San Jose State University

SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Fall 12-2010

Analysis of False Cache Line Sharing Effects on
Multicore CPUs

Suntorn Sae-eung
San Jose State University

Follow this and additional works at: https://scholarworks.sjsu.edu/etd projects

Part of the Systems Architecture Commons

Recommended Citation
Sae-eung, Suntorn, "Analysis of False Cache Line Sharing Effects on Multicore CPUs" (2010). Master's Projects. 2.

DOI: https://doi.org/10.31979/etd.bv2q-hd7t
https://scholarworks.sjsu.edu/etd_projects/2

This Master's Project is brought to you for free and open access by the Master's Theses and Graduate Research at SJSU ScholarWorks. It has been
accepted for inclusion in Master's Projects by an authorized administrator of SJSU ScholarWorks. For more information, please contact

scholarworks@sjsu.edu.

https://scholarworks.sjsu.edu?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/144?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.sjsu.edu/etd_projects/2?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F2&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@sjsu.edu

ANALYSISOF FALSE CACHE LINE SHARING EFFECTS

ON MULTICORE CPUS

A Thesis
Presented to
The Faculty of the Department of Computer Science

San José State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science

by
Suntorn Sae-eung

December 2010

© 2010
Suntorn Sae-eung

ALL RIGHTS RESERVED

SAN JOSE STATE UNIVERSITY
The Undersigned Thesis Committee Approves the Brdjed

ANALYSIS OF FALSE CACHE LINE SHARING EFFECTS ON MULCORE CPUS

by
Suntorn Sae-eung

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

Dr. Robert Chun, Department of Computer Smen Date

Dr. Suneuy Kim, Department of Computer Scéenc Date

Dr. Soon Tee Teoh, Department of Computesrte Date

ABSTRACT

False sharing (FS) is a well-known problem occurring in multipessor systems.
It results in performance degradation on multi-doed programs running on

multiprocessor environments.

With the evolution of processor architecture oweret the multicore processor is
a recent direction used by hardware designersdeease performance while avoiding
heat and power walls. To fully exploit the procagsipower from these multicore
hardware architectures, the software programmedsde build applications using
parallel programming concepts, which are based uputti-threaded programming

principles.

Since the architecture of a multicore processeery similar to a multiprocessor
system, the presence of the false sharing probtespéculated. Its effects should be
measurable in terms of efficiency degradation goacurrent environment on multicore

systems.

This project discusses the causes of the falsenghproblem in dual-core CPUs,
and demonstrates how it lessens the system penficeriay measuring efficiency of a test
program in sequential compared to parallel versidisis, demonstration programs are
developed to read a CPU cache line size, and tdhecexecution results of the test
program with and withoufalse sharing on the specific system hardware. Certain
techniques are implemented to eliminédkse sharing. These techniques are described,
and their effectiveness in mitigating the speedng efficiency lost from false sharing is

analyzed.

ACKNOWLEDGEMENTS

| would like to express my gratitude to my advjdor. Robert Chun, who always
gives counsel professionally. His guidance and tamris motivation forms firm
accomplishment for this project. Moreover, his sgjmpns help me overcome obstacles,
and make me energetic to complete this work whaleliig that it is my wonderful

learning experience.

| appreciate time and efforts that my committees,dm and Dr.Teoh, spend on

reviewing, and giving feedbacks on my report ad a®kcheduling for the presentation.

| would like to thank you Dr. Josef for his profalanswers to my queries, and

source code with helpful advice.

| would like to thank the faculty membeiar constantly supporting and making my
tenure at San Jose State University a pleasantierpe.

| appreciate the generosity of my friends, Top; fending computers and
accessories used in the experiment. Without thewse lending, this project would not
have been completed. Also Nikky and Ben for hism#éssly proofread my writing.

Also, | want to deeply thank my wife who organizesvell-living place, cooks
delicious meals, and encourages me to work atdrethe project. Her embraces propel

me at any time fulfilling with love whenever | tddrom work, or made a mistake.

Most importantly, thank you to my parents who akeays cheerful, encouraging,

and supporting with all their love.

Table of Contents

1. INTRODUCTION . . P |
1.1 Directions of CPU technology and programmmgmlques 2
1.2 Needs of parallel programming.............oovi i e e e 2
1.3 Memory hierarchy and cache elements...............cccooeivicecceecennnn. 3
1.3.1 Memory architecture in Symmetric Multiproses.................. 3
1.3.2 Memory architecture in Chip Multiprocessor 4
1.3.3 Cache line.. .. e D
1.4 Multlprocessor/multlcore cache coherency 6
1.5 False cache line sharing... TP (i
2. PRIOR WORK.. P X0
2.1. Concurrent Harzards False shanng .. 10
2.2. Latency of conflict writes on Multicore Ard¢lcture................c.coeeeeee. 11
3. EXPERIMENT DESIGN. .. ittt it s e et et e e e e ee e ae eaeeens 13
3.1 False sharing detecCtion..........cooevie i iii i e e e e e 13
3.2 False sharing avoidance technique................cooiiiiiiiii i coeee e 15
3.2.1 Spacing teChNIQUEivvieie i e e e e e 15
3.2.2 Padding technique ..ot i 61
3.2.3 Combine Spacrng and Paddlng technlque eemeinen.. 18
3.3 Testing code... T . PP <
4. HARDWARE, SOFTWARE, AND DEVELOPMENT KITS USED................ 22
4.1 Hardware SPecCifiCatioNS..........c.uvviieie e e e eae e 22
4.1.1 Intel Core2 DUO test SyStem.......c.cvvvivei i 22
4.1.2 AMD Turion X2 test SYStemM.......ccvvviii i e e e e 23
4.1.3 Intel Core i5 teSt SYStemM e 23
4.2 SOMWAIE ... ettt it et e e e e e nen e 24
5. EXPERIMENT RESULTS . ..ottt it e e e et e e e e e 25
5.1 Gather cache line Size.......ccoooiiiiii i 02D
5.2 EXECULION FESUILS.... e vt e e e e e e e e 26
5.2.1 Intel Core2 Duo T5270 reSultS..........coviiiiiiiiiiiiie e s 27
5.2.2 AMD Turion X2 reSultS..........coveiieiii i e, 31
5.2.3 Intel Core i5 520M reSultS.......cooviiiiiieiii e e 33
5.3 Performance loss caused by false sharingcccceooiieiiiii s 36

5.4 False sharing impact comparison on multipremeand dual core systems . 37

8. REFERENCES ... e e e e e 43
APPENDICESo e [

APPENTIX A: SOUICE COUBS....ut ittt et ettt ee e e e ee e e aaeenas i
Appendix B: Result Tables............ccoiiiiii e M

Figure 1. Memory hierarchy in SMPcooiiiiii v e 4
Figure 2. Memory hierarchy in CMP ..ot e e e v 4
Figure 3. Cache line details of Intel Core 2 T5PFACESSOr.........vvvvvveieieiieenenannn. 5
Figure 4. False cache line sharing on SMP....co e, 8
Figure 5. False cache line sharingon CMP...........cooiiiiiicee i 9
Figure 6. Speed-up results from Padding and Spasmgoyed on testing array....... 11
Figure 7. Number of latency cycles on varied asiag, Intel Core Duo 2600............ 12
Figure 8. Cache line structure with Spacing tech@iq.................coooiiiiiiiiiiinnnn. 16
Figure 9. Cache line structure with Spacing onlg Badding only techniques.......... 17
Figure 10. Cache line structure with combined Pagldind Spacing technique.......... 18
Figure 11. Cache line structure of Parallel FS eeskParallel FS + Spacing and
Padding remMEdIES CASE... ... vu ittt et et e e e et e e e e e 0.2
Figure 12. Intel Core2 Duo T5270 CPU and cacheSipaionsccceeuene. 22
Figure 13. AMD Turion 64 X2 CPU and caches speaifans 23
Figure 14. Intel Core i5 520M CPU and caches spatibns................coeev v venee, 24
Figure 15. Cache line size reported by CL Reader....eeeeeeiviiiiiiiiinnnnn. 25
Figure 16. Average runtime on Intel Core2 Duo TH5&& system...............cc.eveeee. 28
Figure 17. Speed-up ratios on Intel Core2 Duo TS280system........................ 29
Figure 18. Efficiency percentage on Intel Core 205270 test system.................. 30
Figure 19. Average runtime on AMD Turion 64 X2 tegstem.............cccvvvveneennnn. 31

Listsof Figures

Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.

Figure 26.

Speed-up ratios on AMD Turion 64 X2 8®&temcoeveieennnn. 32
Efficiency percentage on AMD Turion 62 st system 33
Average runtime on Intel Core i5 5208t ®ystem...........c.ccovviiiiennnnn. 34
Speed-up ratios on Intel Core i5 52088 $gstemcocevveiiniinnnn. 35
Efficiency percentage on Intel Core 208 test system........................ 35
Cache Ping-ponging on multi-level memarg multiprocessor system...... 37

Cache Ping-ponging on multi-level memarg dual core system............. 38

Lists of Tables

Table 1. Intel Core2 Duo T5270 experiment reSultS...........ccocovvviiiiiiinnninnnns 27
Table 2. AMD Turion 64 X2 experiment reSultS...........c.covveecviiiiiiiiiieenenn, 31
Table 3. Intel Core i5 520M experiment resultscccovoe i iiiiiiie e, 34

Table 4. Efficiency loss caused by false sharinghentest systems 36

1.0 Introduction

The current trend of processor design is towardéicore CPUs. Recently, eight-
core and twelve-core CPUs have been in the manufagtprocess for both AMD and
Intel [1]. Processor manufacturers overcome thd-Wwal constraint by packing more
than one computing module, so-called cores, intpaekage. Sometimes the chip is
simply referred to as a Chip Multiprocessor (CMRQwever, a processor can also be
coined by the number of its cores. For exampleyadore processor is called as a “dual
core” CPU.

Having many processing cores working together gm@s complexity in
hardware design and software production. The haewsanufacturer is not the only
party involved in taking advantage of the multiglere processors. Programmers are
another party that must also understand how to makeof additional cores. They have
to build software that divides work into many salsks, and assign the tasks on several
threads working on the multiple cores.

A potential problem in multiprocessor systems tteat cause poor performance
by mistakenly updating data in a shared cacheifinthe ‘False Sharing (FS) issue.
Since a multiprocessor architecture could be cemstl a precursor of a multicore
processor, the problem has a tendency to occumonltecore system too.

Previous research on multiprocessor systems dematetthe huge impact of the
false sharing problem [7][8][19][28][29]. The problem can causeerformance
degradation by 20x on a system with four processod by 100x on a system with eight

processors.

This project demonstrates the existenctatsfe sharingon systems with dual core
CPUs, introduces how to observe the problem andsumeathe impact of the false
sharing issue, and compares the performance dieysed byfalse sharingbetween a
dual core processor to a multiprocessor system.

To understand the root causes fafse sharing some facts and theories are
introduced for background:

» Directions of CPU technology and programming teghas
* Needs of parallel programming

* Memory hierarchy and cache elements

» Multiprocessor/multicore cache coherency

» False cache line sharing

1.1 Directions of CPU technology and programming techniques
The first dual core CPU was released in 2001 by [BDB]. Nowadays, multicore

CPUs are ubiquitous [2]. To increase computinggrarance, the processor makers pack
more than a single processing core in one packige.processor is generally called a
multicore or a many-core CPU. The processors ale tabgain higher performance by
using the sum of the computing capability of muéipores. In 2010, a personal
computer with a quad-core CPU has become a starsgaaification in the market, e.g.
Intel core i7 processors, and AMD Phenom Il X4 pssors. Increasing the number of
cores in a processor is expected to be an industeilad used to augment processing
power for decades. For instance, Intel's roadmagmanced that they are now developing

an eighty-core CPU [3].

