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ABSTRACT 

SYNCHROTRON RADIATION FROM LASER-ELECTRON INTERACTIONS: 

MEASUREMENT AND MODELING 

by Vladimir A. Semenov 

Synchrotron radiation emitted by electrons due to laser-plasma interactions is an 

important tool in researching those interactions. The features of this radiation can 

provide insights into electrons' collective and individual behavior. The basic theory of 

single electron motion due to a laser pulse is reviewed. Further, the radiation emitted by 

a collection of the electrons is modeled. The experimental set-up for the detection of this 

radiation is presented, and the results are compared to a theoretical model. 
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1.0. INTRODUCTION 

Beginning in the mid-1960s, several advances in laser design gradually increased 

the peak power output of lasers. Q-switching, mode-locking and finally Chirped-Pulse 

Amplification made possible the creation of table-top high-energy ultra-short pulse 

lasers. By the beginning of the 1990s, irradiances of ExaWatts (1018 per cm2) became 

possible. Those irradiances allowed for study of a new regime of laser-matter 

interactions, because the electrons in the laser focus became relativistic. 

In this work we present a study of interaction between high power laser light and 

electrons in plasma. The motivation and outline of the project are considered in the 

introduction. Theoretical descriptions of single electron motion, radiation from a single 

electron and interference of radiation from many electrons follow. Chapter 3 of this 

thesis focuses on features of the experimental setup. Finally, results are presented and 

discussed. 

In 2002, Kaplan and Shkolnikov introduced an idea of "Lasetron" - an attosecond 

x-ray source. The reasoning behind the suggestion is that a single electron moving in 

such a fashion would radiate mostly in the direction of its velocity. In fact, for relativistic 

electrons, radiation is confined to the cone around the velocity vector. The angle between 

the velocity vector and the edge of that cone is XI y where y= Vl - u2 lc2 is the relativistic 

parameter for an electron with velocity u. Thus, a stationary observer would receive 

radiation from the electron only once per revolution. This observer would observe a 
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series of ultra-short bursts of radiation from the electron. The duration of each burst is 

given by: 

T = — (1.1) 

y -co 

Where co is the angular frequency of incident light. 

Such a source would in principle allow for time resolution of nuclear processes. 

There are several questions that need to be answered before such a source could be, in 

principle, feasible. Radiation emitted by a single electron would be very difficult to 

detect. Fortunately, there is more than one electron in the plasma. If N electrons were to 

move in a way described above then one would expect the intensity of radiation to be 

higher. Let us assume that all electrons move in phase. Then each of them would 

produce a certain electric field at the point of observation at certain times. Electric fields 

from different electrons would add up arithmetically. The intensity of radiation is 

proportional to the square of the electric field, so the intensity of the radiation detected 

would scale as TV2. Thus, radiation from coherently moving electrons could reach 

detectable levels for a relatively small number of electrons. 

Therefore, it is clear that all electrons need to be moving coherently for radiation 

to be detectable. This assumption has been challenged. Among the authors challenging it 

are Stupakov and Zolotarev (2002), Kaplan and Shkolnikov (2002), Garnett (2002). 

Furthermore, in the noisy environment of plasma-laser interactions there are many effects 

that might destroy the needed coherence in an electron's motion. Thus, testing whatever 

electrons are indeed, moving coherently is crucial in the development of short x-ray 
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sources both for Lasetron and other proposals. The proposals are made by Earsley, Ride, 

and Sprangle (1993), K. Lee et al. (2003) and Lee, Kim, and Kim. (2005). 

The experiment we present studies the interaction between a laser pulse and high 

density plasma. The laser beam (USP laser system) is circularly polarized and focused 

down to a 5 micron spot. The wavelength of the laser is SOOnm. Energies of up to 1J 

are observed, while the pulse duration is around 140^. Those parameters create energy 

densities of up to 1.07 • 1019 " / 2 . The laser beam is focused on a metal target. 

/cm 

However, the profile of the pulse is more complex than a simple Gaussian with an 

appropriate time constant. Before the main pulse of that shape arrives there is a less 

energetic pre-pulse. This pre-pulse vaporizes the metal target and strips electrons from a 

significant number of atoms. Those electrons then are driven by the main pulse's 

electromagnetic field. Let us consider the physics of this process in more detail. 

We will start by considering an electron's movement due to its interaction with 

circularly polarized light. Circularly polarized light has electric and magnetic fields that 

rotate in a plane perpendicular to the direction of propagation. Let us look at a single 

electron under such conditions. Assuming that the electron's initial velocity is zero, one 

can prove that it will move in a circle in the plane perpendicular to the k-vector of the 

incident laser pulse. The force from the E-field provides centripetal acceleration for the 

electron's circular motion. The Lorentz force is zero because the electron's velocity is 

parallel to the magnetic field. The phase and frequency of the electron's movement are 

determined by the electric field of the incident light. 

3 



Let us return to the duration of each as calculated in (1.1). This formula is 

applicable only if all electrons were to be moving in phase. The phase of the electron as 

it rotates in a circle is determined by the phase of the electric field. As we travel along 

the direction of the propagation this phase continuously changes. Every laser pulse is 

longer than the wavelength of the light in it. Thus the phase of the electric field would go 

through a change of at least 2 • n . That means that at any given time there will be a plane 

in which the electric field is perpendicular to the direction of observation. Or, since the 

electric field provides the centripetal force for our motion, there will be an electron with 

its velocity pointing in the direction of observation. That means that at any given time 

there will be electrons that radiate in the direction of observation. The time in interval 

(1.1) is the duration of the burst due to a single electron. Instead, this analysis predicts a 

constant radiation with a duration determined by the length of the pulse. 

In a circularly polarized laser field, the radiating electrons form a spiral that 

rotates with the frequency of the incident light. Electrons rotate only around the center of 

the beam. If an electron were to start its rotation slightly off-center of the laser beam, it 

would fairly quickly spiral out of the area of interest. The reason for this is that a turning 

electric field would be smaller in one part of the trajectory, thus failing to return the 

electron to its initial position after one cycle. The radius of the spiral is determined by 

the intensity of the electric field. The "pitch" (distance between loops) of the spiral is 

equal to the wavelength of the incoming light. The length of the spiral is determined by 

the length of the pulse — in our case it is at least 50 wavelengths. 
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The fact that we have a radiating spiral means that there will be interference 

between the radiations from different parts of the spiral. For each given wavelength there 

will be constructive or destructive interference for different directions. This interference 

should result in an angular narrowing of the radiation perpendicular to k-direction. A 

crude analogy might be drawn comparing our spiral to 50 point sources situated a 

wavelength apart from each other. 

The experiment was conducted at the Ultra Short Pulse (USP) laser facility at 

Lawrence Livermore National Laboratory. We set out to look for radiation emitted by 

laser-driven electrons. For the radiation to be detectable, a significant number of 

electrons need to be moving coherently. 

This radiation has been successfully detected. Furthermore, features of the 

radiation detected give us insight into the collective behavior of electrons. For example, 

angular spread of the radiation gives a spatial coherence length for the radiating electrons. 

In Chapter 2, the theory behind coherent synchrotron radiation from laser-plasma 

interactions is presented. Relativistic equations of motion for a single electron are 

derived and solved. Radiation from a single electron is described. A model describing 

radiation due to the coherent movement of a number of electrons is presented. 

Chapter 3 presents the experimental layout and techniques. Laser beam 

alignment, focusing, polarization measurements and stability analysis are among topics 

discussed. Laser beam targeting hardware and procedures are outlined. Finally, radiation 

detection (with special attention to filtering) is described. 
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Experimental data follows in Chapter 4; row data is presented along with data 

analysis methods and experimental results. A discussion of the results is followed by 

outlook and conclusion. Appended are all the row data used in the analysis. 
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2.0. THEORY 

A theoretical explanation of the phenomena observed is given in this chapter. A 

single electron's motion due to a driving electromagnetic field near the laser's focus is 

described. Broadband radiation due to this motion is calculated. Finally, interference of 

broadband radiation due to the coherent multi-electron movement is taken into account. 

Even though the main thrust of the discussion focuses on circularly polarized laser light 

as the driving agent, extensions into linearly polarized light are considered. 

2.1. Motion of a single electron 

It is necessary to find appropriate forms for vector ( A ) and scalar ( O) potentials 

to describe driving fields. Driving fields are due to light so the Coulomb gauge is very 

appropriate. In the Coulomb gauge, scalar (electrostatic) potential depends only on 

charge density distribution. Our plasma is charge-neutral, so charge density is zero 

everywhere. Thus,® vanishes in the Coulomb gauge. Also A satisfies the wave 

equation. All those factors combine to give us fields E and B : 

r d 1 E- A 
dt (2.1) 

B = VxA 
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From those formulas we derive expressions for A, Eand B which are self-consistent for 

the circularly polarized plane wave: 

'x _ A 

i„ =4 . 

