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ABSTRACT

INVESTIGATION OF REPEATED MEASURES
LINEAR REGRESSION METHODOLOGIES

by Tracy N. Holsclaw

Repeated measures regression is regression where the assumption of independent
identically distributed observations is not met due to the fact that an observational unit
has multiple readings of the outcome variable, thus standard methods of analysis are not
valid. A substantial amount of research exists on repeated measures in the Analysis of
Variance (ANOVA) setting; however, when the independent variables are not factor
variables, ANOVA is not the appropriate tool for analysis. There is currently much
controversy regarding regression methods in the repeated measures setting. At issue are
topics such as parameter estimation, testing of parameters, and testing of models. We
intend to examine currently used methodologies and investigate the properties of these
various methods. Methodologies will include calculation of expected mean square values
for appropriateness of statistical tests, as well as simulations in order to investigate the

validity of the methods in situations where the truth is known.
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CHAPTER I - INTRODUCTION

Repeated measures designs come in several types: split-plot, change over, sources
of variability, and longitudinal studies. Split plot designs may include experiments where
an agricultural field is split into multiple plots. Each of the plots is treated with a
different fertilizer, and crops are randomly assigned to subplots within each fertilized plot
(Kotz & Johnson, 1988). Each fertilized plot will produce several types of crops and a
measure of each will be collected, yielding repeated measures for each plot. Change over
designs may be used when testing two types of drugs. First, half of the people are given
drug A and the others are given drug B. Then drug A and drug B are switched and the
experiment is rerun. This design is a repeated measures experiment because every person
will have two measures, one for drug A and one for drug B (Kotz & Johnson, 1988).
Source of variability studies may include taking several randomly selected items from a
manufacturing process and allowing several people to test each one, possibly over several
days (Kotz & Johnson, 1988). Longitudinal studies address situations such as the growth
of chicks, where weights of each chick may be measured every few days.

The type of repeated measures experiment explored in this paper is classified as a
special case of longitudinal study. Usually, in longitudinal designs, the observational
units are sampled over an extended period of time. However, there exists a subset of
longitudinal designs where time is not an independent variable (Ware, 1985). In this
case, we will look at studies that are not broken into intervals of time but rather are
categorized according to variables composed of concepts, items, or locations in space

(Kotz & Johnson, 1988).



As an example, we may have some subjects in a cognitive study read multiple
sentences (Lorch & Myers, 1990). We will collect time measurements for every sentence
a person reads. In this experiment, each subject would have multiple measures, one per
sentence, where the independent variable is the number associated with the sentences
serial position in the set of sentences. Each sentence is an item and has a measurement
associated with it; the time it takes to read it. This is not the typical type of longitudinal
study because the entire experiment can be done in a short period of time.

Another such example includes a survey with several questions on it regarding the
three branches of government (Kotz & Johnson, 1988). First, this design is classified as a
longitudinal study but is not categorized by time. The repeated measures from each
participant are obtained from questions on the survey. Second, the answers to the
questions collected from each person are correlated and cannot be assumed to be
independent. An anarchist would most likely view all three branches of government
unfavorably, while someone else may support government and answer all questions more
positively.

These types of longitudinal studies have been employed across many disciplines
and have a plethora of practical applications. We found examples in the disciplines of
psychology and cognitive development, such as the aforementioned experiment with
subjects reading sentences (Lorch & Myers, 1990). Also, repeated measures designs
have been used in survey analysis as in the government survey example (Kotz &

Johnson, 1988). In the life sciences, people may be measured sporadically for kidney
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disease; a single reading could be affected by one particular meal so multiple readings are
taken instead (Liu & Liang, 1992).

| In many cases where single measurements are taken, the experiment could be
redesigned to collect multiple readings on a subject. This can reduce the number of
observational units needed when conducting a study and already has been used in many
fields such as psychology, education, and medicine. The only instance where repeated
measures is not possible is when the observational unit is altered or destroyed by the
initial test, as in the example where a rope is tension-tested until it breaks. Repeated
measurement experiments are common in most situations and fields of study. However,
standard analysis will not suffice because the measurements are correlated. The standard
errors, t statistics, and p values in most statistical tests are invalid when the measurements
are not independent (Misangyi, LePine, Algina, & Goeddeke, 2006).

For further clarification, repeated measures can be broken down into two
categories: replicate or duplicate observations (Montgomery, 1984). Replicate
observations are defined as multiple responses taken at the same value of the independent
variables. Different subjects are being used for every measurement being collected. The
observations are assumed independent since distinct observational units are being tested.
This scenario is discussed in many texts and analysis usually includes a goodness of fit
(GOF) test. This test can be performed alongside ordinary least squares regression
because some of the rows of the design matrix are identical. The GOF test evaluates
whether a higher order model, such as a polynomial or a model with interaction terms,

might fit the data better. Duplicate observations are repeated measures on the same



observational unit; these measurements are not necessarily independent and may be
correlated, thus defying one of the assumptions of ordinary least squares regression and
ANOVA (Montgomery, 1984). However, duplicate observations may appear very
similar to replicate observations since they too may have the same value of independent
variables for multiple responses.

This paper will examine three types of models, all of which contain duplicate
observations. The first model, discussed in Chapter II, will evaluate a special case where
the same observational unit is tested at all values of a single independent variable. The
multiple readings are usually correlated even though they are obtained from different
values of the independent variable because they are acquired from the same observational
unit (Crowder & Hand, 1990). This model is of interest because ANOVA tests can also
be compared against several other regression methods. In Chapter III, a second model is
constructed with repeated measurements taken on the same observational unit at the same
independent variable value repeatedly. The third model, in Chapter IV, will be
unstructured; the repeated measurements from an observational unit may be obtained
from any set of values of the independent variable. Each of these chapters will contain
examples, several methods of analysis, and results of simulations. A comprehensive

discussion of results will be addressed in Chapter V.



CHAPTER I - MODEL 1: EVERY SUBJECT TESTED AT EVERY LEVEL

Say the efficacy of a drug needs to be tested and two methods of experimentation
are available. First, an experimenter could collect observations on N = I * J people,
randomly assign / of them to one of J treatment groups, and give each treatment group a
different dose of the drug. Under this design, exactly one reading per person is taken.
Alternately, an experimenter could collect observations on / people and test them at each
of the J levels of the factor. This second method is categorized as repeated measures
because the same set of people is used in multiple tests. The repeated measures
experimental design is beneficial as it eliminates the variation due to subjects, which can
significantly reduce the mean square error, ultimately making detecting real differences
between the treatment doses easier (Montgomery, 1984).

In Model 1, we will simulate an experiment with J treatments and / people. Each
person is tested once per treatment, which helps minimize the amount of variation due to
the subjects. This sort of study is used in many fields; one such example is in the field of
psychology where several subjects were asked to read a set of sentences (Lorch & Myers,
1990). Each sentence was timed, so each subject provided multiple readings. In this
particular model, we have / subjects with indices i = 1, 2, ..., I, in our experiment with J
repeated measures per person with indices j =1, 2, ..., J. Each person is timed as they
read J sentences, and a time is recorded for each sentence. For ease, we will let N = * J
denote the total number of observations.

In Model 1, y, is the measurement of the time it took the i person to read the ;&

sentence. In this example, X, will be a dummy coded variable for which sentence is being
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read. But in other experiments, X, could just as easily be a continuous variable, such as
the dose of a drug taken for a study. Other independent variables may exist as well, such
as the age of the person, gender, or IQ score, denoted X, , X, ..., X, , however, only one

independent variable is used in these simulations. B is a vector of the coefficients, and ¢
is the vector of errors. Let Z be the covariance matrix of the errors. Our model will be of

the form: y = Xp +¢. In matrix notation we have:

BN Loxy e xy, &1

Yi2 Lox, - xy B, &2

: A i
y=\»,1’ X=1 x, - Xy i’ B= ’ e=|g;, (1 4)

Y Ioxy o oxy B, &1

| V] box, e xy L€w

cov(g;;, &) COV(E,8) ... COV(E,,8) COV(Ey, &) ... COV(E,, &)

cov(g,,&,) COV(E,,E,) ... COV(E,,,8,) COV(E,,E,) ... COV(E,, &)
T=|cov(g,,6,) cov(&,,&,) ... cov(g,,&,) cov(g,,&,) ... cov(g,,g,)| ()

COV(E,1,&,) COV(E,,Ey) ... COV(E,,E) COV(E,,E,) ... COV(E,,E,,)

| COV(E,1,€,) COV(E1y,E) ... COV(E,,E,) COV(Ey,Ey,) ... COV(E,,E,))

It is also noted that these matrices were created for a regression analysis. If RM
ANOVA is utilized, which requires categorical variables, the X matrix must be adjusted.
In this model, the X matrix used for RM ANOVA would have two categorical variables,
which would be dummy coded with J - 1 levels for the treatments and / - 1 dummy coded

variables for the subjects and result in rank(X) = (J- 1)+ (- 1) + 1.
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Figure 2.1 shows how data from such a model would look if graphed, where each
observational unit is given its own symbol. For example, if there was a study on a blood
pressure drug the graph could look as following, where a patient (denoted +,x,0, or ¢ )
has three blood pressure readings taken, one at each dosage of a drug (maybe 1, 2, and

3mgs).

m 8 ©0
]
e+ 0

Response

-

7 ¥ T
1.0 1.5 2.0 2.5 3.0

Treatment Levels

Figure 2.1. Graphical Representation of Model 1.
Methods
Crowder and Hand (1990) describe many inefficient methods of analyzing this
experiment type, which are not included in our simulations. These methods include
performing multiple t-tests on different groupings of the factors and observational units.
This analysis tends to be invalid because the involvement of multiple hypothesis tests
increase the chance of a Type I error (Bergh, 1995). Others suggest performing multiple

regressions on these crossover design experiments, allotting one regression for each
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observational unit. How, then, do we compare these multiple regression functions? Some
suggest performing an area under the curve analysis, but this examination only inspects
one very specific feature of the regression curve. Similarly, other aspects like time to the
peak, half-life of the curve, or distance back to the baseline are not accounted for
(Crowder & Hand, 1990). Crowder and Hand (1990) suggest the best way to analyze
data is to have one all-inclusive ANOVA or regression model, so as not to have multiple
statistical tests.
Analysis with Repeated Measures ANOVA

For Model 1, each measurement on a subject is taken at each of the levels of
treatment. Therefore, if, as before, an experimenter wanted to test a drug’s effectiveness
he or she could simply test each person at, for example, J = 3 dosage levels. All subjects
must be tested at all treatment levels for repeated measures ANOVA (RM ANOVA) to be
a valid test (Montgomery, 1985). The null hypothesis is that effectiveness is statistically
the same at each treatment level (Misangyi et al., 2006). If the F value is large enough,
then the null hypothesis will be rejected, and the treatments will be considered
statistically distinct. The calculations for the F values are shown in Table 2.1. We are
only interested in the second F value in Table 2.1, MSTR / MSE, which is used to test the
null hypothesis that the treatments levels are the same. This analysis is identical to

randomized complete block design with subjects as the blocks (Montgomery, 1985).



Table 2.1

ANQOVA with one Within-Subject Factor

Source df SS MS F
Between Subject /-1 SSBS MSBS MSBS/ MSE
Within Subject I(/-1) SSWS MSWS
Treatment J-1 SSTR MSTR MSTR / MSE
Error J-DI-1) SSE MSE
Total 1J-1 SST

Note: Proofs of this table in Appendix E (Montgomery, 1985).

In a standard ANOVA setting, without repeated measures, all of the error terms
are assumed independent and normally distributed, with equal variance. Also, in
ANOVA, the independent variable is considered as a factor variable that contains levels.
In RM ANOVA, since we break variation into two parts, one due to the observational
units and one due to the factor levels, we also must modify our assumptions. Because the
assumptions of independence and constant variance no longer necessarily hold, we must
now change our assumption to one of sphericity, or circularity, which restricts the
variances and correlations of the measurements (Bergh, 1995). Compound symmetry, a
condition where all variances of the factor levels are equal and all covariances between
each pair of factor levels are equal (O’Brien & Kaiser, 1985), can be examined in place
of the less restrictive sphericity assumption because, if it does not hold, the sphericity
assumption usually will not hold. First, the variance of each level of the factor must be

identical so as not to violate our assumptions. For example, we may test children at ages
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2, 4, 6, and 8; with sphericity it is assumed that the correlation between observations
taken at ages 2 and 4, and the correlation between observations taken at ages 4 and 6
would be the same. Usually, it would not be the case that the correlation between
observations taken at ages 2 and 8 is the same as the correlation between observations
taken at ages 2 and 4, but compound symmetry requires this supposition (O’Brien &
Kaiser, 1985). The sphericity assumption generally will be violated when individuals are
being tested over a time range or more than two measurements are taken: two
characteristics of most longitudinal designs (O’Brien & Kaiser, 1985). In this way, the
sphericity assumption is almost always violated in the repeated measures situation
making RM ANOVA troublesome (O’Brien & Kaiser, 1985) and may lead to an increase
in Type I errors if the degrees of freedom are not adjusted (Misangyi et al., 2006).

In the previous sentence reading example, a possibility arises that some people
may start to read each successive sentence at an accelerated pace as they become familiar
with the topic; thus their rate of increase is not necessarily constant. This acceleration
could cause the variance of the time to read each sentence to increase over the whole
group and thus violate the sphericity assumption (Misangyi et al., 2006).

Some suggest performing a series of tests for sphericity. To do this, we define a
spécial covariance matrix (Xr) of the treatment levels (T;) in Model 1 such that:

var(T,)  cov(T,,T,) ... cov(T,,T;)

cov(T,,T,)  var(T,) cov(T,,T,) |, (6)

T =

cov(T;,T,) cov(T,,T,) ... var(Ty)
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We can examine an estimate of this covariance matrix to verify the supposition of
sphericity in our repeated measure situations. Compound symmetry is defined as
constant variance and covariance of Xt (Baguley, 2004). Compound symmetry is a
stricter form of sphericity, and therefore, if compound symmetry holds, the sphericity
assumption is met. Unfortunately, sphericity can also be met by a much more general
rule, so we must verify that the variances of the differences between each factor level T,
and T, are equivalent (Baguley, 2004) for every set of v and m, using the formula:

var(T, - T, ) =var(T,) +var(T,) -2 cov(T,, T,). (7
If the differences of the variances for all of the treatments are equivalent, sphericity will
hold (Baguley, 2004). As long as the sphericity assumption is met, the F test does not
need adjustment because it will not be biased.

An RM ANOVA test would suffice only if the sphericity condition were met
(Cornell, Young, Seaman, & Kirk, 1992). When the sphericity assumption is violated,
however, the F test will have a positive bias and we would be more likely to reject the
null hypothesis when it is true (Misangyi et al., 2006). O’Brien and Kaiser (1985) note
that in many cases, sphericity may fail when repeated observations are taken on a subject
since those observations are correlated. In these cases, we are prone to assume the model
is significant when, in reality, it is not (Misangyi et al., 2006). To avoid all of the
problems with violations of sphericity, it is suggested that a multivariate analysis
(MANOVA) be performed because these tests do not have an assumption about

sphericity (Bergh, 1995). However, the MANOVA would be less powerful than the RM
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ANOVA that relies on the sphericity assumption (Crowder & Hand, 1990). Model 1 is

the only case in this paper where the sphericity assumption must hold.

Cornell et al. (1992) compared eight different types of tests for sphericity. The
most commonly employed and discussed test for sphericity is the ¥ test, also known as
Maulchly’s likelihood ratio test. This test has been shown to be rather futile because it
does not work well with small sample sizes or in cases where Normality is in question
(O’Brien & Kaiser, 1985). The W test also tends to be too conservative for light-tailed
distributions and too liberal for heavy-tailed distributions (Crowder & Hand, 1990).
Another test for sphericity is the V test, a locally best invariant test, which has been
shown to be slightly superior to the W test (Cornell et al., 1992). The other possible tests
are the T test, a ratio of the largest to smallest eigenvalues of the sample covariance

matrix (£, ), and U tests one thru five, based on Roy’s union intersection principle.

Cornell et al. (1992) ran simulations, compared these tests, and found that, in most cases,
the Vtest is most powerful in detecting sphericity. However, other authors suggest not
using any of these tests because they do not provide enough information and often are
faulty (O’Brien & Kaiser, 1985).

Because most authors agree that nearly all repeated measures experiments fail to
meet the sphericity assumption, we assume an initial test for sphericity is not useful
(O’Brien & Kaiser, 1985). When the experimental data fails the sphericity test and thus
violates the assumptions of regression or RM ANOVA, a Box’s epsilon (€) correction on
the degrees of freedom is commonly used (Box, 1954). Box described the correction on

the degrees of freedom but never derived a formula for €, so others have provided a
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variety of implementations for estimates of this correction factor. These correction
factors, called Box’s epsilon estimates, reduce the degrees of freedom of the RM
ANOVA F test (Quintana & Maxwell, 1994).

