Fremont: Partly Cloudy, 66" F . j , Thu:56*F - \ > ' Frt:70"F , _^ • Prli57*F •"'•JS

Figure 10. Tomcat Web Application Manager

The Tomcat Web Application Manager allows for simple deployment and management of
web applications.

71

http://www.apache.org/

VI. TESTING

The purpose of testing in the development of this framework and its reference

implementation is to ensure that the design proposed here does indeed work—that a web

application can dynamically provide network information via remote procedure calls

from a router utilizing DTrace to collect this data. During this development, two forms of

testing have been performed: The first used a virtual installation of the OpenSolaris

operating system sending and receiving network traffic through virtual network interfaces

to virtual interfaces on the host operating system; the second used real hardware with

other systems physically connected via real network interfaces. These two forms of

testing are discussed in this chapter. For each form of testing, one important assumption

is made: The accuracy of DTrace is already proven and is thus out of scope for this

testing, so these tests will not attempt to validate the data shown in the browser interface

by comparing it to what could be captured by independent network analyzers.

Testing on a Virtual System

Virtualization technology has seen rapid improvement in recent years, and

software from companies like VMWare and others now offers stable and generally very

usable methods by which one or more "guest operating systems" can exist on a "host

operating system." The virtualization software makes it appear to the guest OS that it is

72

actually running native on the system hardware—but without requiring a true installation

of the OS onto the system memory (e.g., hard drive) in place of the original OS. One of

these virtualization software programs is VirtualBox, an open-source software distributed

by Sun Microsystems (VirtualBox, 2008). VirtualBox offers the capability to run a large

variety of guest operating systems on many different host operating systems. For the

purpose of this project, the author was able to utilize VirtualBox to install OpenSolaris as

a guest operating system on a laptop running Microsoft Windows XP as the host OS.

The installation of VirtualBox itself is simple and follows the pattern of most

software application installations. Complete installation and user-guide instructions are

available on the VirtualBox download web site {Download VirtualBox, 2008). Once

VirtualBox was installed, the addition of OpenSolaris as a guest operating system was

also quite straightforward. The author downloaded a single DVD disc image (in .iso

format) of OpenSolaris (build nv_96) from the OpenSolaris download web site

{OpenSolaris Download Center, 2008), mounted it as a virtual DVD-ROM for the

OpenSolaris guest OS in VirtualBox, and "powered on" the OpenSolaris OS to begin

installation just as if a real DVD had been inserted into real hardware. For additional

information about the OpenSolaris installation process, refer to the Installing and

Configuring the Operating System section (p. 16) in Chapter IV. Platform Preparation.

Two important notes should be made about the setup of OpenSolaris in VirtualBox on the

author's development laptop. First, although the VirtualBox documentation indicated that

OpenSolaris should function with only 512MB of system memory allocated for it, the

73

author found that the installation failed unless 1GB of system memory was allocated;

second, the author also installed the "Solaris guest additions" provided with the

VirtualBox software for making the transition between host and guest operating systems

more seamless (for the mouse and keyboard, etc.) during development and testing. After

the installation was complete, configuration and the deployment of the web application

followed the steps outlined in the following sections from Chapter IV. Platform

Preparation and Chapter V. Implementation with the additions to be described:

1. Installing and Configuring the Operating System (p. 16)

2. Installing and Configuring the Routing Software (p. 20)

3. Installing and Configuring the Web Server (p. 22)

4. Deploying the Complete Web Application (p. 66)

The additions to this process included the special configuration of virtual network

interfaces on the host and guest operating systems. The VirtualBox software provides

this functionality. The author first created four virtual interfaces on the host (Windows

XP) OS using the following commands in a console:

vboxmanage createhostif "VirtualBox ifl"
vboxmanage createhostif "VirtualBox if2"
vboxmanage createhostif "VirtualBox if3"
vboxmanage createhostif "VirtualBox if4"

Next, each interface was assigned an IP address on a different subnet:

VirtualBox ifl: 10.0.0.50 (netmask: 255.255.255.0)
VirtualBox i£2: 10.0.1.50 (netmask 255.255.255.0)
VirtualBox iB: 10.0.2.50 (netmask 255.255.255.0)
VirtualBox if4: 10.0.3.50 (netmask 255.255.255.0)

Then, in the VirtualBox settings for the guest OS, four virtual interfaces were created for

74

the the guest OS, and each was paired with one of the virtual interfaces on the host OS—

as shown in Figure 11. After powering on the OpenSolaris guest OS, each interface was

assigned an IP address on the same subnet as its paired interface:

ifconfig elOOOgO plumb; ifconfig elOOOgO 10.0.0.1 netmask
255.255.255.0 up

ifconfig elOOOgl plumb; ifconfig elOOOgO 10.0.1.1 netmask
255.255.255.0 up

ifconfig el000g2 plumb; ifconfig elOOOgO 10.0.2.1 netmask
255.255.255.0 up

ifconfig el000g3 plumb; ifconfig elOOOgO 10.0.3.1 netmask
255.255.255.0 up

In this configuration, the guest OS has four virtual physical ports—each configured on a

different subnet, and there is exactly one other system active on each subnet—the

corresponding virtual port on the host OS.

With everything set up, some simple tests were performed. First, the author

verified that the simple features worked. The following several screen shots in Figures

12, 13, 14, and 15 show the output as expected from all of the screens except for

Analysis.

75

• f t OpenSolaris Build 96 - Settings
•MMMW'ft'SwW'l

§ General

0 Hard Disks

0 CD/DVD-ROM

'Ci Floppy

$B Audio

I*? Network

$ Serial Ports

$ USB

[3 Shared Folders

£p Remote Display

Help

Network

Adapter 0 | Adapter 1 | Adapter 2 | Adapter 3 J

| 7 Enable Network Adapter -

I' •ffiOTT-mrrffl

Intel PRO/1000 MT Desktop (82540EM)

Attached to

Interface Name jVirtualBox id

£Jetwo'k Name J

MAC Address J0800277D09DF

f7 Cable Connected

i- Host interfaces

VirtualBox i>3

VirtualBox if 2
VirtualBox if1
w;,k. , , I D „ , , ;t*

o

—3
generate}

m

Select a settings categoy from the list on the left side and move the mouse over a
settings item to get more information

flK | Cancel

Figure 11. Creating Virtual Network Interfaces

VirtualBox allows the creating of virtual network interfaces on both the host and guest
operating systems and the pairing of them to allow network traffic between the two.

76

y The DTrrtte Graphical Router Project - Mozilla Firefox

FJte grit yjew Hstory gookmarks look Help

X «; |0jhttP'//lOOO iO/DTraceGraphicalRouterPro)e .•' * | | G | " ! • J- y jf '

Oral g Google & Maps |T" Fremont Forecast * * NameFhder J ARNPIWita < j DGRP - kjcshost PJDGRP-VBox »

THE DTRACE GRAPHICAL ROUTER PROJECT
by Chris Nelson

San Jose State University

Wafcoipe}

Analysis

Sfit l ings

VersimiMIITI

Welcome to the DTrace Graphical Router Project...

Welcome to the DTrace Graphical Router Project

Click a link to the left to continue...

.Done -4?' «£j Nown Austm: Partly Sunny, 86»F ^ j| Fn: 53° F !sat:92°F j | S a t : 5 6 e F i ^

Figure 12. DGRP Welcome Screen

77

'i The DTrdte Graphical Router Project - Mo^illa Firefox - , - : - •

File £cft yiew History Bookmarks look Help
. • — • • • • • » • I I I H — ..:.„r~,^^,.^^.:^,.^.;^^

I J l 0 |http://10.0 0 l:8080/DTraceGraphicalRouterProje PGK~T & I J 1 tfU |nttp:/virj.u o l:8uBOfDiraceGrapnicalRociterProje » | I M " . • - ' ./

j Gmat $ Google £ Maps |T" FremontForecast * * NameFinder j ARNPIWfc •_] DGRP - loeahost Q D G R P - V B O X

- lalxi

THE DTRACE GRAPHICAL ROUTER PROJECT
bv- Chris Nelson

San Joses ta te University

Wek?rmic!

Analysis

Version Infi!

System Settings...

This is a placeholder for the future implementation of system settings.

Examples of settings that may be included:

• Interface IP Addresses
• Interface Netmasks
• Interfaces tnabled or Disabled
• Default Gateways (Rnuteis)
• DNS settings
• Quagga routing protocol
• Cluagga packet filtering
• Tunable DGRP Settings

, Done » • J Now in Austin: Partly Sumy, 86" F Fri:53*F Sat: 92° F Sat: 56» F '-* /.
Figure 13. DGRP Settings Screen

78

http://10.0

'} The DTrace Graphical Router Project - Mozilla FirefoK

Fjta gdK View History Bookmarks loots Help
H B -lalxi

| @ ,hrhp.//10 0 0 1.8080/DTraceGiaphicalRoutetProje ~ j | C] * ' j k - y '""J> •

i i Gmad g Googta i j Maps |7~ Fremont Forecast * * NameFinder , . 1 ARNPIWH i J DGRP - kxahost @DGRP-V8o9i »

San Jose State University

Analysis

Si ' l t i i i i js

}ls'.mQid>>f<>

Version Information for the DTrace Graphical Router Project...

cal Router Project:

Version:
Build Number:
lluild Date:
Author:

OnenSolaris:

Version:
Architecture:
Install Date:
Current Uptime:

0.9.0

16
Monday, Septombei 22,2008,11:00:52 PM PDT
Chris Nelson

Oil all (la:

Version:

Install Date:

Solaris Frxprsss Community Edition snv_96 X86
x86
Aug rt 200411:05
58 dayfs) and 2 users houi(s)

Quagga Routing Software 0.99.8

Aug 25 200811:51

Version:
Vendor
Virtual Machine
(VM):
VM Version:
VM Vendor:

1.6.0J6

Sun Microsystems Inc.

Java HotSpot(rM) Client VM

10.0 b?2
Sun Microsystems Inc.

Apache.Tomcat Web Server:

Apache:

Tomcat:

Browser.

Version:

The Apache HTTP server program (13.x) (root components]

Tomcat ServietJSP Container (fool)

Hozilla/5 0 (Windows; U; Windows NT 5.1; en-US; rv:1.9Jl.1)
Gecko/200607020B FlrefOM/3.0.1

Figure 14. DGRP Version Screen

79

) The DTrace Graphical Router Project - Moiilla Firefox

File Edit 1\tm Higory &ookjnarks loots Help

#.~.-:e""*~"~

i iS l J&M

- m-U | £<J >ttp.//10.0.0 1.30eO/DTraceSrapNcaRouterPro]e"tJ T HQ*| Google >* \ jjf

] GmM 3 Google £ Maps [if Fremont Forecast * • NamaFnder , J ARNPIWM LJ DGtf-localhort @DGRP-VBox

Wi i j t i ime

Analysis

Settings

San Jose State University

About the DTrace Graphical Router Project...

The DI race Graphical Router Project was created by Chris Nelson in partial
fulfillment of the requirements of the San Jose State University Computer
Engineering Master^ Degree Program.

Project Title

A Framework for Graphical Analysis of a Home-Molwork Router Using DTrace

Project Abstract

Simple network routers used in homes and small offices typically lack tools tor
performance monitoring and analysis that would be useful to the normally novice
users of these products. Sophisticated network simulation and analysis applications
require loo much effort for a typical user to consider, but Including some simple tools
in the router software would enable the common user to more quickly and completely
understand the reason or reasons for performance problems.

DTrace a dynamic tracing framework first released In Solaris 1Q and currently being
ported to Linux- provides the opportunity to gather relevant performance data from
the router itself, and If presented In an easily understood graphical format, the
common user will be empowered to understand and address problems more quickly
and with less need for additional support This thesis addresses the This thesis
addresses the development of a framework for and reference implementation of
graphical analysis tools for analyzing common network routers using DTrace.

Useful Links

Maw h rmute Surww, 84" P Fri:84'F Fn:S7»F ,c*| Sat:94»F &{ SetiSSPF

Figure 15. DGRP About Screen

80

With these basic functions proven working, the author moved on to the Analysis

page. By just loading the DGRP web application and performing no extra tasks, one

should see some activity: The expected activity would include just basic ARP traffic on

three of the subnets and some additional traffic on the subnet over which the RPC calls

are occurring for the web application itself. In fact, this is exactly what was seen. Figure

16 is a snapshot of the minimal traffic observed with the Solaris snoop command on the

10.0.3.0 subnet, and Figure 17 shows the output on the DGRP Analysis screen (with the

IP packet and data byte features turned on).

ether 8:8:27:d8:25:dd
el808g2: flags=28188e843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1586 index 4

inet 18.8.2.1 netroask ffffffee broadcast 18.9.2.255
ether 8:8:27:c7:99:ff

elB08g3: flags=281888843<UP,BROADCAST,RUNNING,MULTICAST,IPv4,CoS> mtu 1588 index 5
inet 18.8.3.1 netmask ffffff88 broadcast 18.8.3.255
ether 8:8:27:23:6e:db

lo8: flags=2O82908849<UP,LOOPBACK,RUNNING,MULTICAST,IPv6,VIRTUAL? mtu 8252 index 1
inet6 ::1/128

nv96-vbox$ ifconfig elB88g8 down; sleep lj ifconfig el888g8 up
nv96-vbox$ ping 18.8.8.58
no answer from 18.8.8.58
nv96-vbox$ ping 18.8.8.58
AC
nv96-vbox$ snoop -d el888g3
Using device el089g3 (promiscuous node)

Figure 16. Snoop Capture

Solaris's snoop command can capture traffic received on an interface.

81

Bt .6* tn> »&!*. 8H-* 3** B* • . .r. , . , , • • • . ,

«m g o»* 3 MM [T w M w j t , * wwtw»»'. loiwvmt, ,w»>i«aN»tgw^-vi«»t< jgwoi Jmi%xm^\wm-~2&*mtjiwmm'r*mm*m

Figure 17. DGRP Analysis Screen

DGRP's Analysis screen shows network information from the busiest nodes on the
connected subnets.

With this confirmation of functionality in place, though the software running on the

virtual OpenSolaris system is exactly the same as that running on a real piece of

hardware, the author turned his attention to repeating these tests on real hardware.

Testing on a Real System

The setup for testing on real hardware was very similar to that of the virtual

hardware. OpenSolaris nv_96 was installed on a simple x86 server, and the same

82

configuration steps—minus the setup of virtual interfaces—as used in the virtual testing

were followed. The OpenSolaris system had one physical interface—which was

configured with IP address 10.4.32.184. The network to which the OpenSolaris system

was attached was very large and active, but the 10.4.32.0 subnet was kept relatively quiet

during this testing to allow for the observation of expected network traffic. Figure 18

shows the DGRP Analysis screen as it observed normal network activity. The author's

laptop was connected to the network using IP address 129.150.192.18—as seen in Figure

19—and was running the DGRP application in a browser; this correlated with the laptop's

IP address showing as the most active system on the DGRP application.

To validate the dynamic updating of the web application—including the

reordering of the systems shown according to how busy they are, the author copied two

large files from another system on the network (assigned IP address 10.4.32.180) to the

router. As expected, the screen updated with the now-busiest system showing in the far-

left position and the author's laptop in the second-to-the-left position—as shown in

Figure 20.

Finally, to validate the data shown in the browser interface with that of a typical

DTrace script, the author refreshed the web application (to reset the counters) and—as

close to simultaneously as possible—started the equivalent DTrace script in a console

window to observe if the counters would match. As seen in Figure 21 and Figure 22, the

counters for the relatively quiet systems do indeed match, and the slight difference in the

data for the busiest system (the author's laptop) can easily be accounted for in the

83

difference of start and stop time in the browser and script tests.

To conclude, simple testing—both on virtual and real hardware—shows that the

reference implementation of this framework does indeed correctly utilize DTrace to

capture information about the network traffic processed by the OpenSolaris router and

display it in a graphical interface for the user. In future iteration of this project, as the

number of features built on this framework grows larger, a more structured test plan

should be developed and executed to ensure bugs in the user interface or data processing

logic are identified and fixed.

Eh 6 * $ m hup** ****••"» ->** a » „ , , ^ i m i r i. r .,..._. ^

l i l l ^ ' & H "M. fi?T""*- »" n-w rtsv nnoci" *-*xr tfjrfff — #*-*»« "' ' " ' " ' " " " " " """"•" jjQ.' , ^ "*" " ' "£~ ~£ «

Figure 18. DGRP On Real Hardware

The author's laptop—running the DGRP web application—was the most active system on
the network under normal conditions.

84

Figure 19. Test Laptop IP Address

The author's laptop was assigned IP address 129.150.192.18 during the testing.

85

«« & V»G» 1 "ttp* I ^ M t * n M H H r H l * -PWt** W ttrfnl ^ ' w « n W « W ' S M M V XXiintfl Oowrwian »»ri»ftaa»

Figure 20. Ordering According to Activity

The DGRP web application reorders the systems according to how busy each is—
assuming that the busiest systems are those of most interest to the users.

86

Figure 21. DTrace Script Output

"typical DTrace scripts are run in a console.

87

mmmmwrnnmy. •.»«•- .uu

Figure 22. DGRP Analysis Matches DTrace Scripts

The DGRP application relies on DTrace scripts in the background, and the data
displayed in the browser interface matches that of a typical script on a console.

88

VII. SUGGESTIONS FOR FUTURE DEVELOPMENT

While significant work has been completed in the development of this framework

and the reference implementation provided in this iteration of this project, the long-term

goals has not yet been realized: Integrating the type of tool discussed in this paper into a

true home-network router like those sold to consumers today will require some additional

work. The major remaining pieces of work are discussed in the following sections; some

are dependent upon each other, and some present an implementation choice that must be

made work in that area continues.

OpenSolaris on MIPS

Porting the OpenSolaris operating system to the MIPS architecture would enable

the use of DTrace on the hardware platforms already in use in today's home-network

routers. This type of port is obviously non-trivial, but some support already exists for the

idea within the open-source OpenSolaris community {MPSport ofopensolaris, 2005).

Significant positive aspects of this port exist: The full functionality of DTrace would be

available, and the full framework and reference implementation developed for this project

would be directly applicable and immediately usable. However, the negative parts

include the amount of work required not only to port Solaris to MIPS but to reduce the

memory footprint to a size appropriate for the typically small memory sizes available in

89

common home-network routers; in addition, the management interface functionality that

already exists for Linux on today's routers would need to be either ported or re-developed

(or at least recompiled) for Solaris as well. The effort to port OpenSolaris to MIPS would

probably be a good fit for a small group of computer Engineering graduate students—as a

knowledge of both hardware architecture and its interaction with software is required.

Wireless Support on OpenSolaris

As discussed earlier in this document, the support for wireless networking on

OpenSolaris is immature at best. Yet even with a small number of wireless chipsets

supported, this application could work in a wireless setting using OpenSolaris—save for

one missing piece of functionality: Code must be written to allow OpenSolaris to act as a

wireless access point. Today's common home-network routers actually server a number

of roles: They are routers, gateways, and wireless access points—at least. At the outset

of developing this framework, the author was unable to find any software available for

using a Solaris system as a wireless access point, so that functionality would need to be

developed by—likely—a pair of software or computer engineering graduate students in

order to make OpenSolaris a truly viable option for the long-term solution.

DTrace in Linux

The choice to develop DTrace for Linux is really the second of two options—the

first of which is the porting of OpenSolaris to the MIPS architecture. While OpenSolaris

90

on MIPS provides the ability to use DTrace and this framework on the hardware platform

in use by today's home-network routers, adding DTrace to Linux would enable the use of

DTrace and this framework on both the hardware platform and operating system of

today's routers. On the positive side, all of the work to get the operating system working

on the hardware platform (including wireless support) is already complete, and this

framework—and even the code from the reference implementation—would be quite easy

to use in the Linux OS. The downside to this choice is the non-trivial effort required to

implement DTrace in (at least) the Linux kernel and to develop the Java DTrace library

for Linux necessary for the server-side code to utilize DTrace after it is implemented.

Since both the DTrace implementation in OpenSolaris and the Java DTrace library are

open-source, there is plenty of reference code available for this effort. Still, this task

would probably be appropriate for a small group of computer and software Engineering

graduate students.

Cleaning Up the User Interface

The team behind the Google Web Toolkit makes a true statement about the

development of user interfaces: "As developers, we tend to be more interested in elegant

algorithms and clever optimizations, but remember that the user's opinion of our

application will be formed almost entirely on the interface's appearance and how well it

works. Don't neglect it! {Add Styling, 2008, last para.)." Indeed, during the course of

developing this framework and its reference implementation, the author placed relatively

91

little emphasis on the appearance of the graphical interface. Significant improvements

could be made to it through the judicious modification of the cascading style sheet, the

use of better clip art images, the rearrangement or integration of additional GWT widgets

or even those from add-on GWT widget libraries like those from the GWT Widget

Library project (GWT Widget Library, 2008) or GWT-Ext (GWT-Ext, 2008). If necessary,

the Google Web Toolkit could even be replaced by a different web application framework

that provides greater flexibility and capability for developing good-looking applications.

Note, however, that GWT provides not only the widgets and automated AJAX code

development but also the facility for Remote Procedure Calls, so choosing another web

application framework would necessitate finding other ways to provide those functions as

well. This effort is almost entirely software-related, so a single software engineer or

perhaps a pair would be appropriate for this task.

Additional Features

The reference implementation documented in this paper provides a few of the

most basic and arguable most useful data points that a tool of this nature could provide,

but an almost endless list of possibly useful features remains. A list of many potential

future features is provided in the Functional Requirements section (p. 100) of the

Requirements appendix, though future developers are encouraged to consider other ideas

as well. Development of additional features requires a firm understanding of the entire

architecture presented in this paper, so it is most likely applicable for computer

92

engineering graduate students, though software engineering students with a good

background in networking would also be appropriate for this task.

Final Integration

This effort is really the last step in achieving the goal set out in the introduction to

this project. It is dependent up on the other suggestions in this chapter—either porting

OpenSolaris to MIPS and adding wireless support or adding DTrace to Linux, improving

the user interface, and adding additional features. When these are complete, a single

graduate student—either a computer or software engineer—could pull these pieces

together to actually produce a home-network router that provides a user with a graphical

tool that utilized DTrace for analyzing his or her home-network. Depending on how well

the dependencies are completed, this final integration effort could range from somewhat

trivial to a larger amount of work; it could even potentially be combined with the

previous suggestion of developing more analysis features.