1.2 Needs of parallel programming

Section 1.1 shows that the current processor’'sdtienmany-cored; however,
most legacy applications were designed to work eefijglly on a single processor.
Though the applications are compatible with mulécprocessors, they cannot make use
of the extra cores. In fact, the additional cores r@ot just rendered useless, they even
contribute to waste due to their extra power consion.

To take advantage of multicore processors, it isidatory to transform the
sequential software to a parallel version, or neselyuild it as a concurrent application.

Nonetheless, parallel programming knowledge isrdggdor both alternatives.

1.3 Memory hierarchy and cache elements

This section discusses concepts of memory hieraaioldycache elements. Levels
and types of memories are distinguished by theicesg time, capacities and
complexities. Certain types of CPUs, along withitheache and main memory are
selected as representatives to illustrate the merhmrarchy of multiprocessor and
many-cored processor systems.fAlse sharings previously notorious in multiprocessor
systems, memory architecture of a Symmetric Mwitpssor (SMP) is compared with

that of a Chip Multiprocessor (CMP).

1.3.1 Memory architecturein Symmetric M ultiprocessor

Symmetric Multiprocessor or SMP is a classical wmunhtion for a
multiprocessor system. A simple diagram of an SM&hiown in figure 1.

In SMP configurations, the memory hierarchy is gatezed in two levels: cache
memory and main memory. CPU access time, or latarcyhe cache is far less than that

from the main memory. Processors use the cacheomyeas a local memory, and

3

consider the main memory to be a remote memory. Oid¢d to request data through a

shared network, bus, or crossbar in order to remd ind write to the main memory.

CPUO

CPU 1

CPU 2

CPU3

Cache

Cache

Cache

Cache

Network,

Bus,

or Crossbar

Main Memory

1.3.2 Memory architecturein Chip Multiprocessor

Figure 1. Memory hierarchy in SMR]

Chip Multiprocessor (CMP) is a way to name multecprocessors. The cache in

a CMP system is divided into tiers similar to SMf a CMP’s structure adds more

layers of caches, e.g. a cache level 2, interlgathe L1 cache and the main memory so

as to reduce the latency gap between the uppetharidwer layers as shown in figure 2.

Intel Core 2 Duo AMD Turion X2 Intel Core i5
Core 0 Core 1 Core 0 Core 1 Core 0 Core 1
L1 cache L1 cache L1 cache L1 cache L1 cache L1 cache
[e [I—l—l l——l—r
H—J L2 cache | L2 cache
L2 cache L2 cache |
| C)
Shared L2 cache ' X
| Shared L3 cache I
R A T
[I
Main Memory Main Memory Main Memory

Figure 2. Memory hierarchy in CMP3]

The diagram shows three distinct layouts of cachBse Intel processor
implements a shared L2 and L3 cache enabling afiscto access to shared data (left).
The AMD CPUs have a special dedicated hardwargrnohsonize shared data between
each core’s L2 caches (middle). This technologgN4D Hyper Transport technology.
For a more advanced CPU, such as the Intel Cora fi¥ocessor is composed of two

levels of separate caches, and a shared L3 cagh8.(r

1.3.3 Cacheline

A cache line is the smallest unit that can be traredebetween the main memory
and the cache. The size of a cache line can bentieted from the CPU specifications, or
directly retrieved from the processor by using mh@nufacturer’s instruction set. In this
project, the cache line size of the Intel Core2 O®&270, the AMD Turion 64 X2 and
Intel Core i5 520M is 64 bytes. Figure 3 magnifesv a cache line resides on the Intel
Core2 T5270 processor. A program code to readdbkecline size for the Intel processor

is shown in appendix A.

____________________________ 5SS S S S 0 S S 0 S S r—
¥ : i fcLo | | 64 bytes
| cpu#o cPU#l | | PRy r\\ e e
- Registers Registers | | icL2 | I :
' — [: - | L
1 [I
' [Level 1 Cache | [Level 1 Cache | == icL512]| Dcache
! I e e . 32k / core
: \/ :
1 I 8 6 0 O G S O S e
1 ¢ I 1 I
! : tcro |]
: Level 2 i o ¥ -
| Cache (Shared) ‘i . D/l cache
| i i i 2MB shared
! } 1 #32768 | 1]
1 | | ececccssessscccsaccaaaed
e T
Main Memory l

Figure 3. Cache line details of Intel Core2 T52706qesso2]

1.4 Multiprocessor /multicor e cache coher ency

In systems consisting of two or more processorsh eme typically has its own
cache, and machine vendors must ensure that dedasaprocessors are coherent. A
protocol must be used to enforce data consistenoyng all the cores’ caches so that the
system correctly processes valid data; this prdtegocalled a “cache coherency”
protocol. The protocol manages data to be updapguopriately using a write-back
policy, resulting in decent overall performancerbgiucing the number of main memory
updates.

Consider an example case of coherency. If CPU1 tapda variable named Z
from 50 to 60, and CPU2 reads Z, what will happethe cache of each CPU? At first,
both CPUs have Z values as 50 in their caches. , TEB&U1l updates Z to be 60.
Employed with the write-back policy, CPUl's cacheesl not need to immediately
update the new value to the main memory. Theretbee/Z values in the main memory
and CPU2’s cache remains 50. In case CPU2 nee@sadoZ, it is mandatory for CPU1
to write the value 60 back to the main memory, egldad it to CPU2's cache before
CPU2 starts a reading or writing process.

Intel uses MESIN! odified, Exclusive,Shared,| nvalid) cache coherency protocol
[22], and AMD has the MOESI (MESI plus Owned) paab[23]. From the previous
example with the Intel protocol, when CPU1 updakesvariable Z, it mark&xclusive
to the cache line which Z resides, and allows laad store operations on the cache line.
If CPU2 needs to read Z, it will mark the cache lasShared. After CPU1 writes 60 as
a new value into the cache line, the cache lineustaill becomeModified, and force
CPU2 tolnvalidate its cache lines. Therefore, CPU1 needs to backwtZvalue 60 to

the main memory before CPU2 can reload 60 to ithedine, and finally read Z.

6

1.5 False cacheline sharing

This section reviews more details on the causesedfiedts of false cache line
sharing, orfalse sharingn short.False sharings a form of cache trashing caused by a
mismatch between the memory layout of write-shatath across processors and the
reference pattern to the data. It occurs when tiwoare threads in parallel programs are
assigned to work with different data elements enghme cache line [25]. In other words,
false sharings a side effect in a multiprocessor system dumatine coherency.

Generally, a multiprocessor system is composed widteds of racks and
processors in a huge computer room which supplgs performance computing power
for special research or critical systems such aaidine reservation center, a financial
enterprise, or NASA. Although the multiprocess@ystem scale seems quite different to
a personal computer, its internal architecture ahwatiprocessor is comparable to a
multicore microprocessor chip in terms of the numbé processors and memory
hierarchy. A computer with dual-core, quad-core, amtal-core processors is now
considered as a type of multiprocessor system. ,Tihugould be susceptible tofalse
sharingproblem as well.

One multiprocessor system must maintain data cobgracross CPUs to enforce
data validation. To take advantage of cache, thieevimack policy must be engaged.
When a processor makes a change on its cache, mth@ssors must be aware of the
change, and determine whether its copies of datadhe needs to be reloaded or not.
Therefore, the cache coherency protocol plays groitant role at this point. It defines
rules to maintain data updates among processorpgratith a minimal number of

requests to the main memory, thereby optimizingesygperformance.

False sharingoccurs when threads from different processors fpodariables
which reside on the same cache line. Intel's premesadopt the MESI protocol. When a
processor invalidates a cache line with an outdatdde, it fetches an updated value
from the main memory into its cache line to maimtdata validity. Figure 4 and 5
demonstrate two threads wifalse sharingon SMP and CMP systems respectively.
Threads 0 and 1 update variables that are adjaoesach other located on the same
cache line. Although each thread modifies diffeneariables, the cache line keeps being

invalidated every iteration.

Thread 0 Thread 1

CPUO CPU1

‘ Cache Line ‘ Cache Line

/\/:aché _/\ Cache
I I
RSananzas

Memory

Figure 4. False cache line sharing on S\

In figure 4, when CPU1 writes a new value, it mak#dJ0’s cache invalidated,
and causes a write back to the main memory. Coesglgu if CPUOQ’s updates its
variable with another value, it results in CPUlaclee invalidation by backing up
CPU1’s cache line to the main memory. If both CRéjseatedly write new values to

their variables, invalidation will keep occurringetiveen their caches and the main

memory. As a result, the number of the main menaaoess increases considerably, and
causes great delays due to the high latency intcatafers between levels of the memory
hierarchy. Because of this, sometimes the falsbecéine sharing problem is called as

“Cache Line Ping-Pong [19].”

Dual Core Processor with

Shared L2 Cache
Thread 0 ,. Thread 1 5
y Core 0 Core 1 4
L1 Cache i L1 Cache

T

? L2 Cache f

[
;2

Memory I

Figure 5. False cache line sharing on CNIR

2.0Prior Work

This section reviewghe prior research regardinfalse sharing effects on
multiprocessor and multicore systems. To understaowd the problem happens on the
low level hardware, the detailed specificationshaf test system must be described.

Many researchers point out the great performangeadation caused by tlialse
sharing problem on multiprocessor environments. Fewer aperformed tests on
multicore CPUs since they are a relatively new igecture. The hypothesis in this
project is thatfalse sharingwould happen in a multicore architecture as itsdoe a
multiprocessor one because it has many common coempg yet the degree of impact

may be different. More details will be discussedh@ experiment and result section.

2.1 Concurrent Hazards: False sharing

Butler did an experiment on a multiprocessor systenmeasurdalse sharing
effects in [8]. His application was executed orystem with four packages of dual core
CPUs, eight cores in total. The code drew a grdpspeed-up in the cases of with and
without false sharing

The results ofalse sharingare shown in figure 6. The graph is plotted byespe
up ratios and the number of thread counts. The fpsed-up at the eight-threaded
execution shows a 100 times difference comparetth¢ovorst case. The gap could be
bigger if the tests are run on 16-core, 32-coredrore systems. Moreover, it can be
observed from the graph that applying either a Bgaonly or Padding-only method
does not significantly improve overall performanc@pacing and Padding will be

described in section 3.2.

10

—&— No Padding, No Spacing —%— Spacing only
—&— Padding only = Padding and Spacing
9 i B I T T T T T T T
8 +
] X
y
I *
6 + ,
T #
o]
-g 5 g5 H
g]
a 4 F+ ol
w]
3 F "
2 + #
1+ kr,—_—EL.__ e
: S_—e——e—F 8 8 g
0 T I e = 4 T
0 1 2 3 4 5 6 7 8

Thread Count

Figure 6. Speed-up results from Padding and Spaempgloyed on testing arrg§]

2.2 Latency of conflict writeson Multicore Ar chitecture

Dr. Josef discussed the latency penalty causedlby sharing[9]. The research

evaluates write performance on both Intel and AMBcpssors.

The experiment was performed on the Intel Core D2600 with a 32 Kbyte L1
cache per core, and a 2 Mbyte L2 shared cache.r&hat is plotted by values of the

array size and latency cycles in figure 7. A highember of cycles per iteration indicates

lower performance.