We can perform the RM ANOVA and then calculate a Box’s epsilon value to
correct the biased F test, making the test for sphericity no longer necessary. The Box’s
epsilon estimate is multiplied by the degrees of freedom yielding new smaller degrees of
freedom values and adjusting the F test (Crowder & Hand, 1990). In Model 1, the usual
degrees of freedom associated with ANOVA would be J- 1 and (J - 1)( - 1). Our new
degrees of freedom then are: vi =€ (J- 1) and v, = ¢ (J- 1)(/ - 1). We would use the F
value found for the ANOVA but then compare this to an F-critical value using the
corrected degrees of freedom (Misangyi et al., 2006). In all cases, € should never be
greater than one, and if the sphericity assumption is met, then ¢ = 1. Most estimators of €
are biased, because they can produce values greater than one and must be restricted to a
domain of [0, 1] (Huynh & Feldt, 1976).

Greenhouse and Geisser (1958) suggest a set of conditions for the viability of the
F test instead of checking the sphericity assumption or performing a Box’s epsilon
correction (Crowder & Hand, 1990). They argue that the p-value for the ANOVA being
tested will only get larger with all of these adjustments. If the p-value is already large,
we can retain the null hypothesis with confidence, even though the assumptions of
sphericity may be violated. However, if the p-value is small, we can check the limit of
the critical value F(1,/* J - 1). Ifthe p-value is still small, we can reject the null

hypothesis with confidence. Now, the only cases remaining are when:
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Fo1,1%7-1 < Fobserved < F o, 1, (- 1)(1- 1). )
In this case, we must test for sphericity and use a Box’s epsilon correction or abandon the
ANOVA test altogether (Huynh & Feldt, 1976).

Returning to the problem with sphericity tests, a Box’s epsilon adjustment can be
used to assess the deviation from the sphericity assumption. If a Box’s epsilon estimate
is approximately equal to one, we can conclude that the sphericity assumption is not
violated (Baguley, 2004). Alternately, if a Box’s epsilon estimate is less than one,
sphericity is violated. However, we will only adjust the degrees of freedom with a Box’s
epsilon estimate if sphericity is seriously violated; in this case a Box’s epsilon estimate is
less than 0.75.

Several people have proposed different Box’s epsilon estimates. Importantly, of
the models examined in this thesis the assﬁmption about sphericity and these estimated
corrections only apply to Model 1 because the design is balanced and the contrasts are
orthonormal (Crowder & Hand, 1990). One of the most commonly used Box’s epsilon

estimators was constructed by Greenhouse and Geisser:

ey (4] .

V-1 tr(ﬁi) - (J—l)f).,z

i

£ =

~

where X, is the estimated covariance matrix of the J - 1 orthonormal contrasts, and 7,

are the J - 1 eigenvalues of ﬁT (Greenhouse & Geisser, 1958). Greenhouse and

Geisser’s epsilon tends to be too conservative but adjusts well for the Type I error rate
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(Quintana & Maxwell, 1995). Huynh and Feldt proposed a correction, denoted (HF or

€ ), to the Greenhouse and Geisser Box’s epsilon as follows (Huynh & Feldt, 1976):

e=min(1, I(J-DE-2/(J-D[I-1-(J-DE]. (10)
Some statistical software has included these two Box’s epsilon estimators because they
are so commonly used (O’Brien & Kaiser, 1985).

Quintana and Maxwell (1995) performed simulations and comparisons of eight
possible Box’s epsilon corrections. To the two Box’s epsilon estimators already
mentioned, they also advocated a correction by Lecoutre, denoted € *, when two or more
groups are part of the experiment (Quintana, 1995). After much study, Quintana and
Maxwell (1995) concluded that the most precise correction factor, however, uses either
€ or £ * depending on the value of £ *; and no correction factor works well on data sets
with small sample sizes.

Much of the time with RM ANOVA a correction on the degrees of freedom is
necessary. Most people find the more common £ or € correction and use them to adjust
the degrees of freedom. A less powerful MANOVA analysis might be used, which
would not need the sphericity assumption because the only assumption made is that the
data arises from a multivariate Normal distribution where the variances and covariances
are unstructured (Misangyi et al., 2006). However, the multivariate approach will not
work when more treatment levels than subjects exist in the experiment because the
covariance matrix will be singular (Crowder & Hand, 1990). Looney and Stanley
suggest running two analyses, one univariate and one multivariate, by halving the

tolerance level on each test (1989).
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In our simulations, we use & as our correction factor because it is most commonly
employed and fairly accurate. We also track the number of times the Box’s epsilon
correction is below 0.75 because researchers suggest that this is the threshold for
determining whether sphericity was violated or not (Misangyi et al., 2006).

Regression Methods

Quite a few methods are referred to as repeated measures regression and no
protocol exists to address the analysis of repeated measures experiments. Generalized
least squares regression is a satisfactory method to analyze correlated data structures such
as these.

Repeated Measures Regression

In the paper by Misangyi et al., (2006), repeated measures regression (RMR) is
defined differently than in other texts. Both the observational units and treatment levels
can be coded as dummy variables and are orthogonal in this special case, meaning
X°X =1 (Messer, 1993). In this particular case, Misangyi et al. (2006) perform a
regression of the dependent variable using the treatment level as a dummy variable; we
will denote this model with the subscript 7MT since it is run on the treatment levels.

Then they perform a regression of the dependent variable using the’subjects as dummy
variables; we will denote this model with a subscript SUB. Once these two regressions
are performed the total sum of squares (SST), sum of squares of error (SSE), and the sum

of squares of the regression (SSR) can be found. An R’ value can be computed for both

regression models as follows: R = (SST - SSE)/ SST (Kleinbaum, Kupper, Muller, &
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Nizam, 1998). They then have R;,, and R}, which they use to construct an F test

(Misangyi et al., 2006):

_ (U=DU-DRy,
(J - 1)(1 - RSZ'UB - R72"MT

(11

This F test appeared in Misangyi et al. (2006) with no further explanation and seemed
quite unlike any other F test used to analyze repeated measures data.

Finally, it was found that this F test is a type of partial F test that only works for
this specific model. We will now show how to obtain a more generalized form of this '
test that will work for almost any model. First, we need to create a full regression model,
which we give the subscript F, using the standard independent variables for the treatment
as well as adding a dummy variable for the observational units (Misangyi et al., 2006).
We then obtain a reduced model, which we will give the subscript R, with only the

observational units as dammy coded variables. Note that the SUB model described
previously is the same as our reduced model, so R} = RZ,,.

For any models using the same data, the SS7"’s will be equal, so
SST,, = 88T = SST;,, . In Model 1, treatment and subjects are independent
(orthogonal) so that SSR,. = SSR,, + SSR;,,r (Cohen & Cohen, 1975). In this first

model, where every experimental unit is tested at every treatment level, we can show
that:

_ SSR,
SST,

R} (12)
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_ SSRyyp + SSRpyr

13
SST,. (13)
_ SSR g5 N SSR (14)
SSTgs  SSThr
= R;UB+R%MT . (15)

The F test proposed by Misangyi et al. (2006) can now be compared to the more

generalized form of the partial F test:

( - DRy

) (J - 1)(1 - R;UB - RZZ"MT 19
= (I-DiJ - 1)(R.52‘UB + R72"MT - RSZ'UB)
(J - 1)(1 - RgUB - R?MT a7
_u-n-n(R2-R2) (18)
(J -1)1-R%) ,
(RIZV "'RI%)/(J'—l) (19)

=R/ - 17 -D)]
We now have the more general partial F test, which can be used in other settings, where
J - 1 is the reduction in parameters between the full and reduced model, and (- 1)(J - 1)

is the degrees of freedom associated with the SSE of the full model (Kleinbaum et al.,

1998). For the full model we have the form: y; = a + B, +1, + &, so this model
accounts for an overall mean () and then a subject effect ( 8, ) and a treatment effect

(77,). And then we compare it to the model where we have y, = a” + B, + &, which only

accounts for the subject effect, 4, . The partial F test isolates the contribution of the
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treatment, and therefore tests if the treatment is significantly impacting the regression
beyond what can be attributed to subject variability.

Misangyi et al. (2006) gave a modified partial F test that fits Model 1 only. In
models two and three, we cannot use the F'test proposed by Misangyi et al., (2006)
because the independent variables may not be orthogonal. For this reason, in later
models we must revert to the standard partial F test.

It seems that Misangyi et al. (2006) may have used this form of the partial F test
so they could compare what they call RMR to RM ANOVA to show that these two types
of analysis in this one situation are identical.

However, RMR poses a difficulty because it does not test for or address violations
of sphericity. Unlike the RM ANOVA, this analysis does not have corrections for a
violation of sphericity, even though it yields the same results and may violate the
sphericity condition (Misangyi et al., 2006). RM ANOVA is a better choice because it
attends to any violations to the assumption of sphericity. Thus, RMR should only be
used when sphericity is not violated (Misangyi et al., 2006). We will add a partial F test
(in this Model analogous to RMR) to our simulations, not because it is necessarily a valid
‘method of analysis but for comparison purposes.

Ordinary Least Squares Regression

No studies of repeated measures advocate this type of analysis, however, some

peoplé seem to use it. In Ordinary Least Squares (OLS) regression we assume constant

variance and independence of the errors. In this case, the covariance matrix of the
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dependent variable given the independent variables would be £, = ¢*I. This structure,

shown in matrix form, can be compared later to other such X matrices:

a* 0 0

0 o’ 0 O

0 0 ¢’
o> 0 - O (20)
0 o° 0

T =
0 0 o’
st 0 0

OLS is useful when the assumptions about Normality, constant variance, independence

and identical distribution of the errors hold. Therefore: ¢ ~ N (O, 0'21) and

Y~N (Xﬂ,IO'2 ), where 6> =¢_. We will use the equation Y = XB + & to perform the

x e
OLS analysis, which lead to: f = (X' X)’1 X'Y and V(ﬁ) =’ (X' X)“1 where B is an
unbiased estimator of B, if the assumptions are met.

In OLS, we perform a statistical test for significance of the regression. For this,
the null hypothesis is that the regression is not significant, or equivalently for our
simulated models, H, :f, =0. We construct an F test to assess this null hypothesis. This
F test for the regression will be composed of MSR / MSE. MSE is found by dividing SSE
by its degrees of freedom and the MSR is found by dividing SSR by its degrees of

freedom. Appendix B contains full proofs that the SSE ~ y*(LJ — k 1), SSR ~ 7 *(k),

and SST ~ x> (LJ ~1), so the F test will follow a Fisher’s F distribution and % is the
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number of predictor variables. Table 2.2 displays the degrees of freedoms and also the
calculation for the F test.
Table 2.2

ANOVA for Regular Regression

Source df SS MS. F
Regression (k+1)-1 SSR MSR MSR / MSE
Error 1J-k-1 SSE MSE

Total 1J-1 SST

If our observations are correlated or the dependent variable has non-constant
variance, OLS is not the proper tool for analysis. In a repeated measures experiment, it is
regularly the case that the assumptions are invalid, so OLS is not the appropriate way to
analyze the data presented here. In simulations, we include OLS, not because it is a valid
analysis type, but because it is easily misused. The method is widely employed without
evaluating the underlying assumptions.

Means Regression

Means regression is a modification of the first model’s configuration, basically
using OLS on summary statistics. We average the responses taken at each treatment
level to get the mean for the treatment level. Then we can perform regular regression
analysis on this new summary statistic dependent variable. Means regression is included
because it deals with the data in a repeated measures experiment quickly and is perhaps
one of the common types of analysis used, and it provides unbiased estimators (Lorch &

Meyers, 1990). However, this eliminates subject variability from the analysis and thus
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more likely to reject the null hypothesis thereby inflating the Type I error rate (Lorch &

Meyers, 1990).

In our simulations, we first perform standard means regression. Then we will add
weights for the treatment to attempt to account for some of the variation. We will discuss
these types of weights in the next section.

Generalized Least Squares

We can use a more generalized form of OLS regression, called Generalized Least

Squares (GLS) regression that will assume the errors follow a Multivariate Normal

distribution such that € ~ MVN(0,X) and Y | X ~ MVN(XB,X), ie. we no longer assume

constant variance and zero correlations. GLS allows for the observations of the
dependent variable to have any variance-covariance structure and does not assume the
observations are independent. The diagonal of the X matrix will contain the variances
and the off-diagonal elements will be the covariances of the error terms, as shown in

equation (5), which can be rewritten as (Montgomery, Peck, & Vining, 2006):

2
o] P10 Gy o P1,0,0,
2
¥ = | P92 0, e P20, | 2n
2
Pn,01 PpC,0; - Oy

In this set up, o} =¥ (¢,) = cov(s,,¢,) and cov(s,,&,) =0, = p,0,0, where o, = /o] and
p; s the correlation between &, and ¢, .

The X matrix can be adjusted to account for any assumptions that are made.
These assumptions may include constant variance or constant covariance of observational

units being tested. It is also possible to have a completely unstructured X matrix. GLS
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analysis allows for more flexibility in the configuration of the experiment and is
conducive to repeated measures designs because it can account for covariance between

measurements. We will be testing the null hypothesis H, :, =0 in all GLS analyses.

Weighted Least Squares
We will simulate several variations of GLS, one type being weighted regression
(Montgomery et al., 2006). The assumption of constant variance is replaced by constant

variance within each observational unit only:

0 0'12 0 O
0 0 - o
o] 0 - 0 (22)
0 o 0
¥ . . .
0 0 o;
o, 0 -« 0
O 0 0';, 0
i o 0 .- oﬁ,_

or, in this first model, each level can have its own constant variance:
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ol 0 0
0 0'22 0 O
0 o oy
0 o} 0
= :
0 0 o
ol 0 0
O 0 o 0
i 0 0 oy

GLS takes these variance inequalities into account by using weights. We will add
simple estimated weights to see if accounting for individual or treatment variability is a
good alternative analysis. We will perform two types of analysis: one with subject
weights (Sub weights) as in equation (22) and one with treatment weights (Tr weights) as
in equation (23). The first type of weights will be obtained by finding the sample
variance of the subjects. The second type of weights will be found in a similar fashion
but will be the sample variances of the treatment levels. The dependent variable will be
weighted with the inverse of the sample variance; this means the objects with larger
variance will have a smaller weight in the regression.

In this analysis the covariance of the measurements is not being accounted for so
there is reason to doubt that the underlying assumptions will be valid in this regression
method. We will simulate both types of weights in our analysis and compare this

analysis with other types of analyses.
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GLS Method

Montgomery et al. (2006) presents the first type of GLS analysis that we will
explore. X is a non-singular and semi-positive definite matrix, but we can assume for all
models that it is a positive definite matrix (Kuan, 2001). By the definition of a

covariance matrix and because we are assuming it to be positive definite then X is
symmetric, &'= X and invertible (see Appendix A). Therefore, (&‘2')‘1 =X or
E™")'=Z™. To find an estimator for the coefficients of the regression we begin with
the equation y = Xp but must account for the non-zero covariance and possibly non-

constant variance of the errors by multiplying both sides of the equation by £, the
variance-covariance matrix. This modification results in the normal equation:
£'Xp =Xy (Kuan, 2001). Manipulation of the equation yields an unbiased estimator

for B (see Appendix C for proof of non-bias):

ﬁ = (X'Z‘.”IXT1 X'E'y (Montgomery et al., 2006). (24)

Before estimating B, we must know the X matrix, but much of the time this is not
possible. In simulations, however, we can perform one analysis where X is known. This
is feasible in a simulation because we create the X matrix in advance to be able to
generate our data. When constructing the X matrix, we assume that all experimental units
are independent of one another and have the same variance and correlation and thus we
specify two parameters, correlation p and variance ¢~ so that X is as shown in equation
(25) (Crowder & Hand, 1990). This adheres to Model 1 where we are assuming that

measurements are part of a longitudinal study where time is not necessarily a factor.
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o* po’ - po
po’ o’ po O
pc’  po’ o’
2 2
> ro (25)
po’ o o0
L= : :
po’  po o’
o’ pot - po’
O po’ o’ po’?
po’ po o’

L.

We also perform a similar analysis where we estimate the ¥ matrix. Many
techniques exist to estimate X. In this case we assume that we know the structure of X.
If the X matrix is entirely unstructured this leaves [(/ *J )Y+ *J]/2 parameters to
estimate and even with the block structure there are still  * J * J parameters to estimate,
which is more than the amount of data, 7 * J, being collected. So, it becomes necessary
for X to have a structure and we must also infer what structure it has before attempting
estimation techniques (Crowder & Hand, 1990).

In 2001, Koreisha & Fang conducted a study where they knew the true X matrix
and estimated X assuming the correct structure as well as various other incorrect
structures. The researchers found that incorrect parameterization provided estimates
which were not as accurate as the correct one (Koreisha & Fang, 2001). For our
simulations, we will assume the correct structure is known.

We must estimate B, p, and 6° by utilizing an iterative process to find the
maximum likelihood estimates for these parameters. First, we supply general values for

B, p, and 67, and we run the algorithm until we maximize the likelihood function for the
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errors (Crowder & Hand, 1990). The observations, given the independent variables, have

a likelihood function of’
L=(x) %5 exp[—é(y—xri)'z"(y—xm) (26)

After several iterations, this function will be numerically maximized and we will have
estimates for B and E, which is a function of the estimates of p and ¢°.