93

VIII. CONCLUSIONS AND RECOMMENDATIONS

The technology of DTrace offers a way to solve the need for simple, user-friendly

tools for home-network analysis. By collecting the detailed network traffic information

offered by DTrace and presenting it in an easy-to-understand graphical format, common

users can quickly identify and address problems in their networks without the need to

understand the many details of computer networking. The framework developed in this

project and its reference implementation provide a clear picture of how to piece together

DTrace with the other necessary technologies to make this type of easy-to-understand

graphical tool a reality.

In this project, several technologies have been pulled together to form a

framework and reference implementation for a DTrace-based graphical network analysis

tool. Because DTrace is only available at this time in the Solaris and Mac operating

systems, and because Mac OS X is not free and is only available on specific hardware,

the free, open-source OpenSolaris operating system was chosen for this implementation.

While many home-network routers use the MIPS architecture, because Solaris is not

currently available for MIPS, the x86 platform was chosen for this implementation. On

top of OpenSolaris running on x86, the Apache Tomcat web server was used, and the web

application—both client-side and server-side code—was written in the Java programming

language utilizing the Google Web Toolkit to translate the client-side code into fast

94

Asynchronous Java and XML (AJAX) code that can be executed in a browser without

reloading web pages. Asynchronous remote procedure calls (RPCs) were used to provide

the means of communication between the front-end (client-side) code executing in the

user's browser and the back-end (server-side) code executing on the router.

This framework—a client-side web application pulling data through RPCs from

server-side code utilizing Dtrace—is well defined in this document and is clearly

validated by the reference implementation also documented here. Even so, the ultimate

goal of integrating this functionality with a real home-network router (running on its

MIPS architecture and integrating into its web application management interface) has not

yet been achieved. To achieve this, there remain a few additional significant pieces of

work that must be completed. These pieces—including the porting of OpenSolaris to

MIPS or developing DTrace in the Linux kernel—may form the basis of future graduate

work that enhances what has been already completed in this project; for a complete

discussion of these pieces of suggested future development, refer to Chapter VII.

Suggested Future Development (p. 89).

In conclusion, a framework to meet the stated goal has been developed and proven

by a reference implementation, and a roadmap is provided for future development that

shows the path between this iteration and the achievement of the final goal.

95

REFERENCES

Add Styling. (2008). Retrieved September 2,2008, from http://code.google.com/
docreader/#p=google-web-toolkit-doc-1 -5&s=google-web-toolkit-
doc-1 -5&t=GettingStartedStyle

Apache Tomcat 6.0. (2008). Retrieved February 2008, from http://tomcat.apache.org/
tomcat-6.0-doc/index.html

BigAdmin System Administration Portal. DTrace. (2008). Retrieved February 2008,
from http://www.sun.com/bigadmin/content/dtrace/

Building a Sample Application. (2008). Retrieved February 2008, from
http://code.google.eom/webtoolkit/gettingstarted.html#Sample

Download VirtualBox. (2008). Retrieved August 17, 2008, from
http://www.virtualbox.org/wiki/Downloads

DTrace. (2007). Retrieved March 1, 2008, from http://wikis.sun.com/display/DTrace/

DTrace for FreeBSD. (2008). Retrieved April 17, 2008, from http://www.bsdcan.org/
2008/schedule/events/66.en.html

DTrace - Introduction. (2007). Retrieved March 1, 2008, from http://wikis.sun.com/
display/DTrace/Introduction

DTrace Network Providers. (2008, August 29). Retrieved September 1, 2008, from
http://opensolaris.org/os/community/dtrace/NetworkProvider/

Eclipse - an open development platform. (2008). Retrieved September 2008, from http://
www.eclipse.org/

Google Web Toolkit. (2008). Retrieved March 15, 2008, from http://code.google.com/
webtoolkhV

Gregg, B. ip Provider. (2008, July 28). Retrieved August 25,2008, from http://
wikis.sun.com/display/DTrace/ip+provider

GWT-Ext. (2008). Retrieved September 2008, from http://gwt-ext.com/

96

http://code.google.com/
http://tomcat.apache.org/
http://www.sun.com/bigadmin/content/dtrace/
http://code.google.eom/webtoolkit/gettingstarted.html%23Sample
http://www.virtualbox.org/wiki/Downloads
http://wikis.sun.com/display/DTrace/
http://www.bsdcan.org/
http://wikis.sun.com/
http://opensolaris.org/os/community/dtrace/NetworkProvider/
http://
http://www.eclipse.org/
http://code.google.com/
http://
http://gwt-ext.com/

GWT Widget Library. (2008). Retrieved September 2008, from http://sourceforge.net/
proj ects/gwt-widget

gwt4nb Project Home. (n.d.). Retrieved March 2008, from https://gwt4nb.dev.java.net/

Home Gateway Initiative. (2007). Retrieved April 17, 2008, from http://
www.homegatewayinitiative.org/publis/HGI2007%20fiyer.pdf

Home Gateway Initiative - Vision. (2007). Retrieved April 17, 2008, from http://
www.homegatewayinitiative.org/public/docs/HGI_white_paper.pdf

HOWTO: use ANT with JAVA to dynamically create build numbers. (2007, April 16).
Retrieved March 2008, from http://stoken-tips-and-tricks.blogspot.com/
2007/04/howto-use-ant-with-java-to-dynamically.html

Java DTrace API. (2007, May 27). Retrieved May 15,2008, from http://
opensolaris .org/os/proj ect/dtrace-chime/j avadtraceapi

Leventhal, A. Mac OS X and the missing probes. (2008, January 18). Retrieved April 17,
2008, from http://blogs.sun.com/ahl/entry/mac_os_x_and_the

List of web application frameworks. (2008). Retrieved March 2008, from
http://en.wikipedia.org/wiki/List_of_web_application_frameworks

MPS port of opensolaris. (2005, December 3). Retrieved May 2,2008, from http://
opensolaris.org/jive/thread.jspa?messageID=51805

NetBeans. (2008). Retrieved February 2008, from http://www.netbeans.org/

NetBeans DTrace GUI Plug-in. (n.d.). Retrieved March 12, 2008, from http://
www.netbeans.org/kb/dtracegui_plugin/NetBeans_DTrace_GUI_Plugin.html

OpenSolaris. (n.d.). Retrieved March 1, 2008, from http://www.opensolaris.org

OpenSolaris Community: DTrace. (2007, October 23). Retrieved March 1, 2008, from
http://opensolaris.org/os/community/dtrace/

OpenSolaris Download Center. (2008). Retrieved March 1, 2008, from http://
www.opensolaris.org/os/downloads/

OpenSolaris Project: Chime Visualization Tool for DTrace. (2008). Retrieved April 17,
2008, from http://opensolaris.org/os/project/dtrace-chime/

97

http://sourceforge.net/
https://gwt4nb.dev.java.net/
http://
http://www.homegatewayinitiative.org/publis/HGI2007%20fiyer.pdf
http://
http://www.homegatewayinitiative.org/public/docs/HGI_white_paper.pdf
http://stoken-tips-and-tricks.blogspot.com/
http://
http://blogs.sun.com/ahl/entry/mac_os_x_and_the
http://en.wikipedia.org/wiki/List_of_web_application_frameworks
http://
http://www.netbeans.org/
http://
http://www.netbeans.org/kb/dtracegui_plugin/NetBeans_DTrace_GUI_Plugin.html
http://www.opensolaris.org
http://opensolaris.org/os/community/dtrace/
http://
http://www.opensolaris.org/os/downloads/
http://opensolaris.org/os/project/dtrace-chime/

OpenSolaris Project: Quagga Routing Protocol Suite Integration. (2007). Retrieved May
2,2008, from http://opensolaris.org/os/project/quagga/

OpenWrt. (2008). Retrieved April 17, 2008, from http://wiki.openwrt.org/

Output Formatting. (2007). Retrieved May 2008, from
http://wikis.sun.com/display/DTrace/Output+Formatting

Rational Apex Embedded Solaris to MIPS Family Release Note for Tornado. (2001).
Retrieved April 17, 2008, from ftp://ftp.software.ibm.com/software/rational/docs/
apex/400b_vxw/vxworks_relnote_mips/vxworks_release_note.html

Remote Procedure Calls. (2008). Retrieved March 2008, from http://code.google.com/
docreader/#p=google-web-toolkit-doc-1 -5&s=google- web-toolkit-
doc- 1 -5&t=DevGuideRemoteProcedureCalls

Ruby on Rails. (2008). Retrieved August 2008, from http://www.rubyonrails.com/

Solaris Dynamic Tracing Guide. (2005). Retrieved March 1, 2008 from http://
docs.sun.com/app/docs/doc/817-6223

Stripes Home. (2008). Retrieved August 2008, from http://www.stripesframework.org/

Struts. (2008). Retrieved August 2008, from http://struts.apache.org/

SystemTap. (n.d.). Retrieved April 17, 2008, from http://sourceware.org/systemtap/

Table of Hardware. (2008). Retrieved March 2008, from
http://wiki.openwrt.org/TableOfHardware

The Apache Software Foundation. (2008). Retrieved February 2008, from http://
www.apache.org/

Thread: Solaris as a wireless access point. (2007). Retrieved March 2008, from http://
www.opensolaris.org/jive/thread.jspa?threadID=52197&tstart=45

VirtualBox. (2008). Retrieved August 25, 2008, from http://www.virtualbox.org/

Wireless Network Driver for ZyDAS ZD1211 802.11b/g USB Chipset (zyd).(200S).
Retrieved February, 2008, from http://www.opensolaris.org/os/community/ laptop/
wireless/zyd/

98

http://opensolaris.org/os/project/quagga/
http://wiki.openwrt.org/
http://wikis.sun.com/display/DTrace/Output+Formatting
ftp://ftp.software.ibm.com/software/rational/docs/
http://code.google.com/
http://www.rubyonrails.com/
http://
http://www.stripesframework.org/
http://struts.apache.org/
http://sourceware.org/systemtap/
http://wiki.openwrt.org/TableOfHardware
http://
http://www.apache.org/
http://
http://www.opensolaris.org/jive/thread.jspa?threadID=52197&tstart=45
http://www.virtualbox.org/
http://www.opensolaris.org/os/community/

APPENDICES

99

APPENDIX A. REQUIREMENTS

Project Deliverables

The deliverables for this project are as described in Table 2:

Table 2. Project Deliverables

Deliverable Description

Proven Framework and
Reference Implementation

Complete Source Code
(hard and soft copy)

Portable Presentation and
Demonstration

Formal Presentation

Thesis Report

A working implementation of the graphical analysis
interface—including capability to provide a basic set
of datapoints—must be completed.

The source code for all components of the reference
implementation will be provided with the final report
—both in hard and soft copy.

A digital presentation of the project and a
demonstration of its functionality (likely as a
screencast) will be created and made available in soft
copy with the final report.

A formal presentation of the project and a live
demonstration will be given to faculty members of the
university and other graduate students.

A formal report (this document)—formatted according
to university requirements and thoroughly
documenting the project background, design,
implementation, and suggestions for future work—
will be submitted to the university for approval and
binding.

Functional Requirements

The primary customers of this framework and reference implementation project

100

will be the makers of home-network routers who would see a business advantage by

including a tool of this sort with their product(s) in order to make analysis of the home

network and debugging of common problems easier for the typical customer. Other

customers include the open-source community who may be encouraged to continue the

effort to port DTrace to Linux and/or work to port Solaris to the MIPS architecture—

either way enabling this tool to be used on routers like those currently in production.

As a framework, the functional requirements for this project are somewhat loose.

The following list (in no particular order) provides a set of features and a subset of the

data-points that may be of interest in future implementations of this framework. As

described in the discussion of project deliverables, this framework and reference

implementation should make available some—but not all—of this data in order to prove

the usefulness of the design.

1. Indication of current version information (of thesis and other relevant software)

2. Indication of basic network interface settings (e.g., Internet Protocol (IP) address,

netmask)

3. Indication of other relevant system settings (e.g., Domain Name Service (DNS)

servers, gateway)

4. Indication of a new connection (in the case of Transmission Control Protocol

(TCP)) or a new address from which data is received or to which data should be

sent

5. Indication of connection termination (explicit in the case of TCP or after a period

101

of no traffic for other "connections")

6. Connection speed (theoretical maximum and actual)

7. Bandwidth (theoretical maximum and actual being used)

8. Response time (maximum, minimum, average)

9. Number of packets/frames received or sent (total or per period of time)

10. Number of bits/bytes received or sent (total or per period of time)

11. Number of checksum errors (total or per period of time)

12. Some indication of overall connection quality (likely as an aggregation of several

data points)

13. User-tunable parameters for data points

14. Indication of router's CPU and memory (real and virtual) utilization

15. Indication of network buffer overflows

16. Ability to modify system and interface settings (e.g., IP addresses, DNS servers,

etc.)

17. Ability to easily integrate into the existing interfaces provided in common home-

network routers (e.g., exist as a browser-based application)

Non-Functional Requirements

As a framework project, performance, compliance, security, and similar

nonfunctional requirements are—for the most part—not applicable. It is worth

mentioning that much of the DTrace functionality requires super-user privileges on the

102

Solaris operating system, so some form of authentication and authorization would

probably be required to ensure an appropriate user is the one using the graphical

interface, but this form of authentication already exists in most of the existing routers'

interfaces and is outside the scope of this project.

In general, this reference implementation software should perform quickly enough

and be stable enough to make obvious its usefulness. The interface should not crash in

normal operating conditions, and if errors do occur, they should be handled gracefully

with proper notification given to the user to enable him or her to take necessary action.

Requirements Analysis

As mentioned previously, the functional requirements for this framework project

are rather loose, so a an in-depth requirements analysis—in the form of a multi-level

quality-function-design (QFD) analysis or some other format—is not applicable.

Nonetheless, a single-level house of quality is provided in Figure 23 to offer some basic

correlation between the assumed customer requirements and the initial technical

requirements.

103

Figure 23. House-of-Quality Diagram

This House-of-Quality diagram shows some correlation between the basic customer
requirements and the initial technical requirements

Hardware, Software, and Skill-Set Requirements

Tables 3,4, and 5 provide lists of the high-level hardware, software, and skill-set

requirements for the completion of this project. Brief comments are provided about the

choice of some of the components, and these choices are discussed in more detail in the

104

Architecture and Design (p. 8) and Implementation (p. 27) chapters of this document.

Table 3. Hardware Requirements

Component Comments

X86 System to Serve as Router

Multi-port PCI-E Ethernet Network
Interface Card (NIC)

Monitors, Keyboards, Mice, Power
Cables, Ethernet Cables

Two or Three Other Computers for
Testing

Laptop for Portable Development
Environment

Any basic x86 or x64 system will work to run
Solaris. (A SPARC system would work too.)

Needed to provide additional Ethernet ports
for multiple connections to the router

Available as needed during development and
testing

Needed to connect to router and
generate/receive traffic during testing

Developer will be mobile and will load
snapshots of code onto the router from
development laptop at various intervals for
testing

Table 4. Software Requirements

Component Comments

Operating System for Router
(must provide DTrace functionality)

Individual Development
Environment

Web Server

Routing Software

Using OpenSolaris Solaris Express
Community Edition (SXCE). New builds are
provided bi-weekly, though development of
this project will likely sync only as needed for
major bug fixes or feature enhancements

Using NetBeans IDE

Using Apache Tomcat Web Server to serve
web application for browser-based interface

Using Quagga-
Solaris)

-a fork of Zebra (supports

105

Table 5. Skill-Set Requirements

Skill-Set

Knowledge of DTrace

Basic Administrative Knowledge of
the Chosen Operating System

Java Programming Skills

Web-Application Development Skills

Knowledge of AJAX

Knowledge of Networking Basics

Willingness to Learn

Comments

DTrace scripting relies on knowledge of C
programming language and Unix-style shell
scripting

Using OpenSolaris

Used in JavaServer Pages (JSPs), servlets, and
other web-application coding

Used for fast updating of graphics in the
browser

As in many architecture projects, the need for
additional skills will arise during the course of
the project.

106

APPENDIX B. PROJECT SCHEDULE

Initial Schedule

107

V

1

2

1

4

S

6

7

ft

a

10

i i

12

13

14

15

IS

17

(8

19

2D

21

22

23

24

25

29

27

28

29

30

31

32

33

34

35

36

37

38

38

40

41

42

43

44

45

48

TaakNaim

PHASE 1

initial masting wttn requessed
advisor

Submit informal proposal a advtta

Stem* advisor's commitment

Determine hardware platform

betermme software routing
aoplfcallon

Advisor meetlrig: Project Kop»

Submit signed abstract

RegisJer project vathSJSU

Acquire necessary hardware

Set up devetor^nent environment

AoMsor meeting

O m n M wirelessa fteslbMIy

PKASS2

Complete Dtraca education

Develop Dtraca data-poms Hat

Advisor meeting

Develop Dtraca basaJkia scripts

Advisor meeting

PHA8E3

Determine SW languages for app.

Complete SW language education

Identify Dtraca Bystem can*

Advisor meeting

Design initial architecture

Submit thesis project plan » SJSU

Advltot meeftig

Davelop test case*

Complate CMPE2S9A Enrollment

U m d o p a J r ^ M a t t ^ b l M
prototype

Advisor meeting

Advisor maeting

PHASE 4

Expand prototype for atfrJSknal
data

Complete testing and bugfbtea

ArMaormaasng: Derrn

PHASES

gompietererroerBng
documentaHan

Compile dors into thesis report

Advisor meettng; N n W » ! h M e
draft

Edrl thesis tor submission

Ccrnple!aCMPE2996erKollmem

Subrrit thesis to CMPE department

Submit thesis to Graduate Studies

Present protect at CMPE Expo

Submit thesis for binding

SKart

1/3012008

1/3072008

2/4/2008

2/8/2008

2/8/2008

2/8/2008

2/13H008

2/13/2008

2/14/2008

2/20/2008

3/1/2008

3/5/2008

3/5/2008

3712088

3/7/2008

3/14/2008

3/19/2008

3/26-2008

4/2(2008

473/2088

4/3/2008

4/9/2008

4/12/2008

4/1672008

47202008

4/1872008

4/30/2008

5/1/2008

5/9/2008

5/1072008

5/14/2008

B/14/200B

6/14/2088

6/14/2008

7/10/2008

7/25/2008

712012008

7/20/2008

7/250008

8 0 0 0 0 8

872/2008

8/8/2008

912/2008

11/130008

12/6/2008

1/180008

HfflJfl

3/100808

1/303008

2/6/2008

2/8/2008

2/21/2008

2/21/2008

2/13/2008

2/14/2008

2/14/2008

2/28/2008

3/10/2008

3/5/2008

3/8/2008

4/180008

3/20/2008

3/27/2008

3/19/2008

4/15/2008

4/2/2008

•714/2008

4/92008

4/2272008

4/28/2008

4/18/2008

5/3/2008

5/1/2008

4/30/2008

5/7/2008

5/9*2008

6/1372008

5/14/2008

6/14/2008

7/30/2000

7/13/2008

7/30/2008

7/25/2008

1/1*200»

8/2/2008

701/2008

8/2/2008

8/6/2008

rVB/2008

9/2/2008

11/13/2008

12/9/2008

f/IB/2009

Dura/tort

41d

Id

3d

Id

14d

14d

id

2d

id

tod

tOd

id

5d

404

I4d

I4d

id

21d

id

73d

7d

<4d

tSd

id

14d

I4d

Id

7d

Od

3Sd

Id

id

47d

30d

21d

Id

10M

I4d

7d

Id

Sd

Od

0d

Od

Od

Od

180%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

88.12%

100%

100%

100%

25%

100%

28.14%

100%

75%

10%

100%

50%

0%

100%

50%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

0%

OJ f»

s * M *

f » »

ttrlu*, Jm

OHM

Jul Aug *m

cunt

Od Mm j DM

faaaaaj

1
1
1

•
•
1
1
1

•
1
1
1
« a W

•
•
1

m
i
^mmmgf
i

•
•
i
•

•
i
i
•

• •
i

i
l a a a a W

m
•

i

•
i
t
•
•

•
•

•
<

Figure 24. Original Project Schedule

Final Schedule

109

m

i

2

3

4

5

e
7

fl

a

to

i t

12

13

14

15

IS

17

IS

19

20

21

22

23

24

23

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Task Nairn

PHASE 1

Jrtffoai meeting wfli requested
advisor

Subcrtt informal proposal toadvlsra

Secure advisor's commitment

Determine hat Avars platform

umrrnw somraro routing
application
Advisa meeting: Project scope

Submit signal abstract

Register project with SJSU

Aosjim necessary hardware

Sat up development environment

AdvUoc ineettno;

Determine wtreleaa feasibility

PHASE 2

Complete Dtraca education

Davslop Dtrace data-poirt list

Advisor meeting

Determine SW languages for app.

Advisor meeting

Complete SW languag* education

Desio^Mlal architecture

PHASES

Submit thesis projact plan to SJSU

Advisor meeting

Comptauj CMPE299A Erooftnent

Davslop Dtrace baseSns ecripte

identify Dtrace system cats

uevsiop stngre-saw-point
orotntvoe
Develop tast cases

PHASE4

Agree wtm advisor on Tenu-aUM*"
(or proieGt

' ExpWprolorypefwarJdlMonal
data
Complete testing and bugftwe

Advisor meetinsf. Demo

PHASES

Apply for graduation

wmpnta remaining
documentation h thesis format
Advisor meeting: ramew sies*
drat
Develop presefrtsSon

rasen to Department committee
and student classes
Edit Diesis 1oroubrr*Mion

Submit ihsaia to Graduate Studies

Complete CMPE299B Enroltrnent

Submit iheais tor binding

Staff

iracnoas

1/30O00B

2/4(2008

2/ft2008

2/8/2008

2/8/2008

2/13/2008

2/13(2008

2/140001

2/20/2008

3/1/2008

3(3/2008

3/5/2008

3/7/2088

3/7/2008

3/14/2008

3/19/20OB

4/12008

4716O008

4/9OQ08

4/2072008

4(18/2008

4/18C008

4/30S00B

W5V2008

5(280008

508(2008

5/28)2008

8O4/2008

8/18/2008

8/27/2008

8/18/2008

9/1/2008

9/24/2008

worn
8/1/2008

9(3(2008

10/1/2008

3/28/2008

1076/2008

10/20/2008

11/130008

12/40008

1/1672009

Finish

3/10/2008

1/30/2008

2/6/2008

2/8/2008

2/21/2008

2/21/2008

2/13/2006

2/14/2008

2/14/2008

2090008

3/10/2008

3/5/2008

3/9/2008

873/2001

3/20/2008

3/27/2008

3/19/2008

4/9O008

4/18/2008

4/22/2008

5/3/2008

8/30/2808

5/1/2008

4/30/2008

5/9/2008

8/25/2008

8/23/2008

805/2008

8/30/2008

8/30/2000

8/27/2008

9/21/2008

9/30/2008

9/24/2008

1/18/2008

9/1/2006

8/3072008

10/1/2008

1073(2008

10/17/2008

10/31/2006

11/130008

12/40008

1/160009

Dura/tan

dia-

id

3d

id

14d

14d

id

2d

Id

tOd

10d

Id

5d

58d

14d

14d

id

7d

id

14d

140

1390

I4d

Id

Od

90d

90d

90d

7d

44d

id

35d

30d

Id

13Td

Id

28d

id

Sd

12d

12d

Od

Od

Od

100%

100%

100%

100%

100%

100%

100%

100%

100%

ioo%

100%

100%

100%

188%

100%

100%

100%

100%

100%

100%

100%

180%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

100%

188%

100%

100%

100%

100%

100%

100%

100%

100%

100%

Old*

»• M r

wet

(Urjuy Jkn

(JJOt

44 *• »»>
turn

Qa I M » O .