.e
,<k-z-°-'-'/2)Ex=E0 

>eK*-—-o Ey=E0 

i-(k-z-to-t-itl2) T> _ _ D i-(kz-o>t) 

i(kz-cot) n z> i-(k-z-a-t-ic/2) 
(2.2) 

4 = 0 £ z = 0 5 Z = 0 

Here we directed the z axis along the k-vector of the incoming wave. Formulas 

describing the linearly polarized wave behave almost exactly like the circularly polarized 

wave. If we pick the x axis along the direction of polarization then we obtain by setting 

to zero the y component of A and E; and the x component of B : 

Ax = A0 .e^*-"-'-'12) Ex = E0 •e'*z"ffl''"W2) Bx=0 

Ay=0 Ey=0 By=B0- eW-*-«"-"V (2.2a) 

4 = 0 Ez=0 B2=0 

It could be shown from (2.1) and (2.2)-(2.2a) that: 

E0 = -i-co- AQ 

B0=-±-E0=-%L (2.3) 
CO C 

Now we are ready for the relativistic Lagrangian. The single-particle form of the 

Lagrangian is: 

L = -m-c2 • Jl-^T+--u-A + e-0 (2.4) 
V c c 
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Where m,e,u are particles' mass, charge and velocity (3D), A, O are vector and scalar 

potentials of electromagnetic field. As always c is the speed of light. The canonical 

momentum Pi associated with the coordinate i is: 

Pi=—L = Y-m-ui+--Al (2.5) 
dui c 

Fortunately, we don't need to use the general form. A doesn't depend on x and 

y while O is zero (we are still working in the Coulomb gauge). Thus x and 

y coordinates are cyclical. For them, corresponding generalized momenta are conserved. 

Therefore: 

KO-w-«I(0 = KO)-w«,(0)+--(4(0)-4(o) 
c 

y(t) -m-uy(t) = r(0) -m-uy(0) + ~ (Ay (0) - Ay (t)) (2.6) 

Now, let us consider motion along the z-axis. Partial derivatives of the Lagrangian with 

respect to wzand z are: 

d T u e . 
•L = —m- ,—=H « , -A, duz ^ c 

i ^ 
d T e _ d -

— L = — -u A 
dz c dz 

(2.7) 

But Az is zero and derivatives with respect to z of Ax and A are By and - Bx 

respectively (see equation (2.1)). Thus the equation of motion is: 

d e 
dt c 
-pz=--(ux-By-uy-Bx) (2.8) 
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Plugging in for ux and u from 2.6 one derives: 

< e ^ 

d 

f e ^ 
Bx(t)- K O ) - ^ ( 0 ) + - - 4 ( 0 ) +BJty K 0 ) - « y ( 0 ) + ~ A ( 0 ) 

V C J 
y \ ; yy 

V c J 
dtPz y(t)-m (2.9) 

+ J' 2 • ( 4 (0 • By (?) - Ay (0 • 5X(0) 
/ ( ? ) • m • c 

Rewriting (2.6) and (2.9) in terms of the momentum's components we obtain the final 

equations of the motion for the electron in a plane wave: 

d B(t)-p(0) + BJt)-p(0) e1 / x 
j:PAt)= ' yy> P>y>+e (A{t).B{t)_A{f).B{t)) 
dt y{t)-m y(t)-m-c 

P,(t) = pM+1'(M0)-Mtj) 
° (2.10) 

p,(t) = Py(0) + ^(Ay(0)-Ay(t)) 

m 
V m -c 

2 

2 

The last equation follows from basic relativistic considerations. Numerical solutions to 

the equations (2.10) are presented below. 

First, let's analyze the equations of motion for circular polarization of the laser 

light (combining 2.2 and 2.10). In the x-y plane in momentum space an electron's 

trajectory is a combination of steady drift (determined by initial conditions) and circular 

motion about the drifting center. Noteworthy is the fact that the z -component of 

momentum has a non-zero time derivative. Thus, an electron would experience 

acceleration along the z axis as well as along the x and y axes. More careful 

examination of this acceleration reveals that it is harmonic in nature (since all 
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corresponding components of A and B are harmonic according to 2.2). That means that 

there is no net acceleration along the z axis. To summarize we observe oscillatory motion 

along the z axis in combination with a steady velocity drift in z and a circular motion in 

the x-y plane. 

In the special case where an electron is at rest initially, we observe no movement 

along the z axis. Indeed, the first term in the corresponding equation from (2.10) is zero 

due to the initial conditions - no movement along the x or y axes at time equals zero. 

The second term in the p2 from equation (2.10) is zero also (plugging in for the 

corresponding components of B and A from (2.2) results in factoring out the phase term 

1 + el7t, which is zero). Thus the original assumptions presented above are true: If an 

electron is originally at rest and y does not change much we will observe circular 

motion in the x-y plane with a stationary center. 

Let's find parameters for the circular motion. First, we need to find the radius of 

the circle and electron's velocity as functions of the magnitude of the electric field. The 

light is circularly polarized so the x-component of the electric field is given by 

Ex = E0- cos(a> -t) (2.11) 

The relativistic equation of motion along the x axis is 

JtPx=e'Ex (2'12) 

Plugging in for momentum and electric field 

^(ym-Vx) = e-E0-cos(co-t) (2.13) 
at 
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We are looking for circular motion with constant speed. Thus y is constant. Let's try 

the solution 

Vr = Vn • sinO • i) x ° v } (2.14) 
y • m • a • V0 • cos(co • t) = e • EQ • cos(co • t) 

Repeating the process for the y coordinate and doing a little algebra we derive: 

y = j \ + e2 

P = ^== (2-15) 

m-eo-c 

For actual laser beams, the amplitude of the electric field doesn't stay constant with radial 

position. For such beams (also called Gaussian beams) solving Maxwell's equations 

gives the electric field as: 

F = F >e '"' 

11+ -
\zoJ 

(2.16) 

0 X 

Where r is distance to the beam's center, z is distance from the narrowest point of the 

beam (called the "waist"), and w0 and z0 are beam parameters (actually those two 

distances are related by the last equation, so there is only one free parameter). 

Let's combine (2.15) and (2.16). First, we need to plug in for the beam 

parameters — we measure wQ and compute z0 using formula above. Then, we 

approximate E0 from the pulse profile and energy. The laser light's frequency is 

12 



computed from its wavelength. Figures 1 and 2 show /? and y as functions of z -

distance from the focus of the beam along the laser axis. (Calculations were performed 

with following set of parameters: wavelength of the light of 800«m, duration of the shot 

of \A0fs, energy per shot of \J, laser focus of 5jum (FWHM).) 

Distance fran. the fbcuf (miaou) 

Figure 1. Electron's relativistic velocity (/? = y ) vs. distance im/jm) from the focus. 
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5 

\ 

3 

2 

1 

0 0 
-KM "50 0 SO 100 
-100 100 

Figure 2. Relativistic parameter y = - v 2 / c 2 vs. distance (in//w) from the focus. 

Now, let us consider the case of linear polarization. Combining equations (2.2a) 

with the equations of motion (2.10) we obtain the following: p stays constant while px 

follows the driving field. Momentum's component/^ is not constant in time, so the 

electron experiences acceleration along the x and z axes again. The acceleration along 

the z axis is also non-zero due to the fact that product of velocity and y is constant 

(oscillation along the z axis with no net z displacement follows from 2.2a). The 

coefficient y changes dramatically now since p is sinusoidal in time. That means that 

uz has to compensate for that change to keep the momentum along the y axis constant. 
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Thus, the motion looks like the combination of a drift and periodic motion in the x-y 

plane. Basic Lorenz force consideration leads us to conclude that periodic motion has a 

form of co. Once again, the electron experiences accelerations along all three axes. 

There is an alternative (simplified) way to look at the electron's motion due to the 

linearly polarized driving field. The electric field (by far the biggest force at play) drives 

electrons to oscillate along its direction. As electrons pick up speed, the vxB term 

begins to contribute, resulting in a small displacement along the magnetic field. Accurate 

computation of the effect yields a figure GO motion along the direction of the electric field. 

Noteworthy is the fact that a figure co is not significantly different (geometrically) from 

two circles side by side. 