Figure 7 shows that the amount of latency decliwben the array is allocated
between 128 Kbytes and 2Mbytes in size, whichditsache level two. At this threshold

of the array size, the high latency that would haeen caused by thalse sharing

11

problem disappears. It is because shared L2 cache"“irue” sharing cache, and both
cores can access data without cache invalidati@neby eliminatindgalse sharing
In conclusion, the experiment proved that sharethedetween cores can wipe

out the adverse impact stemming fréafse sharing

300 1 1 1 I I 1 I I I 1 I 1 T L T T
False Sharing (max) ;
False Sharing (avg) ------
False Sharing (min) ---&---
=T No Sharing & 7]
Overhead
< 200 | |
K]
[|
b
= 150 |
»
9o
5
100 [
50 |

64 128 256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M 4M 8M
Array Size

Figure 7. Number of latency cycles on varied ars&e, Intel Core Duo 2600 [16]

There are many approaches to abflse sharingeffects. Tor and Susan
introduced an approach to reddaése sharingon shared memory processors [10]. They
developed compiler algorithms to analyze paraltegpams by examining data structures
susceptible tdalse sharing.They also employed the proper transformations thuce
false sharingeffects. The results show a 2-58% improvementénttansformed versions.
However, the work was performed on a simulator, #nedactual code transformation is

not revealed. For this reason, no further reseeocid be performed.

12

3.0 Experiment Design

In this section, the experiment design in termshafdware and software is
discussed. The test application performs five erpantal cases: Sequential, Parallel FS,
Parallel FS + Spacing remedy, Parallel FS + Padaingedy, and Parallel FS + Padding
and Spacing remedies. This section also descrémmigues used to detect and avoid

false sharingn this project.

3.1 False sharing detection

There are no tools to detect the occurrencdalsie sharing on a system in
general. In other words, it is easy for the problkenbe undetected since there are no
indicators that any performance problems stem fréase sharing Whenever
performance degradegalse sharingis just one suspect, and it is one that many
programmers are not trained to look for.

Fortunately, there are certain profiling metricattcan indicate the existence of a
false sharingissue [12]. It enables a way to narrow down thdecby identifying the
effects offalse sharingand helps the programmer become aware of the nyeatcess
pattern in a parallel program.

If the part of the program that is identified abaitleneck is relatively CPU and
memory bound, and that code rarely has I/O or aclOS calls, then if both of the two
following symptoms hold true then the existence tioé false sharingproblem is
confirmed.

1. The code does not scale well when the concurreeegl lis increased by

executing on more powerful hardware.

13

2. The code sometimes runs significantly slower fdfedent input data that
requires the same amount of processing and meneogsses, but a different
pattern of data traversal. [12]

CPU performance counters are a set of the impontahicators. The statistics
from the low-level hardware can be used to detegntive availability of CPU resources,
including all other subsystems working with CPUshswas caches, branch prediction
units, and so on. A profiler is able to retrievedé statistics so that they are analyzed in
order to identify the type of the bottleneck therebsolving the performance problems
correctly. Two important parameters are used tavdihe occurrence dalse sharingL2
cache misses, and Cycles per Instruction (CPI).

L2 cache misses are a significant indicator toedetfalse sharingin a
multiprocessor system. Many L2 cache misses woeddlt in a large amount of data
fetching from main memory into L2 cache. A root sawf L2 cache misses could be that
(1) a processor requests data that does not rasid2 cache, or (2) the corresponding
cache lines are marked as invalid by data updateatipns from another processor. The
latter mostly results fronfalse sharing Thus, a noticeable spike of L2 cache misses
could indicate the existence of ttase sharingoroblem.

CPI is a widely used indicator to diagnostic theerayl performance. It
demonstrates how many clock cycles are spent foh éastruction. Therefore, CPI
provides statistics on how efficient a program peris. CPI plays an important role to
enumerate the amount of memory latency. Becausspgbed of a CPU is much faster
than that of memory, the CPU needs to wait whechfeg data from or writing data to

memory. Thus an instruction takes more time to @sec

14

The cache invalidation across processors causeadti® misses, and makes the
CPU wait for data writing/reloading. Therefore, eeaf number of L2 cache misses

combined with a high CPI indicates thalse sharings happening on a system.

3.2 False sharing avoidance techniques

Sincefalse sharingresults from two or more cores using data in e cache
line, one way to get rid of it is to eliminate singrin the same cache line. Hence, certain
techniques are proposed in order to avoid datarghby modifying the data arrangement

in the cache line.

3.2.1 Spacing technique

The Spacing technique is an approach used toasplintiguous allocated space.
In an array, a set of variables is typically resérin a chunk to take advantage of locality
of reference. For instance, when four variablesdmelared in an array, an allocation
consisting of four integer-sized adjoining memotgclis is made. Using the Spacing
technique splits the shared data among the resenvay by shifting the offset between
each contiguous array element so that each eleregides on a separate, different cache
line.

In figure 8a, integers D1, D2, D3 and D4 residehi@ same cache line. If there
are four assigned threads, one per core, updatiogetarrays, the cache coherence
protocol will repeatedly cause data invalidatiord gorce data to be written to, and
reloaded from, the main memory. This cache PinggPmngreatly increases run time.
With the implementation of the Spacing technigiaése sharingon array data can be

avoided as shown in figure 8b.

15

CL#0 DO D1 D2 D3

0 3 7 1 15 63

8a. Normal array assignment (up) 8b. Array assignment with spacing (down)

CL#0 DO Space

0 3 63
cL# D1 Space

64 67 127
CL#2 D2 Space

128 131 191
CL#3 D3 Space

192 195 255

Figure 8. Cache line structure with Spacing teclueiq

3.2.2 Padding technique

Besides the Spacing technique, Padding is antgbknique to reduce false cache
line sharing effects by filling a cache line witlpad.

A variable declaration requires an additional piedeinformation to manage
memory space for the variable. When a set of aayasr declared, the operating system
needs to define a piece of extra information tluattains the array information which is
called metadata. This metadata uses space justhégbre actual data, and consists of
pointers and header information. For example, ewanay in .NET would require
metadata consisting of SZARRAY, which stores sifermation of the array.

The existence and location of the metadata infdomah memory needs to be

factored into account when using the padding reme&his metadata is read before every

16

access to the array element. As a result, whereetteead writes to an element, there is a

read of the metadata, SZARRAY, happening just leefioe actual read on the data in the

array. The Spacing technique does not separatarthg metadata from the real array

data, and the metadata still resides on the saoteedee with the first array element as

shown in figure 9a. Therefor&lse sharings still happening between the metadata and

the first array element.

To eliminate sharing on metadata, the cache lihereg SZARRAY is located is

padded so that the first array element is shitbetthé next cache line. Figure 9b illustrates

the cache line structure after the metadata SZARRAdadded.

CL#0 SZARRAY DO Space
0 o3
CL#1 D1 Space ”
64l 12I7
CL#2 D2 Space
128 191
CL#3 D3 Space “
192 255
9a. Spacing (up) 9b. After Padding (down)
CL#0 SZARRAY
0 53
cL#1 Do D1 D2 D3

64

67

71

75

79

127

Figure 9. Cache line structure with Spacing onlyl&adding only techniques

17

3.2.3. Combined Spacing and Padding technique

According to Butler, using a Spacing-only or a éiag-only technique would not
overcome théalse sharingproblem [8]. Therefore, the combination of botbhieiques is
the best way to completely avoidise sharing Figure 10b illustrates cache lines with
Spacing and Padding applied. Each element is depairaa single cache line.

Obviously, Spacing and Padding each requires esgéitche memory space.
Programmers must estimate the memory sacrificedutfir the use of Spacing and
Padding before building an actual application idesrto maximize the performance (by
mitigating false sharing) while minimizing the memaisage.

For example, an array is allocated 320 bytes iar&édLOb instead of the originally
reserved 24 bytes as in figure 10a to space cotigecelements onto separate cache

lines.

CL#0 SZARRAY DO D1 D2 D3

0 T 11 15 19 23 63

10a. Original allocation (up) 10b. After Padding + Spacing (down)

CL#0 SZARRAY Pad
0 63

cL#1 Do Space

64 67 127
CL#2 D1 Space

128 131 191
CL#3 D2 Space

192 195 255
CL#4 D3 Space

256 259 319

Figure 10. Cache line structure with combined Paddand Spacing technique
18

3.3 Testing code

The test programs are adapted from [8]. The testop demonstrates existence
of thefalse sharingproblem. The processing time of the program whignfalse sharing
problem is compared to the program without the lemob The identical experiment is
executed on three hardware configurations to coenple performance loss among
different systems.

The test program begins with worker initializatiol. reads the number of
cores/processors from OS environment variables. Wdrier then forks one thread per
core, and binds each thread to a processor. Nexprogram divides the total workload
into equal pieces, and assigns a piece to eacadhfde workload in the test program is
a simple operation that performs a memory acceswibtyg a value to an array element.

Both false sharing remedies are applied. The sizéneo Padding and Spacing
variables are defined to be 64 bytes, which iza sf one cache line, to ensure that every
element is shifted onto a separate cache line.

There are five testing cases: Sequential, Paree Parallel FS + Spacing
remedy, Parallel FS + Padding remedy, and PafeBet Spacing and Padding remedies.
The data arrangement is the crucial focus in otdeavoidfalse sharing At first, the
entire array is allocated, and each element igasdito a thread. Each thread references
to its own array offset, and repeatedly writes la@#o its own element.

The following code fragments show how to declare diata array, set an offset,

and execute the workload by writing a value todhay element.

var data = new int[_Padding + (_ThreadCount * _Spacing)];
var offset = _Padding + (iThread * _Spacing);

for (int x = @ ; x < iters ; x++) data[offset]++;

19

To avoid false sharing the data layouts for all four FS parallel cases a
differentiated. The Parallel FS case has all thsemarking on contiguous array elements.
Offsets are used to define data layouts in all foarallel test cases. One offset space
equals to a size of an integer or four bytes. RFhrmllel FS with Padding remedy case
pads metadata by setting the offset variabledding to be 16 (64bytes), andSpacing
to be 1. The Parallel FS + Spacing remedy casts gifi each array element by setting
the offset variablesSpacing to be 16 (64bytes) andPadding to be 0. The Parallel FS +
Padding and Spacing remedies case sets both oPHueling and_Spacing variables to
be 16 (64bytes). The completed codes are listappendix A.

For example, suppose that a system consists ofiracbre processor, and there
are only four integer elements; each core workararray element. The array data is
arbitrarily defined to start at the memory addrES8. Generally an integer requires four
bytes of memory space; therefore, all four integens be allocated in one cache line. In
the Parallel FS case, all four threads work oncthr@iguous array elements as shown in
figure 11a. The case has false sharing happenineocache line. The data layout of the
Parallel FS + Spacing and Padding remedies ca$esigned to avoitalse sharing The
layout separates those four integer elements amdniitadata, and spreads them onto
separate cache lines. Total 320 bytes of addres s five cache lines are required, as

calculated below.