With the X matrix estimated, we can test the null hypothesis about this regression.
In Montgomery et al., (2006) the researchers present an alternative calculation method for
SSE, SST, and SSR to the one already presented in the OLS section. They prefer a

method where Y is not subtracted from SST and SSR; the degrees of freedom are later
adjusted for this fact. The Montgomery et al. SSE ~ y*(IJ —k ~1), SST ~ y*(1J), and

SSR ~ »*(k +1) along with full proofs are given in Appendix C. Table 2.3 contains a

summary of the calculations for the F test.

Table 2.3

ANOVA for GLS Method |

Source df SS MS F
Regression  k+1 y'E Ay MSR MSR / MSE
Error IJ-k-1 yIy-y' LAy MSE

Total 1J y' Iy

Note. A = X(X' z‘."xf1 X' = (see Appendix C for more details) (Montgomery et al., 2006)
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GLS Method 11

The following GLS analysis was prompted by Montgomery et al., (2006) and
Kuan (2002). X, the covariance matrix of the errors, has the properties of symmetry,
non-singularity, and positive definiteness because it is a covariance matrix (see Appendix
A for full definitions) (Montgomery et al., 2006). Therefore, it can be orthogonally
diagonalized (Kuan, 2002). One can decompose X into KK, where K is sometimes
called the square root of Z. To find this K matrix, we first find the eigenvalues and

eigenvectors of X. The square root of the eigenvalues become the diagonal elements of a
new matrix D, , whose non-diagonal elements are zero, and the eigenvectors become

the columns of the matrix P, such that £ = PDP ' (Kuan, 2002). It can be shown that

is decomposable into two equal components (Kuan, 2002):

X = PDP (27)
= pD':p"p-" (28)
= PDV’p'PD"*pP! (29)
=KK (30)

where K = PD'*P™" and D"?is a diagonal matrix whose elements are the square roots of
the corresponding elements of D and PP =1, since the columns of P are orthonormal
(see Appendix A). Furthermore, £ =KK =K'K and £ = K'K™ = (KK)" (Kuan,
2001). We proceed by transforming the variables, we let y, =K'y, X, =KX and

g, =K™e. Where we once had the equation y = XB+&, we now have y, = X B +g, as

¢, now satisfies the conditions of having independent elements with constant variance
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(Montgomery et al., 2006). It is possible to run OLS regression on these new variables,

Yk and X, (Montgomery et al., 2006).

We must have a £ matrix for this method to work, which, in most cases, is
unknown. As in GLS Method I, we assume that we know X and perform an analysis in
this manner. We also estimate X, utilizing the same structure as before, and perform this
analysis.

GLS Method 111

The generalized least squares method Crowder and Hand use in their text is
configured in a dissimilar manner (1990). Each observational unit has its own set of
matrices: 0, y, and & matrix. The simplified matrices partitioned in (31-34) reveal that
these two styles of GLS produce the same results. Using GLS Methods I and II with a

model of y = XB + £, we can reconfigure matrices X, y, and X to have a matrix set for

each observational unit: 8, y, and & with a model vy =0 +6.
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The inverse of a partitioned block diagonal matrix X is invertible so each block &, of the

partitioned matrix is also invertible, which leads to the following (Lay, 1996):

glolofo
g |0]&]0]0
0o o
0/0]0]¢

-1

Lo 0
0 & 0
0 3 0 @5
0|0 !

The configuration presented here by Crowder and Hand (1990) at first appears

quite different from GLS Methods I and II presented by Montgomery et al. (2006) and

Kuan (2002); GLS Methods I and IT utilize a single set of matrices for all observational

units, whereas GLS Methods IIT assigns a distinct set of matrices for each observational

unit. However, the use of either general design type produces identical algebraic

functions and generates the same parameter estimates ﬁ , assuming &, =& . Each

experimental unit is provided with its own matrix set of 0, y, and & and are later
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summated to yield identical parameter estimates as in Method I and II. The following

will show the progression from Method I and II to Method III:

f=(X"z X" (X"zY) (36)
p T - -lg T, A
91_ . 1010|016 gl‘ L1010 0 |y,
0 1 0 0 1 Y,
)% 0 &, .0 0 %10 )% 0 & '0 0 Zl > 37)
ki 006|107} o 010|107}
0, /0|00 6] (&][0]o0|o0|&g ]
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= = _ -1 - _ _
={07¢;'0, +01E;'0, +...+072'0, [ ey, + 0787y, +...+0TE Y, L (39)

={i03é;‘0i}4{293§;‘7i}. (40)
i=1 i=]

As shown, the estimators produced in GLS method III are identical to the one
generated from GLS Methods I and II.

In most cases, the researchers assume that the 0 matrix is equal for all
observational units as is the & matrix. The vy, vector is derived from a J-dimensional
Normal distribution, denoted: v, ~ N, (p,&). The vector ¥ can be calculated as:

Y= (71 +9, oY )/ I, and it too follows a Multivariate Normal distribution,

Y~N,(m&/I) (Crowder & Hand, 1990). A theoretical or known & follows a

Ve (J - 2) distribution (Rao, 1959). The & matrix is assumed to be unstructured in these
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cases, however we assume each observational unit has the same & matrix. When all
observational units share the & matrix, only J * J entries must be estimated. If all
observational units had their own & matrix, J * J * I parameters would have to be
estimated; this is more than the number of observations, however, and an inference of
these parameters cannot be made (Crowder & Hand, 1990). A structure can be imposed

upon &, so even fewer parameters estimates are needed. Rao (1959) suggests that & first

1
be roughly estimated by the formula S = I—]'—~Z(')(i ~¥)(y; —v)'. Thus, S follows a

1=
Wishart distribution with 7 - 1 degrees of freedom, denoted S ~ W, (I —1,§). Ifan

estimate of S is desired, solve for &t and S iteratively until they converge using the

following formulae (Crowder & Hand, 1990):

1/

S== (7, -0, - 04) @)

i=1
n=(0S"0)"0'S"y. (42)
As before, we perform the GLS analysis assuming knowledge of & first, and then
execute GLS analysis using an estimated &, denoted S. We impose a new structure,
which forces all € to be identical. We find a structured S by using the iterative method
given in equation (41-42) until &t converges.
Also, this GLS method presented in Crowder and Hand (1990) requires J+ 1 to
be less than I because, if this is not the case, the design matrix (X) will be I by J+ 1 and

XX will be singular (see full proof in Appendix F). This would make several
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calculations that must be performed impossible, so we will restrict /+ 1 <[ in all of our
simulations.

Although the parameter estimates are identical in both methods, we now use a
different test statistic to determine if the regression is significant. In most cases, an F test
is performed to evaluate the null hypothesis. Instead, Crowder & Hand (1990) use an

approximate y; test statistic, denoted 7. Due to the nature of Model 1 and the selected

null hypothesis, the test statistic used in our simulations will be (Crowder & Hand, 1990):
T = # [Var(2)] ' #,. (43)
Method III produces different results than Method I and II for two reasons. First,

ituses a y” test instead of an F test. Secondly, when estimating the covariance-variance

matrix a different structure is imposed. However, if the same structure was imposed then
we know these methods would produce identical parameter estimates.
Calculating Type I Errors in Simulations
To estimate Type I error probabilities, a count is kept of how many times the
hypothesis was rejected in our simulations with a tolerance level set at 0.05. Type I

errors are only calculated in runs where f, = 0, meaning the null hypothesis was actually

true (Wackerly, Mendenhall, & Scheaffer, 2002).
Calculating Type II Errors in Simulations
For estimates of Type Il error probabilities, a count is kept of how many times the

hypothesis was retained in our simulations with a set at 0.05. Type Il errors are only
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calculated in runs where B, # 0, meaning the null hypothesis was false (Wackerly et al.,
2002).
Verifying the Distribution and Estimating Degrees of Freedom

The SSE ~ y? and SSR ~ ;(,f where v and # are usually known, except in the

cases where the variance matrix is estimated. We use the Kolmogorov-Smirnov test to

verify that the simulated SSE and SSR follow a y* distribution with the specified degrees

of freedom. For this test, in the cases where we estimate the variance matrix, the correct
degrees of freedom are assumed to be identical to the cases where the variance matrix is
known.

Since the degrees of freedom are not always known, we find an estimate for the

degrees of freedom using the generated data for the SSE and SSR (assuming they are z°).

This is accomplished by finding the degree of freedom, which maximizes the y°

likelihood function.

In analyses where an F test is performed, we check the distribution using the
Kolmogorov-Smirnov test with the theoretical degrees of freedom. For this test, when
we estimate the variance matrix, the degrees of freedom are assumed to be identical to the
cases where the variance matrix is known.

We can also find an estimate for the degrees of freedom using the maximum
likelihood estimation for the F distribution. We use the simulated F values to find the

degrees of freedom that maximize the likelihood equation. GLS Method III is a special

case where an F test is not performed, but rather a T test following a y* distribution, so
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we use the maximum likelihood method. Note that there is only one parameter or degree
of freedom for the y* distribution.

We can also find an estimate for the degrees of freedom of the F test by
performing a method of moments calculation for the degrees of freedom, v, and v,. The

first moment and second central moment of an F distribution are (Wackerly et al., 2002):

E(F)=—22 (44)
v, -2
202 (v, +v, -2
py=22nte=2) 45)
by (Uz "2) (Uz _4)
Because the data is simulated, we can obtain a sample mean, F , and a sample
variance, S; , from our simulated data and estimate the parameters as follows:
F=-22 (46)
v, =2
202(, + 6, =2
s = ) (Ul Y, ) 47

= 2 )
5,6, -2)' (6, - 4)
We now have two equations and two unknown parameters, so it is possible to solve for

U, and O, (see Appendix D for full derivation):

2F
D, =—— 48
- 48)
=2
b, = 2F (49)

~F*+F*~Fs, +2s,

The resulting values are estimates for the degrees of freedom for our F test.
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For GLS Method I1I, an F test is not performed, so we must set the first moment

ofa y? distribution equal to the sample mean ?rendering:

n

Bly*)=0=4" (50)
and thus O = ? (Wackerly et al., 2002).

Results

All simulations contain four subjects (I = 4), and each observational unit includes
three repeated measures (J = 3) for this model. We hold the variance constant at two for
all repeated measurements. The correlation p of the repeated measures for a person will
vary and be either: 0, 0.2, 0.8, or 0.99, where 0.99 indicates that the data is highly
correlated. When the correlation is set to zero all analysis is valid and no assumptions are
violated. We can thus use these runs as our baseline or control. In the experiments, By,
the true slope of the regression line will also be varied. When ; is set at zero we know
the null hypothesis is true. A discussion section will follow after all of the simulation
results are recorded.

In the following tables, we will simulate 10,000 different sets of repeated
measures data for each combination of f; and p, then summarize results from fourteen
types of analysis. Quite a few types of analysis are just variations of one another. We
have the RM ANOVA and also the RM ANOVA with the Box’s epsilon correction on its
degrees of freedom. RMR in this model is identical to RM ANOVA and generalized
partial F test analysis. WLS uses weights to account for some of the variation in the

model. Two types of weights are used, one for the subject’s variation and one for the
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treatment’s variation. Means regression pools all of the observations in one treatment;
we will also perform means regression with weights. GLS I, II, and III are executed as
discussed in the GLS sections using the known variance-covariance matrix; we know the
exact values of this matrix because we use it to generate our data. The analysis denoted:
GLS I'est, GLS II est, and GLS III est, use an estimate of the variance-covariance matrix,
as is more likely to be the case in real data. The method of finding this estimated
variance-covariance matrix is discussed in each GLS section.

We wanted to verify our analysis methods via other methods. First, we wanted to
compare histograms of the F values for each of the fourteen methods of analysis to their
theoretical F' distribution. In some cases, there was not an F test but rather a ¥’ test. So
in those cases we will compare the simulated y? data to the theoretical values. Only a
sample of such comparisons is added here (Figures 2.2 and 2.3). This analysis was only
performed in cases where the true B is set at zero, such that the null hypothesis is true, so
that the true distributions should be central F or y* distributions. There are full proofs in
the Appendix B and C of the theory for the experimental results following y° or F

distributions.
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The Kolmogorov-Smirnov (KS) test is also used to verify that the data follows a

particular distribution. When using the KS test we provide a vector of data containing all

of our F values or y* values (we call this the overall distribution in our tables) from one

type of analysis and also the distribution the data is coming from along with the
distributions parameters. The simulated data is compared to the given distribution with
stated parameters and a p-value is given in the table. A p-value over 0.05 means we
believe the data does follow the given distribution with stated parameters. We not only

tested our F values (KS overall) this way but also the components of the F values, which

were y° and in most cases were the SSR (KS num) and SSE (KS den), see Tables 2.4-

2.7.
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Table 2.4

Kolmogorov-Smirnov Tests when ;= 0 andp = 0

KS KS KS

Regression Type overall num den
RM ANOVA 0.24 0 0
RM ANOVA-Box’s ¢ 0.24 0 0
RMR 0.24 0 0
OLS 0.1 0 0
WLS- Tr weights 0 0 0
WLS-Sub weights 0 0 0
Mean OLS 0.29 0 0
Mean OLS-Tr weights 0 0 0
GLSI 0.1 0.16 0.86
GLS I est 0 0 0
GLS I 0.21 0.13 0.86
GLS II est 0.13 0 0
GLS III ‘ 0.16 NA NA
GLS HI est 0 NA NA

Note: RM ANOVA, RMR, OLS, Means OLS, WLS, GLS are the same abbreviations as
used in the analysis section. RM ANOVA-Box’s € is RM ANOVA with a Box’s epsilon
correction. Tr weights mean a weight is for each treatment level and Sub weights is
means a weight is used for each subject. GLS I, I1, and III est means we are using an
estimated variance-covariance matrix for the errors.



Table 2.5

Kolmogorov-Smirnov Tests when ;= 0 and p = 0.2

KS KS KS
Regression Type overall num den
RM ANOVA 0.58 0 0
RM ANOVA-Box’s ¢ 0.58 0 0
RMR 0.58 0 0
OLS 0 0 0
WLS- Tr weights 0 0 0
WLS-Sub weights 0 0 0
Mean OLS 0.1 0 0
Mean OI;S-Tr weights 0.22 0 0
GLSI 0.2 0.39 0.56
GLS Iest 0 0 0
GLSII 0.46 0.88 0.56
GLS II est 0 0 0
GLS 1T 0.39 NA NA
GLS III est 0 NA NA

42
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Table 2.6

Kolmogorov-Smirnov Tests when f; = 0 andp = 0.8

KS KS KS

Regression Type overall num den
RM ANOVA 0.23 0 0
RM ANOVA-Box’s € 0.23 0 0
RMR 0.23 0 0
OLS 0 0 0
WLS- Tr weights 0 0 0
WLS-Sub weights 0 0 0
Mean OLS 0.06 0 0
Mean OLS-Tr weights 0 0 0
GLS1 0.03 0.1 0.06
GLS Test 0.07 0 0
GLS II 0.2 0.78 0.06
GLS II est 0 0 0
GLS III 0.1 NA NA

GLS I est 0 NA NA
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Table 2.7

Kolmogorov-Smirnov Tests when ; = 0 and p = 0.99

KS KS KS

Regression Type overall num den
RM ANOVA 0.84 0 0
RM ANOVA-Box’s € 0.84 0 0
RMR 084 0 0
OLS 0 0 0
WLS- Tr weights 0 0 0
WLS-Sub weights 0 0 0
Mean OLS 0.92 0 0
Mean OLS-Tr weights 0 0 0
GLS1 0.42 0.62 0.68
GLS I est 0 0 0
GLS I 0.51 0.94 0.68
GLS II est 0 0 0
GLS I 0.62 NA NA

GLS III est 0 NA NA
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After we check to see if the data follows the theoretical distribution we wanted to
check the parameters (or degrees of freedom). We wanted to examine if the
approximated df were the same as the theoretical df. In most cases, we have theoretical
df but when the variance-covariance matrix is estimated the df were no longer known.
In these cases we use the df from the theoretical case where the variance-covariance
matrix is known. So, we wanted to estimate the df to see if they were close to the
theoretical values. Also, there was some interest in the df of the RM ANOVA because
the Box’s epsilon correction is used on the df to account for the correlation in the data

structure.

In the Tables 2.8-2.11 the theoretical degrees of freedom of the F or y°

distribution (Th dfI and Th df2 ) are given in the first two columns. They are followed
by df found by the 3 likelihood method (CSLM). CSLM dfI is used to estimate the df
coming from the SSR of the analysis and CSLM df2 estimates the df from the SSE. This
is followed by MOMF dfI and MOMF df2 which are the method of moments df for the F’
test as described in the methods section. Finally, we estimate the df a third way by the
likelihood method again; this time using the F distribution likelihood method (we denote
this FLM) and maximizing both parameters simultaneously to produce FLM df7 and

FLM df2. Occasionally, an NA was added where the test is not performed due to the set

up of the analysis. This was the case in GLS III where we only performed a y test and

not an F test, so there was no need for df2.