2.2. Radiation of a single moving charge 

When dealing with the fields created by a moving charge one has to begin with 

potentials created by the charge: 

O(x,0 = 

A(x,i) 

{\-p-n)-R. 

e-fi 
(2.17) 

L(i-/?-*)-*L 

Here R is distance between the charge and the point of observation, n is a unit 

vector pointing from the charge to the point and /? is the charge's velocity. The subscript 

"ret" means that the quantity in the square brackets should be evaluated at the retarded 

time t0. If a charge's trajectory is given by the function R(t) then: 
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\x-R(t)\ 
t0=t- (2.18) 

Using (2.10) and (2.11) one can easily take all the necessary derivatives to 

compute fields created by a moving charge: 

E(x,t) = 
n-p 

£ \ 3 D 2 yz-(\-j3-ny -R 
+ • 

nx (n-fi)x^J 
at 

(l-fi-ny-R 

B(x,t) = [nxE(x,t)\t 

(2.19) 

(2.20) 

The two terms in (2.19) vary differently with R. R is the distance between the charge 

radiating and the point where we observe the radiation. The first term falls off as R 

squared while the second term - the radiation term - goes down as R . Therefore, the 

only significant term in the sum above is the second term. Let's consider the energy 

output of the accelerated charge. 

Calculating Poynting's vector from (2.18) is easy: we take cross product of B 

and E. The radial component of this vector is: 

p-"L = 
4-7T-C R2 

fix (n-P)x^-p 
at 

.-;\3 (\-p-n) 
(2.21) 

Equations (2.18) and (2.19) give us all the information describing the radiation. 

Integrating (2.19) over all possible angles would give us the total power output of 

the radiating charge. Let's consider radiation from a single charge, moving in a circle 

with constant speed. To remain consistent with previous remarks we orient the z axis 

16 
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perpendicular to the plane of the motion. Clearly, the experiment is symmetrical with 

respect to rotation around the z axis. Thus we can pick the direction of observation 

along the x axis. Then the three vectors used in (2.18), (2.19) and (2.20) become: 

n = (1,0,0) 

p = J3Q • (cos(« • 0, sin(<y • f),0) (2.22) 

—P = fi0 • o) • (- sin(<y • t), cos(o • t),6) 
dt 

Plugging in those vectors gives: 

£ = (0,1,0). 

Finally, we need to find the spectral distribution of intensity for our moving 

charge. The incoming laser light is SOOnm, in wavelength, while the wavelength at 

which we detect the radiation is 300nm (the actual center wavelength was around 29Snm 

but from now on we will round it up to 300nm for brevity). This detection wavelength is 

picked so the frequency of the radiation detected is not a multiple of the frequency of 

incoming laser light. The plasma could conceivably double or triple the frequency of 

incoming laser light while redirecting it towards our detector. Tuning off these 

frequencies we are free to focus on radiation from electrons themselves without detecting 

substantial noise from the laser-plasma interaction. We need to show that at the 

frequency corresponding to 300nm the spectrum of radiation will have noticeable power. 

The power radiated out is given by the radial component of Poynting's vector. 

Integrating it over time would give us the power output of the radiation from the moving 

charge. To find the spectral distribution we need to Fourier decompose the radial 

17 
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component of Poynting's vector and then integrate it over time. Let us consider the 

particulars. 

Here is what this vector looks like (plugging 2.22 into 2.21): 

[s-n\el = A-n-c 
(2.24) 

It is easy to see that this function is periodic in time. The Fourier transform of an 

arbitrary periodical function yields a discreet spectrum. If T is the period of the initial 

2* X 
function only frequencies: coi - i * will have non-zero contributions in the 

spectrum. 

This problem persists even after taking care of retardation. Retarded time t0 

(which we need to substitute for t) is a solution of the equation: 

t0=t-
x-R(t)\ 

(2.25) 

However, R(t) has the same angular frequency co. Thus the final function describing the 

radial component of Poynting's vector will still be periodic in time. 

There are two effects which will allow the synchrotron radiation to have off-

harmonic (300nm) wavelengths. One is that some of the electrons will be moving in the 

z-direction and will experience a different apparent laser frequency. Also, we need to 

remember that J30 - the amplitude of electron's velocity - changes with time. This makes 

the function described in (2.24) non-periodic. Thus the Fourier component at the 
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frequency corresponding to300w« is not zero. Let's formalize the ideas discussed 

above. 

Total energy radiated out during the process is given by: 

oo 2 

Q= l[s-n\ret.dt=\^ 
J JA-7t-C 

'A, •»•(#>-cosC^-O)^ 
i?-(l-/?0-COS(>-0)3 

•dt (2.26) 

The inverse square R term in the square brackets doesn't change much (the radius of an 

electron's orbit is around one micron while effective electron-detector distance is at least 

10 cm). Thus the — term could be safely taken out of consideration: 
R 

Q = 
4-7T-C R P2 J (l-/?0-cos(fl>-0)3 •dt 

We define function F as: 

F = 
J30-co-(j30-cos(co-t)) 

{ (1-^0-COS(6J-0)3 

It is convenient to return back to geometrically more general notation: 

F = 
n x (n-fax±~fi 

dt , 
(1-/7-H)3 

Then our energy is: 

CO 

Q= \\F\2dt 

(2.27) 

(2.28) 

(2.29) 

(2.30) 
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Let's Fourier decompose F and find the coefficient F(o)0). Noteworthy is the fact that 

there are two different angular frequencies here: a>0 is the frequency of detected radiation 

while a is the frequency of the electron's motion. The energy spectrum, i.e. energy 

radiated at a given frequency, is proportional to that coefficient squared: 

1 co i co 

F(co) = lF(t).e'«°'.dt= -==•] 
«J2-7I V2-7T J 

- d ^ 
nx (n-B)x—B 

F> dt H 

(\-P-nf 
e'°">-dt (2.31) 

Switching over to the integration over the retarded time t0 (solution of (2.18)) gives: 

F(a>) 
-&7n 

nx 

f d ^ 

dt0 j 

(!-/?• H)3 
e c -dt, 

o 
(2.32) 

« - < » o - ( ' o + — ) 

Considerations discussed above let us assume R(t0) to be constant, thus term e c 

would cancel out with its own complex conjugate. Furthermore, direct differentiation 

will show that: 
( d A 

nx (n-/3)x (5 
V 0 ; _ 

Thus integrating the integral above by parts yields: 

nx[nx p) 
(2.33) 

F(<0)-=L=- \nx(nxp)-eio"''° -dt0 

V2-7T _i 
(2.34) 

Plugging in for p and n in our coordinate system (2.22) we obtain: 
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1 °° 
F(a)-j= • [J3000) • sin(« • t)e'^h • dt0 (2.35) 

Finally, the time-dependence of /?0 should be similar to that demonstrated in Figure 1. 

That Figure shows a snapshot of velocities - how velocity changes with coordinate z for a 

given time. A single electron sees this pulse passing through the electron's position as 

time goes by. Thus, a good approximation of time-dependence for /?0 would be a 

Gaussian with time constant r , the duration of the pulse: 

A(0 = /U-* v (2-36) 

Plugging this into the formula for F{co) gives us our final integral: 

B ( t2 ^ 
F(a>) = °iax • f exp —°T + i-o)-t0 • (exp(z-a)-t0)-exp(-i• o• t0))• cfr0 (2.37) 

Here we wrote out sine as a sum of two complex exponents. If £j and £2 are given by: 

r z (2.38) 
f0 i -(fl)0-fl>)-r 

T 2 

Then main integral can be rewritten as: 
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F((D) 

fi. 

fin 
i-^yi-Tt 

K ( t2 ^ x ( t2 

Jexp - - y + i • (co0 + oo) • t0 dtQ+ J e x p — j + i • (<z>0 - ca) • t0 
J -oo 

Wn 

y^l 
B -x 

2-V2 

oo 

Jexp(-£2 )•</£ + A max L 2 
•o-<" oo 

2 -^2-71 
je Xp(-^22)-^2 = 

»0+o 
2 i + e 2 

(2.39) 

This is the final result that describes the energy spectrum of the broadband 

radiation detected. To summarize, the full spectrum of the radiation consists of the 

following components: first, radiation at the incoming light's frequency co - because of 

the circular motion of electrons; second, radiation at multiples of the incoming light's 

frequency - because an observer sees the charges moving in circles but with non-uniform 

speed because of retardation effects; third, the broadband radiation with frequency 

dependence F{co) - because driving pulse makes the electron orbit unstable, incurring 

Gaussian time dependence of the electron's velocity. 

The frequency at which we observe the radiation has been deliberately chosen not 

to be a multiple of the incoming light's frequency. This was done to minimize the 

contribution to the signal detected from the frequency multiplying effects of the plasma 

on the incoming laser light. Depending on the electron's speed in the z direction, up to 

all three components might contribute to the synchrotron radiation detected. 

When synchrotron radiation is created by electrons that do not move along the 

beam path (z axis) only the third component contributes to the result measured. Moving 

electrons "see" the laser light at wavelength SOOnm, making contributions from the first 
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two components irrelevant. Another case is when the electrons have some velocity along 

the z axis - this changes the wavelength of the driving light as felt by the moving 

electron. Thus radiation due to the second component above would be detected. Finally, 

if electrons are really relativistic (/= %or/?= .927), they would see the driving laser 

light as having a wavelength of 300nm. This would result in the first component 

mentioned above as the source of the radiation detected. 