Data definition code fragment:
int[_Padding + (_ThreadCount * _Spacing)]

Calculation:
int[16 + (4 x 16)] = int[80] =» 4 bytes X 80 offsets =» 320 bytes

20

The Parallel FS + Spacing and Padding remediegeafermed with isolated

cache lines as shown in figure 11b.

offset = _Padding + (iThread * _Spacing)
TOoffset=0+(0* 1) =0 (O bytes)

Core0 Core1 Core2 Core3
T1offset=0+(1*1)=1 (4 bytes)
read0’ Thread2)|fThread3) T2 offset=0+(2* 1) =2 (8 bytes)
_Padding = 0 (no padding) T3offset=0+(3* 1) =3 (12 bytes)

_Spacing = 1 (no spacing)
Actual address
TO=156+0=156; T1=156+4 =160;
T2=156+8=164;, T3 =156+12=168;
D1 D2 D3
156 160 164 168 172

11a. Cache line structure of Parallel FS case (up)
11b. Cache line Structure of Parallel FS + Padding + Spacing remedies case (down)

CL#3 SZARRAY Pad I

1
o offset = _Padding + (iThread * _Spacing)

_Padding = 16 (64 bytes)

_Spacing = 16 (64 bytes) TO offset = 16 + (0 * 16) = 16 (64 bytes) Core0
P Actual address = 156 + 64 = 220
A '
CL#4 Pad (cont.) DO Space 0 I
220 224
T1offset = 16 + (1 * 16) = 32 (128 bytes) Core1
» AcCluai agdress = 156 + 128 = 284

o

CcL#S Space 0 (cont.) D1 Space 1

284 288 Core2
T2 offset= 16 + (2 * 16) = 48 (192 bytes)
P Actual address = 156 + 192 = 348
N '
read2
CL#6 Space 1 (cont.) D2 Space 2
348 as2 Core3

T3 offset= 16 + (3 * 16) = 64 256 bytes)
Actual address = 156 + 256 =412

<
< roac3

CL#7 Space 2 (cont.) D3 Space 3 I

412 416

Figure 11. Cache line structures of the Parallel ¢&Se and

the Parallel FS + Spacing and Padding remedies case

21

4.0 Hardwar e, Softwar e, and Development Kits Used
The experiments are executed on three differendweme systems. Hardware
specifications, an operating system, software, @ekloping tools used in this project

are enumerated in this section.

4.1 Hardwar e specifications
The experiments are performed on three specifipdst of multicore processors:

Intel Core2 Duo, AMD Turion X2, and Intel Core i5.

4.1.1 Intel Core2 Duo test system

A Dell Vostro 1400 laptop represents a test systath an Intel Mobile Core2
Duo T5270 1.4GHz processor with a 32Kbyte L1 dasghe and a 32Kbyte L1
instruction cache per core. The processor alsoahslsared 2Mbyte L2 cache on die.

CPU-Z program displays the processor specificatiomscache information in figure 12.

CcrPU |Caches] Mainboardl Memoryl SPD | Graphics I About l cpu Caches IMainboard | Memory | sPD | Graphics |
Processor L1 D-Cache
Name Intel Mobile Core 2 Duo T5270 /B:H.L Size |32 KBytes x2
Code Name Merom ! @tﬁ ‘ Descriptor | 8-way set associative, 64-byte line size
Package Socket P (478) CORE . L1 LCache
Technology | 65nm CoreviD | 1175V &l Inside Size |32 KBytes 2
Specification Intel(R) Core(TM)2 Duo CPU TS270 @ 1.40GHz Descriptor | 8-way set associative, 64-byte line size
Family 6 Model F Stepping D L2 Cache
Ext. Family 6 Ext. Model F Revision MO Size |2048 KBytes
Instructions | MMX, SSE (1, 2, 3, 3S), EME4T Descriptor | 8-way set associative, 64-byte line size
Clocks (Core #0) Cache
Core Speed 1396.5 MHz L1 Data | 2Xx32KBytes 8-way
Muttiplier x7.0 L1Inst. | 2x32KBytes 8-way
Bus Speed 199.5 MHz Level 2 2048 KBytes 8-way

Rated FSB 798.0 MHz

Selection Cores | 2 Threads | 2

Figure 12. Intel Core2 Duo T5270 CPU and cache smations[13]

22

4.1.2 AMD Turion X2 test system

Another test system is a HP DV6000 laptop embeddédd an AMD Turion 64
X2 Mobile TL-58 1.9GHz CPU. The processor is congubef a 64Kbyte L1 data cache
and a 64Kbyte instruction cache per core, and &byi2 L2 cache per core. The AMD

Turion 64 X2 processor specifications and cacherinétion is exhibited by CPU-Z in

figure 13.
cPU I Caches | Mainboard | Memory | 5PD | Graphics | about | CPU Caches | Mainboard | Memory | SPD | Graphics |
~Processor ~L1 D-Cache
Name | AMD Turion 64 X2 Mobile TL-58 AMDQ1 Size |64 KBytes | X2
Code Name Tyler BrandID | 2 . Descriptor | 2-way set associative, 64-byte line size
Package | SOCHS 1 (530 S . ~L1 1-Cache
Technology | 65 nm CoreVD | 1100V IQ*W? Size |64 KBytes [x2
Specification [AMD Turion(tm) 64 X2 Mobile Technology TL-58 Descriptor | 2-way set associative, 64-byte line size
Family F Model 8 Stepping 1 —L2 Cache
Ext. Family F Ext. Model 68 Revision Size !51 2 KBYteS I x2
Instructions |MMX(+), SDNowi(+), SSE (1, 2, 3), x86-84, AMD-V Descriptor |16-way set associative, 64-byte line size
~Clocks (Core #0) — -Cache ~1.3 Cache
Core Speed | 19003 MHz L1Data | 2xB4KBytes | 2-way i l
Multplier x95 L1inst. | 2x64KBytes | 2-way Gesoior |
Bus Speed | 200.0 MHz Level2 | 2x512KBytes | 16-way '
HT Link | 800.1 MHz Levelg. | { T
Size |
Descriptol
Cores | 2 Threads | 2 o

Figure 13. AMD Turion 64 X2 CPU and cache specifas[13]

4.1.3Intel Coreib5test system

The last test system is a MacBook Pro laptop wittnéel Core i5 520M 2.4 GHz
processor with Hyper-Threading (HT) technology. T@eU has three tier of caches: a
32Kbyte L1 data cache and a 32Kbyte L1 instructtache per core, a 256Kbyte L2
cache per core, and a 3Mbyte L3 shared cache. 8iecexperiment must carry out on
the Windows platform, Boot Camp, a utility on theadihtosh system, is used to install

Windows XP SP3 prior to Visual Studio and otherlegaions.

23

Figure 14 exhibits the Intel Core i5 520M processpecifications and cache

information retrieved by CPU-Z on Windows XP SP3wBoot Camp.

CPU | Caches | Mainboard | Memory | 5PD | Graphics | About | cPy Caches | Mainboard | Memory | SPD | Graphics |
—Processor ~L1 D-Cache
Name | Intel Core i5 520M § Size |32KBytes [X2
CodeName | Arrandale Brandio] Descriptor |8-way set associative, 64-byte line size
Package | Socket 1156 LGA ST
Technology | 32 nm Core Yoltage Size |32KBytes | %2
Specification | Intel(R) Core(TM)i5 CPU M 520 @ 2.40GHz Descriptor |4-way set associative, 64-byte line size
Famiy | 6 Model | 5 Stepping | 2 ~L2 Cache
Ed.Famly [6 Ext.Model [25 Revison | C2 Size |256 KBytes [x2
Instructions |MMX, SSE (1, 2,3, 35, 4.1, 4.2), EMB4T, VT-x, AES Descriptor | 8-way set associative, 64-byte line size
~Clocks (Core #0) Cache ~L3 Cache
CoreSpeed | 29266MHz || L1Data | 2x32KBytes [8-way Size [3MBytes |
Mutipier | x220 || L1inst. | 2x32KBytes | 4-way Descriptor |12-way set associative, 64-byte line size
BusSpeed | 1330MHz || Level2 | 2x256KBytes | 8-way
QPILink | 23945MHz || Level3 [3MBytes | 12-way size | |
Selection IF‘r ocessor #1 v I Cores [T Threads [T e |

Figure 14. Intel Core i5 520M CPU and cache speatibons[13]

4.2 Software

Software installed on the test systems is an operaystem, utilities, and a
software development tool. The system runs Windg®sservice pack 3 as an operating
system, and the program used in experiments arelaj@d in C and C# languages on
Visual Studio 2010. CPU-Z is a utility used to i®fe processor specifications and cache

information.

24

5.0 Experiment Results
In this section, the results of the experimentsaai@yzed to understand hdalse

sharinghappens, and how to avoid it.

5.1 Gather cachelinesize

Before drawing a data layout diagram htalse sharingoccurs in a cache line,
we need to gather cache specifications on thesyssem.

CL Reader is a program developed to read a canhesize of the Intel CPUs. It
resorts to the Intel’s manual which provides ingian sets for reading specific cache
specifications from processor’s registers. Thdatytdhows a cache line size of the Intel
test system equal to 64 bytes in figure 15. Needes, the utility does not work on
AMD processors because of compatibility betweeallabhd AMD instruction sets. Thus,
the AMD processor's specifications are looked up ®RU-Z and manufacturers’

specification manuals [14][15]. The program cofl€L Reader is in appendix A.

<+ \\tornsilver\Documents\New MS Project\Master Project\CPU_Info\EXE\Read.

Cache line size is: 64 hytes

Figure 15. Cache line size reported by CL Reader

5.2 Execution results
This experiment results are collected from thecakens of five different test

cases: Sequential, FS parallel, Parallel FS + iBgaemedy, Parallel FS + Padding
remedy, and Parallel FS + Spacing and Padding resiethese five cases are designed
to execute the same amount of workload with diffeata layouts. The details of data

arrangement in each case are:

25

- Sequential—a sequential execution of the assigra#llaad on one core.

- Parallel FS—an execution of the assigned workloadalb available cores in
parallel. The amount of workload is divided equddly every core. There will be
data contention in cache lines. The runtime on ttase is expected to be
influenced byfalse sharing

- Parallel FS + Spacing remedy—an execution of tregased workload on all
available cores in parallel. The amount of workleadlivided equally for every
core. Additionally, this case applies the Spaceghhique to avoidialse sharing
effects.

- Parallel FS + Padding remedy—an execution of tregaed workload on all
available cores in parallel. The amount of workleadlivided equally for every
core. This case implements the Padding techniqu@réwent false sharing
occurring on the array metadata.

- Parallel FS + Spacing and Padding remedies—an #@®&acof the assigned
workload on all available cores in parallel. Thecaimt of workload is divided
equally for every core. Moreover, this case combigpacing and Padding
techniqgues so as to completely elimindédse sharingeffects on the array
elements and metadata.

The program execution is performed fifty iteratiombe runtime is collected, and
sorted in order. The five maximum and minimum fegiare discarded to reduce data
variation. The filtered data set of runtime is agad to alleviate interferences from
system environmental programs such as the ants\program, user applications, and

system processes.

26

The performance comparison is measured by timernaptete the workload. The
workload is simply a write operation of a value d@o array element, but repeatedly
performed ten million times with a different valfer each time. At the end of each
execution, runtime results on the five differendemare printed, and speed-up ratios and
efficiency are calculated from the runtime. Bothmmers are computed as relative
parallel performance based upon the sequentiainneras follows. The raw data table is

listed in appendix B.

Speed-up(x) = sequential runtime/ parallel runtime
Efficiency (%) = [(sequential runtime/ parallel runtime) / number of cores|* 100
Or

Efficiency (%) = (speed-up / number of cores) *100 [11]

5.2.1 Intel Core2 Duo T5270 results
The following table shows runtime, speed-up rataosl efficiency percentage of

the five test cases executed on the Intel Core2 Th270 system.