Table 2.8

Degrees of Freedom when ;=0 andp =0
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Th Th CSLM CSLM MOM MOM FLM FLM
Regression Type  dfi  df2  df] dr? dfl __df? __ dfl ar
RM ANOVA 2 6 322 11 278 583 206 5.75
RM ANOVA-Boxe 1.21 3.62 322 11 278 583 206 5.5
RMR 2 6 322 11 278 583 206 5.5
OLS 1 10 138 19 .13 935 1 9.69
WLS- Tr weights 1 10 099 1042 092 1459 097 13.38
WLS-Sub weights 1 10 * * -7.8 491 128 6.82
Mean OLS 1 1 078 078 0 2 099 0.99
Mean OLS- weights 1 1 0.62 0.6 0 2 1.02 098
GLS1 1 10 1.0t 999 113 935 1 9.69
GLS I est 1 10 .21 1299 184 591 1.02 6.12
GLSII 2 10 202 999 216 94 202 9.58
GLS II est 2 10 243 1299 217 854 2 8.63
GLS Il 1 NA 1.01 NA 1.2 NA NA NA
GLS III est 1 NA * NA 7915 NA NA NA

Note. * The function to find the degrees of freedom did not converge.
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Table 2.9

Degrees of Freedom when ;=0 andp = 0.2

Th Th CSLM CSLM MOM MOM FLM FLM
Regression Type dfl _ dp dfl dr dfl _df?2 __ dfl ar?

RM ANOVA 2 6 273 897 228 5.68 202 5.69
RM ANOVA-Boxe 1.07 322 273 897 228 568 202 5.69
RMR 2 6 273 897 228 5.68 202 5.69
OLS 1 10 1.21 1852 0.67 58.19 094  20.67

WLS- Tr weights 1 10 092 10,67 0.61 -5299 0.92 32.03

WLS-Sub weights 1 10 * * 6.13 638 115 11.13
Mean OLS 1 1 071  0.73 0 2 098 1
Mean OLS-weights 1 1 059 0.58 0 2 1.02  0.99
GLS1 1 10 099 998 097 983 098 992
GLS I'est 1 10 1.15 1298 117 6.59 099 6.73
GLS I 2 10 2 9.98 1.99 10.08 2.01 10.13
GLS IT est 2 10 2.57 1298 331 6.68 207 7
GLS III 1 NA 099 NA 1 NA NA NA
GLS I est 1 NA * NA 32.52 NA NA NA

Note. * The function to find the degrees of freedom did not converge.
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Table 2.10

Degrees of Freedom when ;=0 and p = (.8

Th  Th CSIM CSIM MOM MOM FLM FLM
Regression Type dfl___ df dfl dr dfl __ df? dfl 214

RM ANOVA 2 6 1.23 291 231 5.81 2.02 5.84

RM ANOVA-Boxe 047 142 1.23 291 231 581 202 5.84

RMR 2 6 1.23 291 231 581 2.02 5.84
OLS 1 10 0.73 1548 024 -1.12 * *
WLS- Tr weights 1 10 0.66 1321 024 -1.02 * *
WLS-Sub weights 1 10 * * 071  -7.78 * *
Mean OLS 1 1 0.5 049 O 2 1.03 1.01
Mean OLS-weights 1 1 0.47 044 O 2 1.09 0.96
GLSI 1 10 1.02 993 1.01 975 1.03 10.05
GLS Iest 1 10 1.16 1291 093 751 1.02 7.5
GLSII 2 10 2.01 993 209 999 2.04 10.24
GLS II est 2 10 2.85 1291 -3.68 4.23 2.19 4.21
GLS III 1 NA 1.02 NA 101 NA NA NA
GLS III est 1 NA * NA 27.86 NA NA NA

Note. * The function to find the degrees of freedom did not converge.
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Table 2.11

Degrees of Freedom when f; = 0 and p = 0.99

Th Th CsLtM CSLM MOM MOM FLM FLM
Regression Type dfl ___df dfl dar dfl __df2 dfl df?

RMANOVA 2 6 0.47 0.7 246 6.04 195 6.07

RM ANOVA-Boxe 0.16 049 047 0.7 246 6.04 195 6.07

RMR 2 6 0.47 0.7 246 6.04 195 6.07
OLS 1 10 0.36 13.55 0.09 -0.06 * *
WLS- Tr weights 1 10 0.36 * 0.08 -0.05 * *
WLS-Sub weights 1 10 * * 0.14 -0.52 * *
Mean OLS 1 1 0.29 029 0 2 0.98 1.01
Mean OLS-weights 1 1 0.29 028 0 2 1.09 0.96
GLS 1 1 10 0.99 10.04 096 956 0.97 9.74
GLS 1 est 1 10 1.05 1294 0.73 18 0.94 14.23
GLS 2 2 10 2 10.04 194 975 1.97 9.76
GLS 2 est 2 10 2.84 1294 -197 399 216 4
GLS3 1 NA 0.99 NA 101 NA NA NA
GLS 3 est 1 NA * NA 5168 NA NA NA

Note. * The function to find the degrees of freedom did not converge.
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Table 2.12 contains the percentage of the time an HF Box’s epsilon estimation is
suggested to correct for a violation of sphericity, rounded to three decimal places. It was
recommended by Quintana and Maxwell (1994) that any HF Box’s epsilon estimator less
than 0.75 be used to correct for a serious violation of sphericity. Our data suggests that
80-100% of simulated data sets needed a Box’s epsilon correction for deviation from the
sphericity assumption. Actually, none of our runs violate the sphericity assumption since
the variance-covariance matrix used to create the data has the property of compound
symmetry.

Table 2.12

Proportion of data sets where a Box’s Epsilon correction factor is suggested

Truef; 0 0.1 1 2 5
p=0 0.817 0.811 0.815 0.809 0.816
p=02 0875 0.875 0.876 0.873 0.874
p=08 0989 0.989 0.986 0.988 0.988
p=099  1.000 1.000 1.000 1.000 1.000

We want to test the different types of analysis presented in the paper for their
ability to handle Type I and Type II errors. The Type I errors should be near 5% if the
analysis is working properly. We want the Type II error rate to be as small as possible.
Usually as the true value of B; gets larger then the Type II errors will become smaller.

We look for methods of analysis where the Type II error is small compared to other
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methods for all values of f;. Tables 2.13-2.16 contain Type I and Type II error rates for

the experiments for Model 1 where each is for a different level of correlation.
Table 2.13

Proportion of Observed Type I or Type Il errors whenp = 0

Type I error Type 1l error rates

The true B; value 0 0.001 __0.01 0.1 1 2 5
Regression Type

RM ANOVA 0.048 0951 0.95 0.73 0 0 0
RM ANOVA-Box’se 0 1 1 1 0978 0926 0.175
RMR 0.048 0951 0.95 0.73 0 0 0
OLS 0 1 1 0.999 0.44 0015 0
WLS- Tr weights 0 1 1 0999 0.539 0.078 0
WLS-Sub weights 0 1 1 0999 0446 0015 O
Mean OLS 0.048 0953 0948 0.876 0.121 0.001 O

Mean OLS-Tr weights  0.054 0948 0943 0865 0.154 0.012 0

GLSI 0.05 0951 0946 0562 0O 0 0
GLS I est 0.038 0961 0957 0.61 0 0 0
GLSII 0.049 0952 0949 0.676 O 0 0
GLS II est 0.102 0895 0.891 0.652 O 0 0
GLS III 0.05 0952 0948 0487 O 0 0

GLS HI est 0.05 0952 0948 0487 O 0 0




Table 2.14

Proportion of Observed Type I or Type 1l errors when p = (.2

Type I error Type 1l error rates

The true B value 0 001 0.1 1 2 5 10
Regression Type

RM ANOVA 0.052 0948 0948 0.666 0.127 0 0
RM ANOVA-Box’se  0.008 0.992 0.993  0.897 0.437 0.006 0
RMR 0.052 0948 0948 0.666 0.127 0 0
OLS 0.035 0964 0961 0.553 0.036 O 0
WLS- Tr weights 0.029 097 0965 0.637 0.112 0 0
WLS-Sub weights 0.028 0971 0972 0.749 0207 O 0
Mean OLS 0.051 0951 0947 0.863 0.719 0372 0.079
Mean OLS-Tr weights  0.053  0.949 0946  0.869 0.755 0476 0.168
GLS1 0.05 0949 0943 047 0.021 O 0
GLSTIest 0.064 0937 0.93 0452 002 0 0
GLSII 0.049 0.95 0935 0.041 O 0 0
GLS IT est 0.07 0933 0916 004 0 0 0
GLS I 0.051 0949 0941 038 0.005 0 0
GLS II est 0.051 0949 0941 0388 0.005 O 0




Table 2.15

Proportion of Observed Type I or Type Il errors whenp = 0.8
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Type I error Type II error rates

The true B, value 0 0.001  0.01 0.1 1 2 5
Regression Type
RM ANOVA 0.05 095 0946 094 0126 0 0
RM ANOVA-Box’se¢ 0.001 0999 1 1 0911 0.632 0.216
RMR 0.05 095 0946 094 0.126 0 0
OLS 0.004 099 0997 099 0484 0.016 O
WLS- Tr weights 0.004 099 0.997 0994 0.582 0072 O
WLS-Sub weights 0.004 0997 0.997 0996 0.584 0.03 0
Mean OLS 0.047 095 095 0946 0.731 0479 0.074
Mean OLS-Tr weights  0.052  0.946 0947 0942 0.732 0.543 0.161
GLS1 0.05 0949 095 0.929 0.02 0 0
GLS I est 0.058 0941 0943 0921 0.026 O 0
GLS I 0.048 0948 0951 0934 0.011 O 0
GLS II est 0.105 0.891 0.892 0.874 0.008 O 0
GLS IIT 0.05 0949 0948 0924 0.006 O 0
GLS IIT est 0.05 0949 0948 0.924 0.006 O 0




Table 2.16

Proportion of Observed Type I or Type Il errors when p = (.99
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Type I error Type Il error rates

The true B, value 0 0.001 _ 0.01 0.1 1 2 5
Regression Type
RM ANOVA 0.048 0951 095 0.73 0 0 0
RM ANOVA-Box’se 0 1 1 1 0978 0926 0.175
RMR 0.048 0951 095 0.73 0 0 0
OLS 0 1 1 0.999 044 0015 0
WLS- Tr weights 0 1 1 0999 0539 0.078 0
WLS-Sub weights 0 1 1 0999 0446 0.015 0
Mean OLS 0.048 0.953 0948 0.876 0.121  0.001 O
Mean OLS-Tr weights 0.054 0948 0943 0.865 0.154 0012 0
GLST 0.05 0.951 0946 0.562 0 0 0
GLS I est 0.038 0.961 0957 0.61 0 0 0
GLSII 0.049 0952 0949 0676 O 0 0
GLS IT est 0.102 0.895 0.891 0.652 O 0 0
GLSIII 0.05 0952 0948 0487 O 0 0
GLS III est 0.05 0.952 0948 0.487 0 0 0
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Discussion

In the results, a Box’s epsilon correction was suggested 80-100% of the time. We
know that sphericity is not being violated when the correlation is zero. But the test was
still recommending a significant Box’s epsilon borrection (a correction factor smaller
than 0.75) about 80% of the time. When correlation between measures existed sphericity
still was not violated but the test was recommending a Box’s epsilon correction almost all
of the time. So there is some question about whether using the RM ANOVA with a
correction factor is a reasonable method. The RM ANOVA with a correction factor
performed the worst of all the analysis on Type I and Type II errors. Quintana and
Maxwell (1994) hold that the corrections for the sphericity assumption do not work when
the sample size is small, or if there are nearly the same number of factor levels as
repeated observations, which was the case in our experiment.

However, RM ANOVA and RMR (which happen to be the same thing in this
model) without any correction have slightly higher Type II error rate than GLS but
overall seem to perform well. Overall, the estimates of the RM ANOVA and RMR seem
to follow an F distribution where the estimated df are close to the theoretical values.
There is no violation of sphericity in this model so this method should work well. The
main problem with using this method is that in real data it is hard to know whether
sphericity is violated. In this case, many statistical packages have the correction factors
built in and we would be using a Box’s epsilon correction factor 80-100% of the time,
which in this case is producing terrible results. Unless there is a good way to test for

sphericity, it is hard to advocate the use of RM ANOVA or RMR.
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OLS, both types of WLS, means OLS, and means OLS with weights regression

all have the assumption that the correlation should be zero. These methods had the most
Type II errors of all but they were consistent from the case with no correlation to the
cases with high correlation, and were outperformed by GLS I, GLS 11, GLS III, RM
ANOVA and RMR. GLS II produces too many Type I errors to be a good method. GLS
I and HII do not have this same problem and should be used over GLS II for this model.
When checking the types of analysis to see if their estimated test statistics were
following the theoretical distribution we found that OLS did so when the correlation was
zero but not in other cases, as might be expected. All of the GLS methods produced F

tests that followed an F distribution with their theoretical df But the GLS methods where

the variance covariance matrix was estimated did not follow the F distribution or 3>

distribution. This was no surprise since we had used the theoretical df for the case where
the variance-covariance matrix was known. It probably is not true that the df for the
analysis where the variance-covariance matrix was estimated and the analysis where
variance-covariance matrix is known should be the same. This was also true with the
WLS. We used the theoretical df from OLS but the weights had to be estimated so we
would expect the dfto change. This is why we went on to estimate the df. We would
have to run many more simulations for different settings of / and J to be able to
approximate the df well for the cases where the variance-covariance matrix is estimated.
Finding approximate df for the cases where the variance-covariance matrix is estimated

would also change our Type I and Type II error rates.
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If the variance-covariance matrix is known, all of the GLS F statistics follow a
theoretical F distribution with the proper df. The estimated df for the GLS with estimated
variance-covariance matrix seem to be higher than the df for the case where the variance-
covariance matrix is known; this is a good explanation for why they were not doing well

with the KS test.
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CHAPTER III - MODEL 2: EVERY SUBJECT AT THEIR OWN LEVEL

We examine a repeated measurement study with multiple observations per person
at a set factor level. For example, researchers test how a person’s weight affects kidney
function, the person’s weight is recorded and several urine samples are collected.
Generally, the subject’s weight remains constant over the short time the study is
conducted, but researchers collect and analyze several urine samples to ensure that any
one meal does not affect the analysis unduly (Liu & Liang, 1992). Other medical studies
employ this configuration type to analyze multiple readings from the same test subject
over several days to guarantee that diet or other factors do not affect measurements
during the administration of a drug. Other studies include manufactured items tested
several times to guarantee accurate readings and preclude additional factors from
affecting the measurements.

Model 2 consists of I people with indices i = 1,2,...,7 and each has J repeated

measures with indices j = 1,2,...,J, where N = I * J denotes the total number of
observations. y; is jth measurement from the ith observational unit. X; is the ith column

of the design matrix, X, in this model and could signify the dosage of drug administered
or the subject’s weight, but it will remain constant for each observational unit throughout
the experiment. Basically, each observational unit will have a treatment level associated
with it that remains constant, so that the treatment level given will be perfectly correlated
with the observational unit. & denotes the vector of errors. The B matrix contains the
coefficients of the analysis and the X matrix is comprised of the variance and covariance

of the errors. Our model follows the equation: y = Xp+&. In matrix notation:
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Y 1 X, i &,y
Yi2 1 x &
B,
y: le X: 1 x[ B:[ﬂ eE= glJ (5]‘54)
)
Y I x &n
| Yy 1 x|  Eu
cov(g,;, &) COV(E,, &) cov(g,;,&,) cov(g,,&,) COV(E,,, &)
cov(g,,€,) COV(Ey,, &) COV(E,;,E),) COV(Ey,8,) cov(g,,&p,)
Z={cov(g,,&,) cov(g,,&,) ... cov(g,,&,) cov(e,,&,) cov(g,,g,)| (55)
COV(E1,6y) COV(E,, &) COV(E,,,6,) COV(E,,E,) cov(E,;, &,,)
| cov(&y,€)  cov(Ep, &) cov(ey,, &) COV(Ey,€y) cov(ey, &) |

It is also noted that these matrices were created for a regression analysis. If
ANOVA is utilized, which requires categorical variables, the X matrix must be adjusted.
In this model, the X matrix used for ANOVA would have one categorical variable, which
would be dummy coded with J - 1 levels and result in rank(X) = (J~1) + 1 =J.

A graphical view of Model 2’s configuration aids in clarity. In this model, we
collect multiple readings on each observational unit. Each observational unit is given

their own symbol in Figure 3.1.
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Figure 3.1. Graphical Representation of Model 2.

Methods

We employ fewer analysis methods for Model 2 than Model 1 because some are

not possible in this setting. All mathematical proofs contained in the methods section of

Chapter II are assumed in Chapter III.

ANOVA Analysis

In Model 2, performing RM ANOVA is impossible because there is only one

independent variable, but standard ANOVA is a viable method of analysis. Because the

treatment remains constant for each observational unit, we can assume it is a categorical

variable and can utilize ANOVA. However, this configuration is rather limited; only one

variable of interest exists. In Model 2, the independent variables, subject and treatment,
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are synonymous so we must execute ANOVA using only one of these variables. Model 1
contained two independent variables, subject and treatment, so we performed RM
ANOVA.