The main contributions to the synchrotron radiation detected are thought to be 

components two and three, however, because of the low probability electrons becoming 

highly relativistic in the z-direction. 

Once again, let's consider linearly polarized laser light. As noted in the end of 

section 2.1, electrons in that case would exhibit somewhat similar orbits. Furthermore 

most of the discussion above is applicable to a linear polarization case. The only 

difference is that instead of the circle we now have a figure QO as an orbit for the radiating 

electron. The trajectory of the electron is described a little differently, namely, the y -

component has twice the period it had before. Thus (2.22) turns from this form: 

n = (1,0,0) 

P = p0 • (cos(« • t), sin(« • 0,0) (2.22) 

— P = J30 • a) • (- sin(ffl • t), cos(<y • t),0) 
dt 

Into: 
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« = (1,0,0) 

( 1 ^ 
P - j30-b- cos(w-t),a-sin(— • co• t),0 (2.22a) 

d - r 1 1 ^ 
—P = P0 -co-b- -sm(a>-t),a — cos(— • co• t),0 
dt v 2 2 , 

Note the constants a and 6 in the formulas - those are introduced to make up for 

the difference between the figure oo and the circular trajectory. Furthermore, constant a 

describes the difference in strength between the Coulomb and Lorenz forces that electron 

feels. 

Propagating this difference all the way down to the answer will affect the result 

slightly. The leading power in the exponential integrals above is due to the Gaussian 

shape of the pulse. This makes our integral in the form of exp(-x2). The electron's 

trajectory contributes by adding the first order into the exponent: exp(-x2 + a • x), where 

a is some constant. Thus substituting (2.22a) for (2.22) will alter the whole calculation 

only slightly. Namely, the constants in front of the frequency-dependent terms would 

change a little bit. 

The qualitative discussion above could be summarized as follows: laser driven 

electrons radiate broadband radiation regardless of the polarization of incident light. 

2.3. Radiation of multiple charges, moving coherently 

Now we are ready to calculate interference from all of the moving charges. Let's 

consider radiation from two charges. An important quantity to know is the phase 
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difference between the radiations coming from the two charges. There are two terms in 

this phase difference. The first term is due to the fact that charge that is "upstream" is 

accelerated earlier: 

A^j =2-n-
A 

(2.40) 

The second term is a typical interference phase difference. Imagine two rays which are 

distance z apart and at an angle © with the x axis. The path difference is thenz • sin(©). 

Thus the phase difference is: 

z - 0 
A^2 = 2 • it • 

A„ 
(2.41) 

Here Xout is the wavelength at which we measure intensity. Also, a small-angle 

approximation for sine has been made. The contribution of a single charge would then 

be: 

dE = E(z,t) • cos(A^, + A^2) 

Where E(z,t) is given by formulas (2.23) and (2.16). To unite everything in one 

(2.42) 

formula: 

dE = exp z-zn 

a 

/?0 -cos(<y -t-z-k) 

(l-/?0 -cos(a)-t-z-k)f •cos 2-7t • Z-
1 0 
— + 
X X. 

'out J 

(2.43) 

An extra term has been added - to account for the fact that pulse is a Gaussian 

centered around z0. The size constant of this Gaussian is a. Integrating this over all 

possible values of z for fixed time gives us the angular distribution of radiation. 
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To the first order, the effect modeled here and shown in Figure 3 is the 

constructive interference of N = 50 sources. When the detector is in the point in space 

where light from the sources interferes constructively, electric fields produced by each 

source at the detector are added. The measured light's intensity, however, is proportional 

to the square of the electric field. Thus if N turns of spiral produce interfering light, the 

resultant intensity goes asiV2. Figure 3 shows the results of a calculation finding intensity 

as a function of angle at which we observe the radiation. The angular Full Width Half 

maximum (FWHM) of radiation emitted is 3mrad . 
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Figure 3. Intensity (abs units) of the light radiated vs. angle of observation (rad) in the 

horizontal plane. 
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2.4. Number of coherent electrons needed to create observable radiation 

All the considerations presented above indicate that there will be broadband 

synchrotron radiation emitted by electrons in the focal point. Before proceeding on to the 

experimental part one needs to figure out whether this radiation is detectable at all. The 

computations below repeat one presented by Kaplan and Shkolnikov in (2002). 

Following the discussion by Garret in (2002) one could find that an electron 

rotating at the laser frequency co0 will then emit synchrotron radiation, with a frequency 

cutoff given by : 

« m a x * 3 r X (2.44) 

For the specific parameters of this experiment one finds from 2.44 and calculation 

behind Figure 2 (A = 800 w«, y « 3) that the cutoff of the synchrotron emission occurs at 

155eF, with the strongest emission in the \5eV to 2>QeV range (10%-20% of Imax [10]). 

Following the procedure in [2], we can find that for experiments with the USP 

laser, the photon bursts should be detectable if the electrons radiating are coherent. For 

example, in a plasma with an electron density equal to 1021 cm-3, the focal volume should 

contain about N=l 010 electrons. If each of these electrons were radiating independently, 

one would expect only a single 15eF photon to be radiated per burst. However, if the 

photons can radiate coherently, the power scales as N2 instead of N, raising the output 

by a factor of 101 ! While this fully coherent case would be easily detectable, the total 

power radiated (2.5GW ) would still remain much less than the driving laser power 

(\0TW), so the calculation of the radiation back-reaction on the electrons is not critical. 
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To summarize, forcing electrons to radiate synchrotron radiation of sufficient 

energy to be detectable is theoretically possible. Calculations above indicate that 

electrons will move in a way making broadband radiation possible. Furthermore, 

interference phenomena would shape the outgoing radiation. Finally, enough electrons 

are thought to participate in the process to make it feasible to detect the output. Measures 

to create, filter, and detect synchrotron radiation are discussed in the next chapter. 
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3.0. EXPERIMENTAL SETUP 

In this chapter, we present a general overview of all of the experimental 

procedures. The experimental setup, laser targeting, and focusing techniques are 

presented. Laser polarization and shot-to-shot energy variations are also discussed. 

3.1. General description of the experiment 

The goal of the experiment is to look for the synchrotron radiation from laser-

plasma interaction. To achieve this we focused a circularly polarized laser beam on a 

metal target. Focusing has been done in the vacuum to prevent self-focusing and self-

guiding effects due to the interaction of intense laser light (/ = 1019WI cm2) and air. This 

intense laser light drove electrons to create the synchrotron radiation. A lens was used to 

collimate this radiation before it left the experimental chamber. Finally, a diffraction 

grating and filter were used to limit the wavelength of light hitting our CCD to 300nm. 

For testing and alignment shots, flat plane aluminum targets were used. For data 

shots, 1 S/um tungsten wire was used. Data from shots with linearly and circularly 

polarized light were recorded and compared. 

There are four components in the experimental setup. Table 1 describes those 

components: 
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Table 1. Elements of the experimental setup. 

Component 

Ultra Short Pulse laser 

Compressing and Polarizing 

Experimental Chamber 

Detection and 

Noise elimination 

Consisting of 

Seed laser, 

Amplifiers 

Compression gratings, 

Purely reflective circular 

polarizer 

Flat mirrors (2) 

Off-axis parabolic mirror 

Target mounted on 3D 

micro movement stage 

Collimating lens 

Filtering window on the 

experimental chamber 

Diffraction graging 

Filter on the CCD 

CCD 

Pressure needed for 

operation 

Atmospheric 

microTorr 

microTorr 

Atmospheric 

The first phase provides us with the laser pulse itself. As with all tabletop Ultra 

Short Pulse lasers, we start with the seed amplifier that gives out a short pulse (lOO^s 

duration, few nanoJoules per pulse). The pulse is stretched to several hundred 
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picoseconds duration with a pair of diffraction gratings. A series of amplifiers adds 

energy to the pulse. Pockel cells, among other devices, are used to cut out some of the 

Amplified Spontaneous Emission Prepulse. All of the amplifiers use Ti: Sapphire crystal 

for the lasing medium. The lasing transition for the crystal corresponds to light with a 

wavelength near 800nm, with a large (~30ww) bandwidth. Leaving the first phase, the 

pulse is still spatially stretched. Thus energy density never reaches air's ionization point 

so all the manipulations could be done at atmospheric pressure. 

The second phase starts with the beam entering the vacuum chamber. Two 

diffraction gratings compress the pulse. Now, after compression, the energy density 

reaches 1016//m3. This corresponds to electric fields on the order oflO13 VIm. That's 

why we need a vacuum (microTorr pressures) from this point until we hit the target - air 

would break down into plasma well below the energies we have now. The compression 

gratings work only on linearly polarized light, so the natural position of the circular 

polarizer is right before the experimental chamber. We have extremely high energy light 

to circularly polarize. For the intensities cited, transmission optics will distort and 

disperse the short pulse. Thus, making the beam to be circularly polarized is a challenge: 

a purely reflective system is needed. This system was created with a system of seven 

large, specially-coated mirrors, most with a high angle of incidence. 