I M F
•
1
1

•
•
1
1
1

•
I
1
1
laMHaatf

of

•
1

1
1

•
•

^mmmmmmgf

a
1
•

•aBMeei

• • • • •
• • • • •

1
1a«a*r

1
•at
•a

i
i
i

mm
i
i

•
•

•
•

<

Figure 25. Final Project Schedule

APPENDIX C. DEVELOPING WITH THE NETBEANS IDE

For the development of the reference implementation code in this project, the

author made use of the NetBeans Integrated Development Environment. NetBeans is an

open-source IDE distributed by Sun Microsystems, Inc. A significant amount of

information regarding the installation and use of NetBeans is available on the NetBeans

web site {NetBeans, 2008), but this appendix will provide a brief overview of several of

the common steps the author used in the course of developing this framework and

reference implementation.

Creating a Web Application Project

To create a web application project in NetBeans, select File —• New Project, and

choose Web Application as in Figure 26. Name the project appropriately, and select the

desired web server for association with this project. The author used Apache Tomcat—as

shown in Figure 27. Finally, to use the Google Web Toolkit web application framework,

select it from the available frameworks—as shown in Figure 28; this requires installation

of the GWT4NB plug-in—as described in the following section.

I l l

IpPHew Project

Step*

1. Choose Project

Choose Project

Categories:

LZJ Java

C3 Enterprise

Q Mobility

Q UML

Q SOA

D Ruby

Q C/C++

[.".} NetBeans Modules

Cl Samples

Description:

H I

I I Web Application with Existing Sources
jtyt Web Free-Form Project

X*

Creates an empty Web application In a standard IDE project. A standard project uses an
IDE-generated build script to build, run, and debug your project,

<8ackJ N**';> | - &*JT f Cancel | a * |

Figure 26. Creating a New Web Application Project in NetBeans

Creating a web application project in NetBeans will automatically include and configure
necessary files for a web application.

112

I t New Web Application

Steps

1. Choose Project
2. Name and Location

3. Server and Settings
4. Frameworks

M\
Server and Setting*

Add to Enterprise Application: I : V n e > *)

Server; [^ ^ ^ ^ ^ ^ ^ I ^ I ^ H I ^ H B O J Add- [

I - 5"diJr3 M'lbrwj'J V" f»irsi-"er lARtle..

Java EE Version: J Java EE 5 j » J

Context Path: j / Web Application!

<Back Next > | Finish j Cancel | Help |

Figure 27. Choosing a Web Server in NetBeans

The author used the Apache Tomcat web server for development.

113

% New Web Application JSl
Steps

1. Choose Project
2. Name and Location
3. Server and Settings
4. Frameworks

Frameworks

-elect the franjeworks you want to use in your web application,

n Visual Web JavaServer Faces

O Spring Web MVC 2.5

O JavaServer Faces

f~ <&n ihc 1 7 q

Google Web Toolkit Configuration

GWT Installation Folder: |C:\Program Files\Google\gwt-windows-l A Browse

GWT Module: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ jorg.youmamehere.Main

____J. (| Finish "] Cancel (Help |

Figure 28. Choosing the GWTFramework in NetBeans

Integration between NetBeans and the Google Web Toolkit was made easy by the
GWT4NB plug-in.

Using GWT4NB

To create a web application project using the Google Web Toolkit framework as

described in the previous section, it is required that the GWT4NB plug-in be installed.

This is handled via the plug-in wizard in NetBeans—as shown in Figure 29.

114

i ^ f inims

Updates (1) | AvalaWe Plugns (87) |

Reload Catalog [

Ur«n...| Name

I™" Ruby and Raiis

r SM
r™ BPEL
| ~ Composite Application

r UMI-

r Visual 3SF

r IBM WebSphere Applicatio.

r~ Web Applications

r Java EE

P Struts

P XMt and Schema

P GlassFish

P Identity

P BEA WebLoglc Server

P JBoss Application Server
P Spring Web MVC

P RESTful Web Services
P Web Services

r Tomcat

P WSDL

Uyistell J

Downloaded Insta

| Category T |

Ruby

SOA

SOA

SOA

UML

Web & Java EE

. Web & Java EE

Web & Java EE

Webb Java EE

Web & Java EE

Web & Java EE

Web & Java EE

Web & Java EE

Web & Java EE

Web & Java EE

Web & Java EE
Web & Java EE
Web Si Java EE

Web & Java EE
Web & Java EE

tod(4S)|5 ettmgsj

Search: |

Acbve)

.at * l

©
©

©

©

©
©
©
©
©
©
©
©
©
©
0
©
© .d

GWT4NB QeactFate

Version: 2.0,1
Source: NetBeans Beta

i l l

Plugin Description

The GWT4NB project aims to enable developers to take advantage of
both: the superior support For creating Web Applications built Into the
NetBeans IDE and the power of GWT (Google Web Toolkit). Provided
functionality includes.' - Using GWT with new or existing Web Projects -
Deployment, running and debugging GWT-enabled Web Apps using
arbitrary Application Server • Assistance to deal with some code editing
nuances such as creating RPC services efficiently Project Home Page:
http://gwt4nb.dev.java.net/

. Cjose J- Help

Figure 29. The GWT4NB Plugin in NetBeans

With the GWT4NB plugin installed in NetBeans, development of web applications using
the GWT framework is significantly easier.

Creating an RPC

To create a remote procedure call in a web application project using the GWT4NB

plugin in NetBeans, select File —»New File, and choose the GWT RPC Service from the

available options—as shown in Figure 30. According to configuration options selected

on the following wizard screen, the necessary modifications will be made to files like

115

http://gwt4nb.dev.java.net/

web.xml, and the necessary front and back-end Java classes will be created with

placeholders for code development.

TlNew File

Steps

1. Choose File Type
2, ,..

Choose Fte Type

>& DTraceGraphicalRouterProject

Categories: FjleTvpesr

- J

D Web

2] JavaServer Faces

C l Struts

'"*.l Spring Framework

L3 Java

CU JavaBeans Objects

•J3 JUnit

111 Persistence

BescfipwoR:

d

• J GWTRPT Service

GWT Service allowing remote procedure calls,

M

H.

" . J '* Next > | r '••». I Cancel j •*• 1

Figure 30. Creating an RFC in NetBeans

Creating an RPC is made rather simple in NetBeans with the GWT4NB plugin.

Using Additional Java Libraries

To use additional Java libraries—often packaged in JavaArchive jar files, add

them using the project properties wizard—as seen in Figure 31.

116

Categories.

'J Sources _J

J Frameworks

£ » BuHd

> ComplHng

j •*» Packaging

0 Documenting

•3 Run

1

' " ' I * | _ . , -« * • less | 5 J l -,>s |

- s t a ; - e . t - a r n

i . .

£ . . •

? : v - . •...

.i

HHBHSB®

%«.-<•

. - • » • «

* : : jfU-

.

1

J

1 *•*•»

i7

* - !7

i >i

- 1

J£j

Meragrnet'sriii

cnwbe

A-ln^niKt |

a f - i l w y |

W i AI'FuUer |

I
J

I
I

ar.oi | ; *

Figure 31. Using Additional Java Libraries

To use additional Java libraries in a NetBeans project, add them in the project properties
wizard.

Building and Hosting the Web Application Locally

For basic verification of functionality or simple debugging, the author frequently

found it useful to build the web application and host it locally on the development

machine using the Apache Tomcat web server (as specified in the Project creation, see the

Creating a Web Application Project section in this appendix, p. 111). To do this in

NetBeans, select Run —• Run Main Project. Output like that in Figure 32 will be

displayed in the NetBeans console, and the web application will launch in a local browser

window—like in Figure 33.

117

• DTraceGranhicalRouterProiect - NetBeans IDE 6.1 * & • -lOixl
Rte £dib View Navigate Source Refactor gudd R.un Profile Versfomng Ipofe Bfindow Help

• t; Q Ui '•* ri 3 ; J .If Tfi» 1̂ i i -Q -

i ! Projects « x' 'rtw
' La Server Resources

9 Qjj Source Packages

T [3 ^Q -QfP
+ i j org.dgrp client

7 L i l org.darp.swwMt:

3] RanHiAjiMrhMnnirnrlmnl IAVA

Navigator

J

~m x]

Oujput V x SetrehResuts J
y^ DTreceGraphicaRouterProject (run)*| Tomcat 5.S Log s j Tomcat 6.0 x |

*.« Copying 1 f i l e to D:\Documents and Settings\chrisne\My Documents\NetBaans Pro jects\!>TraceC^±J
Starting Tomcat process
Waiting for Tomcat...
Tomcat server started.

Incrementally deploying http: //localhost: 8080/DTraceG-raphicalP.outerProject

Completed incremental distribution of http: //localhost: 8080/DTraceG-raphicalP.outerProject

Incrementally redeploying http://localhost: 8030/DTraceGraphicalHouterProject

Deploy is in progress...

deploy?config=file:/C:/Temp/contextl0918.xml£paths/DTracaGraphicalP.outerProjact

JU

a
Figure 32. Local Deployment of a Web Application from NetBeans

NetBeans can build and host a web application on the development machine using a web
server specified during the creation of the project.

118

file://D:/Documents
http://localhost

•) The DTrace Cranhif al Router Project - Mcmlia FirefnH

FJIe B * Bow Mgay Bookmarki lads Help

&'~

JaiiJl

C X i i (Hhttp/'loalh

IQTUH <J Googb 3 M*P& P" fremonfc forecast

ihicalPouterPro

ARNPIWU

• I S
DGRP-locarrat l-'IOCSP-veox ' GWTAM

• A •

GWT15AP1 »

li^'/co/n?

Version jtilij

THE DTRACE GRAPHICAL ROUTER PROJECT
I Chrs Nelson

Snn Josy Statu University

Welcome to the DTrace Graphical Router Project...

Welcome to the DTrace Graphical Router Project

Click a link to (tie loft to continue...

\m (tew in Austin; Partly! ' % & & * . $ • • Wed-Wf > Wed'62«F

Figure 33. NetBeans Hosting a Web Application Locally

NetBeans can build and host a web application on the local machine using a web server
specified during the creation of the project.

Building the Web Application for Deployment

When ready to deploy the complete web application, NetBeans can build and

create a JavaArchive .war file that can be deployed using a web server like Apache

Tomcat. To do this, select Build —> Clean and Build Main Project. This will produce

a .war file in the project's dist directory—as seen in Figure 34.

119

i'Siiy Dniiimrnt's ami SI-MHUI* • tn ••>•••- My Pm uriicnls *-t'llli'.ni* l'in|i*i ts 1)1

Fte £(ft iiew

O8** * J
Arkl re«r ^ rv\r>nn

Favorites lods Help

• ^T y Search J Folders V^X»9;
- - -

jments snd 5ett!nQ5\chr!sne\My Docurnent5\NctB?ar.5 P!,ojects\DTraceGr3ph!ca!RouterP*Qject\d!St

SjDTraceGraphlcalRouterProject.war

I objects-. {««»•'• M

- -- —

-d flG

i^yCaMIMj^

- inlxi

i
a link*'

' ' A

Figure 34. A Web Application Ready for Deployment

NetBeans can build a web application and package it in a .war file for deployment on a
web server.

120

APPENDIX D. SOURCE CODE - GENERAL FILES

The complete source code for the reference implementation of this framework is

provided in this and other appendices to this document for the reader's easy reference.

For the simplest viewing experience or to use the code without copying and pasting it

into a new source file, the reader is encouraged to review the soft-copy files available on

the CD-ROM included with this document.

index.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"%>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>
<head>

<meta name='gwt:module'
content='org.dgrp.DTraceGraphicalRouterProj ect=org.dgrp.DTraceGra
phicalRouterProj ect'>

<title>The DTrace Graphical Router Project</title>
<link rel="stylesheet" href="dgrp.css">

</head>
<body>

<iframe src="javascript:''" id=' gwt_historyFrame'
style='width :0; height: 0,"border: 0 'x/iframe>

<center>
<hr>

<script language="javascript"

src="org.dgrp.DTraceGraphicalRouterProj ect/org.dgrp.DTraceGraphic
alRouterPro ject. nocache. j s"x/script>

</body>
</html>

web.xml

121

http://www.w3.org/TR/html4/loose.dtd

<?xml version="1.0" encoding="UTF-8"?>
<web-app version="2.5" xmlns="http://Java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://j ava.sun.com/xml/ns/j avaee
http://java.sun.com/xml/ns/j avaee/web-app_2_5.xsd">

<servlet>
<servlet-name>GetVersionInfo</servlet-name>
<servlet-

class>org.dgrp.server.GetVersionInfoImpl</servlet-class>
</servlet>
<servlet>

<servlet-name>BandwidthMonitor</servlet-name>
<servlet-

class>org.dgrp.server.BandwidthMonitorImpl</servlet-class>
</servlet>
<servlet-mapping>

<servlet-name>GetVersionInfo</servlet-name>
<url-

pattern>/org.dgrp.DTraceGraphicalRouterProject/getversioninfo</ur
l-pattern>

</servlet-mapping>
<servlet-mapping>

<servlet-name>BandwidthMonitor</servlet-name>
<url-

pattern>/org.dgrp.DTraceGraphicalRouterProj ect/bandwidthmonitor</
url-pattern>

</servlet-mapping>
<session-config>

<session-timeout>
30

</session-timeout>
</session-config>
<welcome-file-list>

<welcome-file>index.jsp</welcome-file>
</welcome-file-list>

</web-app>

CSS

body {
background-color: black;
color: white;
font-family: Arial, sans-serif;
font-weight: bold;
font-size: medium;
margin: 20px 20px 20px 20px;

}

122

http://Java.sun.com/xml/ns/javaee
http://www.w3.org/2001/XMLSchema-
http://j
http://java.sun.com/xml/ns/j

code {

a {
color: white;

a:visited {
color: white;

.gwt-BorderedPanel {

.gwt-Button {

.gwt-Canvas {

.gwt-CheckBox {

.gwt-DialogBox {

.gwt-DialogBox .Caption {

.gwt-FileUpload {

.gwt-Frame {

.gwt-HorizontalSplitter .Bar {

.gwt-VerticalSplitter .Bar {

.gwt-HTML {

font-size: smaller;

.gwt-Hyperlink {

.gwt-Image {

123

.gwt-Label {
}

.gwt-ListBox {
}

.gwt-MenuBar {
background-color: #444444;
color: white;
border: lpx solid white;
cursor: default;

}

.gwt-MenuBar .gwt-MenuItem {
padding: lpx 4px lpx 4px;
font-size: smaller;
cursor: default;
color: white;

}

.gwt-MenuBar .gwt-MenuItem-selected {
background-color: #222222;
color: white;

}

.gwt-PasswordTextBox {
}

.gwt-RadioButton {
}

.gwt-TabPanel {
}

.gwt-TabPanelBottom {
}

.gwt-TabBar {
>

.gwt-TabBar .gwt-TabBarFirst {
}

.gwt-TabBar .gwt-TabBarRest {
}

.gwt-TabBar .gwt-TabBarItem {
}

.gwt-TabBar .gwt-TabBarltem-selected {

124

}

.gwt-TextArea {
}

.gwt-TextBox {
}

.gwt-Tree {
}

.gwt-Tree .gwt-Treeltem {
}

.gwt-Tree .gwt-Treeltem-selected {
}

.gwt-StackPanel {
}

.gwt-StackPanel .gwt-StackPanelltem {
}

.gwt-StackPanel .gwt-StackPanelltem-selected {
}

/*

* Styling added for the DTrace Graphical Router Project
* /

.dgrp-MainPanel {
border: 8px solid white;
background-color: fcccccc;
color: black;
width: 100%;
height: 35em;

}

.dgrp-Heading {
background-color: white;
color: black;
padding: lOpx lOpx 2px lOpx;
font-size: small;

}

.dgrp-Sidebar-List {
margin-top: 8px;
margin-bottom: 8px;
font-size: smaller;

125

}

.dgrp-Sidebar-List .dgrp-Sidebar-Item {
width: 100%;
padding: 0.3em;
padding-right: 16px;
cursor: pointer;
cursor: hand;

}

.dgrp-Sidebar-List .dgrp-Sidebar-Item-Selected {
background-color: #999999;
color: black;
font-weight: bold;
font-style: italic;

.dgrp-Images-Image {
margin: lOpx;

.dgrp-Images-Wireless {
margin-left: 75px;

.dgrp-Images-RouterStats {
margin-right: 75px;

.dgrp-Images-LaptopOPipe {
margin-left: lOOpx;

.dgrp-Images-LaptoplPipe {
margin: Opx;

.dgrp-Images-Laptop2Pipe {
margin: Opx;

.dgrp-Images-Laptop3Pipe {
margin-right: lOOpx;

.dgrp-Images-Button {

.dgrp-Layouts {

126

dgrp-Layouts-Label {

dgrp-Layouts-Scroller {

dgrp-Popups-Popup {

dgrp-About-Prose {
margin: 8px;

dgrp-Stat-Table {
font-size: small;

license.txt

Apache License
Version 2.0, January 2004

http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

1. Definitions.

"License" shall mean the terms and conditions for use,
reproduction, and distribution as defined by Sections 1 through 9
of this document.

"Licensor" shall mean the copyright owner or entity
authorized by the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity
and all other entities that control, are controlled by, or are
under common control with that entity. For the purposes of this
definition, "control" means (i) the power, direct or indirect, to
cause the direction or management of such entity, whether by
contract or otherwise, or (ii) ownership of fifty percent (50%)
or more of the outstanding shares, or (iii) beneficial ownership
of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making
modifications, including but not limited to software source code,

127

http://www.apache.org/licenses/

documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but not
limited to compiled object code, generated documentation, and
conversions to other media types.

"Work" shall mean the work of authorship, whether in Source
or Object form, made available under the License, as indicated by
a copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source
or Object form, that is based on (or derived from) the Work and
for which the editorial revisions, annotations, elaborations, or
other modifications represent, as a whole, an original work of
authorship. For the purposes of this License, Derivative Works
shall not include works that remain separable from, or merely
link (or bind by name) to the interfaces of, the Work and
Derivative Works thereof.

"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or
additions to that Work or Derivative Works thereof, that is
intentionally submitted to Licensor for inclusion in the Work by
the copyright owner or by an individual or Legal Entity
authorized to submit on behalf of the copyright owner. For the
purposes of this definition, "submitted" means any form of
electronic, verbal, or written communication sent to the Licensor
or its representatives, including but not limited to
communication on electronic mailing lists, source code control
systems, and issue tracking systems that are managed by, or on
behalf of, the Licensor for the purpose of discussing and
improving the Work, but excluding communication that is
conspicuously marked or otherwise designated in writing by the
copyright owner as "Not a Contribution."

"Contributor" shall mean Licensor and any individual or
Legal Entity on behalf of whom a Contribution has been received
by Licensor and subsequently incorporated within the Work.

2. Grant of Copyright License. Subject to the terms and
conditions of this License, each Contributor hereby grants to You
a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and
distribute the Work and such Derivative Works in Source or Object
form.

3. Grant of Patent License. Subject to the terms and
conditions of this License, each Contributor hereby grants to You

128

a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable (except as stated in this section) patent license to
make, have made, use, offer to sell, sell, import, and otherwise
transfer the Work, where such license applies only to those
patent claims licensable by such Contributor that are necessarily
infringed by their Contribution(s) alone or by combination of
their Contribution(s) with the Work to which such Contribution (s)
was submitted. If You institute patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit)
alleging that the Work or a Contribution incorporated within the
Work constitutes direct or contributory patent infringement, then
any patent licenses granted to You under this License for that
Work shall terminate as of the date such litigation is filed.

4. Redistribution. You may reproduce and distribute copies of
the Work or Derivative Works thereof in any medium, with or
without modifications, and in Source or Object form, provided
that You meet the following conditions:

(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and

(b) You must cause any modified files to carry prominent
notices stating that You changed the files; and

(c) You must retain, in the Source form of any Derivative
Works that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work, excluding
those notices that do not pertain to any part of the Derivative
Works; and

(d) If the Work includes a "NOTICE" text file as part of
its distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one of
the following places: within a NOTICE text file distributed as
part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and do not
modify the License. You may add Your own attribution notices
within Derivative Works that You distribute, alongside or as an
addendum to the NOTICE text from the Work, provided that such
additional attribution notices cannot be construed as modifying
the License.

You may add Your own copyright statement to Your
modifications and may provide additional or different license
terms and conditions for use, reproduction, or distribution of

129

Your modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work
otherwise complies with the conditions stated in this License.

5. Submission of Contributions. Unless You explicitly state
otherwise, any Contribution intentionally submitted for inclusion
in the Work by You to the Licensor shall be under the terms and
conditions of this License, without any additional terms or
conditions. Notwithstanding the above, nothing herein shall
supersede or modify the terms of any separate license agreement
you may have executed with Licensor regarding such Contributions.

6. Trademarks. This License does not grant permission to use
the trade names, trademarks, service marks, or product names of
the Licensor, except as required for reasonable and customary use
in describing the origin of the Work and reproducing the content
of the NOTICE file.

7. Disclaimer of Warranty. Unless required by applicable law
or agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or
conditions of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or
FITNESS FOR A PARTICULAR PURPOSE. You are solely responsible for
determining the appropriateness of using or redistributing the
Work and assume any risks associated with Your exercise of
permissions under this License.