Sequential Parallel | Parallel FS | Parallel FS Parallel FS +
FS + Spacing | + Padding | Spacing & Padding
Runtime 115.75 227.11 152.90 117.08 66.08
(millisecond)
Speed-up (X) 1 0.51 0.76 0.99 1.75
Efficiency (%) 100 25.48 37.85 49.43 87.58

Table 1. Intel Core2 Duo T5270 experiment results

The analysis compares the four parallel caseBed&sequential case, which is set
as base performance. The Parallel FS case takgsdhatest runtime (227.11ms) than any

other cases. Usually, two processors working semgibusly on the same amount of

27

workload should take a half of time executed by prezessor. However, the Parallel FS
runtime is a doubled number of the Sequential dihe. increased runtime is caused by
false sharingwhich boosts the number of cache line invalidatow adds up the actual
runtime with data reloading latency.

The Parallel FS + Spacing remedy shows a certapravement when it is
compared to the Parallel FS. Yet its runtime (16&19) is not satisfying since it is still
greater than runtime in the Sequential case (1b3sY5

The Parallel FS + Padding remedy case spends$ites$117.08ms) than the two
prior cases. The number is even competitive to Sequential case (115.75ms), but
runtime with two cores would be a half of that ameocore to gain equal efficiency.
Therefore, performance degradation still shows mphis case because of tifi@se

sharingproblem.

Intel Core 2 Duo T5270
Parallel FS 66.08 H Runtime
+S&P | (millisecond)

Parallel FS 117.08
+ Padding
Parallel FS 152.91
+ Spacing
Parallel FS 22711
Sequential 115.75

0 50 100 150 200 250

Figure 16. Average runtime on Intel Core2 Duo T58541 system

28

According to afalse sharingresearch, Butler proves that using solely either
Spacing or Padding technique is unable to renfialée sharingeffects [8]. The theory is
consistent to the experiment results.

Finally, Parallel FS + Padding and Spacing rensedase wins the best runtime
(66.08ms). Since the data layout is deliberatelfindd to completely eliminate cache
line sharing, it shows an outstanding performarmapare with other cases. Figure 16
shows runtime of all test cases on the Intel Cof2ua T5270 system. The lower time

indicates the better performance.

Intel Core 2 Duo T5270
m Speed-up (x)
2 -
1.75
1.5 -
1.00 0.99
1 .
0.76
0.51
N .
0 T T T T 1
Sequential Parallel FS Parallel FS Parallel FS Parallel FS
+ Spacing + Padding +S&P

Figure 17. Speed-up ratios on Intel Core2 Duo T5&4&d system

To further analyze the execution performance gitagh in figure 17 plots speed-
up ratios of all cases calculated on the basiseqguéntial case speed-up (1.0x).

The speed-up ratios demonstrate fade sharinghas the most influences on the
Parallel FS execution (0.51x), and less impactstlom two cases with remedial

techniques, Parallel FS + Spacing remedy (0.76x) Rarallel FS + Padding remedy

29

(0.99x). The Parallel FS + Spacing and Padding dezsecase obtains a practical value at
1.75x in speed.

Theoretically, two cores should accelerate systerfopnance for two times (2x).
However, the speed-up ratio in practical does eath the theoretical value because
some system resources are used to fork workin@disreand synchronize data among
those threads. A speed-up ratio range of 1.5x%» i$.considered practical in the level of

parallelism with two processing cores [30].

Intel Core 2 Duo T5270
10 | Efficiency (%)

100

80

60

40 25.4

20

0 . .
Sequential Parallel FS Parallel FS Parallel FS Parallel FS
+ Spacing + Padding +S&P

Figure 18. Efficiency percentage on Intel Core2 O&270 test system

Efficiency is a fairly good indicator to measyrerformance per processing unit,
or per core. The Sequential case is a base valtre 0% efficiency. For two cores
working in parallel, the system must run two tinfaster than single core to gain full
efficiency. Figure 18 shows the efficiency that laasimilar pattern to speed-up ratios:
Parallel FS 25.48%, Parallel FS + Spacing remed$534, Parallel FS with Padding

remedy 49.43%, and Parallel FS + Spacing and Pgddmedies 87.58%. The amount

30

of lost efficiency results from the different degseoffalse sharingimpact. The more

false cache line sharing occurs in a case, therlpagormance it obtains.

522 AMD Turion 64 X2 Test Results
Table 2 shows the experiment results on the AMBiohu64 X2. The average
runtime, speed-up ratios, and efficiency percentagee similar characteristics to the

Intel Core2 Duo T5270 experiment results.

Sequential Parallel | Parallel FS | Parallel FS Parallel FS +
FS + Spacing | + Padding | Spacing & Padding
Runtime 147.00 292.64 202.59 234.80 74.73
(millisecond)
Speed-up (X) 1 0.50 0.73 0.63 1.97
Efficiency (%) 100 25.12 36.28 31.30 98.34

Table 2. AMD Turion 64 X2 experiment results

The Parallel FS runtime (292.64ms) obtains thestwank compared to all other
cases. It takes approximated doubled runtime t&tHoential case.

The Parallel FS + Spacing remedy case (202.59nis5)he Parallel FS + Padding
remedy (234.80ms) cases take less runtime thafPanallel FS, but not less than the
sequential running. Unlike the Intel Core 2 Duo T82est, the Parallel FS + Spacing
remedy outperforms the Parallel FS + Padding remedy

The best runtime belongs to the Parallel FS + i8gaand Padding remedies. It is
very close to ideal runtime of two processing condsch is the sequential runtime
divided by two (73.5ms). Showing the differencesoag all cases, figure 19 displays a

bar graph of the runtime. The lower runtime isltleéter performance.

31

AMD Turion 64 X2

Parallel FS 74.74 H Runtime
+S&P | (millisecond)
Parallel FS 234.80
+ Padding
Parallel FS 202.59
+ Spacing
Parallel FS 292.64
Sequential 147.00
0 50 100 150 200 250 300

Figure 19. Average runtime on AMD Turion 64 X2 mg&tem

Consider the speed-up ratios, the number of thallBeFS case does not scale

well (0.5x) compared to the sequential case (1.0hen the Parallel FS case is

employed with the Spacing technique to become trallel FS + Spacing remedy, the

speed-up augments to be 0.73x. The Parallel FdiR@iremedy also reaches a greater

speed-up (0.63x) compared to the Parallel FS casb@wn in figure 20.

2.0

1.5

1.0

0.5

0.0

AMD Turion 64 X2

1.00
0.73 0.63
3 l .

1.97

Sequential Parallel FS Parallel FS Parallel FS
+ Spacing + Padding

Parallel FS
+S&P

B Speed-up (x)

Figure 20. Speed-up ratio on AMD Turion 64 X2 tas&tem

32

False sharingturns down speed-ups of the three mentioned cases#ferent
degrees. However, the Parallel FS + Spacing andiRgademedies case (1.97x) gains a
promising speed-up at 1.97x, which is virtuallysgdo an ideal value at 2.0x.

Among parallel cases, only the Parallel FS + Sgaeind Padding (98.34%) can
perform well in terms of efficiency as shown inurg 21. The efficiency in any other
cases reflects the different performance degraddtyodifferent degrees délse sharing
effects, Parallel FS (25.12%), Parallel FS + Pagldemedy (31.30%), and Parallel FS +

Spacing remedy (36.28%) respectively.

AMD Turion 64 X2
10000 98.34 | Efficiency (%)
100 -
80 -
60 -
40 - 25.12
20 -
0 T T T T T
Sequential Parallel FS Parallel FS Parallel FS Parallel FS
+Spacing + Padding +S&P

Figure 21. Efficiency percentage on AMD Turion 6At&¥st system

5.2.3Intel Corei5 520M results

In table 3, the runtime of the four parallel cases compared to the Sequential
case as the same to the two former systems. TladldPdfS case spends 154.03ms to
process the workload, which is as twice as mudhasequential runtime (87.74ms). In

addition, the implementation either Spacing or Ragldechnique remedies the effect of

33

false sharing and leads to better runtime compared to the IBaF® case, 82.95ms on
the Parallel FS + Spacing remedy and 89.16ms oRdhallel FS + Padding remedy case.
The Parallel FS + Spacing and Padding remedies oesehes the best runtime

(40.41ms), which is a half runtime of the Sequéntae.

Sequential Parallel | Parallel FS | Parallel FS Parallel FS +
FS + Spacing | + Padding | Spacing & Padding
Runtime 87.74 154.03 82.95 89.16 40.41
(millisecond)
Speed-up (X) 1 0.57 1.06 0.98 2.17
Efficiency (%) 100 28.48 52.89 49.21 108.57

Table 3. Intel Core i5 520M experiment results

Figure 22 exhibits the runtime bar graph of theelir@ore i5 520M. The lesser

time is the better performance.

Intel Core i5 520M
Parallel FS 40.41 B Runtime
+S&P ' (millisecond)
Parallel FS 89.16
+ Padding
Parallel FS 82.95
+ Spacing
Parallel FS 154.04
Sequential 87.75
0 50 100 150 200

Figure 22. Average runtime on Intel Core i5 520/gt tgystem

Figure 23 shows speed-up ratios on the Intel Cbr&20M test system. The
Parallel FS case represents the poor performaneeutan with 0.57x in speed, or

around two times slower than the sequential caseinfprovement takes place on the

34

Parallel FS + Padding remedy case (1.06x) and #nallel FS + Spacing remedy case
(0.98x). The Parallel FS + Padding and Spacing degsecase gains the highest speed-up

ratio than two previous systems at 2.17x in speed.

Intel Core i5 520M

2.5 1 B Speed-up (x)
2.0 A

1.5 1

2.17
1.00 1.06 0.98
1.0
0.57
0.5 .
0.0 T T T T 1

Sequential Parallel FS Parallel FS Parallel FS Parallel FS
+ Spacing + Padding +S&P

Figure 23. Speed-up ratios on Intel Core i5 5208t 8/stem

Intel Core i5 520M
| Efficiency (%)
. 108.57
120 100.00
100 ~
80 -
52.89
60 - 49.21
40 - 28.48
20 A
0 T T T T 1
Sequential Parallel FS Parallel FS Parallel FS Parallel FS
+ Spacing + Padding +S&P

Figure 24. Efficiency percentage on Intel Core #DBI test system

In figure 24, efficiency percentage of all fivetteases is likely to be the same as

the previous tests on Intel Core2 Duo T5270, andDAMIrion 64 X2. The efficiency of
35

the Parallel FS + Padding and Spacing remediesoigeable with a “superlinear”
number (108.57%). It is the case that efficiencgeexds 100%. The term Superlinear is
explained in “Superlinear: an investigation intoncorrent speed-up” [24]. The work
exemplified a program that makes use of data stamed shared cache. When the
program is repeatedly executed, the performancleswilstantially boost up because of
memory locality, both temporal and spatial.

In addition to benefits from locality of referenc@sother condition to achieve a
superlinear efficiency is capable of executing mpldtconcurrent threads. The Intel Core
iI5 520M processor comes up with Hyper-Threadingprietogy which is able to execute
two threads on a core at a time. Therefore, iteiases probability for threads to take

advantage of memory locality; thereby reachinghgoint of the superlinear efficiency.

5.3 Performance drops caused by false sharing
This section illustrates performance drops causedhlse sharing From prior

experiment results in section 5.2, the numberdfmi@ency loss are observed as follows.