To understand how the system works we need to introduce more terminology. 

There are two principle directions describing the direction of polarization of light incident 

on the surface of the mirror. "S" polarization is parallel to the surface of the mirror while 

the "P" direction is perpendicular to the k -vector of the light. Components of the 
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electric field directed along those two directions experience different changes during 

reflection from any surface (exact quantitive discussion involves boundary condition 

consideration and was presented by Jackson (1998)). Furthermore, coatings on the seven 

mirrors are birefringent, so "S" and "P" components accrue different delays as they travel 

through the system. Thus, the net relative phase change adds up to be ninety degrees, 

which means that light changes its polarization from linear to circular. For the linearly 

polarized light we bypass this system. For circularly polarized light, we send it through 

the system. 

The third phase also happens at microTorr pressures. We transmit our beam into 

the experimental chamber with help of five mirrors. Then, we focus it with a 2.5cm 

diameter, off-axis parabola. Our targeting procedure ensured that the target is positioned 

in the laser focus. The emitted radiation should be at a right angle with the incident 

beam, so a corresponding window is positioned accordingly. Between the window and 

the target we added a collimating lens. The focus of the lens is 10cm, which is the 

distance between the target and the lens. Thus the lens effectively maps the angle of the 

outgoing radiation onto linear displacement (both horizontal and vertical). Figure 4 is a 

schematic drawing of the experimental chamber. 
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mirrors j 

3D controller 

Figure 4. Experimental chamber (top view). 

The fourth phase is data filtering and acquisition. The purpose of the experiment 

is to measure synchrotron radiation from laser driven electrons. This means that our 

filtering system should filter radiation from all other processes. One of those processes is 

frequency multiplication of incoming laser light due to plasma-light interaction. Thus the 

detection wavelength was deliberately chosen not to be an integral divisor of 800ww. 

Another restriction on the wavelength detected was the transmission of the glass in the 

experimental chamber's window. This glass doesn't transmit much of the radiation with 

wavelengths below 270nm. 
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All the considerations above led us to choose A = 300nm as the detection wavelength. 

Filtering was done by a diffraction grating and interference filter. The interference filter 

was placed directly above the CCD shutter. The diffraction grating was positioned in 

such a way as to direct the first order maximum downward onto the CCD fori = 300nm. 

This positioning requirement means that the grooves of the grating should be horizontal. 

Figure 5 shows the data filter and acquisition part of the experiment. The chamber's 

window cuts out short wavelengths (below 270nm ) while the grating and filter isolate a 

small bandwidth around 300nm to go into the CCD. 

Incoming 
radiation 
(collimated) 

Vacuum 

Figure 5. Data filtering and acquisition (side view). 
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3.2. Measuring light's polarization 

The experiment requires circularly polarized laser light. The idea was to contrast 

results from circularly and linearly polarized light. However, a USP laser (like any other 

laser) produces linearly polarized light. The seven mirror, purely reflective system was 

implemented to attempt to circularly polarize light (see section 3.1). Thus, we needed to 

measure the polarization of the beam as it enters the experimental chamber. The 

principal set up is shown in Figure 6. 

Change a 

Figure 6. Principal set-up for measurement of polarization. 

Oscilloscope 
input 
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The angle between the polarizer's maximum transmission and some fixed axis is 

a. Changing a and measuring the intensity of the electric field one can gauge the 

polarization of the light. Graphing the intensity of the light that reaches photodiode will 

give us an idea of how the light is polarized. The photodiode's output is fed into the 

oscilloscope. The incoming laser was set into low energy \0Hz pulse mode. For a given 

a, an average of 20 pulses would be displayed on the oscilloscope. Another recorded 

quantity is the maximum deviation of the diode's output for the 20 pulses. The results 

are presented after the exact calculation of what we were measuring: the intensity of the 

light that is transmitted through the polarizer to the diode. 

Basic considerations tell us that for circularly polarized light, the polarizer's angle 

shouldn't affect the intensity. The safer assumption to make, however, is that incoming 

light is polarized elliptically. Let's chose our coordinates x andy in such a way that the 

major axis of the ellipse is along the x axis and the minor axis of the ellipse is along the y 

axis. The x andy components of the electric field are then: 

Ex=E0x-cos(a>-t) 

Ey=E0y-sm((O-t) 

Here we set the zero time moment to when the electric field is aligned along the x 

axis. If a is the angle between the polarizer and the x axis then the electric field along 

the polarizer is 

E-Ex- cos(a) + E • sin(a) = E0x • cos(co • t) • cos(«) + E0 • sin(&> • i) • sin(«) (3.2) 
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This is the electric field that is transmitted through the polarizer to the diode. The 

diode measures the intensity of the light, which is proportional to the time-average of the 

square of the electric field. First, let's square E: 

(3.3) 
E2 = EQX • (cos(co • t) • cos(or))2 + E\y • (sin(« • t) • sin(a))2 + 

+ 2 • EQx • EQy • cos(co • t) • sin(<y • i) • cos(a) • sin(a) 

Now, we need to remember that basic trigonometry gives us: 

2 1 1 
(cos(® • 0) = — + — • cos(2 • a • t) 

2 1 1 
(sinO-0) = cos(2-fij-0 (3.4) 

2 • sm{a> • t) • cos(<y • t) = sin(2 • co • t) 

But the time averages of sin(2 • co • t) and cos(2 • co • t) are zero. Thus the time average of 

square of the electric field is: 

E2 = El ~-(cos(a))2+E2
0y ~-(sin(a))2 = E2

0x • I • (cos(«))2 + E2
y . i -( l-(cos(a))2)= 

= £ 0 V | + fe-£o2JY(cos(«))2=£0V| + fe-^)Y(l-cos(2.a))= ( 3 " 5 ) 

= \-(E2
x +E2

0y)+^(El -£0
2J.cos(2-«) 

Thus we can predict the following: The signal has to be periodic with a period of 

180 degrees in angle of the polarizer -a. The ratio of maximum to minimum intensity 

should be: 

E!^)=4- (3.6) 
min(7) E]y 

Maximum intensity occurs when cosine in the formula is +1 and minimum 

intensity corresponds to cosine equals -1. We are interested in the ratio of the fields' 
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components, not the intensities. So the final measure of the ellipticity of our polarization 

would be the square root of the ratio maximum and minimum intensities. 

Figure 7 shows intensity (which is proportional to the voltage from the 

photodiode used to detect light) as a function of a : 
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Figure 7. Intensity of the light versus angle of the wave plate. 

One could clearly see that the conclusions presented above are correct. It might 

be safe to assume that the light measured is elliptically polarized. The max/min ratio for 

intensity is 1.2. Thus the end of the vector describing the electric field travels in an 

ellipse with a ratio of—1.1 for major/minor axes. Within ten percent accuracy our light is 

circularly polarized. In conclusion, let me restate the results of the polarization 

measurement: The seven mirror purely reflective circular polarizer works: light is 
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elliptically polarized after it. The major/minor axis ratio of the E-field ellipse is around 

1.1. 

Another noteworthy observation is that the maximum deviation for the intensity 

for a given angle stays roughly the same throughout the table. This deviation is mainly 

due to the fluctuation of the laser's power itself. 

3.3. Low power shots energy statistic 

At low energy and in ten-pulse-per-second mode, the laser's output could vary 

significantly from shot to shot. However, the energies seem to be scattered around some 

average value. In other words, for a number of 20-shots series, one observes almost the 

same average in each series while registering significant standard (or maximum) 

deviation. Table 2 represents one hundred consecutive low power shots: 

Table 2. Energy of the pulse for 100 consecutive low-power shots 
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Elementary statistical analysis gives an average of 46.3 and a standard deviation 

of 5.2. This big scatter in energy for different shots should not concern us, however. The 

main experiment is conducted in single shot mode: one CCD scan per shot. 

There are two reasons not to record radiation from repetitive shots on the same 

CCD scan. First, the target doesn't stay in one place (and in the case of the wire is 

destroyed). During the repetitive shots it receives some kinetic energy after each 

successive shot. On top of that, acoustical vibrations due to the machinery in the 

laboratory always make the target oscillate. Second, such repetitive shots would need to 

be done with a solid metal target. The first shot would make a crater on the metal's 

surface. Each successive shot would deepen the crater, thus moving the metal's surface 

further and further from the focus of the beam. 

3.4. Beam focusing 

The idea is to focus the beam to as small of a spot as possible. There are several 

limiting factors on how small the focal spot could be. One of those factors is the 

diffraction limit - photons still have to obey Heisenberg's uncertainty principle, so we 

cannot know their transverse coordinate with perfect accuracy. Another factor is that 

laser beams are described by a cylindrically symmetric solution to Maxwell equations 

which imply a minimal width of the beam beyond which the beam cannot be focused. 