8. Limitation of Liability. In no event and under no legal
theory, whether in tort (including negligence), contract, or
otherwise, unless required by applicable law (such as deliberate
and grossly negligent acts) or agreed to in writing, shall any
Contributor be liable to You for damages, including any direct,
indirect, special, incidental, or consequential damages of any
character arising as a result of this License or out of the use
or inability to use the Work (including but not limited to
damages for loss of goodwill, work stoppage, computer failure or
malfunction, or any and all other commercial damages or losses),
even if such Contributor has been advised of the possibility of
such damages.

9. Accepting Warranty or Additional Liability. While
redistributing the Work or Derivative Works thereof, You may
choose to offer, and charge a fee for, acceptance of support,
warranty, indemnity, or other liability obligations and/or rights
consistent with this License. However, in accepting such
obligations, You may act only on Your own behalf and on Your sole
responsibility, not on behalf of any other Contributor, and only
if You agree to indemnify, defend, and hold each Contributor
harmless for any liability incurred by, or claims asserted

130

against, such Contributor by reason of your accepting any such
warranty or additional liability.

END OF TERMS AND CONDITIONS

context.xml

<?xml version="1.0" encoding="UTF-8"?>
<Context path="/DTraceGraphicalRouterProject"/>

gwt.properties

The name of the module to compile
gwt.module=org.dgrp.DTraceGraphicalRouterProj ect
Path of the GWT installation directory.Use Internet-Standard of
forward slases for this path
gwt.install.dir=C:/Program Files/Google/gwt-windows-1.4.62
Folder within the web app context path where the output
of the GWT module compilation will be stored.
gwt.output.dir=/org.dgrp.DTraceGraphicalRouterProj ect
Script output style: OBF[USCATED], PRETTY, or DETAILED
gwt.compiler.output.style=OBF
The level of logging detail: ERROR, WARN, INFO, TRACE, DEBUG,
gwt.compiler.logLevel=WARN
Script output style: OBF[USCATED], PRETTY, or DETAILED
gwt.shell.output.style=OBF
The level of logging detail: ERROR, WARN, INFO, TRACE, DEBUG,
gwt.shell.logLevel=WARN

131

APPENDIX E. SOURCE CODE - PACKAGE org.dgrp

The complete source code for the reference implementation of this framework is

provided in this and other appendices to this document for the reader's easy reference.

For the simplest viewing experience or to use the code without copying and pasting it

into a new source file, the reader is encouraged to review the soft-copy files available on

the CD-ROM included with this document.

DTraceGraphicalRouterProject.gwt.xml

<?xml version="1.0" encoding="UTF-8"?>
<module>

<inherits name="com.google.gwt.user.User"/>
<entry-point class="org.dgrp.client.DGRPEntryPoint"/>
<!— Do not define servlets here, use web.xml — >

</module>

132

http://DTraceGraphicalRouterProject.gwt.xml

APPENDIX F. SOURCE CODE - PACKAGE org.dgrp.client

The complete source code for the reference implementation of this framework is

provided in this and other appendices to this document for the reader's easy reference.

For the simplest viewing experience or to use the code without copying and pasting it

into a new source file, the reader is encouraged to review the soft-copy files available on

the CD-ROM included with this document.

About.java

package org.dgrp.client;

import com.google.gwt.user.client.ui.HTML;

/**

* About page.
*/

public class About extends Sidebarltem {

public static Sidebarltemlnfo init() {
return new Sidebarltemlnfo("About", "About the DTrace

Graphical Router Project...") {
public Sidebarltem createlnstance() {

return new About();
}

};
}

public About() {
initWidget(new HTML(
"<div class='dgrp-About-Prose'>" +
"<p>The DTrace Graphical Router Project was created by

Chris Nelson " +
"in partial fulfillment of the requirements of the San Jose

State " +
"University Computer Engineering Master's Degree Program.</

p>
" +
"<h2>Project Title</center></h2>" +

133

"<p><i>A Framework for Graphical Analysis of a Home-Network
" +

"Router Using DTrace</ix/p>
" +
"<h2>Project Abstract</h2>" +
"<p><i>Simple network routers used in homes and small

offices " +
"typically lack tools for performance monitoring and

analysis that " +
"would be useful to the normally novice users of these

products. " +
"Sophisticated network simulation and analysis applications

require too " +
"much effort for a typical user to consider, but including

some simple " +
"tools in the router software would enable the common user

to more " +
"quickly and completely understand the reason or reasons

for " +
"performance problems.</p>" +
"<p>DTrace—a dynamic tracing framework first released in

Solaris 10 " +
"and currently being ported to Linux—provides the

opportunity to " +
"gather relevant performance data from the router itself,

and if " +
"presented in an easily understood graphical format, the

common user " +
"will be empowered to understand and address problems more

quickly and " +
"with less need for additional support. This thesis

addresses the " +
"This thesis addresses the development of a framework for

and " +
"reference implementation of graphical analysis tools for

analyzing " +
"common network routers using DTrace.</i></p>
" +
"<h2>Useful Links</h2>" +
"Open-Source Project

Code</axbr>" +
"Online Documentation" +
"</div>",
true));

}

public void onShow() {
}

}

134

http://unknown/%22%3eOpen-Source
http://unknown/%22%3eOnline

Analysis.java

package org.dgrp.client;

import com.google.gwt.core.client.GWT;
import com.google.gwt.user.client.Timer;
import com.google.gwt.user.client.rpc.AsyncCallback;
import com.google.gwt.user.client.rpc.ServiceDefTarget;
import com.google.gwt.user.client.ui.VerticalPanel;

public class Analysis extends Sidebarltem {

public static Sidebarltemlnfo init() {
return new Sidebarltemlnfo("Analysis",

"Use the Menu Below to Select Available Analysis
Features...") {

public Sidebarltem createlnstance() {
return new Analysis();

}
};

}
private ImagePanel imgPanel;
private AnalysisMenu analysisMenu;
private Topologylnfo topolnfo;
private BandwidthMonitorAsync bwMonitorService;
private String subnet = "10.0.0.0";

private final int MAX_NODES = 4;

public Analysis() {

imgPanel = new ImagePanel();

analysisMenu = new AnalysisMenu(imgPanel);
VerticalPanel vp = new VerticalPanel();
vp.setWidth("100%");
vp.setHeight("100%");
vp.add(analysisMenu);
vp.add(imgPanel);
initWidget(vp);

// Create asynchronous callbacks to handle results
final AsyncCallback ipCallback = new AsyncCallback() {

public void onSuccess(Object result) {
processIPUpdates(result);

}
public void onFailure(Throwable caught) {

//ignore for now
}

};

135

final AsyncCallback statCallback = new AsyncCallback() {
public void onSuccess(Object result) {

processStatUpdates(result);
}

public void onFailure (Throwable caught) {
//ignore for now

}
};

final AsyncCallback emptyCallback = new AsyncCallback() {
public void onSuccess (Object result) {

//ignore
}
public void onFailure(Throwable caught) {

//ignore
}

};

bwMonitorService = getBandwidthMonitorService();
bwMonitorService.startServiceCountDataBytes(subnet,

emptyCallback);
bwMonitorService.startServiceCountPackets(subnet,

emptyCallback);
topolnfo = new Topologylnfo (MAXJSTODES) ;

//Create timers to repeatedly trigger updates
bwMonitorService.getRefreshedlPs(ipCallback);
Timer ipRefresh = new Timer() {

public void run() {
bwMonitorService.getRefreshedlPs(ipCallback);

}
};
ipRefresh.scheduleRepeating(10000);

Timer statUpdate = new Timer() {
public void run() {

for (int i=0; i<=topoInfo.getMaxNodes(); i++) {
if (! (topolnfo.getAddress(i).equals (null))) {

bwMonitorService.getBandwidthlnUse(
topolnfo.getAddress(i),

statCallback);
}

}
}

};
statUpdate.scheduleRepeating(1000);

}

136

public static BandwidthMonitorAsync
getBandwidthMonitorService(){

BandwidthMonitorAsync service =
(BandwidthMonitorAsync) GWT.create(BandwidthMonitor.class);

ServiceDefTarget endpoint = (ServiceDefTarget)
service;

String moduleRelativeURL = GWT.getModuleBaseURL() +
"bandwidthmonitor";

endpoint.setServiceEntryPoint(moduleRelativeURL);
return service;

}

private void processIPUpdates(Object result) {
String!] newAddrs = (String []) result;
for (int i=0; i<MAX_NODES; i++) {

imgPanel.hideLaptop(i);
imgPanel.hideLaptopPipe(i);
imgPanel.setLaptopIPAddrLabel(i, null);

}
topolnfo = new Topologylnfo(MAX_NODES);
for (int i=0; i<newAddrs.length; i++) {

try {
topolnfo.setAddress(i, newAddrs[i]);
imgPanel.setLaptopIPAddrLabel(i, newAddrs[i]);
imgPanel.showLaptop(i);

} catch (Exception e) {
//ignore for now

}
}

}

private void processStatUpdates(Object result) {
Bandwidthlnfo bwlnfo = (Bandwidthlnfo) result;
try {

imgPanel.showLaptopPipe(topolnfo.findPosition(
bwlnfo.getlPAddress()),

bwlnfo.getBandwidthlnUse());
imgPanel.setLaptopStatValue(topolnfo.findPosition(bwl

nfo.
getlPAddress()), imgPanel.NUM_PACKETS, "" +
bwlnfo.getTotalPacketsSentToAndReceivedFrom()

);
imgPanel.setLaptopStatValue(topolnfo.findPosition(bwl

nfo.
getlPAddress()), imgPanel.NUM_DATA_BYTES, "" +
bwlnfo.getTotalDataBytesSentToAndReceivedFrom

0);
} catch (Exception e) {

//skip addresses not currently tracked
}

}

137

}

publ ic void onShowO {
}

AnalysisMenu.java

package org.dgrp.client;

import com.google.gwt.user.client.ui.Composite;
import com.google.gwt.user.client.ui.MenuBar;
import com.google.gwt.user.client.ui.MenuItem;
import com.google.gwt.user.client.Command;
import com.google.gwt.user.client.Window;

* @author chrisne
*/

public class AnalysisMenu extends Composite {

// Declare menu bars and items
private MenuBar menu = new MenuBar();
private MenuBar menu_router = new MenuBar(true);
private Menultem routerStatsOnOff;
private Menultem menu_router_int_status;
private Menultem menu_router_int_max_bw;
private Menultem menu_router_int_cur_bw;
private Menultem menu_router_int_speed;
private MenuBar menu_router_CPUUtil = new MenuBar(true);
private Menultem menu_router_CPUUtil_tot;
private Menultem menu_router_CPUUtil_byproc;
private MenuBar menu_router_memUtil = new MenuBar(true);
private MenuBar menu_router_memUtil_total = new MenuBar(true);
private Menultem menu_router_memUtil_total_real;
private Menultem menu_router_memUtil_total_virtual;
private MenuBar menu_router_memUtil_byProc = new MenuBar(true);
private Menultem menu_router_memUtil_byProc_real;
private Menultem menu_router_memUtil_byProc_virtual;
private MenuBar menu_TCP = new MenuBar(true);
private Menultem menu_TCP_inboundDrops;
private Menultem menu_TCP_connState;
private MenuBar menu_TCP_packets = new MenuBar(true);
private Menultem menu_TCP_packets_recvd;
private Menultem menu_TCP_packets_sent;
private Menultem menu_TCP_packets_recvdByTime;
private Menultem menu_TCP_packets_sentByTime;

138

private MenuBar menu_TCP_bytes = new MenuBar(true);
private Menultem menu_TCP__bytes_recvd;
private Menultem menu_TCP__bytes_sent;
private Menultem menu_TCP_bytes_recvdByTime;
private Menultem menu_TCP_bytes_sentByTime;
private MenuBar menu_TCP__bits = new MenuBar (true);
private Menultem menu__TCP_bits_recvd;
private Menultem menu_TCP_bits_sent;
private Menultem menu_TCP_bits_recvdByTime;
private Menultem menu_TCP_bits_sentByTime;
private MenuBar menu_TCP_errors = new MenuBar (true);
private Menultem menu_TCP_errors_hdr;
private Menultem menu_TCP_errors_chksum;
private Menultem menu_TCP_errors_hdrByTime;
private Menultem menu_TCP_errors_chksumByTime;
private MenuBar menu_TCP_buffers = new MenuBar (true);
private MenuBar menu_TCP_buffers_send = new MenuBar(true);
private Menultem menu_TCP_buffers_send_status;
private Menultem menu_TCP_buffers_send_overflows;
private MenuBar menu_TCP_buffers_receive = new MenuBar(true);
private Menultem menu_TCP_buffers_receive_status;
private Menultem menu_TCP_buffers_receive_overflows;
private MenuBar menu_UDP = new MenuBar(true);
private MenuBar menu_UDP_packets = new MenuBar(true);
private Menultem menu_UDP_packets_recvd;
private Menultem menu_UDP_packets_sent;
private Menultem menu_UDP_packets_recvdByTime;
private Menultem menu_UDP_packets_sentByTime;
private MenuBar menu_UDP_bytes = new MenuBar(true);
private Menultem menu_UDP_bytes_recvd;
private Menultem menu_UDP_bytes_sent;
private Menultem menu_UDP_bytes_recvdByTime;
private Menultem menu_UDP_bytes_sentByTime;
private MenuBar menu_UDP_bits = new MenuBar(true);
private Menultem menu_UDP_bits_recvd;
private Menultem menu_UDP_bits_sent;
private Menultem menu__UDP__bits_recvdByTime;
private Menultem menu_UDP_bits_sentByTime;
private MenuBar menu_UDP_errors = new MenuBar(true);
private Menultem menu_UDP_errors_hdr;
private Menultem menu_UDP_errors_chksum;
private Menultem menu_UDP_errors_hdrByTime;
private Menultem menu_UDP_errors_chksumByTime;
private MenuBar menu_UDP_buffers = new MenuBar(true);
private MenuBar menu_UDP_buffers_send = new MenuBar(true);
private Menultem menu_UDP_buffers_send_status;
private Menultem menu_UDP_buffers_send_overflows;
private MenuBar menu_UDP_buffers_receive = new MenuBar (true);
private Menultem menu_UDP_buffers_receive_status;
private Menultem menu_UDP_buffers_receive_overflows;
private MenuBar menu_IPv4 = new MenuBar(true);

139

private MenuBar menu_IPv4_packets = new MenuBar(true);
private Menultem menu_IPv4_packets_recvd;
private Menultem menu_IPv4_packets_sent;
private Menultem menu_IPv4_packets_sent_and_rcvd;
private Menultem menu_IPv4_packets_recvdByTime;
private Menultem menu_IPv4_packets_sentByTime;
private MenuBar menu_IPv4_bytes = new MenuBar(true);
private Menultem menu_IPv4_bytes_recvd;
private Menultem menu_IPv4_bytes_sent;
private Menultem menu_IPv4_bytes_sent_and_rcvd;
private Menultem menu_IPv4_bytes_recvdByTime;
private Menultem menu_IPv4_bytes_sentByTime;
private MenuBar menu_IPv4_bits = new MenuBar (true);
private Menultem menu_IPv4_bits_recvd;
private Menultem menu_IPv4_bits_sent;
private Menultem menu_IPv4_bits_sent_and_rcvd;
private Menultem menu_IPv4_bits_recvdByTime;
private Menultem menu_IPv4_bits_sentByTime;
private MenuBar menu_IPv4_errors = new MenuBar(true);
private Menultem menu__IPv4_errors_hdr;
private Menultem menu_IPv4_errors_chksum;
private Menultem menu_IPv4_errors_hdrByTime;
private Menultem menu_IPv4_errors_chksumByTime;
private MenuBar menu_IPv4_buffers = new MenuBar(true);
private MenuBar menu_IPv4_buffers_send = new MenuBar(true);
private Menultem menu_IPv4_buffers_send_status;
private Menultem menu_IPv4_buffers_send_overflows;
private MenuBar menu_IPv4_buffers_receive = new MenuBar(true);
private Menultem menu_IPv4_buffers_receive_status;
private Menultem menu_IPv4_buffers_receive_overflows,•
private MenuBar menu_IPv4_responseTime = new MenuBar(true);
private Menultem menu_IPv4_responseTime_max;
private Menultem menu_IPv4_responseTime_min;
private Menultem menu_IPv4_responseTime_avg;
private MenuBar menu_IPv6 = new MenuBar(true);
private MenuBar menu_rawIP = new MenuBar(true);
private MenuBar menu_SCTP = new MenuBar(true);
private MenuBar menu_wireless = new MenuBar(true);
private Menultem wirelessOnOff;
private MenuBar menu_legend = new MenuBar(true);
private MenuBar menu_test = new MenuBar(true);
private Menultem testltem;

//Strings for special menu characters
p u b l i c s t a t i c f i n a l S t r i n g no t sup = " <DGRP-NOTSUPXDGRP-

SPLITXFONT color=\"white\">S#8855; Snbsp;<DGRP-
SPLIT>";

p u b l i c s t a t i c f i n a l S t r i n g on = " <DGRP-ONXDGRP-
SPLITXFONT color=\"green\">√ <DGRP-
SPLIT>";

p u b l i c s t a t i c f i n a l S t r i n g off = " <DGRP-OFFXDGRP-

140

SPLITXFONT color=\"red\">⊗ <DGRP-SPLIT>";
public static final String submen = " »";

public AnalysisMenu(final ImagePanel imgPanel) {
/* Create the not-supported command */

Command notSupported = new Command () {
public void execute() {

Window.alert("This feature is not yet implemented.");
}

};

/* Create the legendlnfo command */
Command legendlnfo = new Command () {

public void execute () {
Window.alert("The menu items in the legend perform no

action.");
}

};

/* Create the test command */
Command testCmd = new Command () {

public void execute () {
testItem.setHTML(changeMenuStatus(testltem.getHTML())

);
imgPanel. showAHGraphics () ;

}
};

/* Create the wireless command */
Command wirelessCmd = new Command () {

public void execute () {
wirelessOnOff.setHTML(changeMenuStatus(wirelessOnOff.

getHTML()));
if (imgPanel.isWirelessVisible() == true) {

imgPanel.hideWireless();
}
else {

imgPanel.showWireless();
}

}
};

/* Create the routerStats command */
Command routerStatsCmd = new Command () {

public void execute () {
routerStatsOnOff.setHTML(changeMenuStatus(routerStats

OnOff.getHTML()));
if (imgPanel.isRouterStatsVisible() == true) {

imgPanel.hideRouterStats();
}
else {

141

imgPanel.showRouterStats();
}

}
};

/* Create the IPv4 Packets Sent and Received command */
Command IPv4PacketsSentAndRcvdCmd = new Command () {

public void execute)) {
menu_IPv4_packets_sent_and_rcvd.setHTML(changeMenuSta

tus(menu_IPv4_packets_sent_and_rcvd.getHTML()));
if (imgPanel.isIPv4PacketsSentAndRcvdVisible() ==

true) {
imgPanel.hideIPv4PacketsSentAndRcvd();

}
else {

imgPanel.showIPv4PacketsSentAndRcvd();
}

}
};

/* Create the IPv4 Data Bytes Sent and Received command */
Command IPv4BytesSentAndRcvdCmd = new Command () {

public void execute() {
menu__IPv4_bytes_sent_and_rcvd.setHTML(changeMenuStatu

s(menu_IPv4_bytes_sent_and_rcvd.getHTML()));
if (imgPanel.isIPv4BytesSentAndRcvdVisible() == true)

{
imgPanel.hideIPv4BytesSentAndRcvd();

}
else {

imgPanel.showIPv4BytesSentAndRcvd();
}

}
};

/* Create the "Router" menu */
menu_router.setAutoOpen(true);
menu_router_CPUUtil.setAutoOpen(true);
menu_router_memUtil.setAutoOpen(true);
menu_router_memUtil__total.setAutoOpen(true);
menu_router_memUtil_byProc.setAutoOpen(true);
routerStatsOnOff = new MenuItem(off + "Enable/Disable", true,

routerStatsCmd);
menu_router.addItem(routerStatsOnOff);
menu_router_int_status = new MenuItem(notsup + "Interface

Status", true, notSupported);
menu_router.addltem(menu_router_int_status);
menu_router_int_max_bw = new MenuItem(notsup + "Interface

Maximum Bandwidth", true,
notSupported);

142

menu_router.addltem(menu_router_int_max_bw);
menu__router_int_cur_bw = new MenuItem(notsup + "Interface

Current Bandwidth Usage", true,
notSupported);

menu_router.addltem(menu_router_int_cur_bw);
menu_router__int_speed = new MenuItem(notsup + "Interface

Speed", true, notSupported);
menu_router.addltem(menu_router_int_speed);
menu_router_CPUUtil_tot = new MenuItem(notsup + "Total",

true, notSupported);
menu_router_CPUUtil.addltem(menu_router_CPUUtil_tot);
menu_router_CPUUtil_byproc = new Menultem(notsup + "By

Process", true, notSupported);
menu_router_CPUUtil.addltem(menu_router_CPUUtil_byproc);
menu_router.addltem("CPU Utilization" + submen, true,

menu_router_CPUUtil);
menu_router_memUtil_total_real = new Menultem(notsup +

"Real", true, notSupported);
menu_router_memUtil_total.addltem(menu_router_memUtil_total_r

eal) ;
menu_router_memUtil_total_virtual = new Menultem(notsup +

"Virtual", true, notSupported);
menu_router_memUtil_total.addltem(menu_router_memUtil_total_v

irtual);
menu_router_memUtil.addltem("Total" + submen, true,

menu_router_memUtil_total);
menu_router_memUtil__byProc_real = new Menultem(notsup +

"Real", true, notSupported);
menu_router_memUtil_byProc.addltem(menu_router_memUtil_byProc

_real);
menu_router_memUtil_byProc_virtual = new Menultem(notsup +

"Virtual", true, notSupported);
menu_router_memUtil_byProc.addltem(menu__router_memUtil_byProc

_virtual);
menu_router_memUtil.addltem("By Process" + submen, true,

menu_router_memUtil_byProc);
menu_router.addltem("Memory Utilization" + submen, true,

menu router memUtil);