ANOVA requires the assumptions of Normally, independent and identically
distributed errors with constant variance. This assumption set diverges from RM
ANOVA in Model 1, which assumed sphericity. Model 2 does not depend on the
sphericity assumption because it does not contain two independent variables and RM
ANOVA cannot be performed. By extension, we do not require Box’s epsilon
corrections either. We include ANOVA analysis in our simulations of this model, even
though the assumptions of independence and constant variance may not be valid, because
it is functional as a means of comparison to other analyses and is often used by analysts

who do not take into account the lack of independence. The F test for ANOVA is shown

in Table 3.1.

Table 3.1

Univariate ANOVA

Source df SS MS F
Treatments /-1 SSR MSR MSR/MSE
Error I1J-1) SSE MSE

Total 1J-1 SST

Note: Proofs in Appendix E.
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Regression Methods

Numerous methods referred to as repeated measures regression exist, and we use
several of them to analyze simulated data for Model 2. |
Repeated Measures Regression

We cannot utilize the analysis method proposed by Misangyi et al. (2006) in
Model 2. The Misangyi et al. (2006) method requires us to examine a full model and a
reduced model, but Model 2 only contains one independent variable because the
treatment variable and subject variable are identical when dummy coded. Although
Misangyi et al. (2006) refers to his method as repeated measures regression (RMR), it
cannot address all repeated measures experiments. There was difficulty finding valid
methods of analysis for repeated measures since some of the methods and papers had
titles such as RMR but only dealt with one specific repeated measures design. Many
other papers on repeated measures required time to be a factor to use the methods.
Because Misangyi et al. (2006) analysis is incompatible with Model 2, it is omitted from
the simulations.
Ordinary Least Squares Regression

Repeated measures analysis can violate the assumptions of independence,
constant variance, and normality when using OLS regression. However, we include this
analysis in our simulations for comparison purposes because it is the most common
statistical regression analysis. We address all calculations for the coefficients and F tests

in the OLS section of Model 1. In Model 2, we also perform OLS analysis using simple
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weights, just as in Model 1, to account for deviation from the variance assumption. The
inverse of each subject’s sample variance is applied as a weight on each of its
observations. Although we used two types of weighted regression in our first model, in
Model 2, we only utilize one because only one independent variable exists. In Model 1
we were able to add a second variable due to the subjects but in this model the variable
for subjects is identical and therefore perfectly correlated to the variable for treatment so
only one can be added.
Means Regression

Our simulations include means regression for Model 2. To do this, we calculate
the mean of each treatment level of the dependent variable and then run a regression
analysis on these means. We also administer some simple weights to this analysis
obtained from each treatment.
Generalized Least Squares

GLS methods for Model 2 are identical to the ones employed in Model 1.

Further Analysis

Techniques for confirming our simulations using Type I and Type II errors,
estimating the degrees of freedom, and verifying the distributions are identical to the
methods presented in Model 1.

Results

For all of the experiments in Model II, there are four subjects and three repeated

measures from each. These measures are created at the same factor level for a subject.

The variation for each subject is set to two. The correlation will vary and be equal to 0,
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0.2, 0.8, or 0.99. When the correlation is equal to zero all of the assumptions should hold

for the analyses and we can use this case as our baseline for comparison. Each
experiment will have 10,000 simulated data sets and we will perform eleven types of
analysis. Unlike Model 1, here we have used regular ANOVA instead of RM ANOVA
or RM ANOVA with a Box’s epsilon correction because treatment and subject were
identical categorical variables. For this same reason only one type of weights was used.
The RMR could not be performed since we only have one independent variable.

We wanted to verify our analysis methods via other methods. First, we wanted to
compare histograms of the F' values for each of the eleven methods of analysis to their
theoretical F distribution. In some cases, there was not an F test but rather a )(2
distribution. So, in those cases we will compare the simulated ¥’ data to the theoretical
values. A few of these comparisons will be added but space keeps us from adding all of
them (see Figures 3.2 and 3.3). This analysis was only performed in cases where the true

B1 is set at zero, such that the null hypothesis is true.
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Figure 3.2. Simulated F or y° values when =0, p =0.
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Figure 3.3. Simulated F or y* values when $,=0, p = 0.99.

The Kolmogorov-Smirnov (KS) test is also used to verify that the data follows a

particular distribution. When using the KS test we provide a vector of data containing all

of our simulated F values or y° values (in our table we denote this as the overall

distribution) from one type of analysis. The simulated data is compared to the theoretical
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distribution with stated parameters and a p-value is given in the table. A p-value over
0.05 means we believe the data does follow the given distribution with stated parameters.
We not only tested our F values (KS overall) this way but also the components of the F

values, which were y*and in most cases were the SSR (KS num) and SSE (KS den), see

Tables 3.2-3.5.

Table 3.2

Kolmogorov-Smirnoy Tests when 8, =0 andp = 0

KS KS KS
Regression Type overall num den
ANOVA 0 0 0
QLS 0.21 0 0
WLS 0 0 0
Mean OLS 0 0 0
Mean OLS- weights 0 0 0
GLS1 0.21 0.13 0.6
GLS I est 0 0 0
GLSII 0.8 0.87 0.6
GLS II est 0 0 0
GLS III 0.13 NA NA

GLS I est 0 NA NA




Table 3.3

Kolmogorov-Smirnov Tests when ;= 0 _andp = (0.2

KS KS KS
Regression Type overall num den
ANOVA 0 0 0
OLS 0 0 0
WLS 0 0 0
Mean OLS 0 0 0
Mean OLS- weights 0 0 0
GLSI 0.93 0.9 0.28
GLS I est 0 0 0
GLSII 0.26 0.27 0.28
GLS I est 0 0 0
GLS I 0.9 NA NA
GLS IIT est 0 NA NA
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Table 3.4

Kolmogorov-Smirnov Tests when 8, = 0 andp = 0.8

KS KS KS

Regression Type overall num den
ANOVA 0 0 0
OLS 0 0 0
WLS 0 0 0
Mean OLS 0 0 0
Mean OLS- weights 0 0 0
GLSI 0.11 0.33 0.68
GLS I est 0 0 0
GLS1TI 0.72 0.86 0.68
GLS IT est 0 0 0
GLS III 0.33 NA NA
GLS IITI est 0 NA NA
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Table 3.5
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Kolmogorov-Smirnoy Tests when ;=0 and p = 0.99

KS KS KS
Regression Type overall num den
ANOVA 0 0 0
OLS 0 0 0
WLS 0 0 0
Mean OLS 0 0 0
Mean OLS- weights 0 0 0
GLS1I 0.17 0.26 0.2
GLS Iest 0 0 0
GLS1I 0.04 0.19 0.2
GLS I est 0 0 0
GLS 111 0.26 NA NA
GLS III est 0 NA NA

After we check to see if the statistics from the simulated data follows the

theoretical distribution, we wanted to check the parameters (or df). In most cases, we

have theoretical df but when the variance-covariance matrix is estimated then the df were

no longer known. We continued to use the df from the theoretical case where the

variance-covariance matrix is known in the cases where the variance-covariance matrix is

estimated. As previously, we estimated the df to see if they were close to the theoretical

values.
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In the Tables 3.6 - 3.9, the theoretical degrees of freedom (Th dfI and Th df2) are

given in the first two columns. They are followed by df found by the 3 likelihood

method (CSLM). CSLM df] is used to estimate the df coming from the SSR of the
analysis and CSLM df2 estimates the df from the SSE. This is followed by MOMF df1
and MOMF df2 which are the method of moments df for the F test as described in the
methods section. Finally, we estimate the df a third way by the likelihood method again;
this time using the F distribution (we denote it FLM) and maximizing both parameters
simultaneously to produce FLM df7 and FLM df2. Occasionally, an NA was added

where the test is not performed due to the set up of the analysis. This was most often the

case in GLS III where we only performed a 3 test and not an F test.



Table 3.6

Degrees of Freedom when ;= 0 andp = 0

Th Th CSLM CSLM MOM MOM FLM FLM
- Regression Type dfl ___df2 dfl df? dfl __df2 df1 df2

ANOVA 2 6 1.35 19 0.9 1149 1 10.96
OLS 1 10 1.35 19 0.9 1149 1 10.96
WLS 1 10 * * -0.36 345 0.85 3.27
Mean OLS 1 1 0.85 1.58 0 226 1 2.07
Mean OLS- weights 1 1 * 1.61 0 202 125 1.14
GLS1I 1 10 0.99 999 0.9 1149 1 10.96
GLS I est 1 10 1.08 1299 075 1756 098 13.73
GLSII 2 10 1.99 999 197 1062 199 10.72
GLS I est 2 10 2.26 1299 155 1551 191 1346
GLS I 1 NA 099 NA 097 NA NA NA
GLS IIT est 1 NA * NA 45766 NA NA NA

Note. * The function to find the degrees of freedom did not converge.



Table 3.7

Degrees of Freedom when ;= 0 and p = .2
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Th Th CSLM CSLM MOM MOM FLM FLM
Regression Type  dfl  df?2  dfl a2 dfl _df2 _ dfl ar
ANOVA 2 6 1.63 17.64 -3.68 426 1.1 4.25
OLS 1 10 1.63 17.64 -3.68 426 1.1 4.25
WLS 1 10 * * -0.08 275 092 219
Mean OLS 1 1 0.97 194 0 233 1 2.06
Mean OLS- weights 1 1 * * 0 202 126 1.14
GLSI 1 10 1 10.08 099 10.85 1 10.83
GLS I est 1 10 1.27 1299 543 497 1.05 5.09
GLSII 2 10 2.04 10.08 2.17 102 2.07 10.28
GLS IT est 2 10 2.92 1299 -11.69 4.88 232 498
GLS III 1 NA 1 NA 099 NA NA NA
GLS IIT est 1 NA * NA 98732 NA NA NA

Note. * The function to find the degrees of freedom did not converge.
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Table 3.8

Degrees of Freedom when ;= 0 and p = 0.8

Th Th CSLM CSLM MOM MOM FLM FLM
Regression Type dfi __ df2 dfl dar afi ___df dfi dr2

ANOVA 2 6 237 1133 -0.08 235 1.35 1.39
OLS 1 10 237 1133 -0.08 235 1.35 1.39
WLS 1 10 * * -0.01 215 1.22 1.04
Mean OLS 1 1 128 284 0 2.16 0.99 1.99
Mean OLS-weights 1 1 * * 0 203 122 1.12
GLSI 1 10 1 996 1.15 9.03 0.99 9.55
GLS I est 1 10 1.75 1298 -0.1 257 112 1.87
GLS I 2 10 199 996 217 9.84 197 10.11
GLS I est 2 10 451 1298 -0.15 258 261 1.88
GLS III 1 NA 1 NA 1.03 NA NA NA
GLS III est 1 NA * NA 398.53 NA NA NA

Note. * The function to find the degrees of freedom did not converge.



Table 3.9

Degrees of Freedom when ;= 0 and p = 0.99
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Th Th CSLM CSLM MOM MOM FLM FLM
Regression Type dfl __df2 __ dfl dr? dfl __dRe dfl dr2
ANOVA 2 6 2.55 821 -0.01 211 148 1.01
OLS 1 10 2.55 821 -0.01 211 148 1.01
WLS 1 10 * * 0 204 165 074
Mean OLS 1 1 1.35 319 0 205 099 2.03
Mean OLS- weights 1 1 * * 0 202 125 1.15
GLS1 1 10 0.99 10.08 091 11.15 1 10.51
GLS T est 1 10 1.82 1277 -0.06 244 116 1.72
GLS I 2 10 1.98 10.08 1.8 112 2 10.57
GLS I est 2 10 4.8 12.77 -0.09 245 294 1.72
GLS I 1 NA 099 NA 098 NA NA NA
GLS III est 1 NA % NA 56627 NA NA NA

Note. * The function to find the degrees of freedom did not converge.
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As before we want to compare these forms of analysis by calculating their Type I

and Type II errors; this will be summarized in Tables 3.10 — 3.13. The Type I errors

should be near 0.05 and the Type II errors should be as small as possible.

Table 3.10

Proportion of Observed Type I or Tyvpe Il errors whenp =0

Type I error Type II error rates

The true f; value 0 0.01 0.1 1 5
Regression Type

ANOVA 0.047 0.952 0.944 0.302 0
OLS 0.047 0.952 0.944 0.302 0
WLS 0.112 0.888 0.882 0.459 0.053
Mean OLS 0.046 0.949 0.95 0.655 0
Mean OLS- weights 0.134 0.864 0.866 0.51 0.007
GLS1 0.047 0.952 0.944 0.302 0
GLS I est 0.041 0.958 0.95 0.335 0
GLSII 0.048 0.949 0.927 0 0
GLS I est 0.041 0.957 0.937 0.001 0
GLS I | 0.046 0.95 0.943 0.215 0
GLS III est 0.046 0.95 0.943 0.215 0




Table 3.11

Proportion of Observed Type I or Type Il errors when p = 0.2
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Type I error Type Il error rates

The true B, value 0 0.01 0.1 1 5
Regression Type

ANOVA 0.099 0.895 0.887 0.302 0
OLS 0.099 0.895 0.887 0.302 0
WLS 0.179 0.813 0.813 0.44 0.044
Mean OLS 0.048 0.949 0.948 0.733 0.002
Mean OLS- weights 0.136 0.863 0.859 0.587 0.018
GLSI 0.048 0.951 0.943 0.443 0
GLS I est 0.085 0.912 0.905 0.358 0
GLSII 0.05 0.951 0.93 0.005 0
GLS II est 0.094 0.901 0.869 0.007 0
GLS HI 0.051 0.949 0.941 0.362 0
GLS III est 0.051 0.949 0.941 0.362 0




Table 3.12

Proportion of Observed Type I or Type 1l errors when p = 0.8
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Type I error Type Il error rates

The true 3, value 0 0.01 0.1 1 5
Regression Type

ANOVA 0.329 0.678 0.664 0.276 0
OLS 0.329 0.678 0.664 0.276 0
WLS 0.416 0.584 0.58 0.34 0.023
Mean OLS 0.049 0.952 0.947 0.828 0.027
Mean OLS- weights 0.141 0.86 0.861 0.694 0.06
GLSI 0.052 0.951 0.942 0.664 0
GLS T est 0.213 0.796 0.779 0.44 0
GLS I 0.049 0.953 0.939 0.103 0
GLS IT est 0.275 0.728 0.704 0.06 0
GLS III 0.052 0.949 0.944 0.605 0
GLS IIT est 0.052 0.949 0.944 0.605 0




Table 3.13

Proportion of Observed Type I or Type 1l errors when p = (.99

Type I error Type Il error rates

The true §; value 0 0.01 0.1 1 5
Regression Type

ANOVA 0.407 0.582 0.578 0.248 0
OLS 0.407 0.582 0.578 0.248 0
WLS 0.561 0.439 0.44 0.247 0.006
Mean OLS 0.047 0.952 0.954 0.834 0.043
Mean OLS- weights 0.133 0.864 0.864 0.708 0.069
GLS1 0.048 0.951 0.949 0.694 0
GLS I est 0.218 0.776 0.772 0.441 0
GLSII 0.046 0.947 0.943 0.142 0
GLS Il est 0.283 0.706 0.699 0.049 0
GLS III 0.05 0.95 0.948 0.643 0
GLS IIT est 0.05 0.95 0.948 0.643 0
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Discussion

Most of the methods of analysis in this model had a hard time controlling the
Type I errors. When the correlation was higher, the more the Type I errors for some of
the models increased. Overall, only five analyses kept the Type I errors near 0.05: mean
OLS, GLS III where the variance-covariance matrix is estimated, and all types of GLS
when the variance-covariance matrix is known. The other methods will be considered
inferior since this is an important criterion for using a method.

Mean OLS however, does a poor job at controlling the Type II errors. GLS II
controls the Type II errors the best. But when the variance-covariance matrix is
estimated, the Type I errors are high. It seems that GLS III controls both Type I and
Type II errors when variance-covariance matrix is estimated, which is usually the case. It
may be best in this model to use GLS III.

The GLS methods where the variance-covariance matrix is known do follow an F
distribution with the theoretical df. As noted in the Model 1, it is not expected that some
of the methods of analysis do well with the KS test since we do not know the theoretical
df when a variance-covariance matrix has to be estimated. In the GLS analysis we
estimate the df'to be higher when the variance-covariance matrix is estimated. GLS 111
produces an unusually large estimated df when the variance-covariance matrix is
estimated. But as far as controlling the Type I and Type Il errors, GLS 111 still performed

the best.
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CHAPTER IV- MODEL 3: UNSTRUCTURED REPEATED MEASURES

In Model 3, we will examine the case where there are repeated measures on an
observational unit but there is no structure to the independent variables values. This
situation arises, for example, in clinical studies where patients are asked to come in at
various times for check ups and the check up time is the independent variable. So, one
patient may come in after two days for a follow up visit and then not return for eight
more days, while another patient may come in three days after then every five days
thereafter. We will assume no structure of the independent variables or even the number
of repeated measures per observational unit. Another possible situation is where the
weight, height, and age of a person is collected and they are put on a drug, then the
dosage is adjusted and repeated measures are taken at different dosage levels. It is not
assumed that each person would be taking every dose of the drug or taking a constant
dose of the drug like the previous two models would have assumed.