(Both restrictions have the same mathematical basis - looking for a wave solution to the 
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Laplace's equation. The limitation due to the Heisenberg's principle is significantly 

more restrictive, and is ignored in further considerations.) 

On top of the limiting factors that are enumerated above focusing optics itself 

might result in an unsatisfactory big focal spot. A parabolic mirror was chosen because 

geometrically, a parabola is the only shape that can focus a collimated beam to a point 

(here we consider only geometrical optics, which disregards the limitations discussed 

above). 

With the parabolic mirror focusing the beam, we are limited only by the 

properties of the laser beams. The laser beam (Gaussian EQ 0 mode) could be 

conveniently described by two parameters, w0 andz0. (There is really just one free 

parameter; w0 and z0 are related through wavelength as shown in (2.16).) If we are at the 

focus of the beam, w0 is how far we need to move radially (in the direction perpendicular 

to k-vector of the wave) to lower the intensity of the beam by a factor of j / 2 . It is 

convenient to think of as w0 the "waist size" of the beam. The parameter z0 denotes 

how far downstream of the focus we need to move to lower the intensity by a half. The 

general formula is: 

E(r,z) = £ „ -e ""' • , ' (3.7) 

V z o J 

From that formula one can show that the laser beam (for distances much bigger then zQ) 

diverges at the angle: 
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6 = —^— (3.8) 
W0-7T 

Our mirror has a focal distance / = \0cm . If our beam has diameter d = 2cm we 

can derive an equation forw0: 

A =0=d 

W0-7T 2-f 

7.1.f 
w0 = » 2A6microns (3.9) 

d-7T 

One could derive conversion coefficient to go from w0 to full width half-max 

(FWHM) diameter. It is a number around 1.19. Thus theoretical lower limit on FWHM 

is2.93 jum. 

Focusing is done at atmospheric pressure since it requires manual mirror 

alignment (for both straight mirrors and the parabolic one). The focusing process needs 

to be observed in real time. To achieve that we used a microscope attached to a camera. 

That camera was connected to the monitor. When the microscope had focus at its focal 

spot we needed to attenuate the signal in order not to burn the camera. A series of filters 

with combined optical densities (ODs) of up to 10 was used. In addition, most of the 

amplifiers were disabled for the focusing. 

Once we focused the beam we needed to measure its size. A frame-grabber card 

captured the camera image onto a computer file. The microscope-camera-computer 

system was calibrated on the standard NAVY micro-target reticle (.8 microns per pixel 

was the resulting scale). Thus once we acquired data the measurement turned into simple 
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pixel counting. The spot size for our focus was measured to be between 4 and 5 microns 

FHWM. 

3.5. Rough targeting and target holder 

Once the focusing phase was complete, we needed to position our target at the 

focus of the beam. Fortunately, our microscope/camera were still focused on the focal 

point of the beam. Thus placing the wire so it was visible with the microscope would put 

the wire at around the point needed. 

Two telescopes outside of the chamber were focused on the target. Now we could 

move target around: if it remained clearly visible on both telescopes it had to be near the 

focus. Both telescopes were attached to the cameras and their own monitors. This 

enabled us to mark the initial position of the wire on the telescopes' monitors for double-

checking. One telescope with position marked on the monitor or two telescopes at an 

angle to one other should be enough. The redundancy is used to increase precision in 

target positioning. 

All three monitors (the microscope's and both telescopes') would show the wire 

at this stage of the alignment. Now we had a way to repeatedly put the target in and out 

of focus. This is very useful, since our target holder holds 14 wires, so we wouldn't have 

to vent and repeat targeting after each shot. The target holder and the wires are shown in 

Figure 8: 
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Figure 8. Target holder and the Tungsten wires. 

To summarize rough targeting procedures: Rough targeting is done at atmospheric 

pressure. We use the microscope and the two telescopes. All devices have cameras 

mounted on them. The cameras display the process live on the monitors. The 

microscope is used to focus the beam and position the wire at the focus of the beam. 

Then, the telescopes are focused on the wire to pinpoint the position. Also, the wire's 

position on the monitors is marked. After that the telescopes are not moved throughout 

the experiment (until the next vent). 
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3.6. Data acquisition and system alignment 

We need to align the diffraction collimating lens and grating so 300nm light is 

reflected onto the CCD chip. By now, our telescopes point to the focus, so the target 

holder and the microscope are taken out. A low-energy (30 - 70mJ per shot) repeating 

(\0Hz) pulse is introduced into the experimental chamber. At the focus, air breaks down 

into plasma since all the energy is tightly focused in the small spot. The repetitive spark 

thus produced radiates visible light in all directions. This visible light is used to ensure 

that the collimating lens is positioned correctly, i.e light after the lens is a steady, 

collimated beam. 

The next step is to manually adjust the grating. There are two goals: all 

collimated radiation must hit the grating and the first order maximum reflection from the 

grating must hit the CCD chip (for 300nm). A two-part mounting system for the grating 

is implemented. The grating is mounted on a 3D movement stage (three screws tilt the 

plate that the grating is mounted on). The stage itself is mounted on the outside wall of 

the chamber. This mounting occurs through series of rods and holds. The way the stage 

is mounted is adjusted so the entire collimated beam hits the grating. Then the 3D stage 

is moved so the grating reflects 300nm radiation onto CCD.The 300nm light is not 

visible (it is UV). However, deep violet (400ww) and green (550nm) are visible. Thus, 

one can gauge where 300nm radiation reflected off the grating would end up. 

Now we are ready to take CCD scans of 30 repetitive sparks. We set the CCD 

time scan for 3 sec (with the spark frequency still at 10Hz) and do a scan. Results are 
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displayed on the computer screen. Then we move the grating (using the 3D stage) to 

maximize the intensity of the radiation hitting the CCD's chip. Also, we try to center the 

picture on the computer. The spark radiates in all directions. This means that light from 

the spark fills the CCD in both up-down and left-right directions. This light is not of 

uniform intensity. As one moves away from the perfect alignment the intensity drops off. 

Centering the picture provides a means of fine-tuning the alignment of the whole data 

acquisition system. Once that is achieved, the target is put back into place: we then pump 

down the target chamber to microTorr pressure. 

There is one last grating alignment that needs to be done because the pump down 

often shifts the chamber slightly. The aluminum target holder is put into the focus. A 

series of 30 low energy ( 70m J) shots is fired at the metal at vacuum. Radiation from 

that is scanned by the CCD. Once again, grating is adjusted to maximize intensity of the 

light hitting the CCD's chip and to center the picture displayed. 

The steps described above proved to be sufficient to ensure that the 300nm 

radiation emitted from the focus of the laser beam got to the CCD. 

3.7. Fine targeting at microTorr pressures 

There are two types of targets: aluminum metal for alignment and tungsten wire 

for data acquisition. To do targeting for both we need to reduce the energy per shot so 

we don't damage the targets and targeting optics. Thus low level repetitive light hits the 

target. Light reflected off the target is displayed on the telescopes' monitor. For 

47 



aluminum, fine targeting is easy: move the target to minimize the size of the reflected 

light spot on the monitor. 

For tungsten wire fine targeting is trickier. The 3D micro motor stage has two 

motors moving the target in the horizontal plane. One motor (we called that coordinate 

w) moves the target up or down stream (along the original pulse's k-vector). Another 

motor (coordinate x) moves the target at an angle to the first one. For a given w we 

would find the range of x for which reflected light is still visible. Then we would find w 

for which that range is minimal. Then we would adjust x to maximize the brightness of 

the reflected spot. See Figure 9 for more geometrical details. 

Boundaries of 
ranges Inx 

where we see the 
reflection 

(blue) 

Constant 
W lines (green) 

Visible boundaries of the beam, 
points were we stop seeing reflection 

(gold) 

Boundaries of 
ranges In x 

where we see the 
reflection 

(blue) 

Figure 9. Moving target in and out of focus. 
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When we fix w and change x, the target moves along a green line. We record values of x 

corresponding to the blue circles on that green line. We find w for which that range is 

minimal. Then changing x we go to the middle of the line. 

Understanding what really affects the intensity of the reflected light is quite 

challenging. The wire (18 micron diameter) is bigger then the focus (around 4 microns) 

and circular. Radiation emitted might have complicated phase profiles. However, data 

taken suggests that our basic assumptions are correct: 

For aluminum, the smallest and brightest reflections indicate the best target 

positioning. For tungsten, the small range in x for which we see the reflection means we 

are near the focus. Another sign of good target placement is the brightness of the 

reflections. 