Sequential Parallel Parallel FS Parallel FS Parallel FS
FS + Spacing + Padding +S&P
Intel Core2 Duo T5270
Efficiency (%) 100 25.48 37.85 49.43 87.58
Loss (%) - 74.52 62.15 50.57 12.48
AMD Turion 64 X2
Efficiency (%) 100 25.12 36.28 31.30 98.34
Loss (%) - 74.88 63.72 68.70 1.66
Intel Core i5 520M
Efficiency (%) 100 28.48 52.89 49.21 108.57
Loss (%) - 71.52 47.11 50.79 0 (+8.57)

Table 4. Efficiency loss caused by false sharinghertest systems

36

The Parallel FS case suffers fréase sharinghe most. The system performance
drops by three fourth of the speculated efficienelgich caused efficiency loss 70-75%.
The Parallel FS + Spacing remedy and the Paraliet Padding remedy cases also have
significant performance degradation approximate76® in loss, but less efficiency
deficit compared to Parallel FS. Thus, the Par&&l+ Spacing and Padding remedies
case performs efficiently, especially on the C&&20M processor. The case has a small
number of losses on all three test systems: IntgkZ Duo T5270 at 12.48% in loss,

AMD Turion 64 X2 at 1.66% in loss, and Intel Cobeb20M at 8.57% in excess.

5.4 False sharing impacts comparison on multiprocessor and dual core systems

The previous research points out the severityheffélse sharingimpact on
multiprocessor systems in two orders of magnitude00x) [8]. However, the
experiment results in this project demonstratevtbhest case of performance degradation
by a factor of four (-4x). An important observatia®m the degree of impact on a
multiprocessor system is far aggressive than that dual core system. The suspicious

factor is memory hierarchy.

‘ 2 GHz
B 1 Cycle = 0.5ns CPU1 CPU2 CPU3
3 Cycles ‘ @
(1.5ns) Cache Cache Cache Cache Cache f - =~
Ping-Pong '

RAM Shrared | memory bus

Latency
(150 ns) Main Memory(Shared) 0 ke

Figure 25 Cache Ping-ponging on multi-level memarg multiprocessor system

37

CPUO 2 GHz CPU 1
1 Cycle = 0.5ns
3 Cycles
(1.808) L1 cache _Cache
Ping-Pong
15 Cycles
(75 ns) Shared L2 cache
RAM
Latency Main Memory
(150 ns)

Figure 26. Cache Ping-ponging on multi-level memarg dual core system

Figure 25 and 26 show block diagrams of a multipssor system and an Intel
dual core processor system with multi-level membigrarchies. Supposed that the
program similar to the one that runs in the tepieeixnent is executed in a multiprocessor
system,false sharingwill happen on the system. In the Parallel FS c#éise array
elements in a cache line are updated by many morefalse sharinghappens leading
to cache line invalidation. When a processor wrétegw value to its array elements, the
whole cache line needs to be written back to theénnmaemory, and reload to all
processors’ caches, known as cache Ping-Pong unefig5. The CPUs’ read and write
operations befall between their caches and therddhamain memory, in other words,
between the cache and the main memory hierarchgeShe processors need to access
to the main memory through a shared bus, the systéfers from cache misses penalty.
The amount of CPU waiting time substantially ineesm by the cache miss penalty as a

following equation:

Cache miss penalty (X bytes) = main memory acegssdy + X bytes/data receive r426]
38

Cache miss penalty is computed by adding up a aglayain memory access and
data transfer time from main memory to cache memfng data transfer rate depends on
the shared memory bus. Because the bus is usedl pyoeessors to access to main
memory and peripheral devices, transfer time oflihe has much higher latency than
that of an internal bus between caches and CPWerefore, the substantial amount of
increasing time caused by cache miss penalty eesulignificant performance reduction
stemmed from th&alse sharingproblem.

In case the similar scenario f#lse sharingoccurs on a dual core system, the
Cache Ping-Ponging also happens in the systemaagnsim figure 26. Yet, the cache
invalidation in the dual core system takes plackdatween the L1 cache and the shared
L2 cache, instead of in between the cache and thie mmemory in multiprocessor
systems. The on-die caches are local memories dpdoin latency since they reside
internally in the CPU package. Data transfers amoaghes do not require bus
transactions like data transfers between cacharaid memory. Therefore, the severity
degree offalse sharingon a dual core system does not cause significarforpnance

degradation like it does on a multiprocessor system

39

6.0 Conclusion

The study offalse sharingeffects on dual-core CPUs demonstrates the existen
of false sharingon multicore CPUs. The issue apparently degradesathyperformance
in a concurrent execution.

(1) In the case of Parallel FS running on dual coregssors, the efficiency
degrades by approximately 70-75%. In other words,tést program works
slower than speculated by four times; it runs aB@% efficiency instead of
100% efficiency.

(2) For the partially FS resolved cases, the ParaleHFSpacing remedy and
Parallel FS + Padding remedy have certain runtmm@raovements to be 30-
50% efficiency. However, th&alse sharingimpact still stalls the two test
cases, and leads to significant efficiency loss.

(3) On the best case, the Parallel FS + Spacing andirRpdemedies case
completely avoiddalse sharing and obtains performance at nearly 100%
efficiency.

All the test systems, Intel Core2 Duo T5270, AMDridn 64 X2, and Intel Core
iI5 520M processors, are consistently suffering friaise sharingeffects resulting in
performance drops at 50%-75% efficiency.

On one hand, programmers can be optimistic forravgments on multicore
CPUs since the ratio of performance drops causdtidfalse sharingproblem on a dual
core system is not as high as that on a multipsmres/stem. The findings in this project
indicates that performance of a dual core systespsdapproximately by a factor of four
(-4x). Unlike thefalse sharingmpact on a multiprocessor system, the previoasarch
reported the performance loss as high numbers esiomdred times (-100x) on an eight

processor system. The different degrees offtee sharingimpacts come from the

40

differences in memory architectures between these systems. The shared cache
implementation on Intel dual core processors al@d the adverse impact caused by
false sharing For AMD processors, although each core has aa&ph2 cache which is
subject to havédalse sharingproblems, the processor handles the data syncatoom
among caches on all cores by using MOESI coherpratpcol and dedicated data paths.
This interconnection technology is called AMD Hypemansport technology. In brief,
both Intel and AMD have deliberately come up witle intelligent designs to cope with
the data sharing issue across cores.

On the other hand, the programmers must still b@ar@ of performance
degradation caused Wglse sharing because a program working four times slower in
parallel on a dual core system means it runs elmwes than sequential execution on a
single core processor. ThHalse sharingissue, therefore, is a major potential issue in
parallel programming on multicore CPUs.

This project proposed and implemented the Spaamy Padding techniques to
avoid false sharing The Spacing technique separates many variablessimred cache
line into a variable for each cache line. The Pagldiechnique isolates shared array
metadata from the actual variables with a pad. démabination of both techniques is
necessary to completely elimindtse sharingon the test scenario. Nevertheless, there
is a trade-off for the implemented techniques. Timplementation of Spacing and
Padding techniques barters with memory space. @ndthal core test systems, the
amount of memory used in the Parallel FS casebggés for the array plus the metadata
size, which can be rounded up to be 16 bytes. Taodifrad array size in the Parallel FS +
Spacing and Padding remedies case becomes three loaes, or 192 bytes, which are
one element in a cache line per core plus anotierecline for metadata. Thus, the cost

to avoidfalse sharings rather expensive.

41

7.0 FutureWork

The processors with four cores, six cores, antteigres will be a standard for
personal computers in the foreseeable future. Alsojnternal architecture of processors
keeps changing to handle inter-core communicatibciently. For Intel Core-i7, data on
each core is synchronized through inter-core cdiomepaths known as Intel Quick Path
technology [1]. AMD Phenom X4 Quad-core uses Hypeansport 3.0 technology
maximizing throughput to be 51.2Gbit/second [27]l Bxeak-though technologies are
invented to tackle data synchronization among carksvever, does the new cutting
edge technology really work on all types of applmas without thefalse sharingssue?
If it does, that is good news for programmers. Haavethis project shows the existence
of false sharingon dual core CPUs. It is most likely that falsarsing would still occur
on a more-than-two-core processor. In case thelgmoldoes exist, how much is the
impact on a quad core CPU? How much is the pedooa loss on an eight core or a
sixteen core processor? The evaluation off#th& sharingimpact on such many cores

CPUs will be subject to further research in theifet

42

8. References

[1] AMD, Intel ready 'many core' processors. Web:gittp://news.cnet.com/8301-
13924 3-10471333-64.html

[2] Sae-eung, S., 2009. A Sequential to Parallelg2Gonverter Mentor. Computer
Science Department, San Jose State University

[3] The Many Cores of Intel. Web sitettp://www.forbes.com/2009/02/14/intel-
gelsinger-microprocessors-technology-cio-networkd @2ntel.html

[4] Loshin, D., Effective Memory Programming. Mc@radill.

[5] Yan, L., et al, 2009. Performance evaluatiotha&f memory hierarchy design on CMP
prototype using FPGA. 2009. ASICON '09. IEEE 8th International Conference on
ASIC pp.813-816, 20-23. doi: 10.1109/ASICON.2009.53815

[6] Kulick, J. Multiprocessor on Chip. Web sitetp://cst.mi.fu-
berlin.de/teaching/WS0708/19565-PS-Tl/reports/k@i8multiprocessing slides.pdf

[7] Chandler, D., Reduce False Sharing in .NETbWige:http://software.intel.com/en-
us/articles/reduce-false-sharing-in-net/

[8] The Code Project. Butler, N. Concurrent HazaFddse Sharing. Web site:
http://www.codeproject.com/KB/threads/FalseShadaspx

[9] Weidendorfer, J., et al. 2007. Latencies of floting Writes on Contemporary
Multicore ArchitecturesSpringer Berlin / Heidelbergvol. 4617, pp. 318-327.

[10] Jeremiassen, T. E., Eggers, S. J. 1995. Reddalse sharing on shared memory
multiprocessors through compile time data transédioms.SIGPLAN Not30, vol. 8, pp.
179-188. DOI=http://doi.acm.org/10.1145/209937.209955

[11] The Code Project. Butler, N. Superlinear: mvestigation into concurrent speed-up.
Web site:http://www.codeproject.com/KB/threads/Superlinesma

[12] Toub, S., Ostrovsky, 1., Yildiz, H. .Net Mattd-alse Sharing. Web site:
http://msdn.microsoft.com/en-us/magazine/cc872&pk a

[13] CPU-Z 1.55. Web sitdattp://www.cpuid.com

[14] Intel Core2 Duo Mobile processor T5270 speaifions Web site:
http://ark.intel.com/Product.aspx?id=33096

[15] AMD Turion64 X2 specifications Web site:
http://www.amd.com/us/products/Pages/products.aspx

43

[16] Ananth, G., et al. 2003. Introduction to PelaComputing. Addison-Wesley, San
Francisco

[17] Charles, N. Shared Data Considered Harmfulb\&ite:
http://blog.headius.com/2008/04/shared-data-considbarmful.html

[18] Hewlette-Packard. False Cache Line Sharingb \éite:
http://docs.hp.com/en/B6056-96006/ch13s02.html

[19] Cebix. Cache Line Ping-Pong. Web site:
http://everything2.com/title/cache+line+ping-pong

[20] Vivek Khera, P R LaRowe, Jr., and S C EIli893. An Architecture-Independent
Analysis of False Sharing. Technical Report. Dukévgrsity, Durham, NC, USA.