This is a regression situation where we have I observational units with indices i =
1,2,...,I and they have some amount of repeated measures J; with indices j =1,2,...,J;.
J; denotes the ith observational unit’s number of repeated measurements. This is an
unbalanced design, such that each observational unit need not have the same number of
measures as any of the other observational units. For ease, we will let n denote the total

number of observations in the entire experiment. Our model will be of the form
y =X +&, where y; is the jth measurement of the ith observational unit. x;, is the jth

measurement on the ith person for the kth independent variable. B is a vector of
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coefficients and g is the vector of errors. And we will let X be the covariance matrix of

the errors. In matrix notation we have:

L=|covig,,&,)

COVIE;;,€y)

| coviE, &)
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Figure 4.1 is a graphical representation of possible data that would fit this model.

Each observational unit has its own symbol and individual number of repeated measures.
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Figure 4.1. Graphical Representation of Model 3.
Methods

As in model one there are many inefficient and invalid ways of analyzing this
type of data. There are concerns with performing a regression for each of / observational
units and then trying to find a way to compare / regressions. The best way to analyze
data is to have one all-inclusive ANOVA or regression model, so as not to have multiple
statistical tests (Crowder & Hand, 1990).

ANOVA and RM ANOVA

It is impossible to perform any type of ANOVA test on an unstructured set up

such as this. ANOVA requires that the independent variables be able to be classified as

categorical variables and in Model 3 no such structure is imposed upon the data. So,
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there will be no ANOVA performed and also no discussion of the associated sphericity or
Box’s epsilon adjustments.
Regression Methods

Several regression methods will work with this model. Regression does not
require any particular structure of the independent variables, as does ANOVA. As usual,
quite a few methods are referred to as repeated measures regression in the literature but
not all apply to this model.
Repeated Measures Regression

The type of regression presented by Misangyi et al. (2006) cannot be performed
as they suggest on this model. However, a few changes can be made to their method to
accommodate our particular set up. This type of RMR suggested by Misangyi et al.
(2006) requires two categorical variables, one for the treatments and one for the subjects.
In our case, however, we do not want to require the treatments to be categorical and we
have not yet included subjects in our design matrix. In Chapter II it was shown this
method is analogous to a more flexible type of regression using a full model and reduced
model. In this analysis, we will instead discuss the partial F test with the reduced and full
models for regression instead of mentioning the more restrictive subject (SUB) and
treatment (7M7) F test used in Model 1.

We will be testing whether there is a significant effect by the independent
variables in the model beyond that due to the observational units. The full model will
include all independent variables plus an added categorical variable for the observational

units. Then in the reduced model we will only regress on the categorical variable for the
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observational units. These two models will be compared by a partial F test, where

(Kleinbaum et al., 1998):

(R - R ) (k)
CA=-RH/W-T1-¥k) (61)

where k is the number of independent variables, in our case we will use the case where k
equals one.
Ordinary Least Squares Regression

OLS will be performed by the same method as in Chapter IL. It is also noted here
that there is no reason to believe our model will hold to the assumptions of OLS but this
analysis will be performed for the purpose of comparison; since this method is so widely
known and possibly misused.
Means Regression

Means regression is not feasible in this model because of the unstructured data.
Possibly, there could be some structure within a particular data set that may allow for
some sort of averaging but we will not assume this is true for all data sets. Previously,
we had performed simulations using weights however this analysis will not be performed
on this type of model.
Generalized Least Squares

GLS for Model 3 will be performed in the same manner as discussed in Chapter
II. However, there will be one change to GLS III since we cannot assume the covariance
matrix for each observational unit is identical since Model 3 is unbalanced (every

observational unit has a different number of repeated measures). So we will have to
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impose a different structure than the one used in Models 1 and 2. It is impossible to
estimate all of the parameters of the covariance matrix of an observational unit since this
would require more estimates than we have data. So, we still need a structure to our
covariance matrix, so instead we will assume the same structure as we use in GLS I and

11, the correlation and variance are held constant. GLS III will still yield different results
than GLS I and GLS II because we are performing the 3 test suggested by Crowder and

Hand (1990) instead of a typical F test.
Further Analysis

Verifying the simulations with Type I and Type II error rates will be identical to
the methods presented for Model 1 in Chapter II; as will estimate the degrees of freedom
and verify the distributions. In this case, we do need one constraint on our simulations to
be able to estimating the degrees of freedom and verifying the distributions; the total
number of observations in each run needs to be the same. But each subject can still have
a different number of observations.

Results

Model 3 was the most flexible and more of a general form for repeated measures
and therefore we will spend more time and run two sets of experiments. The first set will
have the same sample size as in earlier simulations, while the second will have more
observational units and total observations. The first sets of data will be created for four
observational units with a total of 12 observations. Each observational unit in this model
can have a different number of repeated measures. The variance for all error terms was

set to be two. The correlation was set at one of four levels for each experiment: 0, 0.2,
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0.8, or 0.99. As noted before, when the correlation is set to zero then the assumptions of
all of the types of analysis hold and we can use this case as our baseline or control. Each
experiment will have 10,000 simulated data sets and we will perform eleven types of
analysis.

Unlike Models 1 and 2, the independent variable was not set to any particular
levels of a factor but rather was allowed to be continuous and randomly generated
between zero and ten. Therefore, no ANOVA can be performed in this case. RMR will
be performed but not as described by Misangyi et al. (2006) but rather using the more
general partial F test. Finally, all six types of GLS analysis will be performed.

We will verify our analysis methods via other methods. First, we will compare
histograms of the F values for each of the eleven methods of analysis to their theoretical
F distribution. In some cases, there was not an F test but rather a y distribution. So, in
those cases we will compare the simulated y° data to the theoretical values. A few of
these comparisons will be added but space keeps us from adding all of them (see Figures
4.2 and 4.3). This analysis was only performed in cases where the true B, is set at zero,

such that the null hypothesis is true.
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The Kolmogorov-Smirnov (KS) test is also used to verify that the data follows a

particular distribution. When using the KS test we provide a vector of data containing all

of our simulated F values or y* value (in our table we denote this as the overall

distribution) from one type of analysis. The simulated data is compared to the theoretical

distribution with stated parameters, and a p-value is given in the table. A p-value over
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0.05 means we believe the data does follow the given distribution with stated parameters.

We not only tested our F values (KS overall) this way but also the components of the F
values, which were y° and in most cases were the SSR (KS num) and SSE (KS den), see
Tables 4.1-4 4.

Table 4.1

Kolmogorov-Smirnov Tests when 5, = 0 and p = 0

KS KS KS
Regression Type overall num den
RMR 0.53 0 0
OLS 0.38 0 0
GLS1I 0.38 0.27 0.77
GLS I est 0 0 0
GLSII 0.19 0.13 0.77
GLS H est 0.32 0 0
GLS III 0.27 NA NA

GLS IIT est 0 NA NA




Table 4.2

Kolmogorov-Smirnov Tests when ;=0 andp = 0.2

KS KS KS
Regression Type overall num den
RMR 0.32 0 0
OLS 0.79 0 0
GLSI 0 0 0.01
GLS I est 0 0 0
GLSII 0.63 0.98 0.07
GLS IT est 0 0 0
GLS III 0.79 NA NA
GLS III est 0 NA NA
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Table 4.3

Kolmogorov-Smirnov Tests when ;= 0 andp = 0.8

KS KS KS
Regression Type overall num den
RMR 0.14 0 0
OLS 0.65 0 0
GLS1 0 0 0.03
GLS I est 0 0 0
GLSII 0.58 0.56 0.5
GLS I est 0 0 0
GLS III 0.12 NA NA

GLS III est 0 NA NA




Table 4.4

Kolmogorov-Smirnov Tests when ;= 0 and p = 0.99

KS KS KS
Regression Type overall num den
RMR 0.48 0 0
OLS 0.46 0 0
GLS1 0 0 0.23
GLS I est 0 0 0
GLSII 0.46 0.77 0.6
GLS Il est 0 0 0
GLS 11T 0.26 NA NA

GLS III est 0 NA NA
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After we check to see if the data follows the theoretical distribution we wanted to
check the parameters (or df). In most cases, we have theoretical df but when the
variance-covariance matrix is estimated then the df were no longer known. We continued
to use the df from the theoretical case where the variance-covariance matrix is known in
the cases where the variance-covariance matrix is estimated. As previously, we estimated
the df'to see if they were close to the theoretical values.

In the Tables 4.5 — 4.8, the theoretical degrees of freedom (Th dfI and Th df2) are

given in the first two columns. They are followed by df found by the y? likelihood

method (CSLM). CSLM df is used to estimate the df coming from the SSR of the
analysis and CSLM df2 estimates the df from the SSE. This is followed by MOMF df!
and MOMF df2 which are the method of moments df for the F test as described in the
methods section. Finally, we estimate the df a third way by the likelihood method again;
this time using the F distribution (we denote it FLM) and maximizing the likelihood over
both parameters simultaneously to produce FLM dfI and FLM df2. Occasionally, an NA

was added where the test could not be performed due to the set up of the analysis. This

was most often the case in GLS III where we only performed a y° test and not an F test.



Table 4.5

Degrees of Freedom when ;= 0 and p = 0

Th Th CSLM CSLM MOM MOM FLM FLM
Regression Type  dfl  df2  dfl dr2 dfi__df2  dfl dr2

RMR 1 7 1.37 1297 098 654 1 6.63
OLS 1 10 1.35 19.06 092 1031 0.99 10.11
GLSI 1 10 0.99 10.01 092 1031 0.99 10.11
GLS I est 1 10 1.22 13 1.17 627 1.08 6.27
GLS1I 2 10 1.98 10.01 1.84 10.86 2 10.56
GLS I est 2 10 2.38 1299 162 957 199 9.29
GLS I 1 NA 099 NA 099 NA NA NA

GLS III est 1 NA 1.18 NA 1.75 NA NA NA




Table 4.6

Degrees of Freedom when ;=0 andp = 0.2

Th Th CSLM CSLM MOM MOM FILM FLM

Regression Type dfi __df? dfl df? dfl____df? dfl ar

RMR 1 7 1.22 1055 1.17 6.67 099 6.78
OLS 1 10 1.34 1796 1.1 9.72 1.01 9.79
GLS 1 1 10 1.11 9.93 1.17 9 124 795
GLS I est: | 10 1.3 1298 188 5.8 1.18  5.77
GLS I 2 10 2 995 2.1 9.7 1.99 9381
GLS II est 2 10 273 12.99 85 552 217 576
GLS 111 1 NA 1 NA 1 NA NA NA

GLS III est 1 NA 122 NA 181 NA NA NA




Table 4.7

Degrees of Freedom when ;=0 andp = 0.8

Th Th CSLM CSLM MOM MOM FLM FLM

Regression Type dfl ___df2 dfl dr2 dfl ___df2 dfl dr?

RMR 1 7 0.73 335 1.18 6.88 1.01 6.99
OLS 1 10 1.15 13.52 093 9.76 1.01 946
GLSI 1 10 1.29 986 178 7.15 1.69 6.49
GLS I est 1 10 1.53 12.85 3.09 533 1.66 5.01
GLSII 2 10 2 996 22 9.73 199 995
GLS I est 2 10 3.03 1298 -0.97 3.64 224 349
GLS 111 1 NA 1.01 NA 101 NA NA NA
GLS HI est 1 NA 1.21 NA 1.79 NA NA NA
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Table 4.8

Degrees of Freedom when ;= 0 and p = 0.99

Th Th CSLM CSLM MOM MOM FLM FLM
Regression Type dfl dar dfl dar df1 ar dfl ar

RMR 1 7 0.36 074 1.08 672 1 6.79
OLS 1 10 1.05 11.19 094 884 099 9.01
GLS1 1 10 1.32 9.9 191 6.65 1.8 597
GLS I est 1 10 1.58 127 1.58 655 201 596
GLSII 2 10 2 10,01 1.79 9.72 2 9.6

GLS II est 2 10 2.83 1292 -1.86 397 2.15 3.89
GLS 11T 1 NA 1.01 NA 1.02 NA NA NA

GLS III est 1 NA 1.07 NA 137 NA NA NA




99

As before we want to compare these forms of analysis by calculating their Type I
and Type II errors; this will be summarized in Tables 4.9 - 4.12. The Type I errors
should be near 0.05 and the Type II errors should be as small as possible.

Table 4.9

Proportion of Observed Type I or Type Il errors whenp =0

Type I error Type 1l error rates

The true B value 0 0.01 0.1 0.5 1 5
Regression Type

RMR 0.051 0948 0917 0023 0 0
OLS 0049 0952 0902 0.001 O 0
GLS1 0.049 0952 0902 0.001 O 0
GLS I est 0.065 0937 0885 0.002 0.007 0.049
GLSII 0.045 0949 0815 0 0 0
GLS IT est 0.051 0948 0826 0 0 0
GLS IIT 0.051 0949 0.896 0O 0 0

GLS III est 0.129 0876 0803 0 0 0
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Table 4.10

Proportion of Observed Type I or Type Il errors when p = 0.2

Type I error Type Il error rates

The true B, value 0 0.01 0.1 0.5 1 5
Regression Type

RMR 0.053 0947 0091 0011 0 0
OLS 0.051 0949 09 0002 0 0
GLS1 0.051 0948 0.895 0.002 0.012 0.138
GLS I est 0.068 0928 0.872 0.002 0.014 0.087
GLSII 0.052 0948 0847 0O 0 0
GLS I est 0.083 0918 0.793 0 0 0
GLS IIT 0048 0949 088 0 0 0

GLS HI est 0.131 0.869  0.79 0 0 0
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Table 4.11

Proportion of Observed Type I or Type Il errors whenp = 0.8

Typel error Type Il error rates

The true B; value 0 0.01 0.1 0.5 1 5
Regression Type

RMR 0.051 0947 0797 O 0 0
OLS 0.05 0951 0.88 0003 0 0
GLSI 0.055 0946 0.761 0.008 0.074  0.253
GLS I est 0.071 0929 0.744 0.009 0.075  0.259
GLSII 0.051 0951 0797 O 0 0
GLS II est 0.128  0.87 0697 0 0 0
GLS III 0;051 0948 0.73 0 0 0

GLS HI est 0.124  0.871 0629 0 0 0




Table 4.12

Proportion of Observed Type I or Type Il errors when p = (.99
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Type I error Type Il error rates

The true B; value 0 0.01 0.1 0.5 1 5
Regression Type

RMR 0.052 0.922  0.018 0 0 0
OLS 0.052  0.95 0829 0002 O 0
GLS1I 0.057 0914 0.01 0.011 0.076 0.25
GLS T est 0.054 0923 0.014 0.044 0.163 0.338
GLS1I 0.049 0932  0.028 0 0 0
GLS I est 0.111 0.876 0.032 0 0 0
GLS III 0.053 0915 0005 O 0 0
GLS III est 0.088 0.866 0.007 0 0 0
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For the second experiment, data will be created for ten observational units with an
average of four repeated measures each. Each observational unit in this model can have a
different number of repeated measures but the total number of observations here will add
up to forty. The variance for all error terms was set to be two. The correlation was set at
one of four levels for each experiment: 0, 0.2, 0.8, or 0.99. As noted before, when the
correlation is set to zero then the assumptions of all of the types of analysis hold and we
can use this case as our baseline or control. Each experiment will have 10,000 simulated
data sets and we will perform eleven types of analysis.

We want to verify our analysis methods via other methods. First, we want to
compare histograms of the F’ values for each of the eleven methods of analysis to their
theoretical F distribution. In some cases, there was not an F test but rather a XZ test. So,
in those cases we will compare the y’ results from the simulated data to the theoretical
values. A few of these comparisons will be added but space keeps us from adding all of
them (see Figures 4.4 and 4.5). This analysis was only performed in cases where the true

B1 is set at zero, such that the null hypothesis is true.
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The Kolmogorov-Smirnov (KS) test is also used to verify that the data follows a

particular distribution. When using the KS test we provide a vector of data containing all
of our simulated F values or x> values (in our table we denote this as the overall
distribution) from one type of analysis. The simulated data is compared to the theoretical

distribution with stated parameters and a p-value is given in the table. A p-value over

0.05 means we believe the data does follow the given distribution with stated parameters.
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We not only tested our F values (KS overall) this way but also the components of the F
values, which were x> and in most cases were the SSR (KS num) and SSE (KS den), see
Tables 4.13-4.16.