The experimental setup presented above is geared towards the production of the 

broadband synchrotron radiation. The decision to use thin (ISjum) tungsten wire as the 

target was made in an attempt to minimize noise through reducing the total amount of 

material involved (ablation craters on metal are usually on the order ofl00//m. This 

means that in our case we had at least 10 times less of the material, giving some credence 

to the hopes of having compact small plasma interacting with the laser beam). The 

radiation detection wavelength was chosen to allow us to study synchrotron radiation 

exclusively. Those and many other considerations allowed us to successfully detect 

synchrotron radiation from laser driven electrons in the plasma. 
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4.0. EXPERIMENTAL RESULTS 

In this chapter experimental data is presented, analyzed and discussed. The fact 

that we are able to detect anything at all is due to the fact that a sufficient number of the 

electrons is moving coherently. The angular distribution of the outgoing radiation allows 

us to estimate the spatial coherence length for the movement of the electrons. Light 

detected by the CCD is a result of constructive interference of all those electrons that 

move coherently. 

As discussed in section (2.1), each electron emits a cone of light along its velocity 

as it spins around in a circle. The position of a single electron in its orbit is determined 

by the direction of the electric field of the driving laser light. Our radiating structure 

consists of a collection of those electrons (at different phases in the circle as we move 

along the beam). Furthermore, the length of this structure is on the order of 50 

wavelengths of the driving light - thus the radiating spiral has around 50 turns. This 

spiral moves like a barbershop spiral, rotating at the laser frequency. Light radiated by 

this spiral is a result of the interference between light emitted by all the individual 

electrons. 

All the electrons radiate in the directions tangential to their movement. The radii 

of their orbits are very small (around a micron), so from the outside it looks like the 

radiation comes from the center of the spiral. This light is collimated by a lens that is 

placed its focal distance away from the spiral. 
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Lens placement insures that the left-right axis on the CCD maps to the angle in 

the horizontal plane for the radiation. The up-down axis on the CCD maps to the 

wavelength of the radiation (because of the diffraction grating) convoluted with the 

emission angle in the vertical plane. 

One of our goals is to prove that there is sizeable spatial coherence in the 

movement of the laser driven electrons. The smaller the angle discussed above the longer 

the spatial coherence of the radiating electrons. 

4.1. CCD output 

The data collection was done by a CCD (SpectraSource Instruments HPC-1). The 

CCD detects light using 1cm2 silicon chip which is divided into 262,144 (512 by 512) 

pixels. In the chip, incoming photons are converted into electrons with the number of 

electrons proportional to the incoming photon's energy. Thus, the CCD's output is a 512 

by 512 matrix of positive integer numbers. Each number is proportional to the total light 

intensity at the particular pixel of the CCD chip. 

The CCD was hooked up to the computer utilizing the NIH imaging program. 

Data from this program was converted into an ASCII text file for further analysis with the 

help of the Igor data analyzer. Due to the memory size limitations of the analysis 

program each CCD image had to be cut in half. Only halves that include image are 

presented here. 

51 



As described in Chapter 3, the lens collimates emitted radiation. This maps the 

angle in the horizontal plane onto a left-right position on the CCD. (The diffraction 

grating groves are horizontal, so this grating doesn't affect the left-right mapping). This 

setup allows us to easily see the angular spread of the radiation in the horizontal plane. 

This spread that is limited by the interference of the spiral of radiating electrons. This 

narrow spread should be represented by a narrow vertical stripe on the CCD image. 

The up-down axis on the CDD is more complicated. The result is a convolution 

of two effects. First, the lens maps angle with horizontal axis onto the up-down position. 

Second, the diffraction grating disperses light according to its wavelength. Finally, the 

filter sharply attenuates all light that is not around 300nm in wavelength. 

Summarizing this ideal imaging picture one can say that the left-right on the CCD 

maps angle (in the horizontal plane) of the outgoing radiation while the up-down on the 

CCD convolves the wavelength with the angle in the vertical plane. 

As usual with experimental work, life interferes with theoretical considerations. 

Alignment was performed for visible (400nm) light while detection was carried out for 

near UV (300nm). This difference in wavelength actually means a difference of 4.5mm 

in focal distance for the collimated lens. Thus light coming out of the lens was not 

strictly collimated. This means that the convolution of wavelength and the angle along 

the stripe (the up-down direction on the CCD) are extremely complicated. Furthermore, 

the diffraction grating was positioned at a slight angle with respect to ideal (groves are 

strictly horizontal). This resulted in a slight tilt of the stripe observed. 
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The focal distance of the lens was 10cm so 1cm left-right corresponds to .lrad. 

The CCD chip has 512 pixels for 1cm. Combining those facts we obtain a conversion of: 

\PX = A95mrad (4.1). 

Figure 10 shows a typical experimental shot. The horizontal axis maps the angle (in the 

horizontal plane) of outgoing radiation. The vertical axis is a convolution of wavelength 

with the angle. The observed stripe is due to the interference of light from different loops 

of the radiating spiral. The stripe is tilted because the diffraction grating's groves are at 

an angle with the horizontal. 

0 100 200 300 400 500 

Figure 10. Experimental shot #3. 
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4.2. Data analysis method 

An analysis method needed to be devised that would represent a single shot by an 

angle of synchrotron radiation. This angle, in turn, would help us judge the spatial 

coherence of the radiating electrons. 

The data collected from the CCD presented a number of challenges. The shot-to-

shot variance in CCD output was one of them. Finding the waist of the stripe (the up-

down position on the CCD that corresponded to the narrowest point) was another one. 

Following is the procedure that was used to overcome those (and other) challenges. 

First, data was binned vertically - instead of using 512 rows we used 51 each of 

which was the sum often original rows. This allowed us to overcome CCD shot-to-shot 

variance. The CCD output is an amplified result of the interaction between the photon 

and the silicon lattice. Those processes are stochastic, so binning reduces the role of 

chance in the further analysis, improving signal to noise ratio. 

Along the horizontal axis data is expected to be Gaussian, because it is a result of 

N source constructive interference. Each of the 51 new "rows" was fitted a Gaussian. 

Figure 11 is the result of such fitting for shot #3 displayed above: 
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Figure 11. Fit results for shot #3. 

The figure above consists of the plot of the width of the stripe (PX) vs. the 

number of the "row." Each "row" is a sum often lines of output of the CCD. In the right 

half of the plot, Gaussian fit produces absurd results because of very poor signal to noise 

ratios. In the left half there is a very well defined minimum ("row" number 10). 

The minimum width of the plot corresponds to the vertical position where 300nm 

light produces the brightest, narrowest spot on the CCD. The next step is to attempt a 

special fit around the spot. This special fit is a sum of two Gaussians - one with a width 

of 50 pixels and the other with a width of 5 pixels We look for data rows with satisfactory 

fits. Figure 12 is an example of one such fit: 
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Figure 12. Secondary experimental fit for row #9 of shot #2. 

The special experimental fit of the data gives us a Gaussian with a width of two 

pixels, translating into .7 mrads. 

4.3. Results 

Now it is time to present the experimental results. In the table below, five shots 

with circular polarization on the tungsten wire are presented. The energy of the shots is 

varied. 
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Table 3. Angular spread vs. Energy (the target is tungsten wire with circular polarization 

of the incident light) 

SHOT# 

Energy, mJ 

Width (mrad) 

1 

602 

1.43 + 0.2 

2 

839 

.7 ±0.2 

3 

780 

1.3±.2 

4 

849 

1.9 ±0.2 

5 

245 

1.7±.2 

There were two sources of uncertainty in the values above. The first source stems 

from the Gaussian fits themselves - the Igor program gives out errors on the parameters 

of the fit (propagating those errors through the rest of analysis process is fairly 

straightforward). The second source of uncertainty is the fact that the CCD output is 

discrete. Our scaling is roughly 5PX per mrad, so uncertainty due to this factor is IPX 

or0.2mrad. Shots 1 and 2 had a Gaussian fit error significantly lower than that, so 

uncertainty due to the pixilation is prevalent. Figure 13 represents the angular spread for 

various shots. 
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Figure 13. Angular spread vs. Energy of the shot 

One additional shot added to the graph of the shots (shot #5 with energy MlmJ) 

was done with linear polarization instead of circular. We still see a nice signal (as 

predicted in the end of 2.1 the Theory). 

4.4. Discussion 

The main result of the study presented here is that the synchrotron radiation was 

observed. This implies that a sufficient number of electrons is moving coherently. 

Radiation detected by the CCD is a near-vertical, narrow band. This band is 

supposed to be vertical because our detection system maps wavelength and angle with 

respect to the horizontal onto the up-down direction on the chip. The angle between the 

band and the up-down direction is due to the fact that diffraction grating's grooves are 
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not perfectly horizontal as well as the fact that the CCD's chip is not perfectly aligned 

with the direction of the radiation. Finally, the narrowness of the band is determined by 

two effects. The first effect is interference - electrons radiating form a fairly long spiral, 

thus radiation emitted by electrons along the spiral interferes with itself. The second 

phenomenon affecting the width of the band is the fact that the collimating lens is slightly 

further than a focal distance away from the source, because of the 4.5mm focal length 

error. Thus, instead of being collimating after the lens, radiation is slightly converging, 

producing a narrow image on the CCD chip. Let's consider those geometrical features of 

the results in more detail. 