/* Create the "TCP" menu */
menu_TCP.setAutoOpen(true);
menu_TCP_packets.setAutoOpen(true);
menu_TCP_bytes.setAutoOpen(true);
menu_TCP_bits.setAutoOpen(true);
menu_TCP_errors.setAutoOpen(true);
menu_TCP_buffers.setAutoOpen(true);
menu_TCP_buffers_send.setAutoOpen(true) ;
menu_TCP_buffers_receive.setAutoOpen(true);
menu_TCP_inboundDrops = new Menultem(notsup "+ "Inbound TCP

143

Connection Drops", true,
notSupported);

menu_TCP.addItem(menu_TCP_inboundDrops);
inenu_TCP_connState = new MenuItem(notsup + "Connection

State", true,
notSupported);

menu_TCP.addltem(menu_TCP_connState);
menu_TCP_packets_recvd = new MenuItem(notsup + "Received",

true, notSupported);
menu_TCP_packets.addltem(menu_TCP_packets_recvd);
menu_TCP_packets_sent = new MenuItem(notsup + "Sent", true,

notSupported);
menu_TCP_packets.addltem(menu_TCP_packets_sent);
menu_TCP_packets_recvdByTime = new Menultemfnotsup +

"Received per Unit of Time", true,
notSupported);

menu_TCP_packets.addltem(menu_TCP_packets_recvdByTime);
menu_TCP_packets_sentByTime = new Menultemfnotsup + "Sent per

Unit of Time", true,
notSupported);

menu_TCP_packets.addltem(menu_TCP_packets_sentByTime);
menu_TCP.addItem("Packets" + submen, true, menu_TCP_packets);
menu_TCP_bytes_recvd = new MenuItem(notsup + "Received",

true, notSupported);
menu_TCP_bytes.addltem(menu_TCP_bytes_recvd);
menu_TCP_bytes_sent = new Menultemfnotsup + "Sent", true,

notSupported);
menu_TCP_bytes.addltem(menu_TCP_bytes_sent);
menu_TCP_bytes_recvdByTime = new Menultemfnotsup + "Received

per Unit of Time", true,
notSupported);

menu_TCP_bytes.addltem(menu_TCP_bytes_recvdByTime);
menu_TCP_bytes_sentByTime = new Menultemfnotsup + "Sent per

Unit of Time", true,
notSupported);

menu_TCP_bytes.addltem(menu_TCP_bytes_sentByTime);
menu_TCP.addltem("Bytes" + submen, true, menu_TCP_bytes);
menu_TCP_bits_recvd = new Menultemfnotsup + "Received", true,

notSupported);
menu_TCP_bits.addltem(menu_TCP_bits_recvd);
menu_TCP_bits_sent = new Menultemfnotsup + "Sent", true,

notSupported);
menu_TCP_bits.addltem(menu_TCP_bits_sent);
menu_TCP_bits_recvdByTime = new Menultemfnotsup + "Received

per Unit of Time", true,
notSupported);

menu_TCP_bits.addltem(menu_TCP_bits_recvdByTime);
menu_TCP_bits_sentByTime = new Menultemfnotsup + "Sent per

Unit of Time", true,
notSupported);

menu_TCP_bits.addltem(menu_TCP_bits_sentByTime);

144

menu_TCP.addItem("Bits" + submen, true, menu_TCP_bits);
menu_TCP_errors_chksum = new MenuItem(notsup + "Checksum",

true, notSupported);
menu_TCP_errors.addltem(menu_TCP_errors_chksum);
menu_TCP_errors_hdr = new Menultem(notsup + "Header", true,

notSupported);
menu_TCP_errors.addltem(menu_TCP_errors_hdr);
menu_TCP_errors_chksumByTime = new MenuItem(notsup +

"Checksum per Unit of Time", true,
notSupported);

menu_TCP_errors.addltem(menu_TCP_errors_chksumByTime);
menu_TCP_errors_hdrByTime = new MenuItem(notsup + "Header per

Unit of Time", true,
notSupported);

menu_TCP_errors.addltem(menu_TCP_errors_hdrByTime);
menu_TCP.addltem("Errors" + submen, true, menu_TCP_errors);
menu_TCP_buffers_send_status = new MenuItem(notsup +

"Status", true, notSupported);
menu_TCP_buffers_send.addltem(menu_TCP_buffers_send_status);
menu_TCP_buffers_send_overflows = new Menultem(notsup +

"Overflows", true, notSupported);
menu_TCP_buffers_send.addltem(menu_TCP_buffers_send_overflows

);
menu_TCP_buffers.addltem("Send" + submen, true,

menu_TCP_buffers_send);
menu_TCP_buffers_receive_status = new Menultem(notsup +

"Status", true, notSupported);
menu_TCP_buffers_receive.addltem(menu_TCP_buffers_receive_sta

tus) ;
menu_TCP_buffers_receive_overflows = new Menultem(notsup +

"Overflows", true, notSupported);
menu_TCP_buffers_receive.addltem(menu_TCP_buffers_receive_ove

rflows);
menu_TCP_buffers.addltem("Receive" + submen, true,

menu_TCP_buffers_receive);
menu_TCP.addltem("Buffers" + submen, true, menu TCP buffers);

/* Create the "UDP" menu */
menu_UDP.setAutoOpen (true);
menu_UDP_packets.setAutoOpen(true);
menu_UDP_bytes.setAutoOpen(true);
menu_UDP_bits.setAutoOpen(true);
menu_UDP_errors.setAutoOpen(true);
menu_UDP_buffers.setAutoOpen(true);
menu_UDP_buffers_send.setAutoOpen(true);
menu_UDP_buffers_receive.setAutoOpen(true);
menu_UDP_packets_recvd = new Menultem(notsup + "Received",

true, notSupported);
menu_UDP_packets.addltem(menu_UDP_packets_recvd);
menu_UDP_packets_sent = new Menultem(notsup + "Sent", true,

145

notSupported) ;
menu_UDP_packets.addltem(menu_UDP_packets_sent);
menu_UDP_packets_recvdByTime = new MenuItem(notsup +

"Received per Unit of Time", true,
notSupported);

menu_UDP_packets.addltem(menu_UDP_packets_recvdByTime);
menu_UDP_packets_sentByTime = new Menultem(notsup + "Sent per

Unit of Time", true,
notSupported);

menu_UDP_packets.addltem(menu_UDP_packets_sentByTime);
menu_UDP.addltem("Packets" + submen, true, menu_UDP_packets);
menu_UDP_bytes_recvd = new Menultem(notsup + "Received",

true, notSupported);
menu_UDP_bytes.addltem(menu_UDP_bytes_recvd);
menu_UDP_bytes_sent = new Menultem(notsup + "Sent", true,

notSupported);
menu_UDP_bytes.addltem(menu_UDP_bytes_sent);
menu_UDP_bytes_recvdByTime = new Menultem(notsup + "Received

per Unit of Time", true,
notSupported);

menu_UDP_bytes.addltem(menu_UDP_bytes_recvdByTime);
menu_UDP_bytes_sentByTime = new Menultem(notsup + "Sent per

Unit of Time", true,
notSupported);

menu_UDP_bytes.addltem(menu_UDP_bytes_sentByTime);
menu_UDP.addltem("Bytes" + submen, true, menu_UDP_bytes);
menu_UDP_bits_recvd = new Menultem(notsup + "Received", true,

notSupported);
menu_UDP_bits.addltem(menu_UDP_bits_recvd);
menu_UDP_bits_sent = new Menultem(notsup + "Sent", true,

notSupported);
menu_UDP_bits.addltem(menu_UDP_bits_sent);
menu_UDP_bits_recvdByTime = new Menultem(notsup + "Received

per Unit of Time", true,
notSupported);

menu_UDP_bits.addltem(menu_UDP_bits_recvdByTime);
menu_UDP_bits_sentByTime = new Menultem(notsup + "Sent per

Unit of Time", true,
notSupported);

menu_UDP_bits.addltem(menu_UDP_bits_sentByTime);
menu_UDP.addltem("Bits" + submen, true, menu_UDP_bits);
menu_UDP_errors_chksum = new Menultem(notsup + "Checksum",

true, notSupported);
menu_UDP_errors.addltem(menu_UDP_errors_chksum);
menu_UDP_errors_hdr = new Menultem(notsup + "Header", true,

notSupported);
menu_UDP_errors.addltem(menu_UDP_errors__hdr);
menu_UDP_errors_chksumByTime = new Menultem(notsup +

"Checksum per Unit of Time", true,
notSupported);

menu_UDP_errors.addltem(menu_UDP_errors_chksumByTime);

146

menu_UDP_errors_hdrByTime = new MenuItem(notsup + "Header per
Unit of Time", true,

notSupported);
menu_UDP_errors.addltem(menu_UDP_errors_hdrByTime);
menu_UDP.addItem("Errors" + submen, true, menu_UDP_errors);
menu_UDP_buffers_send_status = new MenuItem(notsup +

"Status", true, notSupported);
menu_UDP_buffers_send.addltem(menu_UDP_buffers_send_status);
menu_UDP_buffers_send_overflows = new MenuItem(notsup +

"Overflows", true, notSupported);
menu_UDP_buffers_send.addltem(menu_UDP_buffers_send_overflows

);
menu_UDP_buffers.addltem("Send" + submen, true,

menu_UDP_buffers_send) ;
menu_UDP_buffers_receive_status = new MenuItem(notsup +

"Status", true, notSupported);
menu_UDP_buffers_receive.addltem(menu_UDP_buffers_receive_sta

tus) ;
menu_UDP_buffers_receive_overflows = new MenuItem(notsup +

"Overflows", true, notSupported);
menu_UDP_buffers_receive.addltem(menu_UDP_buffers_receive_ove

rflows);
menu_UDP_buffers.addltem("Receive" + submen, true,

menu_UDP_buffers_receive);
menu_UDP.addltem("Buffers" + submen, true, menu_UDP_buffers);

/* Create the "IPv4" menu */
menu_IPv4.setAutoOpen(true) ;
menu_IPv4_packets.setAutoOpen(true);
menu_IPv4_bytes.setAutoOpen(true);
menu_IPv4_bits.setAutoOpen(true) ;
menu_IPv4_errors.setAutoOpen(true);
menu_IPv4_buffers.setAutoOpen(true);
menu_IPv4_buffers_send.setAutoOpen(true);
menu_IPv4_buffers_receive.setAutoOpen(true);
menu_IPv4_responseTime.setAutoOpen(true);
menu_IPv4_packets_recvd = new MenuItem(notsup + "Received",

true, notSupported);
menu_IPv4_packets.addltem(menu_IPv4_packets_recvd);
menu_IPv4_packets_sent = new Menultem(notsup + "Sent", true,

notSupported);
menu_IPv4_packets.addltem(menu_IPv4_packets_sent);
menu_IPv4_packets_sent_and_rcvd = new Menultem(off + "Sent

and Received", true, IPv4PacketsSentAndRcvdCmd);
menu_IPv4_packets.addltem(menu_IPv4_packets_sent_and_rcvd);
menu_IPv4_packets_recvdByTime = new Menultem(notsup +

"Received per Unit of Time", true,
notSupported);

menu_IPv4_packets.addltem(menu_IPv4_packets_recvdByTime);
menu_IPv4_packets_sentByTime = new Menultem(notsup + "Sent

147

per Unit of Time", true,
notSupported);

menu_IPv4_packets.addltem(menu_IPv4_packets_sentByTime);
menu_IPv4.addltem("Packets" + submen, true,

menu_IPv4_packets);
menu_IPv4_bytes_recvd = new MenuItem(notsup + "Received",

true, notSupported);
menu_IPv4_bytes.addltem(menu_IPv4_bytes_recvd);
menu_IPv4_bytes_sent = new MenuItem(notsup + "Sent", true,

notSupported);
menu_IPv4_bytes.addltem(menu_IPv4_bytes_sent);
menu_IPv4_bytes_sent_and_rcvd = new MenuItem(off + "Sent and

Received", true, IPv4BytesSentAndRcvdCmd);
menu_IPv4_bytes.addltem(menu_IPv4_bytes_sent_and_rcvd);
menu_IPv4_bytes_recvdByTime = new MenuItem(notsup + "Received

per Unit of Time", true,
notSupported);

menu_IPv4_bytes.addltem(menu__IPv4_bytes_recvdByTime);
menu_IPv4_bytes_sentByTime = new MenuItem(notsup + "Sent per

Unit of Time", true,
notSupported);

menu_IPv4_bytes.addltem(menu_IPv4_bytes_sentByTime) ;
menu_IPv4.addltem("Bytes" + submen, true, menu_IPv4_bytes);
menu_IPv4_bits_recvd = new MenuItem(notsup + "Received",

true, notSupported);
menu_IPv4_bits.addltem(menu_IPv4_bits_recvd);
menu_IPv4_bits_sent = new Menultem(notsup + "Sent", true,

notSupported);
menu_IPv4_bits.addltem(menu_IPv4_bits_sent);
menu_IPv4_bits_sent_and_rcvd = new Menultem(notsup + "Sent

and Received", true, notSupported);
menu_IPv4_bits.addltem(menu_IPv4_bits_sent_and__rcvd);
menu_IPv4_bits_recvdByTime = new Menultem(notsup + "Received

per Unit of Time", true,
notSupported);

menu_IPv4_bits.addltem(menu_IPv4_bits_recvdByTime);
menu_IPv4_bits_sentByTime = new Menultem(notsup + "Sent per

Unit of Time", true,
notSupported);

menu_IPv4_bits.addltem(menu_IPv4_bits_sentByTime);
menu_IPv4.addltem("Bits" + submen, true, menu_IPv4_bits);
menu_IPv4_errors_chksum = new Menultem(notsup + "Checksum",

true, notSupported);
menu_IPv4_errors.addltem(menu_IPv4_errors_chksum);
menu_IPv4_errors_hdr = new Menultem(notsup + "Header", true,

notSupported);
menu_IPv4_errors.addltem(menu_IPv4_errors_hdr);
menu_IPv4_errors_chksumByTime = new Menultem(notsup +

"Checksum per Unit of Time", true,
notSupported);

menu_IPv4_errors.addltem(menu_IPv4_errors_chksumByTime);

148

menu_IPv4_errors_hdrByTime = new MenuItem(notsup + "Header
per Unit of Time", true,

notSupported);
menu_IPv4_errors.addItem(menu_IPv4_errors_hdrByTime);
menu_IPv4.addltem("Errors" + submen, true, menu_IPv4_errors);
menu_IPv4_buffers_send_status = new MenuItem(notsup +

"Status", true, notSupported);
menu_IPv4__buffers_send.addltem(menu_IPv4_buffers_send_status);
menu_IPv4_buffers_send_overflows = new Menultem(notsup +

"Overflows", true, notSupported);
menu_IPv4_buffers_send.addltem(menu_IPv4_buffers_send_overflo

ws) ;
menu_IPv4_buffers.addltem("Send" + submen, true,

menu_IPv4_buffers_send);
menu_IPv4_buffers_receive_status = new Menultem(notsup +

"Status", true, notSupported);
menu_IPv4_buffers_receive.addltem(menu_IPv4_buffers_receive_s

tatus);
menu_IPv4_buffers_receive_overflows = new Menultem(notsup +

"Overflows", true, notSupported);
menu_IPv4_buffers_receive.addltem(menu_IPv4_buffers_receive_o

verflows);
menu_IPv4_buffers.addltem("Receive" + submen, true,

menu_IPv4_buffers_receive);
menu_IPv4.addltem("Buffers" + submen, true,

menu_IPv4_buffers);
menu_IPv4_responseTime_max = new Menultem(notsup + "Maximum",

true,
notSupported);

menu_IPv4_responseTime.addltem(menu_IPv4_responseTime_max);
menu_IPv4_responseTime_min = new Menultem(notsup + "Minimum",

true,
notSupported);

menu_IPv4_responseTime.addltem(menu_IPv4_responseTime_min);
menu_IPv4_responseTime_avg = new Menultem(notsup + "Average",

true,
notSupported);

menu_IPv4_responseTime.addltem(menu_IPv4_responseTime_avg);
menu_IPv4.addltem("Response Time" + submen, true,

menu_IPv4_responseTime);

/* Create the "IPv6" menu */
menu_IPv6.setAutoOpen(true);
menu_IPv6.addltem("(PLACEHOLDER)", true, notSupported);

/* Create the "Raw IP" menu */
menu_rawIP.setAutoOpen(true);
menu_rawIP.addltem("(PLACEHOLDER)", true, notSupported);

149

/* Create the "SCTP" menu */
menu_SCTP.setAutoOpen(true);
menu_SCTP.addltem("(PLACEHOLDER)", true, notSupported);

/* Create the "Wireless" menu */
menu_wireless.setAutoOpen(true);
wirelessOnOff = new MenuItem(off + "Enable/Disable", true,

wirelessCmd);
menu wireless.addltem(wirelessOnOff);

/* Create the "LEGEND" menu */
menu_legend.setAutoOpen(true);
menu_legend.addltem(notsup + "Feature Not Yet Supported",

true, legendlnfo);
menu_legend.addltem(on + "Feature Turned On", true,

legendlnfo);
menu_legend.addltem(off + "Feature Turned Off", true,

legendlnfo);

/* Create the "TEST" menu */
menu_test.setAutoOpen(true);
testItern = new MenuItem(off + "Show All Graphics", true,

testCmd);
menu_test.addltem(testltem);
//System.out.println("HTML: " + testltem.getHTML());

/* Add menu items to the top horizontal menu */
menu.addltem(new MenuItem("Router", menu_router));
menu.addltem(new MenuItem("TCP", menu_TCP));
menu.addltem(new MenuItem("UDP", menu_UDP));
menu.addltem(new MenuItem("IPv4", menu_IPv4));
menu.addltem(new Menultem("IPv6", menu_IPv6));
menu.addltem(new Menultem("Raw IP", menu_rawIP));
menu.addltem(new Menultem("SCTP", menu_SCTP));
menu.addltem(new Menultem("Wireless", menu_wireless));
menu.addltem(new Menultem("LEGEND", menu_legend));
menu.addltem(new Menultem("TEST", menu_test));

menu.setWidth("100%");
initWidget(menu);

public static String changeMenuStatus(String origHTML) {
System.out.println("Original HTML: " + origHTML);

String[] tokens = origHTML.split("<DGRP-SPLIT>");

150

if (tokens[0].equals(" <DGRP-ON>")) {
System.out.println("Returning HTML: " + off +

tokens[2]);
return (off + tokens[2]);

}
else if (tokens[0].equals(" <DGRP-OFF>")) {

System.out.println("Returning HTML: " + on + tokens[2]);
return (on + tokens[2]);

}
else {

System.out.println("Returning original HTML.");
return (origHTML);

}
}

}

Bandwidthlnfo.java

package org.dgrp.client;

import com.google.gwt.user.client.rpc.IsSerializable;

/**
*
* @author chrisne
*/

public class Bandwidthlnfo implements IsSerializable {

private final double LOW_BW_THRESHOLD = 0.33;
private final double MED_BW_THRESHOLD = 0.67;
private final double HIGH_BW_THRESHOLD = 0.9;

private String ipAddress;
private String bandwidthlnUse;

private int pktsSentTo, pktsRcvdFrom, dataBytesSentTo,
dataBytesRcvdFrom,

pktsSentAndRcvd, dataBytesSentAndRcvd;

public Bandwidthlnfo(String ipAddress) {
this.ipAddress = ipAddress;
bandwidthlnUse = null;

}
public Bandwidthlnfo() { //no-argument constructor required

for GWT serialization
this.ipAddress = "0.0.0.0";
bandwidthlnUse = null;

151

}

public String getlPAddress() {

return ipAddress;
}

public void setBandwidthlnUse(int current, int max) {
double percentage = current / max;

if (percentage < LOW_BW_THRESHOLD) {
bandwidthlnUse = "low";

}
else if (percentage < MED_BW_THRESHOLD) {

bandwidthlnUse = "medium";
}
else if (percentage < HIGH_BW_THRESHOLD) {

bandwidthlnUse = "high";
}
else { //bandwidth usage nearing maximum

bandwidthlnUse = "blocked";
}

public String getBandwidthlnUse() {
return bandwidthlnUse;

}

public void setTotalPacketsSentTo(int totalPackets) {
pktsSentTo = totalPackets;

}
public void setTotalPacketsReceivedFrom(int totalPackets) {

pktsRcvdFrom = totalPackets;
}
public void setTotalDataBytesSentTo(int totalDataBytes) {

dataBytesSentTo = totalDataBytes;
}
public void setTotalDataBytesReceivedFrom(int totalDataBytes)

{
dataBytesRcvdFrom = totalDataBytes;

}
public void setTotalPacketsSentToAndReceivedFrom(int

totalPackets) {
pktsSentAndRcvd = totalPackets;

}
public void setTotalDataBytesSentToAndReceivedFrom(int

totalDataBytes) {
dataBytesSentAndRcvd = totalDataBytes;

}

public int getTotalPacketsSentTo() {
return pktsSentTo;

152

}
public int getTotalPacketsReceivedFrom() {

return pktsRcvdFrom;
}
public int getTotalDataBytesSentTo() {

return dataBytesSentTo;
}
public int getTotalDataBytesReceivedFrom() {

return dataBytesRcvdFrom;
}
public int getTotalPacketsSentToAndReceivedFrom() {

return pktsSentAndRcvd;
}
public int getTotalDataBytesSentToAndReceivedFrom() {

return dataBytesSentAndRcvd;
}

BandwidthMonitor.java

package org.dgrp.client;
import com.google.gwt.user.client.rpc.RemoteService;

/**
*

* @author chrisne
*/

public interface BandwidthMonitor extends RemoteService{
public void startServiceCountPackets(String s);
public void startServiceCountDataBytes(String s);
public void stopServiceCountPackets();
public void stopServiceCountDataBytes();
public Bandwidthlnfo getBandwidthlnUse(String s);
public Bandwidthlnfo getRandomBandwidthlnUse(String s);
public String[] getRefreshedlPs();

}

BandwidthMonitorAsync.Java

package org.dgrp.client;
import com.google.gwt.user.client.rpc.AsyncCallback;

153

* @author chrisne
*/

public interface BandwidthMonitorAsync {
public void startServiceCountPackets(String s, AsyncCallback

asyncCallback);
public void startServiceCountDataBytes(String s,

AsyncCallback asyncCallback);
public void stopServiceCountPackets(AsyncCallback

asyncCallback);
public void stopServiceCountDataBytes(AsyncCallback

asyncCallback);
public void getBandwidthlnUse(String s, AsyncCallback

callback);
public void getRandomBandwidthlnUse(String s, AsyncCallback

callback);
public void getRefreshedlPs(AsyncCallback callback);