[21] Smith, A. J. 1982. Cache Memories. ACM ConpgitSurvey, 14, 3

[22] Wikipedia. MESI Protocol. Web sitettp://en.wikipedia.org/wiki/MESI_protocol

[23] Wikipedia. MOESI Protocol. Web site:
http://en.wikipedia.org/wiki/MOESI protocol

[24] The Code Project. Butler, N. Superlinear: mvestigation into concurrent speed-up.
Web site:http://www.codeproject.com/KB/threads/Superlinesma

[25] Hewlette-Packard. Parallel Programming GuimleHP-UX Systems. Web site:
http://docs.hp.com/en/B6056-96006/ch13s02.html

[26] Adve, S. CS433g final exam Web site:
http://www.cs.uiuc.edu/class/fa05/cs433qg/assigneiEatl 2004 Final Solution.pdf

[27] Hyper Transport Consortium. HyperTransport Spkecification. Web site:
http://www.hypertransport.org/default.cfm?page=HypansportSpecifications31

[28] Torrellas, J., Lam, H.S., Hennessy, J.L., €alsaring and spatial locality in
multiprocessor caches. @omputers, IEEE Transactiongol.43, no.6, pp.651-663, Jun
1994. doi: 10.1109/12.286299

[29] Bolosky, W. J., Scott, M. L. 1993. False shgrand its effect on shared memory
performance. In USENIX Systems on USENIX Experisneéh Distributed and
Multiprocessor Systems - Volume 4 (Sedms'93), ¥olUSENIX Association, Berkeley,
CA, USA, 3-3.

[30] Pase, M. D., Eckl, M.A. 2005. A Comparisonihgle-Core and Dual-Core
Opteron Processor Performance for HPC. IBM CorpamaiVeb site:
ftp://ftp.software.ibm.com/eserver/benchmarks/wpaDCore_072505.pdf

44

Appendix A: Sour ce codes

CL_Reader.c

#include "stdafx.h"
#include <stdio.h>
#include <string.h>
#include <windows.h>
#include "conio.h"

ULONG get_basic_info(void);

int _tmain(int argc, _TCHAR* argv[])

{
printf("Cache line size is: %u bytes",get_basic_info());
getch();
return 0;
¥
ULONG get_basic_info(void){
_asm{
MOV EAX, 80000006h
CPUID
MOV EAX,ECX
AND EAX,0xff
}
}
Program.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Windows.Forms;

namespace FS
{
static class Program
{
/// <summary>
/// The main entry point for the application.
/// </summary>
[STAThread]
static void Main()
{
Application.EnableVisualStyles();
Application.SetCompatibleTextRenderingDefault(false);
Application.Run(new Forml());

Forml.cs

#define PERF_FALSEX
#define PERF_TRUEX

using System;

using System.Collections.Generic;
using System.ComponentModel;
using System.Data;

using System.Ling;

using System.Text;

using System.Windows.Forms;
using System.Diagnostics;
using System.Threading;

using System.Threading.Tasks;
using ZedGraph;

namespace FS

{

public partial class Forml : Form

{

SynchronizationContext _Sync = null;

public Forml()

{
InitializeComponent();
Shown += new EventHandler(HandlesShown);
_Sync = SynchronizationContext.Current;
¥

void HandlesShown(object sender, EventArgs e)
{
#if PERF_FALSE
for (int i =0 ; i < 9 ; i++) Work(Environment.ProcessorCount, false
); Close();
#elif PERF_TRUE
for (int i =0 ; i < 9 ; i++) Work(Environment.ProcessorCount, false,
padding: true, spacing: true); Close();

#endif
}
private void buttonl_Click(object sender, EventArgs e)
Begin();
void Begin()
int REPEAT = 1;
bool oneWriter = false;
//pb.Value = 0;
var nn = new PointPairList();
var ny = new PointPairList();
var yn = new PointPairList();
var yy = new PointPairList();
var task = Task.Factory.StartNew(() =>
{
Trace.WriteLine("\n\nRun: " + DateTime.Now.TimeOfDay +
"\n");

int max = Environment.ProcessorCount * 4;
int cur = 0;

for (int threads = 1 ; threads <=

{

).Median(i => Work(threads, oneWriter)));

Environment.ProcessorCount ; threads++)

nn.Add(threads, Enumerable.Range(@, REPEAT

ny.Add(threads, Enumerable.Range(@, REPEAT
).Median(i => Work(threads, oneWriter, spacing: true)));

yn.Add(threads, Enumerable.Range(©, REPEAT).Median(i => Work(threads,
oneWriter, padding: true)));

yy.Add(threads, Enumerable.Range(©, REPEAT
).Median(i => Work(threads, oneWriter, padding: true, spacing: true)));

}
})s

}

double Work(int threadCount, bool oneWriter, bool padding = false, bool spacing
= false, int affinity = -1)
{
int iPadding = padding ? 16 : ©;
int iSpacing = spacing ? 16 : 1;

var trace = String.Empty;

trace += "ThreadCount: " + threadCount;

trace += " - Padding: + iPadding;

trace += - Spacing: + iSpacing;

if (affinity != -1) trace += " - Affinity: " + affinity;
Trace.WritelLine(trace);

if (affinity == -1) affinity = 1;

var sequential = Task.Factory.StartNew<TimeSpan>(new Worker(1,
oneWriter, iPadding, iSpacing, affinity).Work);

var parallel = sequential.ContinueWith<TimeSpan>(prev => new Worker(
threadCount, oneWriter, iPadding, iSpacing, affinity).Work());

double y = od;

var results = parallel.ContinueWith(prev =>

{
var speedup = sequential.Result.TotalSeconds /
parallel.Result.TotalSeconds;
var slowdown = 1d / speedup;
var efficiency = 100d * speedup / threadCount;
Trace.WriteLine(
"Speedup: " + speedup.ToString("N2") +
" ; Slowdown: " + slowdown.ToString("N2") +
" ; Efficiency: " + efficiency.ToString("N2") +
"%\n");
y = speedup;
s
results.Wait();
return y;
}
}
¥
Worker.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

using System.Diagnostics;

using System.Threading.Tasks;
using System.Threading;

using System.Runtime.InteropServices;

namespace FS

{
public class Worker
{
const int ITERS = (int) 1le7;
int _ThreadCount = 0;
bool _OneWriter = false;
int _Padding = 0;
int _Spacing = 0;
int _Affinity = 0;
public Worker(int threadCount, bool oneWriter, int padding, int spacing, int
affinity)
{
_ThreadCount = threadCount;
_OneWriter = oneWriter;
_Padding = padding;
_Spacing = spacing;
_Affinity = affinity;
}

[D11Import("kernel32.d1ll")]
static extern IntPtr GetCurrentThread();

[D11Import("kernel32.d1ll")]
static extern UIntPtr SetThreadAffinityMask(IntPtr hThread, UIntPtr
dwThreadAffinityMask);

public TimeSpan Work()
{

var data = new int[_Padding + (_ThreadCount * _Spacing)];
Array.Clear(data, ©, data.Length);

var iters = ITERS / _ThreadCount;

using (var mre = new ManualResetEvent(false))
using (var countdown = new CountdownEvent(_ThreadCount))

TimeSpan[] tss = new TimeSpan[Environment.ProcessorCount];
for (int i =@ ; i < _ThreadCount ; i++)
{

int iThread = i;

if (!_OneWriter || iThread == @)

{

new Thread(() =>

SetThreadAffinityMask(
GetCurrentThread(), new UIntPtr(lu << (iThread * _Affinity)));

var offset = _Padding + (iThread *
_Spacing);

mre.WaitOne();
for (int x = @ ; x < iters ; x++)
data[offset]++;

countdown.Signal();

}) { IsBackground = true, Priority =
ThreadPriority.Highest }.Start();

else

new Thread(() =>

SetThreadAffinityMask(
GetCurrentThread(), new UIntPtr(lu << (iThread * _Affinity)));

var offset = _Padding + (iThread *
_Spacing);

int dummy = ©;

mre.WaitOne();

for (int x = @ ; x < iters ; x++)
dummy = data[offset];

countdown.Signal();

}) { IsBackground = true, Priority =
ThreadPriority.Highest }.Start();
}
}
Thread.Sleep(100);

var sw = Stopwatch.StartNew();
mre.Set();

countdown.Wait();

var ts = sw.Elapsed;

Trace.WriteLine("False : + data.Sum(i => (long) i

).ToString("N@") + " in " + ts.TotalSeconds + " secs");

return ts;

EnumerableEx.cs

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace FS

{
static class EnumerableEx
{
public static U Median<T, U>(this IEnumerable<T> e, Func<T, U> fn)
{
var list = e.Select(fn).OrderBy(u => u).ToList();
if (list.Count == @) return default(U);
return list[list.Count / 2];
¥
¥
¥

Appendix B: Result tables

Intel Core2 Duo T5270

Sequential | Parallel FS ParaIIeI_ FS Parallel_ FS | Parallel FS
+ Spacing | + Padding +S&P

Run 1 0.1163863 0.1166894 | 0.1648988 | 0.1152791 | 0.0684922
Run 2 0.1192282 0.202907 | 0.1875805 | 0.1140728 | 0.0845467
Run 3 0.1153833 0.2469059 | 0.1250019 | 0.1178538 | 0.0847937
Run 4 0.1109213 0.2465726 | 0.1693793 | 0.1201258 | 0.0643503
Run 5 0.111287 0.1944945 | 0.1638333 0.122339 | 0.0882128
Run 6 0.1121318 0.2439458 | 0.1679624 | 0.1171785| 0.0643919
Run 7 0.1178423 0.2424299 | 0.1507663 | 0.0684436 | 0.0649143
Run 8 0.1186988 0.2437536 | 0.1575376 | 0.1039701 | 0.0653907
Run 9 0.119711 0.118541 | 0.1553775| 0.1059232 | 0.0642609
Run 10 0.1106445 0.1962922 | 0.0710894 | 0.1156297 | 0.0652434
Run 11 0.1152157 0.1799734 | 0.1464814 | 0.1198414 | 0.0655823
Run 12 0.1117273 0.1899749 | 0.1469859 | 0.1177579 | 0.0646953
Run 13 0.1313647 0.1584975 | 0.1706342 | 0.1242836 | 0.0731129
Run 14 0.1171766 0.2654264 | 0.1655056 | 0.1190972 | 0.0649755
Run 15 0.115473 0.2713819 | 0.1243029 | 0.1219775 0.064274
Run 16 0.1187363 0.2638603 | 0.1605715 0.119043 | 0.0738674
Run 17 0.1148833 0.2527399 | 0.1595881 | 0.1204496 | 0.0658807
Run 18 0.1134353 0.2492632 | 0.1705026 | 0.0703986 | 0.0655452
Run 19 0.1138292 0.1589822 | 0.0648518 | 0.1204834 | 0.0645908
Run 20 0.1196124 0.259736 | 0.1240978 | 0.1182301 | 0.0653658
Run 21 0.1153462 0.2503658 | 0.1618054 | 0.1137119 | 0.0676974
Run 22 0.1114705 0.2437496 | 0.1213894 | 0.1196012 | 0.0644316
Run 23 0.1380485 0.1909373 | 0.1720525| 0.1048675| 0.0660567
Run 24 0.1154143 0.1983179 | 0.1636168 | 0.1200063 | 0.0670546
Run 25 0.1103374 0.1976837 | 0.1631693 | 0.1168229 | 0.0646023
Run 26 0.1104897 0.2504888 | 0.1715332 | 0.1173017 | 0.0641992
Run 27 0.1134498 0.2633097 | 0.1900356 | 0.1294441 0.064138
Run 28 0.1207801 0.1994795 | 0.1654271 | 0.1068839 | 0.0646693
Run 29 0.1137963 0.257914 | 0.1647617 | 0.1152283 | 0.0653063
Run 30 0.1171732 0.2460578 | 0.1575895 | 0.1188349 | 0.0662235
Run 31 0.1174568 0.1962844 | 0.0643442 | 0.1248831 | 0.0679058
Run 32 0.1189816 0.2355944 | 0.1469748 0.118075 | 0.0641522
Run 33 0.1324319 0.1188821 | 0.0714238 | 0.1087384 0.068046
Run 34 0.1149972 0.2429143 | 0.1649047 | 0.1228781 | 0.0644945
Run 35 0.1170564 0.1165321 | 0.1256352 | 0.1177772 | 0.0640031
Run 36 0.1152266 0.2425576 | 0.1741059 | 0.1207946 | 0.0658664
Run 37 0.1296438 0.2461751 | 0.1815102 | 0.1281872 | 0.0676767
Run 38 0.1124229 0.2462891 | 0.1533088 | 0.1192615| 0.0651163
Run 39 0.1163762 0.2548483 | 0.1460316 | 0.1068091 | 0.0652152
Run 40 0.1135214 0.1932932 | 0.1470739 | 0.1147958 0.065068
Run 41 0.1255637 0.2422662 | 0.0845557 | 0.1178412 | 0.0696267
Run 42 0.1166874 0.2531805 | 0.2122903 | 0.1154359 | 0.0746368