Table 4.13

Kolmogorov-Smirnov Tests when ;= 0 and p = 0

KS KS KS

Regression Type overall num den
RMR 0.88 0 0
OLS 0.55 0 0
GLSI 0.55 0.62 0.77
GLS I est 0.12 0 0
GLS I 0.54 0.55 0.77
GLS II est 0.04 0 0
GLS I 0.62 NA NA

GLS III est 0 NA NA
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Table 4.14

Kolmogorov-Smirnov Tests when ;= 0 andp = 0.2

KS KS KS
Regression Type overall num den
RMR 0.94 0 0
OLS 0.65 0 0
GLSI 0 0 0.19
GLS I est 0 0 0
GLS I 0.65 0.76 0.42
GLS I est 0 0 0
GLS III 0.93 NA NA

GLS I est 0 NA NA
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Table 4.15

Kolmogorov-Smirnov Tests when B, =0 and p = 0.8

KS KS KS

Regression Type overall num den
RMR 0.33 0 0
OLS 0.11 0 0
GLSI 0 0 0.23
GLS Iest 0 0 0
GLS 11 0.06 0.1 0.34
GLS II est 0 0 0
GLS 11 0.74 NA NA

GLS IIT est 0 NA NA




Table 4.16
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Kolmogorov-Smirnov Tests when ;= 0 and p = 0.99

KS KS KS

Regression Type overall num den
RMR 0.74 0 0
OLS 0.19 0 0
GLSI 0 0 0.57
GLS I est 0 0 0
GLS1I 0.54 0.77 0.16
GLS I est 0 0 0
GLSIII 0.74 NA NA
GLS III est 0.35 NA NA
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After we check to see if the data follows the theoretical distribution we want to
check the parameters (or df). In most cases, we have theoretical df but when the
variance-covariance matrix is estimated then the df were no longer known. We continue
to use the df from the theoretical case where the variance-covariance matrix is known in
the cases where the variance-covariance matrix is estimated. As previously, we estimated
the df to see if they are close to the theoretical values.

In the Tables 4.17 — 4.20, the theoretical degrees of freedom (Th df7 and Th df2)

are given in the first two columns. They are followed by df found by the #* likelihood

method (CSLM). CSLM df! is used to estimate the df coming from the SSR of the
analysis and CSLM df2 estimates the df from the SSE. This is followed by MOMF df]
and MOMF 42 which are the method of moments df for the F test as described in the
methods section. Finally, we estimate the df a third way by the likelihood method again;
this time using the F distribution (we denote it FLM) and maximizing both parameters
simultaneously to produce FLM df7 and FLM df2. Occasionally, an NA was added

where the test could not be performed due to the set up of the analysis. This was most

often the case in GLS III where we only performed a y° test and not an F test.
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Table 4.17

Degrees of Freedom when f; =0andp =0

Th Th CSLM CSLM MOM MOM FILM FLM
Regression Type df] dar dfl ar dfl df2 dfl daf

RMR 1 29 135 5698 1.02 256 098 28.71
OLS 1 38 135 7486 1.02 3272 098 36.16
GLSI 1 38 099 3793 1.02 3272 098 36.16
GLS I est 1 38 1.07 41 1.08 2142 1.05 21.45
GLS I 2 38 2 3793  2.02 3158 198 3437
GLS II est 2 38 205 41 1.85 7544 193 5654
GLS III 1 NA 099 NA 1 NA NA NA

GLS III est 1 NA 1.03 NA 1.16 NA NA NA
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Table 4.18

Degrees of Freedom when ;= 0 and p = 0.2

Th Th CSLM CSLM MOM MOM FLM FLM
Regression Type dfl a2 dfl dar dfl dr2 dfl ar

RMR 1 29 123 4582 1.02 29.01 1.01 29.53
OLS 1 38 135 7312 097 5532 1.01 44.58
GLS1 1 38 .16 3795 1.1 2823 135 16.94
GLS I est 1 38 1.18 4097 119 17.61 125 1526
GLSII 2 38 202 3798 2.02 3726 2.04 37.13
GLS II est 2 38 227 41 2,55 109 211 1251
GLS 111 1 NA 1 NA 099 NA NA NA

GLS I est 1 NA 106 NA 1.16 NA NA NA




Table 4.19

Degrees of Freedom when B; =0 and p = 0.8
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Th Th CSLM CSLM MOM MOM FLM FLM
Regression Type dfl  dR dfl df? dfl  dp dfl dr?
RMR 1 29 072 1225 094 3048 1.02 25.18
OLS 1 38 1.24  64.06 092 8632 099 48.53
GLS 1 1 38 1.34 3796 146 13.14 1.85 10.02
GLS I est 1 38 1.4 4086 152 1212 1.9 9.47
GLS I 2 38 198 38.08 1.86 54.19 198 40.14
GLS IT est 2 38 221 41 202 11.83 2.06 12.02
GLS 11 1 NA 1 NA 1 NA NA NA
GLS III est 1 NA 1.04 NA 1.12 NA NA NA
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Table 4.20

Degrees of Freedom when B; = 0 and p = (.99

Th Th CSLM CSLM MOM MOM FLM FLM
Regression Type dfi _ df2 dfl df2 dfi  df2 dfl df2

RMR 1 29 036 137 099 29.78 0.99 30.32
OLS 1 38 123 5976 107 2602 1 30.81
GLSI 1 38 138 3794 174 1146 196 9.42
GLS I est 1 38 146 4073 1.84 12.03 212 9.85
GLSII 2 38 2 38.08 196 4045 2 37.77
GLS I est 2 38 225 4091 216 10.66 2.09 115
GLS III 1 NA 099 NA 1 NA NA NA

GLS III est 1 NA 1 NA 1.05 NA NA NA
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As before we want to compare these forms of analysis by calculating their Type I

and Type II errors; this will be summarized in Tables 4.21 - 4.24. The Type I errors

should be near 0.05 and the Type II errors should be as small as possible.

Table 4.21

Proportion of Observed Type 1 or Type 1l errors whenp = 0

Type I error Type Il error rates

The true B, value 0 0.01 0.1 0.5 5
Regression Type

RMR 0.054 0948 0.813  0.001 0
OLS 0.055 0945 0764 O 0
GLSI 0.055 0945 0764 O 0
GLS I est 0.059 094 0757 0 0.005
GLSII 0052 0945 0408 O 0
GLS H est 0.048 0951 0447 O 0
GLS III 0.053 0947 0755 O 0
GLS III est 0.07 0927 0723 0 0
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Table 4.22

Proportion of Observed Type I or Type Il errors when p = (.2

Type 1 error Type Il error rates

The true B; value 0 0.01 0.1 0.5 1 5
Regression Type

RMR 0.049 0944 0768 O 0 0
OLS 0046 0949 0755 O 0 0
GLS1 0.046 0944 0733 0 0 0.036
GLS I est 0.053 0939 0725 0 0 0.031
GLS I 0.05 0948 0545 O 0 0
GLS II est 0.074 0918 0497 O 0 0
GLS III 0048 0945 0731 O 0 0

GLS III est 0.068 0924 0692 O 0 0




Table 4.23

Proportion of Observed Type I or Type Il errors when p = 0.8
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Typelerror Type Il error rates

The true B, value 0 0.01 0.1 5
Regression Type

RMR 0.049 094 0.322 0
OLS 0.046 0947 0.723 0
GLSI 0.054 0937 0.289 0.097
GLS T est 0.055 0932  0.289 0.114
GLSII 0.05 0942  0.331 0
GLS I est 0.075 0917 0.31 0
GLS III 0.049 0942  0.288 0
GLS IIT est 0.063 0922 0.273 0
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Table 4.24

Proportion of Observed Type I or Type 1l errors when p = 0.99

Type I error Type 11 error rates

The true f; value 0 0.01 0.1 0.5 1 S
Regression Type 0 0.01 0.1 0.5 1 5
RMR 0.05 0805 0 0 0 0
OLS 0.054 0949 0699 0.001 O 0
GLSI 0.054 0793 0 0 0 0.098
GLS I est 0.051 0803 0 0 0 0.149
GLS I 0049 0855 O 0 0 0
GLS II est 0.074 0833 0 0 0 0
GLS III 0.05 0795 0 0 0 0

GLS III est 0056 0789 0 0 0 0
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Discussion

A few things stand out in the results section. As before, the GLS I, GLS II, and

GLS III simulated F or y statistics followed their respective distributions well in all

situations. GLS I est, GLS II est, and GLS III est simulated F or y° statistic for the most

part did not seem to follow the specified distribution with theoretical df. This is not
surprising since the theoretical df used were obtained from the case when the variance-
covariance matrix is known. There most likely needs to be some sort of correction on the

df when estimating the variance-covariance matrix. The OLS and RMR simulated F or

x " values did follow the F distribution with the theoretical df but the SSE and SSR did

not follow the y” with the theoretical df.

The df were estimated for all of the analysis using several methods. GLS I, GLS
II, GLS III, OLS, and RMR had estimated df that were very similar to the theoretical
ones. RMR and OLS had slightly unstable estimated df2 when the correlation got lafger.
It is no surprise that the estimated df are different than the theoretical ones since the
assumptions for this type of analysis are violated when correlation is present in the data.
GLS L, I, and III est all had larger df than the theoretical ones, which was a bit of a
surprise since we thought they might be smaller since we were estimating more
parameters. There is good reason to believe that the KS test failed because the wrong df’
are used to compare the simulated values to the theoretical distributions.

When the correlation is non-zero, the assumptions for OLS do not hold.

However, in our simulations, the Type II error rates do not get worse as the correlation
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increases when using OLS. OLS has pretty much constant results as the correlation
changes, but all of the other tests have smaller Type Il error rates as the correlation
increases as would be expected. So, in the end OLS performs the worst of all the analysis
in controlling Type II errors when the correlation is high. It seems that OLS is overall a
more conservative test.

GLS II and III had rather high Type I errors when estimating the variance
covariance matrix; this was the case when the sample size was small. In the second set of
simulations when the sample size was larger there was not as noticeable a problem with
the Type I error rate. One might opt to use GLS I methods because it had better Type I
error rates when the sample size was small. However, GLS I causes a higher Type II
error rate when P is rather large. So, if the model is producing rather large estimates of
P1 it maybe best to opt for GLS II or GLS III. GLS II was overall the best test at
controlling for Type II errors.

Finally, RMR or in this case the partial F test did work as well as the GLS
methods at controlling Type II errors and does not require us to estimate a variance-
covariance matrix. As we saw in Model 1, RMR is susceptible to problems when the
sphericity assumption fails. Our simulations were all run where the sphericity

assumption was satisfied; because the variance of our errors had compound symmetry.



121
CHAPTER V - CONCLUSION

The types repeated measures experiments explored in this paper are classified as
longitudinal studies and have been employed across many disciplines and have a plethora
of practical applications. We found examples in the disciplines of psychology and
cognitive development, such as the aforementioned experiment with subjects reading
sentences (Lorch & Myers, 1990). Also, repeated measures designs have been used in
survey analysis as in the government survey example (Kotz & Johnson, 1988). In the life
sciences, people may be measured sporadically for kidney disease; a single reading could
be affected by one particular meal so multiple readings are taken instead (Liu & Liang,
1992). In many cases where single measurements are taken, the experiment could be
redesigned to collect multiple readings on a subject. This can reduce the number of
observational units needed when conducting a study and already has been used in many
fields such as psychology, education, and medicine. Repeated measurement experiments
are common in most situations and fields of study. However, standard analysis will not
suffice because the measurements are correlated. The standard errors, t statistics, and p
values in most statistical tests are invalid when the measurements are not independent
(Misangyi, LePine, Algina, & Goeddeke, 2006).

We found that many methods that claim to work on repeated measures studies
only can be applied in some cases. There are many classifications for repeated measures
designs and it is important to use the correct analysis for a particular type of designed
experiment. We found that generalized least squares regression (GLS) was the best

method for analyzing all type of repeated measures experiments because the variance-
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covariance matrix structure could be tailored to the type of experiment. We also note that
some of the types of analysis, such as OLS, RMR, and ANOVA, have particular
assumptions that must be met. If these assumptions are not met then the analysis is
invalid.

Specifically, in the case of RMR, this test only worked when the sphericity
assumption was not violated. It turned out that some authors were calling RMR some
particular form of a partial F test that only applied in a few repeated measures situations.
Once this was discovered we were able to use the more generalized partial F test as a
means of analysis for all types of repeated measures experiments.

In our analysis it seems that the best method of analysis was either the methods
we called GLS II or GLS III for these models. It will be noted that both of these types of
analysis had larger Type I errors than they should when the sample size was small. In the
case of the GLS analysis, more research could be pursued in finding the correct degrees
of freedom for the F test when estimating the variance-covariance matrix.

Note that our simulations were using a variance-covariance matrix to create the
errors that had compound symmetry. More experiments could be performed and this
could be changed to a more unstructured case where the “true” variance-covariance
matrix did not meet the sphericity assumption. Only two types of structures were used
when estimating the variance-covariance matrix. These too could be expanded to include
more structures: such as, diminishing correlation as the factor levels increase or structure

on the eigenvalues of X instead of the actual values of .
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Analysis was only performed on small sample sizes and in Model 1 and 2 only
one sample size was explored. More trials could be done on different sample sizes in
order to explore the effect on the analysis performance.

Any further study should most likely be spent on GLS and maybe partial F tests
since the assumptions are not violated in these cases whereas they are in OLS and

ANOVA.
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APPENDIXES

Appendix A - Matrix Definitions, Lemmas, and Theorems

. Idempotent Matrix- for M an nxn matrix to be idempotent it must have the propérty:

M=MM (Montgomery et al., 2006).

. Orthogonal Matrix —a matrix M is said to be orthogonal if and only if M’M=I

(Messer, 1993).

. Symmetric Matrix- for M an nxn matrix to be symmetric it must have the property

M=M’ (Montgomery et al., 2006).

. Orthogonally Diagonalizable Matrix - M an nxn matrix is orthogonally

diagonalizable if and only if it is symmetric. Then there exists an orthogonal matrix P

such that P~ = P' and a diagonal matrix D such that A = PDP' (Lay,1997).

. Symmetric Matrix Properties — for M an nxn symmetric matrix the characteristic

polynomial has n real roots and its eigenvectors are orthogonal, but M does not have

to be positive definite (Messer, 1993).

. Positive Definite Matrix- M an nxn matrix is positive definite if M has all positive

eigenvalues (Lay,1997).

. Properties of the Trace

(i) Rank of an Idempotent Matrix — If M is an idempotent matrix then the rank(M) is
its trace. ie. rank(M)=tr(M). (Montgomery et al., 2006).

(i1) tr(ABC)=tr(CAB)=tr(BAC) if the matrices are appropriately conformable
(Montgomery et al., 2006).

(iii) tr(A+B) = trA + trB, if A and B are n x n (Messer, 1993).
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(iv) tr(A) = tr(P~'AP), if A is n x n and P is an invertible n x n matrix

(Messer, 1993).

. For A, a fixed matrix, and Y, a vector of random variables, Var(AY)=AVar(Y)A’
(Montgomery et al., 2006).

Perpendicular projection - M is a perpendicular projection operator on the column

~ space of M, denoted C(M), if and only if M?> =M and M'=M (Christensen, 1987).
If'Y is a random vector with Y ~ N ( , I) and if M is a perpendicular projection
matrix then Y'MY ~ 2 (t+(M),p'Mp/2) (Christensen, 1987).

.IfY~N (p, M) where p e C(M) and if M is a perpendicular projection matrix, then
Y'Y ~ z%(r(M),p'n/2) (Christensen, 1987).

. If Y~ N(n,V) and A is a matrix then Y'AY ~ 7 (tr(AV),pn' Ap/2) if (1)
VAVAV = VAV, (2) p' AVAp=p'Ap, and (3) VAVAn = VAp (Christensen,

1987).
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Appendix B - Ordinary Least Squares Proofs

Matrix Definitions for OLS

OLS is useful when the assumptions of Normality, constant variance,

independence and identical distribution of the errors hold. Therefore: € ~ N (0, 0'21) and

Y~N (XII,IO'2 ), where o> =02, . We will use the equation Y = Xp + ¢ to perform

s o
the OLS analysis, which lead to: f=(X'X)"X"Y and ¥ (B) = 6>(X'X)™" where B is an
unbiased estimator of B, if the assumptions are met (Montgomery et al., 2006). Define a
matrix H to be H=X(X'X)™ X', which is typically called the Hat matrix because

y =Hy. We can see H has the properties:

H=H' (62)
H=HH (63)
(I-HY =N-IH-HI+HH=I-H-H+H=I-H (64)
A-H)=I'-H'=1-H (65)

which means H and I-H are symmetric idempotent matrices (see Appendix A).