}

DGKPEntryPoint.java

package org.dgrp.client;

import org.dgrp.client.Sidebarltem.Sidebarltemlnfo;
import com.google.gwt.core.client.EntryPoint;
import com.google.gwt.user.client.ui.RootPanel;
import com.google.gwt.user.client.History;
import com.google.gwt.user.client.HistoryListener;
import com.google.gwt.user.client.ui.DockPanel;
import com.google.gwt.user.client.ui.HasAlignment;
import com.google.gwt.user.client.ui.HTML;
import com.google.gwt.user.client.ui.VerticalPanel;

*

* @author Christopher Nelson
*/

public class DGRPEntryPoint implements EntryPoint,
HistoryListener {

/** Creates a new instance of DGRPEntryPoint */
public DGRPEntryPoint() {
}
protected Sidebar list = new Sidebar();
private Sidebarltemlnfo curlnfo;
private Sidebarltem curltem;
private HTML description = new HTMLO;
private DockPanel panel = new DockPanel();
private DockPanel mainPanel;

154

public void onHistoryChanged(String token) {
// Find the Sidebarltemlnfo associated with the history

context. If one
// is found, show it (It may not be found, for example,

when the user
// mis-types a URL, or on startup, when the first context

will be " ") .
Sidebarltemlnfo info = list.find(token);
if (info == null) {

showlnfo();
return;

}
show(info, false);

public void onModuleLoad() {
// Load all the sidebar items.
loadSidebarltems() ;

// Put the sidebar on the left, and add the outer dock
panel to the

// root.
mainPanel = new DockPanel ();
mainPanel.setStyleName("dgrp-MainPanel");

VerticalPanel vp = new VerticalPanel ();
vp.setWidth("100%");
vp.add(description);
vp.add(mainPanel);

description.setStyleName("dgrp-Heading");

panel.add(list, DockPanel.WEST);
panel.add(vp, DockPanel.CENTER);

panel.setCellVerticalAlignment(list,
HasAlignment.ALIGN_TOP);

panel.setCellWidth(vp, "100%");
panel.setCellHeight(vp, "100%");

History.addHistoryListener(this);
RootPanel.get().add(panel);

// Show the initial screen.
String initToken = History.getToken();
if (initToken.length () > 0) {

onHistoryChanged(initToken);
} else {

showlnfo();
}

155

}

public void show(Sidebarltemlnfo info, boolean affectHistory)
{

// Don't bother re-displaying the existing item. This can
be an issue

// in practice, because when the history context is set,
our

// onHistoryChanged() handler will attempt to show the
currently-visible

// item.
if (info == curlnfo) {

return;
}
curlnfo = info;

// Remove the old item from the display area,
if (curltem != null) {

curItem.onHide();
mainPanel.remove(curltem);

}

// Get the new item instance, and display its description
in the

// item list.
curltem = info.getlnstance();
list.setltemSelection(info.getName()) ;
description.setHTML(info.getDescription());

// If affectHistory is set, create a new item on the
history stack. This

// will ultimately result in onHistoryChanged() being
called. It will

// call show() again, but nothing will happen because it
will request

// the exact same item we're already showing.
if (affectHistory) {

History.newltem(info.getName());
}

// Display the new item.
mainPanel.add(curltem, DockPanel.CENTER);
mainPanel.setCellWidth(curltem, "100%");
mainPanel.setCellHeight(curltem, "100%");
mainPanel.setCellVerticalAlignment(curltem,

DockPanel.ALIGNJTOP);
curltem.onShow();

* Adds all items to the list. Note that this does not create

156

actual instances
* of all items yet (they are created on-demand). This can

make a significant
* difference in startup time.
*/

protected void loadSidebarltems() {
list.addltem(Welcome.init());
list.addltem(Analysis.init());
list.addltem(Settings.init());
list.addltem(Version.init());
list.addltem(About.init());

}

private void showInfo() {
show(list.find("Welcome"), false);

}

GetVersionlnfo.java

package org.dgrp.client;
import com.google.gwt.user.client.rpc.RemoteService;

*

* @author Christopher Nelson
*/

public interface GetVersionlnfo extends RemoteService{
public VersionContents getVersionlnfo();

}

GetVersionlnfoAsync.java

package org.dgrp.client;
import com.google.gwt.user.client.rpc.AsyncCallback;

*

* @author Christopher Nelson
*/

public interface GetVersionlnfoAsync {
public void getVersionlnfo(AsyncCallback callback);

}

157

ImagePanel.java

package org.dgrp.client;

import com.google.gwt.user.client.ui.DockPanel;
import com.google.gwt.user.client.ui.HorizontalPanel;
import com.google.gwt.user.client.ui.Label;
import com.google.gwt.user.client.ui.Image;
import com.google.gwt.user.client.ui.Composite;
import com.google.gwt.user.client.ui.Grid;

/**
*
* @author chrisne
*/

public class ImagePanel extends Composite {

private final String NUM_PACKETS_LABEL = "# Packets";
public final int NUM_PACKETS = 0;
private final String NUM_DATA_BYTES_LABEL = "# Data Bytes";
public final int NUM_DATA_BYTES = 1;

private boolean isIPv4PacketsSentAndRcvdVisible = false;
private boolean isIPv4BytesSentAndRcvdVisible = false;

DockPanel dock, routerStatsDock, wirelessDock, laptopODock,
laptoplDock,

laptop2Dock, laptop3Dock;
HorizontalPanel ispPanel, routerPanel, pipePanel, laptopPanel;
Image laptopO, laptopl, laptop2, laptop3, router, wireless,

routerStats,
laptopOPipe, laptoplPipe, laptop2Pipe, laptop3Pipe;

Label laptopOIPAddrLabel, laptoplIPAddrLabel,
laptop2IPAddrLabel,

laptop3IPAddrLabel;
Grid laptopOgrid, laptoplgrid, laptop2grid, laptop3grid;

public ImagePanel() {

laptopO = new Image("images/placeholder.png");
laptop0.setWidth("131px");
laptopO.setHeight("104px");
laptopO.setStyleName("dgrp-Images-Image");

laptopl = new Image("images/placeholder.png");
laptopl.setWidth("131px");
laptopl.setHeight("104px");
laptopl.setStyleName("dgrp-Images-Image");

158

laptop2 = new Image("images/placeholder.png");
laptop2.setWidth("131px");
laptop2.setHeight("104px");
laptop2.setStyleName("dgrp-Images-Image");

laptop3 = new Image("images/placeholder.png");
laptop3.setWidth("131px");
laptop3.setHeight("104px");
laptop3.setStyleName("dgrp-Images-Image");

router = new Image("images/router.png");
router.setWidth("188px");
router.setHeight("166px");
router.setStyleName("dgrp-Images-Image");

wireless = new Image("images/placeholder.png");
wireless.setWidth("384px");
wireless.setHeight("231px");
wireless.setStyleName("dgrp-Images-Wireless");

routerStats = new Image("images/placeholder.png");
routerStats.setWidth("255px");
routerStats.setHeight("275px");
routerStats.setStyleName("dgrp-Images-RouterStats");

laptopOPipe = new Image("images/placeholder.png");
laptopOPipe.setWidth("371px");
laptopOPipe.setHeight("54px");
laptopOPipe.setStyleName("dgrp-Images-LaptopOPipe");
laptoplPipe = new Image("images/placeholder.png");
laptoplPipe.setWidth("102px");
laptoplPipe.setHeight("54px");
laptoplPipe.setStyleName("dgrp-Images-LaptoplPipe");
laptop2Pipe = new Image("images/placeholder.png");
laptop2Pipe.setStyleName("dgrp-Images-Laptop2Pipe");
laptop2Pipe.setWidth("102px");
laptop2Pipe.setHeight("54px");
laptop3Pipe = new Image("images/placeholder.png");
laptop3Pipe.setWidth("371px");
laptop3Pipe.setHeight("54px");
laptop3Pipe.setStyleName("dgrp-Images-Laptop3Pipe");

dock = new DockPanel();
wirelessDock = new DockPanel();
routerStatsDock = new DockPanel();
pipePanel = new HorizontalPanel();
laptopODock = new DockPanel();
laptopOIPAddrLabel = new Label();
laptopOIPAddrLabel.setHorizontalAlignment(Label.ALIGN_CEN

TER) ;

159

laptopOgrid = new Grid(2, 2);
laptopOgrid.setVisible(false);
//laptopOgrid.setBorderWidth(l);
laptopOgrid.setCellPadding(2);
laptopOgrid.setStyleName ("dgrp-Stat-Table");
//laptopOgrid.setHTML(0, 0, "# Packets");
//laptopOgrid.setHTMLd, 0, "# Data Bytes");
//laptopOgrid.setHTML(0, 1, "0");
//laptopOgrid. setHTMLd, 1, "0") ;
laptoplDock = new DockPanel ();
laptoplIPAddrLabel = new Label();
laptoplIPAddrLabel.setHorizontalAlignment(Label.ALIGN_CEN

TER) ;
laptoplgrid = new Grid(2, 2);
laptoplgrid.setVisible(false);
//laptoplgrid.setBorderWidth(l);
laptoplgrid.setCellPadding(2);
laptoplgrid.setStyleName("dgrp-Stat-Table");
//laptoplgrid.setHTML(0, 0, "# Packets");
//laptoplgrid. setHTMLd, 0, "# Data Bytes");
//laptoplgrid.setHTML(0, 1, "0");
//laptoplgrid.setHTML(l, 1, "0") ;
laptop2Dock = new DockPanel();
laptop2IPAddrLabel = new Label();
laptop2IPAddrLabel.setHorizontalAlignment(Label.ALIGN__CEN

TER) ;
laptop2grid = new Grid(2, 2);
laptop2grid.setVisible(false);
//laptop2grid.setBorderWidth(l);
laptop2grid.setCellPadding(2);
laptop2grid.setStyleName("dgrp-Stat-Table");
//laptop2grid.setHTML(0, 0, "# Packets");
//laptop2grid. setHTMLd, 0, "# Data Bytes");
//laptop2grid.setHTML(0, 1, "0");
//laptop2gr id. setHTMLd, 1, "0");
laptop3Dock = new DockPanel();
laptop3IPAddrLabel = new Label();
laptop3IPAddrLabel.setHorizontalAlignment(Label.ALIGN_CEN

TER) ;
laptop3grid = new Grid(2, 2);
laptop3grid.setVisible(false);
//laptop3grid.setBorderWidth(l);
laptop3grid.setCellPadding(2);
laptop3grid.setStyleName("dgrp-Stat-Table");
//laptop3grid.setHTML(0, 0, "# Packets");
//laptop3grid. setHTMLd, 0, "# Data Bytes");
//laptop3grid.setHTML(0, 1, "0");
//laptop3grid.setHTML(1, 1, "0");
ispPanel = new HorizontalPanel();
routerPanel = new HorizontalPanel();
laptopPanel = new HorizontalPanel();

160

laptopPanel.setHeight("150px");

ispPanel.setHeight("100px");
wirelessDock.setWidth("500px");
routerStatsDock.setWidth("500px");
laptopODock.setWidth("300px");
laptopODock.setHeight("100%");
laptoplDock.setWidth("300px");
laptoplDock.setHeight("100%");
laptop2Dock.setWidth("300px");
laptop2Dock.setHeight("100%") ;
laptop3Dock.setWidth("300px");
laptop3Dpck.setHeight("100%");

dock.setWidth("100%");
dock.setHeight("100%");
dock.setHorizontalAlignment(DockPanel.ALIGN_CENTER);

routerStatsDock.add(routerStats, DockPanel.CENTER);
wirelessDock.add(wireless, DockPanel.CENTER);
routerPanel.add(routerStatsDock);
routerPanel.add(router);
routerPanel.setCellVerticalAlignment(router,

HorizontalPanel.ALIGN_BOTTOM);
routerPanel.add(wirelessDock);

pipePanel.add(laptopOPipe);
pipePanel.setCellWidth(laptopOPipe, "475px");
pipePanel.setCellHorizontalAlignment(laptopOPipe,

HorizontalPanel.ALIGN_CENTER);
pipePanel.add(laptoplPipe);
pipePanel.setCellWidth(laptoplPipe, "125px");
pipePanel.setCellHorizontalAlignment(laptoplPipe,

HorizontalPanel.ALIGN_CENTER);
pipePanel.add(laptop2Pipe);
pipePanel.setCellWidth(laptop2Pipe, "125px");
pipePanel.setCellHorizontalAlignment(laptop2Pipe,

HorizontalPanel.ALIGN_CENTER);
pipePanel.add(laptop3Pipe);
pipePanel.setCellWidth(laptop3Pipe, "475px");
pipePanel.setCellHorizontalAlignment(laptop3Pipe,

HorizontalPanel.ALIGN_CENTER);

laptopODock.add(laptopOIPAddrLabel, DockPanel.SOUTH);
laptopODock.add(laptopOgrid, DockPanel.WEST);
laptopODock.add(laptopO, DockPanel.CENTER);
laptopODock.setCellHorizontalAlignment(laptopO,

DockPanel.ALIGN_CENTER);
laptoplDock.add(laptoplIPAddrLabel, DockPanel.SOUTH);
laptoplDock.add(laptoplgrid, DockPanel.WEST);
laptoplDock.add(laptopl, DockPanel.CENTER);

161

laptoplDock.setCellHorizontalAlignment(laptopl,
DockPanel.ALIGN_CENTER);

laptop2Dock.add(laptop2IPAddrLabel, DockPanel.SOUTH);
laptop2Dock.add(laptop2grid, DockPanel.WEST);
laptop2Dock.add(laptop2, DockPanel.CENTER);
laptop2Dock.setCellHorizontalAlignment(laptop2,

DockPanel.ALIGN_CENTER);
laptop3Dock.add(laptop3IPAddrLabel, DockPanel.SOUTH);
laptop3Dock.add(laptop3grid, DockPanel.WEST);
laptop3Dock.add(laptop3, DockPanel.CENTER);
laptop3Dock.setCellHorizontalAlignment(laptop3,

DockPanel.ALIGN_CENTER);

laptopPanel.add(laptopODock);
laptopPanel.add(laptoplDock);
laptopPanel.add(laptop2Dock);
laptopPanel.add(laptop3Dock);

dock.add(ispPanel, DockPanel.NORTH);
dock.add(routerPanel, DockPanel.NORTH);
dock.add(pipePanel, DockPanel.NORTH);
dock.adddaptopPanel, DockPanel.NORTH) ;
dock.setCellWidth(ispPanel, "100%");
dock.setCellWidth(routerPanel, "100%");
dock.setCellWidth(pipePanel, "100%");
dock.setCellWidth(laptopPanel, "100%");

initWidget(dock);

public void hideWireless() {
wireless.setUrl("images/placeholder.png");
wireless.setWidth("384px");
wireless.setHeight("231px");
wireless.setStyleName("dgrp-Images-Wireless");

public void showWireless() {
wireless.setUrl("images/wireless_cloud.png");
wireless.setWidth("384px");
wireless.setHeight("231px");
wireless.setStyleName("dgrp-Images-Wireless");

public boolean isWirelessVisible() {
if (wireless.getUrl().endsWith("placeholder.png")) {

return false;
}
else {

return true;
}

162

}

public void hideRouterStats() {
routerStats.setUrl("images/placeholder.png");
routerStats.setWidth("255px");
routerStats.setHeight("275px");
routerStats.setStyleName("dgrp-Images-RouterStats");

}

public void showRouterStats () {
routerStats.setUrl("images/placeholder_for__router_stats.p

ng");
routerStats.setWidth("255px");
routerStats.setHeight("275px");
routerStats.setStyleName("dgrp-Images-RouterStats");

public boolean isRouterStatsVisible() {
if (routerStats.getUrl().endsWith("placeholder.png")) {

return false;
}
else {

return true;
}

public void hideIPv4PacketsSentAndRcvd() {
isIPv4PacketsSentAndRcvdVisible = false;

}
public void showIPv4PacketsSentAndRcvd() {

isIPv4PacketsSentAndRcvdVisible = true;
}
public boolean isIPv4PacketsSentAndRcvdVisible() {

return isIPv4PacketsSentAndRcvdVisible;
}

public void hideIPv4BytesSentAndRcvd() {
isIPv4BytesSentAndRcvdVisible = false;

}
public void showIPv4BytesSentAndRcvd() {

isIPv4BytesSentAndRcvdVisible = true;
}
public boolean isIPv4BytesSentAndRcvdVisible() {

return isIPv4BytesSentAndRcvdVisible;
}

public void hideLaptop(int position) {
switch (position) {

case 0:
laptopO.setUrl("images/placeholder.png");
laptopO.setWidth("131px");

163

laptop0.setHeight("104px");
laptopO.setStyleName("dgrp-Images-Image");
laptopOgrid.setVisible(false);
break;

case 1:
laptopl.setUrl("images/placeholder.png");
laptopl.setWidth("131px");
laptopl.setHeight("104px");
laptopl.setStyleName("dgrp-Images-Image");
laptoplgrid.setVisible(false);
break;

case 2:
laptop2.setUrl("images/placeholder.png");
laptop2.setWidth("131px");
laptop2.setHeight("104px");
laptop2.setStyleName("dgrp-Images-Image");
laptop2grid.setVisible(false);
break;

case 3:
laptop3.setUrl("images/placeholder.png");
laptop3.setWidth("131px");
laptop3.setHeight("104px");
laptop3.setStyleName("dgrp-Images-Image");
laptop3grid.setVisible(false);
break;

default:
break; //ignore others for now

)
}

public void showLaptop(int position) {
switch (position) {

case 0:
laptopO.setUrl("images/laptop.png");
laptop0.setWidth("131px");
laptopO.setHeight("104px");
laptopO.setStyleName("dgrp-Images-Image");
laptopOgrid.setVisible(true);
laptopOgrid.setHTML(0, 1, " ") ;
laptopOgrid.setHTML(l, 1, " ") ;
break;

case 1:
laptopl.setUrl("images/laptop.png");
laptopl.setWidth("131px");
laptopl.setHeight ("104px");
laptopl.setStyleName("dgrp-Images-Image");
laptoplgrid.setVisible(true);
laptoplgrid.setHTML(0, 1, " ") ;
laptoplgrid.setHTMLd, 1, "") ;
break;

164

laptop2.setUrl("images/laptop.png");
laptop2.setWidth("131px");
laptop2.setHeight("104px");
laptop2.setStyleName("dgrp-Images-Image");
laptop2grid.setVisible(true);
laptop2grid.setHTML(0, 1, " ") ;
laptop2grid.setHTML(l, 1, " ") ;
break;

case 3:
laptop3.setUrl("images/laptop.png");
laptop3.setWidth("131px");
laptop3.setHeight("104px");
laptop3.setStyleName("dgrp-Images-Image");
laptop3grid.setVisible(true);
laptop3grid.setHTML(0, 1, " ") ;
laptop3grid.setHTML(l, 1, " ") ;
break;

default:
break; //ignore others for now

}
}

public boolean isLaptopVisible(int position) {
switch (position) {

case 0:
if (laptopO.getUrl().endsWith("placeholder.png"))

return false;
}
break;

case 1:
if (laptopl.getUrl().endsWith("placeholder.png"))

return false;
}
break;

case 2:
if (laptop2.getUrl().endsWith("placeholder.png"))

return false;
}
break;

case 3:
if (laptop3.getUrl().endsWith("placeholder.png"))

return false;
}
break;

default:
break; //ignore others for now

165

return true;
}

public void showLaptopPipe(int position, String bwUsage) {
switch (position) {

case 0:
if (bwUsage.equals("low")) {

laptopOPipe.setUrl("images/laptopO_pipe_small
•png")

m.png");

.png");

ng")

LaptopOPipe");
break;

}
else if (bwUsage.equals("medium")) {

laptopOPipe.setUrl("images/laptopO_pipe_mediu

}
else if (bwUsage.equals("high")) {

laptopOPipe.setUrl("images/laptopO_pipe_large

}
else if (bwUsage.equals("blocked")) {

laptopOPipe.setUrl("images/laptopO_pipe_red.p

}
laptopOPipe.setWidth("37lpx");
laptopOPipe.setHeight("54px");
laptopOPipe.setStyleName("dgrp-Images-

•png");

m.png");

•png");

ng");

LaptoplPipe");
break;

case 2:

case 1:
if (bwUsage.equals ("low")) {

laptopiPipe.setUrl("images/laptopl_pipe_small

}
else if (bwUsage.equals("medium")) {

laptoplPipe.setUrl("images/laptopl_pipe_mediu

}
else if (bwUsage.equals("high")) {

laptoplPipe.setUrl("images/laptopl_pipe_large

}
else if (bwUsage.equals("blocked")) {

laptoplPipe.setUrl("images/laptopl_pipe_red.p

}
laptoplPipe.setWidth("102px");
laptoplPipe.setHeight("54px");
laptoplPipe.setStyleName("dgrp-Images-

166

if (bwUsage.equals("low")) {
laptop2Pipe.setUrl("images/laptop2_pipe_small

.png");
}
else if (bwUsage.equals("medium")) {

laptop2Pipe.setUrl("images/laptop2_pipe_mediu
m.png");

}
else if (bwUsage.equals("high")) {

laptop2Pipe.setUrl("images/laptop2_pipe_large
.png");

}
else if (bwUsage.equals("blocked")) {

laptop2Pipe.setUrl("images/laptop2_pipe_red.p
ng");

}
laptop2Pipe.setWidth("102px");
laptop2Pipe.setHeight("54px") ;
laptop2Pipe.setStyleName("dgrp-Images-

Laptop2Pipe");
break;

case 3:
if (bwUsage.equals("low")) {

laptop3Pipe.setUrl("images/laptop3_pipe_small
.png");

}
else if (bwUsage.equals("medium")) {

laptop3Pipe.setUrl("images/laptop3_pipe_mediu
m.png");

}
else if (bwUsage.equals("high")) {

laptop3Pipe.setUrl("images/laptop3_pipe_large
.png");

}
else if (bwUsage.equals("blocked")) {

laptop3Pipe.setUrl("images/laptop3_pipe_red.p
ng");

}
laptop3Pipe.setWidth("371px");
laptop3Pipe.setHeight("54px");
laptop3Pipe.setStyleName("dgrp-Images-

Laptop3Pipe");
break;

default:
break;

}
}
public void hideLaptopPipe(int position) {

switch (position) {
case 0:

167

laptopO.setUrl("images/placeholder.png");
laptop0.setWidth("131px");
laptopO.setHeight("104px");
laptopO.setStyleName("dgrp-Images-Image");
break;

case 1:
laptopl.setUrl("images/placeholder.png");
laptopl.setWidth("131px");
laptopl.setHeight("104px");
laptopl.setStyleName("dgrp-Images-Image");
break;

case 2:
laptop2.setUrl("images/placeholder.png");
laptop2.setWidth("131px");
laptop2.setHeight("104px");
laptop2.setStyleName("dgrp-Images-Image");
break;

case 3:
laptop3.setUrl("images/placeholder.png");
laptop3.setWidth("131px");
laptop3.setHeight("104px");
laptop3.setStyleName("dgrp-Images-Image");
break;

default:
break; //ignore for now

}

public void setLaptopIPAddrLabel(int position, String text) {
switch (position) {

case 0:
laptopOIPAddrLabel.setText(text);
break;

case 1:
laptoplIPAddrLabel.setText(text);
break;

case 2:
laptop2IPAddrLabel.setText(text);
break;

case 3:
laptop3IPAddrLabel.setText(text);
break;

default:
break;

}
}

public void setLaptopStatValue(int position, int stat, String
value) {

String label = "", valueUsed = "";

168

switch (stat) {
case NUM_PACKETS:

if (isIPv4PacketsSentAndRcvdVisible) {
label = NUM_PACKETS_LABEL;
valueUsed = value;

}
break;

case NUM_DATA_BYTES:
if (isIPv4BytesSentAndRcvdVisible) {

label = NUM_DATA_BYTES_LABEL;
valueUsed = value;

}
break;

default: //ignore; invalid statistic
break;

}

switch (position) {
case 0:

if (stat == NUM_PACKETS) {
laptopOgrid.setHTML(0, 0, label);
laptopOgrid.setHTML(0, 1, valueUsed);

) else if (stat == NUM_DATA_BYTES) {
laptopOgrid.setHTML(1, 0, label);
laptopOgrid.setHTML(1, 1, valueUsed);

} else {
//ignore for now; invalid statistic

}
break;

case 1:
if (stat == NUM_PACKETS) {

laptoplgrid.setHTML(0, 0, label);
laptoplgrid.setHTML(0, 1, valueUsed);

} else if (stat == NUM_DATA_BYTES) {
laptoplgrid.setHTML(1, 0, label);
laptoplgrid.setHTML(1, 1, valueUsed);

} else {
//ignore for now; invalid statistic

}
break;

case 2:
if (stat == NUM_PACKETS) {

laptop2grid.setHTML(0, 0, label);
laptop2grid.setHTML(0, 1, valueUsed);

} else if (stat == NUM_DATA__BYTES) {
laptop2grid.setHTML(1, 0, label);
laptop2grid.setHTML(1, 1, valueUsed);

) else {

169

//ignore for now; invalid statistic
}
break;

case 3:
if (Stat == NUM_PACKETS) {

laptop3grid.setHTML(0, 0, label);
laptop3grid.setHTML(0, 1, valueUsed);

} else if (stat == NUM_DATA_BYTES) {
laptop3grid.setHTML(l, 0, label);
laptop3grid.setHTML(1, 1, valueUsed);

} else {
//ignore for now; invalid statistic

}
break;

default: //ignore for now; invalid position
break;

}

void showAllGraphics() {
showWireless();
showLaptop(0);
showLaptop(1);
showLaptop(2);
showLaptop(3);
showLaptopPipe(0, "small")
showLaptopPipe(1, "small")
showLaptopPipe(2, "small")
showLaptopPipe(3, "smal1")
setLaptopIPAddrLabel(0, "IP
setLaptopIPAddrLabel(1, "IP
setLaptopIPAddrLabel(2, "IP
setLaptopIPAddrLabel(3, "IP

Address
Address
Address
Address

Placeholder")
Placeholder")
Placeholder")
Placeholder")

Settings.Java

package org.dgrp.client;

import com.google.gwt.user.client.ui.HTML;

/**
* Settings page.
*/

public class Settings extends Sidebarltem {

170

public static Sidebarltemlnfo init() {
return new Sidebarltemlnfo("Settings", "System Settings...") {
public Sidebarltem createlnstance() {

return new Settings();
}

};
}

public Settings() {
initWidget(new HTML(

"<div class='dgrp-About-Prose'>" +
"This is a placeholder for the future implementation of

system settings." +
"

Examples of settings that may be included:" +
"" +
"Interface IP Addresses" +
"Interface Netmasks" +
"Interfaces Enabled or Disabled" +
"Default Gateways (Routers)" +
"DNS settings" +
"Quagga routing protocol" +
"Quagga packet filtering" +
"Tunable DGRP Settings" +
"" +
"</div>",
true));

}

public void onShow() {
}

}

Sidebar.java

package org.dgrp.client;

import org.dgrp.client.Sidebarltem.Sidebarltemlnfo;
import com.google.gwt.user.client.ui.Composite;
import com.google.gwt.user.client.ui.Hyperlink;
import com.google.gwt.user.client.ui.VerticalPanel;

import java.util.ArrayList;

/**

* The left panel that contains all of the sidebar items along
with a short
* description of each.
*/

171

public class Sidebar extends Composite {

private VerticalPanel list = new VerticalPanel();
private ArrayList items = new ArrayList();
private int selectedltem = -1;

public Sidebar() {
initWidget(list);
setStyleName("dgrp-Sidebar-List");

}

public void addltem(final Sidebarltemlnfo info) {
String name = info.getName();
Hyperlink link = new Hyperlink(name, name);
link.setStyleName("dgrp-Sidebar-Item");

list.add(link);
items.add(info);

public Sidebarltemlnfo find(String sidebarltemName) {
for (int i = 0; i < items.size(); ++i) {
Sidebarltemlnfo info = (Sidebarltemlnfo) items.get (i);
if (info.getName().equals(sidebarltemName)) {
return info;

}
}

return null;

public void setltemSelection(String name) {
if (selectedltem != -1) {
list.getWidget(selectedltem).removeStyleName("dgrp-Sidebar-

Item-Selected");
}

for (int i = 0; i < items.size(); ++i) {
Sidebarltemlnfo info = (Sidebarltemlnfo) items.get(i);
if (info.getName().equals(name)) {
selectedltem = i;
list.getWidget(selectedltem).addStyleName("dgrp-Sidebar-

Item-Selected");
return;

}
}

}
)

172

Sidebarltem.java

package org.dgrp.client;

import com.google.gwt.user.client.ui.Composite;

/**

* A 'Sidebarltem' is a single panel of the application. They are
meant to be
* lazily instantiated so that the application doesn't pay for

all of them
* on startup.
*/

public abstract class Sidebarltem extends Composite {

/**

* Encapsulated information about an item. Each item is
expected to have

* a static init() method that will be called at startup.
*/

public abstract static class Sidebarltemlnfo {
private Sidebarltem instance;
private String name, description;

public Sidebarltemlnfo(String name, String desc) {
this.name = name;
description = desc;

}

public abstract Sidebarltem createlnstance() ;

public String getDescription() {
return description;

}

public final Sidebarltem getlnstance() {
if (instance != null) {
return instance;

}
return (instance = createlnstance());

}

public String getName() {
return name;

}

* Called just before this item is hidden.

173

*/
public void onHideO {
}

/**

* Called just after this item is shown.
*/

public void onShow() {
}

}

Topologylnfo.java

package org.dgrp.client;

*

* Sauthor chrisne
*/

public class Topologylnfo {

private int maxNodes;
String[] nodeAddresses;

public Topologylnfo (int maxNodes) {
this.maxNodes = maxNodes;
nodeAddresses = new String[maxNodes];

}

public int getMaxNodes() {
return maxNodes;

}

public String getAddress(int position) {
return nodeAddresses[position];

}
public void setAddress(int position, String address) throws

Exception {
try { //excpect exception if address is new to the list

int tempPosition = findPosition(address);
if (position == tempPosition) { //this is OK

nodeAddresses[position] = address;
}
else {

throw new Exception("ERROR: Cannot add the same
address again.");

}
}

174

catch (Exception e) {
if (e.getMessage().equals("ERROR: Address not

found.")) { //expected
nodeAddresses[position] = address;

}
else { //do not catch exceptions we did not expect

throw e;
}

}

}
public int findPosition(String address) throws Exception {

for (int i=0; KnodeAddresses .length; i++) {
if (nodeAddresses[i].equals(address)) {

return i;
}

}
throw new Exception("ERROR: Address not found.");

}

Version.java

package org.dgrp.client;

import com.google.gwt.user.client.ui.HTML;
import com.google.gwt.core.client.GWT;
import com.google.gwt.user.client.rpc.AsyncCallback;
import com.google.gwt.user.client.rpc.ServiceDefTarget;

* Version page.
*/

public class Version extends Sidebarltem {

private HTML verlnfo = new HTML(
"<div class='dgrp-About-Prose'>" +
"Retrieving version information from the server..." +
"</div>",
true);

public static Sidebarltemlnfo init() {
return new Sidebarltemlnfo("Version Info",

"Version Information for the DTrace Graphical Router
Project...") {

public Sidebarltem createlnstance() {

175

return new Version();
}

};
}

public Version() {

initWidget(verlnfo);

// Create an asynchronous callback to handle the result,
final AsyncCallback callback = new AsyncCallbacM) {

public void onSuccess(Object result) {

VersionContents verResults = (VersionContents) result;

verlnfo.setHTML(
"<div class='dgrp-About-Prose'>" +
"<table>" +

//This software info
" < t r x t h colspan=\"4\"

bgco lo r= \ "b lack \ "x fon t " +
"color=\"white\">DTrace Graphical Router

P ro jec t : " +
" < / f o n t > < / t h x / t r > " +
" < t r x t d w id th= \ "10 \ "x / t dx td>Ver s ion :< / td>"

+
"<td wid th= \"10 \ "x / td>" +
"<td>" + verResults.dgrpVersion +

" < t r x t d width=\"10\"></td><td>Build

"<td wid th= \"10 \"x / td>" +
"<td>" + verResults.dgrpBuildNumber +

" < t r x t d w i d t h = \ " 1 0 \ " x / t d x t d > B u i l d

"<td wid th= \"10 \"x / td>" +
verResul t s . dgrpBuildDate + " < / t d x / t r > " +

" < t r x t d wid th=\"10 \"x / tdXtd>Author :< / td>" +
"<td wid th= \"10 \"x / td>" +
"<td>" + verResul ts . dgrpAuthor + " < / t d x / t r > "

"<tr h e i g h t = \ " 1 0 \ " x t d
c o l s p a n = \ " 3 \ " X / t d X / t r > " +

/ / S o l a r i s Info
" < t r x t h colspan=\"4\"

bgco lo r= \ "b lack \ "x fon t " +
" c o l o r = \ " w h i t e \ " > O p e n S o l a r i s : < / f o n t x / t h x / t r

" < / t d x / t r > " +

Number:</td>" +

" < / t d x / t r > " +

Date:</td>" +

176

>" +
" < t r x t d wid th= \"10 \ "X/ tdx td>Vers ion :< / td>"

+
"<td wid th= \ "10 \ "x / td>" +
"<td>" + ve rResu l t s . so la r i sRe lease + " < / t d x /

t r>" +
" < t r x t d

w i d t h = \ " 1 0 \ " x / t d x t d > A r c h i t e c t u r e : < / t d > " +
"<td wid th= \ "10 \ "x / td>" +
"<td>" + verResul t s . so la r i sArch +

" < / t d x / t r > " +
" < t r x t d w i d t h = \ " 1 0 \ " x / t d x t d > I n s t a l l

Date:</td>" +
"<td wid th= \ "10 \ "x / td>" +
"<td>" + verResults.solarisInstallDate +

"</td></tr>" +
"<tr><td wid th= \ "10 \ "X/ tdx td>Cur ren t

Uptime:</td>" +
"<td wid th= \ "10 \ "x / td>" +
"<td>" + verResul ts .solar isUpt ime +

" < / t d x / t r > " +

"<tr h e i g h t = \ " 1 0 \ " x t d
c o l s p a n = \ " 3 \ " x / t d x / t r > " +

//Quagga info
" < t r x t h colspan=\"4\"

bgco lo r= \ "b lack \ "x fon t " +
"co lo r= \ "wh i t e \ ">Quagga :< / fon tx / thx / t r>" +
" < t r x t d width=\" 10\"></ tdxtd>Vers ion:</ td>"

+
"<td width=\"10\"X/ td>" +
"<td>" + verResults.quaggaVersion +

" < / t d x / t r > " +
" < t r x t d w i d t h = \ " 1 0 \ " x / t d x t d > I n s t a l l

Date:</td>" +
"<td wid th= \ "10 \ "x / td>" +
"<td>" + verResults.quaggalnsDate +

" < / t d x / t r > " +

"<tr he igh t= \ "10 \ "Xtd
c o l s p a n = \ " 3 \ " x / t d x / t r > " +

/ / Java info
" < t r x t h colspan=\"4\"

bgco lo r= \ "b lack \ "x fon t " +
"color=\ "white\ "> Java: </f o n t x / t h x / t r > " +
"<tr><td w id th= \ "10 \ "x / t dx td>Ver s ion :< / td>"

+
"<td width=\"10\"x/td>" +
"<td>" + verResults.javaVersion +

177

" < / t d x / t r > " +
" < t r x t d wid th= \"10 \"x / tdx td>Vendor :< / td>" +
"<td width=\"10\"X/ td>" +
"<td>" + verResul t s . javaVendor + " < / t d x / t r > "

+
" < t r x t d w i d t h = \ " 1 0 \ " x / t d x t d > V i r t u a l

Machine (VM):</td>" +
"<td wid th= \ "10 \ "x / td>" +
"<td>" + verResul t s . javaVMName + " < / t d x / t r > "

+
" < t r x t d width=\"10\"x/ tdxtd>VM

Version:</td>" +
"<td width=\"10\"X/ td>" +
"<td>" + verResults.javaVMVersion +

" < / t d x / t r > " +
" < t r x t d width=\"10\"x/ tdxtd>VM

Vendor:</td>" +
"<td wid th= \ "10 \ "x / td>" +
"<td>" + verResults.javaVMVendor +

" < / t d x / t r > " +

"<tr he igh t= \ "10 \ "Xtd
c o l s p a n = \ " 3 \ " X / t d x / t r > " +

//Web-Server info
" < t r x t h colspan=\"4\"

bgcolor=\"b lack\"Xfont " +
"color=\"white\">Apache/Tomcat Web

Server : < f o n t x / t h x / t r > " +
" < t r x t d wid th=\"10 \"x / tdx td>Apache :< / td>" +
"<td wid th= \"10 \"x / td>" +
"<td>" + verResults.apacheVersion +

" < / t d x / t r > " +
" < t r x t d wid th=\"10 \"x / tdx td>Tomcat :< / td>" +
"<td width=\"10\"X/ td>" +
"<td>" + verResults. tomcatVersion +

" < / t d x / t r > " +

"<tr h e i g h t = \ " 1 0 \ " x t d
c o l s p a n = \ " 3 \ " x / t d x / t r > " +

//Browser info
" < t r x t h colspan=\"4\"

bgcolor=\"b lack\"Xfont " +
" co lo r= \ "wh i t e \ ">Browse r :< / fon tx / t hx / t r>" +
"<tr><td wid th= \ "10 \ "x / tdx td>Vers ion :< / td>"

+
"<td width=\"10\"X/ td>" +
"<td>" + getBrowserlnfoO + " < / t d x / t r > " +

"</table>" +

178

"</div>"
);

}

public void onFailure(Throwable caught) {
verInfo.setHTML(

"<div class='dgrp-About-Prose'>" +
"Failed to retrieve version information from

the server." +
"</div>"
);

}
};

// Make remote call. Control flow will continue immediately
and later

// 'callback' will be invoked when the RPC completes.
getService().getVersionlnfo(callback);

}

public static GetVersionlnfoAsync getService (){
// Create the client proxy. Note that although you are

creating the
// service interface proper, you cast the result to the

asynchronous
// version of
// the interface. The cast is always safe because the

generated proxy
// implements the asynchronous interface automatically.
GetVersionlnfoAsync service = (GetVersionlnfoAsync)

GWT.create(GetVersionlnfo.class);
// Specify the URL at which our service implementation is

running.
// Note that the target URL must reside on the same

domain and port from
// which the host page was served.
//
ServiceDefTarget endpoint = (ServiceDefTarget) service;
String moduleRelativeURL = GWT.getModuleBaseURL() +

"getversioninfo";
endpoint.setServiceEntryPoint(moduleRelativeURL);
return service;

}

public static native String getBrowserlnfo() /*-{
return $wnd.navigator.userAgent;

}-*/;

public void onShow() {
}

}

179

VersionContents.java

package org.dgrp.client;

import Java.io.Serializable;

/'

* Qauthor Christopher Nelson
*/

public class VersionContents implements Serializable {

//Solaris info
public String solarisRelease;

release
public String solarisInstallDate;
public String solarisArch;
public String solarisUptime;

//Quagga info
public String quaggaVersion;
public String quaggalnsDate;

//This software info
public String dgrpBuildNumber;

appinfo.properties
public String dgrpAuthor;

appinfo.properties
public String dgrpBuildDate;

appinfo.properties
public String dgrpVersion;

appinfo.properties
public String dgrpDescription;

appinfo.properties

//Java info
public String javaVersion;
public String javaVendor;
public String javaVMName;
public String javaVMVersion;
public String javaVMVendor;

//first line of /etc/

//from SUNWcsr
//os.arch
//uptime

//from SUNWquaggar
//from SUNWquaggar

//from

//from

//from

//from

//from

//Java.version
//java.vendor
/ / j ava.vm.name
//j ava.vm.version
//j ava.vm.vendor

//Browser info
public String browserlnfo;

//Web-Server info
public String tomcatVersion;

//determined on client

//from SUNWtcatr

180

public String apacheVersion; //from SUNWapchr
}

Welcome.java

package org.dgrp.client;

import com.google.gwt.user.client.ui.VerticalPanel;
import com.google.gwt.user.client.ui.HTMLPanel;

public class Welcome extends Sidebarltem {

public static Sidebarltemlnfo init() {
return new Sidebarltemlnfo("Welcome",

"Welcome to the DTrace Graphical Router Project...") {
public Sidebarltem createlnstance() {

return new Welcome();
}

};
}

public Welcome() {
HTMLPanel welcomeHTML = new HTMLPanel(

"<h3>Welcome to the DTrace Graphical Router
Project</h3>" +

"<p>Click a link to the left to continue...</p>"
);

VerticalPanel welcomePanel = new VerticalPanel ();
welcomePanel.setSpacing(8) ;
welcomePanel.setHorizontalAlignment(VerticalPanel.ALIGN_CENTE

R);
welcomePanel.setWidth("100%") ;

welcomePanel.add(welcomeHTML);
welcomePanel.setCellWidth(welcomeHTML, "100%");

initWidget(welcomePanel);
}

public void onShow() {
}

}

181

APPENDIX G. SOURCE CODE - PACKAGE org.dgrp.server

The complete source code for the reference implementation of this framework is

provided in this and other appendices to this document for the reader's easy reference.

For the simplest viewing experience or to use the code without copying and pasting it

into a new source file, the reader is encouraged to review the soft-copy files available on

the CD-ROM included with this document.

BandwidthMonitorlmpl.java

package org.dgrp.server;
import com.google.gwt.user.server.rpc.RemoteServiceServlet;
import java.util.Random;
import org.dgrp.client.Bandwidthlnfo;
import org.dgrp.client.BandwidthMonitor;
import org.dgrp.server.dtraceservices.*;

/**
*

* @author chrisne
*/

public class BandwidthMonitorlmpl extends RemoteServiceServlet
implements

BandwidthMonitor {

private DTraceCountDataBytesService countDataBytesService;
private DTraceCountPacketsService countPacketsService;

public void startServiceCountPackets(String subnet) {
DGRPLogger.log("Entering

BandwidthMonitorlmpl.startServiceCountPackets()...\n");
countPacketsService = new DTraceCountPacketsService();
countPacketsService.startService(subnet);

}

public void stopServiceCountPackets() {
DGRPLogger.log("Entering

BandwidthMonitorlmpl.stopServiceCountPackets()...\n");

182

countPacketsService.stopService();
}

public void startServiceCountDataBytes(String subnet) {
DGRPLogger.log("Entering

BandwidthMonitorlmpl.StartServiceCountDataBytes()...\n");
countDataBytesService = new DTraceCountDataBytesService();
countDataBytesService.startService(subnet);

}

public void stopServiceCountDataBytes() {
DGRPLogger.log("Entering

BandwidthMonitorlmpl.StopServiceCountDataBytes()...\n");
countDataBytesService.stopService();

}

public Bandwidthlnfo getBandwidthlnUse(String ipAddr) {
DGRPLogger.log("Entering

BandwidthMonitorlmpl.getBandwidthlnUse()...\n");
Bandwidthlnfo bwlnfo = new Bandwidthlnfo(ipAddr);
DGRPLogger.log("Created bwlnfo...done\n");
DGRPLogger.log("Setting Total Packets Received From...");
bwlnfo.setTotalPacketsReceivedFrom(countPacketsService.

getNumberPacketsByIP(ipAddr,
countPacketsService.DIRECTION_RCVD));

DGRPLogger.log("done.\nSetting Total Packets Sent To...");
bwlnfo.setTotalPacketsSentTo(countPacketsService.

getNumberPacketsByIP(ipAddr,
countPacketsService.DIRECTION_SENT));

DGRPLogger.log("done.\nSetting Total Packets Received
From and Sent To...");

bwlnfo.setTotalPacketsSentToAndReceivedFrom(countPacketsS
ervice.

getNumberPacketsByIP(ipAddr,
countPacketsService.DIRECTION_TOTAL));

DGRPLogger.log("done.\nSetting Total Data Bytes Received
From...");

bwlnfo.setTotalDataBytesReceivedFrom(countDataBytesServic
e.

getNumberDataBytesByIP(ipAddr,
countDataBytesService.DIRECTION_RCVD));

DGRPLogger.log("done.\nSetting Total Data Bytes Sent
To...");

bwlnfo.setTotalDataBytesSentTo(countDataBytesService.
getNumberDataBytesByIP(ipAddr,

countDataBytesService.DIRECTION_SENT));
DGRPLogger.log("done.\nSetting Total Data Bytes Received

From and Sent To...");
bwlnfo.setTotalDataBytesSentToAndReceivedFrom(countDataBy

tesService.
getNumberDataBytesByIP(ipAddr,

183

file:///nSetting
file:///nSetting
file:///nSetting
file:///nSetting
file:///nSetting

countDataBytesService.DIRECTION_TOTAL));
DGRPLogger.log("done.\n");

//This is a fake for now...
bwInfo.setBandwidthlnUse(1, 4);

DGRPLogger.log("Returning from
BandwidthMonitorlmpl.getBandwidthlnUse()\n") ;

return bwlnfo;
}

public String[] getRefreshedlPs() {
DGRPLogger.log("Entering

BandwidthMonitorlmpl.getRefreshedlPs()...\n");
return countDataBytesService.getBusiestlPsByDataBytes();

}

/***

* The following methods exist for the purpose of
demonstration and

* testing and are not useful for the retrieval or display of
real data.