One has to remember that the radiating spiral radiates light in all directions, 

perpendicular to the incoming laser beam (z-direction). This means that the whole length 

of the diffraction grating is lit by the narrow stripe of collimated light we are trying to 

detect. The CCD chip is situated so the first interference maximum hits it at a nearly 

normal incidence. The vertical stripe we see is the image (in the up-down direction) of 

the diffraction grating fully illuminated by the collimated radiation. 

There is an extra stretching in the up-down direction. A slight deviation in 

wavelength would originally cause a slight angular deviation of the light after the 

diffraction grating. Our interference filter limits wavelength range accepted into the 

CCD down to llran (FWHM). This discrepancy in the wavelength ( 1^4QQ = 0.004) 

results in the appropriate discrepancy in the angle at which the radiation leaves the 

diffraction grating (0.004 • 30.5 = 0.122 deg = 0.002\rad). This, in turn, results in 
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displacement on the chip of 0.0021 • \5.5cm = 0.03cm . On the chip roughly 500 pixels 

constitute 1cm so this effect smears the result around 15 pixels in the vertical direction. 

The stripe observed is at a slight (.15rad) angle with the up-down direction. This 

is due to the misalignment of the grating and the CCD. The design called for those 

elements to be aligned along the focal spot - lens - mirror direction, with grating's 

grooves to be horizontal and perpendicular to that direction. Unfortunately, additional 

demands (primarily on how rigid the whole construction must be) precluded the setup 

from having the perfect alignment. The grating and the CCD were not rigidly connected, 

thus slight misalignments of the setup accumulated to produce the relative tilt observed. 

Perhaps the most striking feature of the results is how narrow the radiating band 

is. In Chapter 2, we derived the theoretical value of 3mrad . Experimental results range 

between 2mrad and 4mrad. This is fairly good agreement. However, some of the 

experimental results are actually better than theory would predict. This difficulty is 

explained by the difference between the theoretical assumptions and the experimental 

setup. 

The theoretical value of 3mrad is computed assuming that the interfering light is 

collimated by the lens. This is not exactly true. The lens was positioned to perfectly 

collimate visible light (X = 450nm). During the experiment we detect light of a different 

wavelength (X = 300nm). Glass from which the lens is made (BK7 grade) has different 

refraction indices for those two wavelengths: 
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This difference results in the difference in focal distances, namely for 300nm the 

focal distance of our lens is longer. Elementary optics states that the focal distance of the 

lens is inversely proportional to the index of refraction. The difference in the refraction 

indices for different wavelengths means that our lens has a focal length which is 1.8 

percent shorter for the light detected compared with the light aligned. This results in the 

light converging (instead of being perfectly collimated). Figure 14 gives the geometrical 

picture. 

CCD chip 

source 

Figure 14. Difference between theoretical (dashed lines) and experimental (solid lines) 

paths of light. 
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It is clear to see that during the experiment, the source is slightly behind the focal 

point of the lens. 

Elementary optics calculations put the point where the source is really imaged at 

565cm after the lens. The geometrical setup of the experiment gives a lens-CCD 

distance of 100cm. Thus the theoretical value needs to be corrected correspondingly: 

o. , , x 565-100 Size = Size(theory) = lAlmrad 

The value above is considerably more in the agreement with the experimental 

results. In conclusion, the fact we see anything on the CCD output proves the main point 

of the thesis: intense laser light drives electrons, thus making them radiate coherently. 

The area of the space where this occurs is fairly large (up to a fifty wavelengths of 

incoming laser light). Furthermore all the peculiarities of the picture on the CCD are 

explainable through geometric and other phenomena discussed here. 
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5.0. CONCLUSION 

Plasma-light interactions for high energy ultra-short pulses produce detectable 

broadband radiation. This radiation has been successfully detected at a wavelength of 

300nm. Careful studies allow us to discard all other explanations for the radiation 

detected. 

The broadband radiation is emitted by laser-driven electrons in the plasma. 

Depending on the polarization of the light, electrons exhibit either circular (circular 

polarization) or figure 8 (linear polarization) orbits. The linear dimensions of the orbits 

are on the order of ljum. Those orbits require electrons to accelerate and accelerating 

charges always radiate. The driving laser pulse is Gaussian in time so the electrons' 

movement is not purely harmonic. This is why radiation is emitted as broadband. 

The radiation detected is directional. This radiation is mostly at a right angle with 

the direction of laser propagation (called the z axis in the geometry of this work). To be 

specific, the radiation diverges slightly (up to 2.2mrad) from the z axis. In the case of 

circular polarization the whole problem is cylindrically symmetrical, so the broadband 

radiation emitted is viewed as a slightly diverging disc perpendicular to the z axis. 

The low angular divergence of the radiation is due to the constructive 

interference. This means that the sources of the radiation are coherent. Electrons driven 

by laser light have similar orbits over sufficient length of space (40pim along the z axis) 

for interference to narrow down the outgoing radiation. 
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Both circular and linear polarizations are observed to emit this broadband 

radiation. The different polarizations of the driving light result in the different orbits of 

the radiating electrons. This is the main reason the radiation is much easier to detect 

when the electrons are driven by the circularly polarized light. 

There are several important measurements still to be done on the laser-plasma 

interaction. Radiation detected apparently is emitted in a thin disc perpendicular to the 

propagation of the laser pulse. The narrowness of this disc is attributed to the 

interference of the radiation emitted by electrons. What we are measuring is width of the 

zeroth order maximum. Extremely interesting would be observation of higher order 

maxima. Existence of such maxima would solidify the claim that we have interference 

off the emitted radiation. Directions towards those maxima, as well as the maxima's 

widths, would supply us with additional data on the geometry and dynamics of the 

radiating electrons. 

Additional insights into intricacies of the laser-plasma interaction could be 

provided by measuring the polarization of the radiation emitted. Let us assume the 

radiation emitted is polarized along a certain direction. That would limit the types of 

motion that electrons could possible be undergoing. For a moving charge, the 

polarization is determined by direction of velocity and acceleration. Thus, knowing the 

polarization of the radiation emitted would provide us with significant additional clues to 

the electrons' movement. 
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Other highly desirable quantities to measure are plasma temperature and density 

at the point of laser-plasma interaction. Those parameters are indispensable in obtaining 

a clearer picture. 

There are several interesting features that make the experiment an intriguing UV 

light source. The duration of the radiation, its directionality and the fact that this 

radiation is broadband are among those features. The electrons radiate only when they 

are driven by the laser light. The laser pulse in our experiment is around 140^. Thus we 

conceivable emit out a broadband pulse of the same duration. Furthermore, there are 

laser systems in the world with pulse durations as short as 50 fs. Any imaging device 

based on the phenomenon discussed in this work would allow for time resolution of the 

processes imaged on the same timescales. Strobe imaging of chemical reactions is one of 

the obvious candidates. Time-resolving biochemistry of living cells is another. 

The fact that the radiation is broadband means that one has considerable freedom 

to chose which wavelength of the radiation to utilize when using laser driven electrons as 

the source. This freedom should greatly facilitate the imaging discussed above - freedom 

to choose wavelength to backlight certain chemical compounds means great certainty that 

one is observing the molecules one needs to observe. 

One of the more surprising features of the radiation detected is its high 

directionality (a spread of around Imrad around the direction perpendicular to laser 
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pulse propagation). This high directionality, coupled with a fairly small size (around 

40microns) contributes towards making sources like that ideal candidates for microscopy. 

Lastly, the broadband radiation emitted falls into a convenient part of the electromagnetic 

spectrum - mirrors reflect it well, there are materials from which efficient lenses could be 

made, etc. 

Finally, the process under consideration produces photons in sufficient numbers 

for detection. After all, what use would the source be if, despite all its good qualities, it 

were still too dim to make an image? The study presented here proves that laser driven 

electrons radiate enough photons for successful detection. 

On a less utilitarian note, it is important to continue experiments studying plasmas 

created by ultra-short laser pulses. Plasmas are notoriously hard to model due to the 

number of interacting particles and multitudes of effects taking place. However, the 

advancement of knowledge about plasmas seems important for several reasons. First, the 

addition to humankind's knowledge base is always an admirable goal in itself. Second, 

there are several areas of physics where plasmas play an important role. One example is 

astrophysics - plasmas are found everywhere from the cold interstellar regions to the 

burning cores of the stars. Lastly, knowledge about extreme states of matter is relevant in 

nuclear engineering. 
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