Other useful properties we will use are:
X'H=X'X(X'X)"'X'=X' (66)
HX = X(X'X)'X'X = X (67)
Other identities and definitions we will need in the proofs of the SST and SSR are

as follows: ¥ = (1'1)'1'y where 1 is an n x 1 vector of ones and I is ann x n identity

matrix. We also need the facts H1=1 and 1'H=1" this follows from an identity involving
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the partitioning of the X matrix (Montgomery et al., 2006). And (I, -1(1'1) '1") is

idempotent and thus a perpendicular projection matrix because:
(L -11'D)'1) (I, -1(1'1) 1= (I, -1(1'D) '1) (68)
@ -11'D) '1)y= (1, -11'1) 1) (69)
(H-1(1'1)"'1") is also idempotent and a projection matrix because:
1. H-11'1)"1)'= H-1(1'1)'1") (70)

2. (H-1(1'D) "1)(H-1(1'1) '1') = HE-H1(1'1) " 1'-1(1'D) 'T'H+H(1'D '1'1(1'1) 1 (71)

=H-11'D)"1-1(1'n) 1+11') e (72)
=H-1(1'1) "1 (73)
SSE for OLS

Using all of these facts we will now show that the SSE follows a Chi-square
distribution with /J - k - 1 degrees of freedom. To do that we must first manipulate the

general form of the SSE so that we can use some of the theorems previously stated in

Appendix A.
SSE = (y-§) 25y =) 74
= ;l—z(y'—y' H')y - Hy) (75)
- ;_lz-(y'y—y'Hy—Y'H'Y‘*'Y'H'HY) (76)
= glg(y'y~y'Hy~y'Hy+y'Hy) )

= —lz(y'y -y'Hy) (78)
(o2
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Lya-ny (79)

o
We can use Theorem K under three certain conditions to show that the SSE is a Chi-

square with previously stated df:

(i) 0 (-H)o? - (A-H)o? = 0> - (1~ HI - H)o? (80)
[e2 g (¢2
2 1 2
=0 ——2—(1 —~ H)O'
g
(ii) (XB)— (T - H)o? (1 - H)(XB) = (XB) (I - H)(XB) @®1)
(e2 (02 (02

(iii) o* —12—(I—H)0'2 -}-{(I—H)Xﬁ =¢? lz(l-H)x;s (82)
(o2 g (o2

Since these conditions hold, we can now apply by Theorem K:
[ 1 2 1 2 ' 1
y-—A-Hy~ " tr| - A-H)o" L (XP)— (I-H)(XP)/2 (83)
o Lo c
Now it will be shown that the non-centrality parameter reduces to zero:

(XB)%(I—H)(XB)/2=[(Xp)';‘71(XB)—(xw'}%H(Xﬁ)}/z (84)

= (Xﬂ)';{;(xﬁ)—B'X;%X(X'X)‘IX'(XB)]/ 2 (8)

- (Xﬂ)'—l-;(xﬂ)*ﬁ'x'—ly(xﬁ)}ﬂ (86)
i bz o

=0 &7
And then we will go on to manipulate the df given by the theorem into something a bit

more useful:
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tr(-&l7 (I-H)o? ) =tr(1-H) | (88)
=tr(I,,) - tr(H) by property G (jii) (89)
= IJ - tr(X(X'X) "' X") by property G (iv) (90)
=IJ -tr(X'X(X'X)™") by property G (ii) 1)
= —tr(L,.01) (92)
=1J-(k+1) (93)
=IJ-k-1 (94)

If we put all of this together we conclude that: SSE ~ y’ (IJ -k- l).

SST for OLS
Next we need to show that the SST follows a Chi-square distribution with 7.J - 1

df. We must first manipulate the form of the SS7 so that we can apply the Theorems from

Appendix A:
SST=(v-15)'—5 (/- 17) (95)
=(y- 1(1'1)"1'y)'—(;1—2—(y- 1(1'1)'1'y) (96)
=y';%(ln- 1') 71y (@, - 1'D) 1Y)y (97)
= Ly @10 1Yy, (98)

We can use Theorem K under three certain conditions to show that the SST is a Chi-

square with previously stated df:



133

0) 02_—1-2-(1., -1(1'1) "1')02-17(1,, 11D 1)’ = 02-1—2(1,, 11D M) (99)
(o2 o2 o
(i) (XY~ (G 1(1'D) " 1)0” - G 1"D) ' 1)XP) (100)
o g
=(Xp)' ;%(In -1(1'1) '1')(XB)
(iii) 02;1-2—(1., -1(1'1) '11')02;17(1., -1(1'1) '1)(Xp) (101)

1 -
= 62;7(111 -1(1'D) '1')(XB)
Since these conditions hold, we can now apply Theorem K:
' 1 ' -lgy 1 ] ~1gy 2 ] 2
y ?(In 11D 1) y ~ 6 ﬂ’(?‘—z(ln- 11'1) "1 , (XP)'(XP) / 267 (102)

And the degrees of freedom can be reduced as follows:

tr (iz(ln 1ADDM A =or (I, - 11'1) 711 (103)
g

= tr(I,) - tr(1(1'1) '1') by property G (iii) (104)

= IJ-tr((1'1) '1'1) (105)

=IJ-1. (106)

Also, the non-centrality parameter can be evaluated at = 0 since we are assuming the

null hypothesis is true, so (XB)'(XP) / 26> = 0. If we put all of this together we conclude

that: SST ~ x2 (IJ - 1) when Hy is true.
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SSR for OLS

Next we need to show that the SSR follows a Chi-square distribution with k
degrees of freedom. We must first manipulate the form of the SSR so that we can apply

the Theorems from Appendix A:

SSR=(F-15)'— @ - 17) (107)
= (Hy - 1(1'1)"1'y)'§(Hy- 11'1)"'1'y) (108)
= y';l—z—(H’- 1D H-1'D) 1)y (109)
= %y'(ﬁ- 11'1) 1Yy, (110)

We can use Theorem K under three certain conditions to show that the SSR is a Chi-

square with previously stated df:

(i) 02—1-2—(11 -11'D)'1Y) 02—15—(H -11') 1)’ = 02—-1—{(H -1(1'D) 16’ (111)
g g g
(i) (XY = (H - 1(1'D) 1)’ - (@ - 11'1)'1') (XB) (112)
o o
=(XP) - (B-10'D) 1) (Xp)

(iii) 02—(;_%—(H - 1(1'1)"1')02;12—(11 -1(1'1)'1") (XP) (113)

- o (H-1(1'D)"'1') (XB)
g

Since these conditions hold, we can now apply Theorem K:
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y' —1-;(H- 11'D) "1y ~ zz(tr(iz(H-l(l'l)"1')62),(XI3)'(XB)/262) (114)
(o2 o

And the degrees of freedom can be reduced as follows:

tr(iz(H-l(m) 1M6%)= tr(H-1(1'1) "'1%) (115)
g

= tr(H) - tr(1(1'1) "1") by property G (iii) (116)

=k+1-tr((1'D)'1'1) (117)

=k+1-1 (118)

=£. (119)

Also, the non-centrality parameter can be evaluated at =0 because we are assuming the

null hypothesis is true so (XB)'(XB) / 26 = 0 thus SSR ~ 2 (k).
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Appendix C - Generalized Least Squares Proof

In Generalized Least Squares (GLS) regression we will assume the errors follow a

Multivariate Normal distribution such that £ ~ MVN(0,X) and thus

Y| X~ MVN(XB,X), ie. we no longer assume constant variance and zero correlations.

Properties of |§ SJor GLS I and II

B=XZ'X)'X'Ly (120)
E(Y)=E(XB+5)= E(XB) + E(e) = XB=p (121)
V(Y|X)=V(XB+g)=V(e) =X (122)

We will show that ﬁ is an unbiased estimator for § :

E()-Elx = x)"x £ y| (123)
= (X 2'X)" X £ E(y) (124)
= (X'2'X) ' X'EE(Xp + ) (125)
= (X' T X)'X'Z(XB +0) (126)
= (x'£'X)"x 2IXp (127)
=P (128)

The variance-covariance matrix forﬁ is:
V(B) V{x'z"x x'z:“y] (129)
= 'z*‘x)“x'z-‘v(y)[(x'z-lx)“x'z*j' (130)

- (xzx) X s [X X)X (131)
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= (x X X =t X(X 2 X ) (132)
= (x'zx) x 2x(x =X ) (133)
= (x'zx)" (134)

Matrix Definitions for GLS

Y| X ~ MVN(XB,X) (135)

¥=Xp=XXET'X)'X' Ly (136)
Define A to be:

A=X(xz'X)'x' " (137)

We will now examine some properties of these matrices that we will need for latter

proofs:
A= XX X)X ET = AT = (T A (138)
AA = X(X' X)X EX(XEIX) X' BT = A (139)
A-A)I-A)=TI-TA-AI+AA=I-A-A+A=I-A (140)

Because A=AA, then A is idempotent however since A#A’ then A is not symmetric.
SSE for GLS Il
We show that the SSE follows a Chi-square distribution with
1J - k-1 degrees of freedom. We must first manipulate the form of the SSE so that we

can apply the theorems from Appendix A:
SSE=(y-§)E™(y-¥) (141)

=(y'=" -y'A'=" Jy - Ay) (142)
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=y'Ely-y'Z Ay -y'A'E 'y +y'A'E Ay (143)
=y'Zly-y'Z Ay -y'Z Ay +y'Z ' Ay (144)
=y'Z'y~-y' Ay (145)
=y'Z7 (- A)y. (146)

We can use Theorem K under three certain conditions to show that the SSE follows a

Chi-square distribution with previously stated df:

() ZZ'A-A) ZZ'A-A) Z=Z'1-A)(-A) Z=X2"1-A)Z (147)
(i) (XB)" =1 (- A) Z (I - A) (XB) = (XB) =" (- A) (XP) (148)
(i) ZZ' @ - A) ZZ'X - A) (XB) =T (I - A) (XB). (149)

All of these conditions hold so we will now apply Theorem K:

y'E 1Ay ~ 22 er(Z A~ A)Z)(XBY =7 (1~ A)YXB)/2). (150)

And the degrees of freedom can be reduced as follows:

(2@ - A)E) = r(E'E-E7AT) (151)
= tr(Z'E) ~ tr(X7 AX) by property G (iii) (152)
= t(Z7'1,I) - (2 'AT) (153)
= tr(I,,) —tr(A) by property G (iv) (154)
- 17 -wlx(xzx)" x 2 (155)
~1J -tr( =X '2"‘X)“) by property G (i) (156)
= 1T~ tr(L ) (157)

=IJ-(k+1) (158)
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=]J—k-1. (159)

And the non-centrality parameter can be reduced as follows:

(XB) 7' (1- A)XB)/2=|(XB) = 'I(XB) - (XB) L 'AX B2 (160)

i

[(XBy = (XB) - ' X E'X(X'E'X) ' X' E ! (XB)}/2 (161)

[(xBy = (xp) - p' X" 2 (XB)}/ 2 (162)

i

=0. (163)
Thus our SSE ~ x> (I J -k ~1).
SST for GLS 11
We show that the SST follows a Chi-square distribution with /J degrees of

freedom. We can use Theorem K under three certain conditions to show that the

SST =y'E'y is a Chi-square with previously stated df:

) ZZ'ZXE =X (164)
(i) (XBy Z'ZX 7 (XB) = (XB) L' (XB) (165)
(iii) ZX'ZX'Xp = ZX'XP (166)

All of these conditions hold so: y'E£ 7'y ~ y° (tr(Z“IZ),(XB)' X '(XB)/2). And the
degrees of freedom can be reduced as follows:
r(Z7E)=(1,) (167)
=I1J (168)
Also, the non-centrality parameter can be evaluated at g =0 because we are assuming the

null hypothesis is true so:
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(XB)'='(XB)/2 =0. (169)

Theny'X7'y ~ 7*(1J)
SSR for GLS 11

We show that the SSR follows a Chi-square distribution with £ + 1 df. We must

first manipulate the form of the SSR into something that we can apply the Theorems from

Appendix A:
SSR = SST - SSE (170)
=yZly-(yZy-y' 2 Ay) (71
=y'L7' Ay (172)

We can use Theorem K under three certain conditions to show that the SSE is a Chi-

square with previously stated df:

(i) ZXTAZZ 'AZ = I TAAE = ZX AT (173)
(ii) (XB) = 'AZEZ ' A(XB) = (XB) =" A(XP) (174)
(iii) ZXTAZX TAXP = X AXB (175)

All of these conditions hold so:
y'Z'Ay ~ 22 (tr(Z7AZ) (XB) =T A(XB)/ 2). (176)
And the degrees of freedom can be reduced as follows:
tr(EAZ)=tr(A) by property G (iv) (177)
= r(X(x'=X)" X'z (178)

=tr(X'E'X(X'Z X)) by property G (ii) (179)
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= tr(l k+1,k+1 ) (1 80)

= k+1. (181)

Also, the non-centrality parameter can be evaluated at g =0 because we are assuming the
null hypothesis is true so: (XB)'E'A(XB)/2 = 0. Finally, we have that the

SSR~ yx*(k+1).
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Appendix D - Method of Moments for Fisher’s F Distribution

We can find an estimate for the degrees of freedom of the F test by performing a
method of moments calculation for the degrees of freedom, v, and v,. The first moment
and second central moment of an F distribution are (Wackerly et al., 2002):

Uy

E(F)= (182)

2

202 (v, +v, —2)

= -2V (o —4)

(183)

Because the 10,000 sets of data are simulated, we can obtain a sample mean of the F
statistics, F , and a sample variance, sfp , from our simulated data and estimate the

parameters as follows:

F=_" (184)
0, -2
202(0, +0, -2
.5'127 =— UAZ (Ul +202A ) . (185)
b, (Uz _2) (Uz "4)
We obtain an estimate of the denominator degree of freedom using equation (185) :

. _2F
Uy = —=. 186
2= (186)

Next we set the second moment of the Fisher’s F distribution equal to the sample

variance. Now we can solve for O, by using both equations (185) and (186).

_— N2 —
{2
si = (187)

"7 (2F V(2F
o] = 2| | =4
F-1 Fol
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s2 = - (188)

F-1
s = - 189
v (189)
"\ F-1
¥ A . 2
5, (%f—“]s; = 2F%, + ;fi (190)
0, (- 2F +4)s2 —2F 0, (F -1)= 4F> (191)
. 4F*
0 = —— — 192
' (L 2F +4) —2F(F -1) (192
2
= (193)
—2Fs, +4s2 —2F° +2F
2
0, = 2F (194)

“F+F*—Fs, 4252
The resulting values are estimates for the degrees of freedom for our F test; our two
estimated parameters are :

o 2F

b, == 195

» =% 7 (195)
2

b, = 2F (196)

~F*+F*-Fs, +2s,
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Appendix E - ANOVA Sum of Squares

Definitions of the sample means:

_ 1 I J
V=22 Vs P Zy,,, and 7., Zy, . (197-199)
v =1 j=1 ] =t i=1

The distributions of the various components of the Sum of Squares:
v, ~N{g,6?), 3. ~N(u,0?), and 7., ~ N(g,0?). (200-202)

Description of Table 3.1 — Univariate ANOVA

I J
SSE=Y"3 (v, = 7. (203)
i=1 j=
SSE NZI?]-—I (204)
1 J )
SSR=3.2 (V. ~7..) (205)
i=1 j=1
SSR~ 42, (206)
I J )
SST=33 (v, - 5..) (207)
i=1 =1
I J
=330, Tt Fu =TS (208)
i=l j=1
I J I J ! J
=330, -5 +22 30, -5.)5. - 7.0+ XX 6. (209)
i=1 j=1 i=l j=1 i=l j=1
! J I J 2
=¥, -3. )Z+ZZZ T ~ViTu =TTt 7T Y G -5.)  (210)
=1 j=1 =1 =1 il j=1

=33~ )2+22v..2yy 25,550,235 +21y,lzv, sSSP 5 f @11

= j= = Jj= i=l j= = = j=1



I J

{ 1 I { J
Y, T A2IY 5T 2T =20 35 425 5+ 5 5]

= = = =1 =l =1 j=

H

I J _ o & L2 o
=S, -7 2T 4205, . + F. -7..)
=1 gl i=1 =1 j=1
I J _ o o i J _ .
=YY, T 2B 20 5 + Y Y Gl - )
=1 j=1 i=1 j=1
I J I J s
3> -7. P+ XY G.-5)
i=l j=1 i=1 j=1
= SSE + SSR
SST ~ leH

Descriptions for Table 2.1- ANOVA with one Within-Subject Factor

SSBS =

I J _ _ N
>F.-7.)
i=l j=l1

SSBS~ 2,

I J

sw5=3 5, -5}

i=l j=1

SSWS ~ ZIz(J-l)

SSTR = ii(yi ~5..f
4
SSTR ~ y3 |
SSE = i“zjlj(yj -3.)- Z[;ji](ij -5.)
= SSWS - SSTR
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12)

(213)

(214)

@15)

(216)

@17)

(218)

(219)

(220)

(221)

(222)

(223)

(224)

(225)
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SSE~y (21—1)(.]—1) (226)
[
ssT=Y. >, - 7. (227)

i=1 =1

SST ~ 75121—1 (228)
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Appendix F - Possible Restrictions on the Design Matrix

The GLS III requires J + 1 to be less than I because if this is not the case, the
design matrix (X) will be I by J+ 1 and X’X will be singular. This would several
calculations that must be performed impossible, so we will restrict J+ 1 </ in all of our
simulations.

Here we will do a proof by counter example showing that J + 1 <I must be the
case. For example, if we let J+ 1 > I'then rank(X)< I and it can be shown that:

rank(X'X) < min(rank(X"),rank(X)) <min(Z,J +1)=1I. (229)
X°Xisa (J+ 1) x (J + 1) matrix where J + 1 > I. Therefore, the rank (X’X) will always
be less than its column space, which makes it singular and non-invertible. This would be
a large problem in several calculations that must be performed so we will restrict J + 1 <

1 in all of our simulations.
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