**
************/

public Bandwidthlnfo getRandomBandwidthlnUse(String ipAddr) {
// Return a random bandwidth for testing/demo
int maxBandwidth = 4 ;
Random r = new Random();
int bandwidth = r.nextlnt(maxBandwidth) + 1;

Bandwidthlnfo bwlnfo = new Bandwidthlnfo(ipAddr);
bwlnfo.setBandwidthlnUse(bandwidth, maxBandwidth);

return bwlnfo;
}

}

DGRPLogger.java

package org.dgrp.server;

import java.io.*;

/**
*

* Sauthor chrisne

184

* /
public class DGRPLogger {

private static String logfile = "/var/tmp/dgrplog.txt";

public static void log(String string) {
try {

BufferedWriter out = new BufferedWriter (new
FileWriter(logfile, true));

out.write(string);
out.close();

} catch (IOException e) {
}

}
}

GetVersionlnfoImpl.java

package org.dgrp.server;

import java.io.*;
import java.util.*;
import com.google.gwt.user.server.rpc.RemoteServiceServlet;
import org.dgrp.client.GetVersionlnfo;
import org.dgrp.client.VersionContents;
import java.net.URL;;

I -k-k

•k

* @author Christopher Nelson
*/

public class GetVersionlnfoImpl extends RemoteServiceServlet
implements

GetVersionlnfo {

public VersionContents getVersionlnfo() {

DGRPLogger.log("Entering getVersionlnfo()...\n");

VersionContents ver = new VersionContents ();

InputStream in = null;
Properties props = new Properties();

try {
in =

getClass () .getResourceAsStream("/appinfo.properties");
props.load(in);

185

http://java.net

//Solaris info
ver.solarisRelease = getSolarisRelease ();
ver.solarisInstallDate = getSolarisInstallDate ();
ver.solarisArch = System.getProperty("os.arch");
ver.solarisUptime = getSolarisUptime();

//Quagga info
ver.quaggaVersion = getQuaggaVersion();
ver.quaggalnsDate = getQuaggalnstallDate();

//This software info
ver.dgrpAuthor = props.getProperty("program.AUTHOR");
ver.dgrpBuildDate =

props.getProperty("program.BUILDDATE");
ver.dgrpBuildNumber =

props.getProperty("program.BUILDNUM");
ver.dgrpDescription =

props.getProperty("program.DESCRIPTION");
ver.dgrpVersion =

props.getProperty("program.VERSION");

//Java info
ver.javaVMName = System.getProperty("Java.vm.name");
ver.javaVMVendor =

System.getProperty("Java.vm.vendor");
ver.javaVMVersion =

System.getProperty("java.vm.version");
ver.javaVendor = System.getProperty("Java.vendor");
ver.javaVersion = System.getProperty("Java.version");

//Browser info
ver.browserlnfo = null; //determined client-side

//Web-Server info
ver.tomcatVersion = getTomcatVersion();
ver.apacheVersion = getApacheVersion ();

in.close () ;
}
catch (IOException e) {

e.printStackTrace();
}

DGRPLogger.log("Returning from getVersionlnfo ().\n");
return ver;

private String getSolarisRelease() {
try {

BufferedReader rel = new BufferedReader(new

186

FileReader(
"/etc/release"));

StringTokenizer st = new
StringTokenizer(rel.readLine());

String solRel = "";
while (st.hasMoreTokens()) {

solRel = solRel + st.nextToken() + " ";
}
return solRel;

}
catch (FileNotFoundException e) {

return "Retrieval of this
property is " +

"only supported when running this software on
" +

"Solaris</iX/f ont>" ;
}
catch (IOException e) {

re turn "Fa i l ed to r e t r i e v e " +
" p r o p e r t y < / i x / f o n t > " ;

}
}

private String getSolarisInstallDate() {
try {

String cmd = "pkginfo -1 SUNWcsr";
Process p = Runtime.getRuntime().exec(cmd);
BufferedReader stdlnput = new BufferedReader(new

InputStreamReader(
p.getInputStream()));

String curLine = stdlnput.readLine();

while (curLine != null) {
StringTokenizer st = new StringTokenizer(curLine);
if (st.nextToken().equals("INSTDATE:")) {

return(st.nextToken() + " " + st.nextToken()
+ " " +

st.nextToken() + " " +
st.nextToken ());

}
curLine = stdlnput.readLine ();

}

re turn "Fa i l ed to r e t r i e v e " +
" p r o p e r t y < / i x / f o n t > " ;

}
catch (IOException e) {

return "Retrieval of this
property is " +

"only supported when running this software on

187

" +
"Solaris</ix/f ont>" ;

}
catch (NoSuchElementException e) {

return "Failed to retrieve
"property</ix/f ont>" ;

}
}

private String getSolarisUptime() {
try {

String cmd = "uptime";
Process p = Runtime.getRuntime().exec(cmd);
BufferedReader stdlnput = new BufferedReader(new

InputStreamReader(
p.getlnputstream()));

StringTokenizer st = new
StringTokenizer(stdlnput.readLine());

st.nextToken (); //skip the first
st.nextToken(); //...and the second
String days = st.nextToken();
st.nextToken(); //skip the fourth
String hours = st.nextToken(",");

//assumes more than one day
return(days + " day(s) and " + hours + " hour(s)")

}
catch (IOException e) {

re turn " R e t r i e v a l of t h i s
property i s " +

"only supported when running this software
" +

"Solaris</iX/font>";
}
catch (NoSuchElementException e) {

return "Failed to retrieve
"property</ix/f ont>" ;

}
}

private String getQuaggaVersion() {
try {

String cmd = "pkginfo -1 SUNWquaggar";
Process p = Runtime.getRuntime().exec(cmd);
BufferedReader stdlnput = new BufferedReader(new

InputStreamReader(
p.getlnputStream())) ;

String curLine = stdlnput.readLine();

188

while (curLine != null) {
StringTokenizer st = new StringTokenizer (curLine);
if (st.nextToken().equals("DESC:")) {

return(st.nextToken() + " " + st.nextToken()
+ " " +

st.nextToken() + " " +
st.nextToken());

}
curLine = stdlnput.readLine();

}

return "Failed to retrieve " +
"property</i>";

}
catch (IOException e) {

return "Retrieval of this
property is " +

"only supported when running this software on
" +

" Solar is</ix/font>" ;
}
catch (NoSuchElementException e) {

return "<i>Failed to retrieve " +
"property</i>" ;

}
}

private String getQuaggalnstallDate() {
try {

String cmd = "pkginfo -1 SUNWquaggar";
Process p = Runtime.getRuntime().exec(cmd);
BufferedReader stdlnput = new BufferedReader(new

InputStreamReader(
p.getInputStream()));

String curLine = stdlnput.readLine();

while (curLine != null) {
StringTokenizer st = new StringTokenizer(curLine);
if (st.nextToken().equals("INSTDATE:")) {

return(st.nextToken() + " " + st.nextToken()
+ " " +

st.nextToken() + " " +
st.nextToken());

}
curLine = stdlnput.readLine();

}

return "Failed to retrieve " +
"property</i>";

}

189

catch (IOException e) {
return "Retrieval of this

property is " +
"only supported when running this software on

" +
"Solaris</iX/font>";

}
catch (NoSuchElementException e) {

re turn "Fa i l ed to r e t r i e v e " +
" p r o p e r t y < / i x / f o n t > " ;

}
}

private String getTomcatVersion() {
try {

String cmd = "pkginfo -1 SUNWtcatr";
Process p = Runtime.getRuntime().exec(cmd);
BufferedReader stdlnput = new BufferedReader(new

InputStreamReader(
p.getlnputStream()));

String curLine = stdlnput.readLine();

while (curLine != null) {
StringTokenizer st = new StringTokenizer(curLine);
if (st.nextTokenO .equals ("DESC:")) {

return(st.nextToken() + " " + st.nextToken()
+ " " +

st.nextTokenO + " " +
st.nextToken());

}
curLine = stdlnput.readLine();

}

return "Failed to retrieve " +
"property</ix/font>" ;

}
catch (IOException e) {

return "Retrieval of this
property is " +

"only supported when running this software on
" +

"Solaris</ix/font>";
}
catch (NoSuchElementException e) {

return "Failed to retrieve " +
"property</i>";

}
}

private String getApacheVersion() {

190

try {
String cmd = "pkginfo -1 SUNWapchr";
Process p = Runtime.getRuntime().exec(cmd);
BufferedReader stdlnput = new BufferedReader(new

InputStreamReader(
p.getlnputStream()));

String curLine = stdlnput.readLine();

while (curLine != null) {
StringTokenizer st = new StringTokenizer(curLine);
if (st.nextToken().equals("DESC:")) {

return(st.nextToken() + " " + st.nextToken()
+ " " +

st.nextToken() + " " + st.nextToken()
+ " " +

st.nextToken() + " " + st.nextToken()
+ " " +

st.nextToken() + " " +
st.nextToken());

}
curLine = stdlnput.readLine() ;

}

return "Failed to retrieve " +
"property</ix/font>" ;

}
catch (IOException e) {

return "Retrieval of this
property is " +

"only supported when running this software on
" +

"Solaris</ix/font>";
}
catch (NoSuchElementException e) {

return "Failed to retrieve " +
"property</ix/font>";

}
}

}

191

APPENDIX H. SOURCE CODE - PACKAGE org.dgrp.server.dtraceservices

The complete source code for the reference implementation of this framework is

provided in this and other appendices to this document for the reader's easy reference.

For the simplest viewing experience or to use the code without copying and pasting it

into a new source file, the reader is encouraged to review the soft-copy files available on

the CD-ROM included with this document.

DTraceCountDataBytesService.java

package org.dgrp.server.dtraceservices;

import java.io.File;
import java.net.URL;
import java.util.*;
import org.dgrp.server.DGRPLogger;
import org.opensolaris.os.dtrace.*;

/**
*

* @author chrisne
*/

public class DTraceCountDataBytesService {

public final int DIRECTION_SENT = 0;
public final int DIRECTION_RCVD = 1;
public final int DIRECTIONJTOTAL = 2;

private URL url = DTraceCountDataBytesService.class.
getResource("/org/dgrp/server/dtraceservices/count_da

ta_bytes.d");

private Consumer consumer;
private boolean isRunning = false;

public void startService(String subnet) {
try {

DGRPLogger.log("Entering

192

http://java.net

DTraceCountDataBytesService.startServi.ee () . . .\n") ;
File scriptFile = new File(url.toURI());
String macroArgs = new String(subnet);
DGRPLogger.log("Creating DTrace consumer.\n");
consumer = new LocalConsumer();
DGRPLogger.log("Opening DTrace consumer.\n");
consumer.open();
DGRPLogger.log("Compiling DTrace script.\n");

consumer.compile(scriptFile, macroArgs);
DGRPLogger.log("Enabling DTrace consumer.\n");

consumer.enable();
DGRPLogger.log("Starting DTrace consumer.\n");

consumer.go();
isRunning = true;
DGRPLogger.log("Leaving

DTraceCountDataBytesService.startService().\n");
}
catch (Exception e) {

e.printStackTrace();
}

}

public boolean isRunning() {
return isRunning;

}

public void stopService () {
consumer.stop();
consumer.close();
isRunning = false;

}

public String[] getBusiestlPsByDataBytes() {
DGRPLogger.log("Entering

getBusiestlPsByDataBytes()...\n");

if (!isRunning()) { //consumer not running, data not
available

DGRPLogger.log("Consumer not running; returning null
from getBusiestlPsByDataBytes().\n");

return null;
}

final String totAgg = "tot";
List ipAddrs = new ArrayListO;
Set<String> aggSet = new HashSetf);
aggSet.add(totAgg);
Aggregation aggregation;
try {

DGRPLogger.log("Getting aggregation from consumer...\
n");

193

http://DTraceCountDataBytesService.startServi.ee

aggregation =
consumer.getAggregate(aggSet).getAggregation(totAgg);

} catch (Exception e) {
//consumer is probably not running, return null
return null;

}

if (aggregation.equals(null)) {
return null;

}
else { //aggregation exists

DGRPLogger.log("Aggregation existed...\n");
List list = aggregation.getRecords();
Collections.sort(list, new AggRecordComparator());
Iterator iterator = list.iterator();
while (iterator.hasNext ()) {

AggregationRecord aggRec = (AggregationRecord)
iterator.next();

String ip = (String)
aggRec.getTuple() .iterator ().next() .getValue();

ipAddrs.add(ip);
DGRPLogger.log("Adding IP: " + ip) ;
long val = (long)

aggRec.getValue().getValue().longValue();
DGRPLogger.log(" (value is " + val + ").\n");

}
}

String[] ipAddrsStrings = (StringH) ipAddrs.toArray(new
String[0]);

DGRPLogger.log("Returning from
getBusiestlPsByDataBytes().\n");

return ipAddrsStrings;
} //end of method

public int getNumberDataBytesByIP(String ipAddr, int
direction) {

DGRPLogger.log("Entering getNumberDataBytesByIP(" +
ipAddr + ", " +

direction + ") . . An") ;

if (!isRunning()) { //consumer not running, data not
available

DGRPLogger.log("Consumer not running; returning zero
from getNumberDataBytesByIP().\n");

return 0;
}

final String sndAgg = "snd", rcvAgg = "rev", totAgg =
"tot";

Set<String> aggSet = new HashSetO;

194

aggSet.add(sndAgg);
aggSet.add(rcvAgg);
aggSet.add(totAgg);
Aggregation aggregation;

DGRPLogger.log("Getting aggregation from consumer...\n");
try {

if (direction == DIRECTION_SENT) {
aggregation =

consumer.getAggregate(aggSet).getAggregation(sndAgg);
}
else if (direction == DIRECTION_RCVD) {

aggregation =
consumer.getAggregate(aggSet).getAggregation(rcvAgg);

}
else if (direction == DIRECTION_TOTAL) {

aggregation =
consumer.getAggregate(aggSet).getAggregation(totAgg);

}
else {

DGRPLogger.log ("Invalid direction, returning
zero.\n");

DGRPLogger.log("Returning from
getNumberDataBytesBylPO.\n");

return 0;
}

}
catch (Exception e) {

//consumer is probably not running, return 0
return 0;

}

if (aggregation.equals(null)) {
return 0;

}
else { //aggregation exists

DGRPLogger.log("Aggregation existed...\n");
List list = aggregation.getRecords();
Iterator iterator = list.iterator ();
while (iterator.hasNext()) {

AggregationRecord aggRec = (AggregationRecord)
iterator.next();

String tuplelP = (String)
aggRec.getTuple().iterator().next().getValue();

if (ipAddr.equals(tuplelP)) {
int val = (int)

aggRec.getValue().getValue().intValue();
DGRPLogger.log("Matched IP, value is " + val

+ "\n");
DGRPLogger.log("Returning from

getNumberDataBytesBylPO.\n");

195

return val;
}

}
}

DGRPLogger.log("IP not matched, returning zero.\n");
DGRPLogger.log("Returning from getNumberDataBytesByIP().\

n");
return 0;

} //end of method

} //end of class

class AggRecordComparator implements Comparator {
public int compare(Object objl, Object obj2) {

DGRPLogger.log("Using AggRecordComparator.compare.\n");
AggregationRecord aggRecl = (AggregationRecord) objl;
AggregationRecord aggRec2 = (AggregationRecord) obj2;
long vail = aggRecl.getValue().getValue().longValue();
long val2 = aggRec2.getValue().getValue().longValue();
if (vail < val2)

return 1;
else if (vail == val2)

return 0;
else

return -1;
}

}

DTraceCountPackets Service.Java

package org.dgrp.server.dtraceservices;

import java.io.File;
import java.net.URL;
import org.opensolaris.os.dtrace.*;
import java.util.*;
import org.dgrp.server.DGRPLogger;

/**
*
* Sauthor chrisne
*/

public class DTraceCountPacketsService {

public final int DIRECTION_SENT = 0;
public final int DIRECTION_RCVD = 1;
public final int DIRECTIONJTOTAL = 2;

196

http://java.net

private URL url = DTraceCountPacketsService.class.
getResource("/org/dgrp/server/dtraceservices/count_pa

ckets.d");

private Consumer consumer;
private boolean isRunning = false;

public void startService(String subnet) {
try {

DGRPLogger.log("Entering
DTraceCountPacketsService.startService()...\n");

File scriptFile = new File(url.toURI());
String macroArgs = new String(subnet);
DGRPLogger.log("Creating DTrace consumer.\n");
consumer = new LocalConsumer();
DGRPLogger.log("Opening DTrace consumer.\n");
consumer.open ();
DGRPLogger.log("Compiling DTrace script.\n");

consumer.compile(scriptFile, macroArgs);
DGRPLogger.log("Enabling DTrace consumer.\n");

consumer.enable();
DGRPLogger.log("Starting DTrace consumer.\n");

consumer.go();
isRunning = true;
DGRPLogger.log("Leaving

DTraceCountPacketsService.startService().\n");
}
catch (Exception e) {

e.printStackTrace();
}

}

public boolean isRunning() {
return isRunning;

}

public void stopService() {
consumer.stop();
consumer.close();
isRunning = false;

}

public int getNumberPacketsByIP(String ipAddr, int direction)
{

DGRPLogger.log("Entering getNumberPacketsByIP(" + ipAddr
+ ", " +

direction + ")...\n");

if (!isRunning()) { //consumer not running, data not
available

197

DGRPLogger.log("Consumer not running; returning zero
from getNumberPacketsByIP().\n");

return 0;
}

final String sndAgg = "snd", rcvAgg = "rev", totAgg =
"tot";

Set<String> aggSet = new HashSetO;
aggSet.add(sndAgg);
aggSet.add(rcvAgg);
aggSet.add(totAgg);
Aggregation aggregation;

DGRPLogger.log("Getting aggregation from consumer...\n");
try {

if (direction == DIRECTION_SENT) {
aggregation =

consumer.getAggregate(aggSet).getAggregation(sndAgg);
}
else if (direction == DIRECTION_RCVD) {

aggregation =
consumer.getAggregate(aggSet).getAggregation(rcvAgg);

}
else if (direction == DIRECTION_TOTAL) {

aggregation =
consumer.getAggregate(aggSet).getAggregation(totAgg);

}
else {

DGRPLogger.log("Invalid direction, returning
zero.\n");

DGRPLogger.log("Returning from
getNumberPacketsByIP().\n");

return 0;
}

}
catch (Exception e) {

//consumer is probably not running, return 0
return 0;

}

if (aggregation.equals(null)) {
return 0;

}
else { //aggregation exists

DGRPLogger.log("Aggregation existed...\n");
List list = aggregation.getRecords();
Iterator iterator = list.iterator ();
while (iterator.hasNext()) {

AggregationRecord aggRec = (AggregationRecord)
iterator.next ();

String tuplelP = (String)

198

aggRec.getTuple().iterator().next().getValue();
if (ipAddr.equals(tuplelP)) {

int val = (int)
aggRec.getValue().getValue().intValue();

DGRPLogger.log("Matched IP, value is " + val
+ "\n");

DGRPLogger.log("Returning from
getNumberPacketsBylPO .\n");

return val;
}

}
}

DGRPLogger.log("IP not matched, returning zeroAn");
DGRPLogger.log("Returning from

getNumberPacketsBylPO An") ;
return 0;

} //end of method

} //end of class

count dataJbytes. d

#!/usr/sbin/dtrace -s

#pragma D option defaultargs

BEGIN /* Special probe upon script startup */
{

givenSubnet = $$1; /* subnet either given or set as
empty string */

printf ("\n\n
-An");

printf("Counting data bytes sent and received by IP
address . . An") ;

printf (" \n"
);
}

ip:::send /* Probe for sent packets (by destination address) */
{

@snd[args[2]->ip_daddr] = sum(args[2]->ip_plength);
@tot[args[2]->ip_daddr] = sum(args[2]->ip_plength);

}

199

ip:::receive /* Probe for received packets (by source
address) */
{

@rcv[args[2]->ip_saddr] = sura(args[2]->ip_plength);
@tot[args[2]->ip_saddr] = sum(args[2]->ip_plength);

}

END /* Special probe upon script termination */
{

printf("\n\n
-\n");

printf("Printing results..An");

printf ("
);

printf("\nData bytes sent to:\n");
printa(" %15s %@8u\n", @snd);

printf("\nData bytes received from:\n");
printa(" %15s %@8u\n", @rcv);

printf("\nTotal data bytes received from and sent to:\n");
printa(" %15s %@8u\n", @tot);

count_packets.d

#!/usr/sbin/dtrace -s

•pragma D option defaultargs

BEGIN /* Special probe upon script startup */
{

givenSubnet = $$1; /* subnet either given or set as
empty string */

printf ("\n\n \n
") ;

printf("Counting packets sent and received by IP address...\
n");

printf (" \
n");
}

200

file:///nData
file:///nData
file:///nTotal

lp:

{

::send /* Probe for sent packets (by destination address) */

@snd[args[2]->ip_daddr] = count ();
@tot[args[2]~>ip_daddr] = count ();

}

ip:::receive /* Probe for received packets (by source address) */
{

@rcv[args[2]->ip_saddr] = count();
@tot[args[2]->ip_saddr] = count ();

}

END /* Special probe upon script termination */
{

printf ("\n\n \n
") ;

printf("Printing results...\n");
printf (" \

n");

printf("Packets sent to:\n");
printa(" %15s %@8u\n", @snd);

printf("\nPackets received from:\n");
printa(" %15s %@8u\n", @rcv);

printf("\nTotal packets received from and sent to:\n");
printa(" %15s %@8u\n", @tot);

201

file:///nPackets
file:///nTotal

	San Jose State University
	SJSU ScholarWorks
	2008

	A framework for graphical analysis of a home-network router using DTrace
	Christopher S. Nelson
	Recommended Citation

	ProQuest Dissertations