Vi

Run 43 0.1150442 0.2451118 | 0.1747428 | 0.1186946 | 0.0644227
Run 44 0.1126391 0.2498711 | 0.0671247 | 0.1150813 | 0.0704315
Run 45 0.1116261 0.2426386 | 0.1689354 | 0.1132931 | 0.0704597
Run 46 0.1239244 0.1925761 | 0.1264965 | 0.1216216 | 0.0685559
Run 47 0.112564 0.2572349 0.159482 | 0.1186628 0.063781
Run 48 0.1147472 0.117816 | 0.1670477 | 0.1189436 | 0.0643556
Run 49 0.1118812 0.2465656 | 0.1627371 | 0.1136152 0.064552
Run 50 0.1180127 0.2553268 0.124168 | 0.1160155| 0.0644308
AMD Turion 64 X2
. Parallel FS | Parallel FS | Parallel FS
Sequential | Parallel FS + Spacing | + Padding +S&P

Run 1 0.1463781 0.2441405 | 0.2169434 | 0.2303356 | 0.0761409
Run 2 0.1536357 0.2388756 0.21555 | 0.2360635 | 0.0737962
Run 3 0.1457229 0.3525182 | 0.2135168 | 0.2330824 | 0.0738638
Run 4 0.1855121 0.2369482 | 0.1915695 | 0.2321286 | 0.0722237
Run 5 0.1602119 0.3270278 | 0.2374659 0.231849 | 0.0744494
Run 6 0.1464915 0.3447681 0.216735 | 0.2342638 | 0.0728081
Run 7 0.1422543 0.2936454 | 0.1855607 | 0.2444081 | 0.0728701
Run 8 0.1512125 0.3468837 0.21496 | 0.2370787 | 0.0769103
Run 9 0.1529554 0.3478101 | 0.2142459 0.235367 | 0.0741298
Run 10 0.2037918 0.3450033 | 0.1812182 | 0.0876114 | 0.0746075
Run 11 0.1574694 0.2372723 | 0.2169007 0.240794 | 0.0774048
Run 12 0.1579535 0.3424778 | 0.1928736 | 0.2358428 | 0.0770159
Run 13 0.1456025 0.2440986 | 0.1937749 | 0.2351667 | 0.0832072
Run 14 0.1431011 0.3412816 0.194461 | 0.2529905 | 0.0742591
Run 15 0.1470983 0.3573348 | 0.1911857 | 0.2290014 | 0.0784493
Run 16 0.1436333 0.310785 | 0.0756286 | 0.2395279 | 0.0738317
Run 17 0.1442406 0.3500905 | 0.1881378 | 0.2456362 0.071518
Run 18 0.1602577 0.3486124 | 0.2082024 | 0.2366948 | 0.0723499
Run 19 0.1428782 0.3114418 | 0.1920431 | 0.2345457 | 0.0738619
Run 20 0.1425094 0.2709243 | 0.2166166 | 0.2382411 | 0.0725494
Run 21 0.1435327 0.309118 | 0.2207962 | 0.2377173 0.073126
Run 22 0.1455545 0.3557021 | 0.1929449 0.2333| 0.0718029
Run 23 0.1427994 0.2982937 | 0.1906697 | 0.2334992 | 0.0721678
Run 24 0.1556072 0.2259845 | 0.2124121 | 0.2369242 | 0.0767723
Run 25 0.143495 0.3543159 | 0.2091536 | 0.2353762 | 0.0715909
Run 26 0.144551 0.2674887 | 0.1928828 | 0.2384699 0.081472
Run 27 0.1426469 0.361062 | 0.1945009 | 0.2150616 | 0.0727128
Run 28 0.1438098 0.2808326 | 0.2080121 | 0.2344591 0.081724
Run 29 0.1448128 0.3072971 | 0.0715705| 0.0806717 | 0.0754813
Run 30 0.1484476 0.2134748 | 0.2095459 | 0.2429817 | 0.0760764
Run 31 0.1428161 0.2399237 | 0.2149792 0.23223 | 0.0804688
Run 32 0.1443496 0.2349167 | 0.1840963 0.236487 | 0.0866962
Run 33 0.1461437 0.2411161 | 0.2191935 | 0.2329994 | 0.0727924
Run 34 0.1430712 0.2841059 | 0.1918908 | 0.2328094 | 0.0771223
Run 35 0.1440129 0.3408651 | 0.2114726 | 0.2330653 | 0.0744918

vii

Run 36 0.1449723 0.2374653 | 0.2106136 | 0.2505709 | 0.0722097
Run 37 0.155903 0.2424062 | 0.0734121 0.237003 | 0.0761753
Run 38 0.1466027 0.2203274 0.227701 | 0.2320979 | 0.0831745
Run 39 0.1502291 0.2470489 | 0.1825768 | 0.2355866 | 0.0726368
Run 40 0.143747 0.3424248 0.207549 | 0.2320864 | 0.0713819
Run 41 0.1435391 0.2415865 | 0.2139785 | 0.2355514 0.077949
Run 42 0.154069 0.3452544 | 0.1923037 | 0.2323887 0.073685
Run 43 0.1432777 0.2477275 | 0.1933413 | 0.2329594 | 0.0765102
Run 44 0.1452005 0.2330815 0.215032 0.237134 0.076653
Run 45 0.1438029 0.3405902 | 0.1943358 | 0.2367342 | 0.0772408
Run 46 0.1540486 0.341228 | 0.2149806 | 0.2310327 | 0.0724801
Run 47 0.1453307 0.2421662 0.189721 | 0.2334679 | 0.0733459
Run 48 0.1426022 0.2390775| 0.0713867 | 0.2369703 | 0.0715677
Run 49 0.1544028 0.2372234 | 0.2162995 | 0.2306645 | 0.0749335
Run 50 0.1442864 0.3503886 | 0.2140878 0.217441 | 0.0729634
Intel Corei5 520M

. Parallel FS | Parallel FS | Parallel FS

Sequential Parallel FS + Spacing | + Padding +S&P

Run 1 0.084880 0.085782 0.036394 0.037759 0.035863
Run 2 0.085164 0.092071 0.036957 0.038240 0.035942
Run 3 0.085194 0.097520 0.037173 0.043674 0.036421
Run 4 0.085333 0.116838 0.039118 0.043867 0.036699
Run 5 0.085340 0.117396 0.042244 0.060990 0.036787
Run 6 0.085447 0.119555 0.065374 0.078303 0.037076
Run 7 0.085468 0.121064 0.065441 0.080320 0.037163
Run 8 0.085649 0.122478 0.070888 0.080473 0.037166
Run 9 0.086041 0.122833 0.071614 0.080515 0.037234
Run 10 0.086063 0.126431 0.071843 0.080788 0.037367
Run 11 0.086136 0.147522 0.073237 0.081040 0.037461
Run 12 0.086269 0.147558 0.074111 0.081515 0.037498
Run 13 0.086529 0.147669 0.078568 0.081594 0.037563
Run 14 0.086671 0.148318 0.079253 0.081774 0.037716
Run 15 0.086778 0.148882 0.082583 0.082260 0.037773
Run 16 0.086835 0.149359 0.082889 0.082281 0.037803
Run 17 0.086894 0.149412 0.083346 0.082453 0.037814
Run 18 0.086922 0.149487 0.083366 0.082505 0.038688
Run 19 0.087093 0.149742 0.083532 0.082776 0.038772
Run 20 0.087104 0.150505 0.083630 0.083050 0.038957
Run 21 0.087192 0.151366 0.083760 0.083069 0.039489
Run 22 0.087208 0.151890 0.083812 0.083152 0.039503
Run 23 0.087265 0.152022 0.084123 0.083702 0.039647
Run 24 0.087271 0.152210 0.084478 0.084741 0.039837
Run 25 0.087297 0.152671 0.084525 0.085098 0.039856
Run 26 0.087323 0.153750 0.084631 0.087071 0.040086
Run 27 0.087432 0.154017 0.084995 0.087223 0.040208
Run 28 0.087566 0.154271 0.085021 0.087301 0.040242

viii

Run 29 0.087617 0.154716 0.085741 0.088082 0.040508
Run 30 0.087668 0.154876 0.085939 0.088925 0.040867
Run 31 0.087696 0.155394 0.085996 0.089573 0.041131
Run 32 0.087700 0.156354 0.086130 0.090966 0.041171
Run 33 0.087881 0.156692 0.086776 0.096338 0.042474
Run 34 0.087925 0.157802 0.086862 0.097293 0.042621
Run 35 0.087960 0.159466 0.086913 0.097507 0.042685
Run 36 0.088336 0.159751 0.087424 0.097528 0.042690
Run 37 0.088421 0.161695 0.087499 0.097750 0.042830
Run 38 0.088689 0.164490 0.087521 0.098482 0.043274
Run 39 0.089500 0.167511 0.087654 0.098523 0.043725
Run 40 0.089635 0.173836 0.087661 0.098662 0.043928
Run 41 0.089701 0.179274 0.088607 0.099555 0.043947
Run 42 0.089973 0.179446 0.089201 0.105104 0.044681
Run 43 0.090087 0.182819 0.089671 0.105724 0.044786
Run 44 0.092762 0.184848 0.091036 0.106250 0.045009
Run 45 0.093898 0.189566 0.092395 0.107221 0.045137
Run 46 0.093944 0.189953 0.098260 0.107317 0.045725
Run 47 0.097575 0.192927 0.099534 0.107730 0.045842
Run 48 0.099108 0.195304 0.120271 0.109740 0.046145
Run 49 0.103327 0.197995 0.127399 0.110509 0.069305
Run 50 0.103458 0.198995 0.129841 0.121024 0.070142

	San Jose State University
	SJSU ScholarWorks
	Fall 12-2010

	Analysis of False Cache Line Sharing Effects on Multicore CPUs
	Suntorn Sae-eung
	Recommended Citation

	1
	2
	3

