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ABSTRACT 

 

 False sharing (FS) is a well-known problem occurring in multiprocessor systems. 

It results in performance degradation on multi-threaded programs running on 

multiprocessor environments.  

With the evolution of processor architecture over time, the multicore processor is 

a recent direction used by hardware designers to increase performance while avoiding 

heat and power walls. To fully exploit the processing power from these multicore 

hardware architectures, the software programmer needs to build applications using 

parallel programming concepts, which are based upon multi-threaded programming 

principles.  

Since the architecture of a multicore processor is very similar to a multiprocessor 

system, the presence of the false sharing problem is speculated. Its effects should be 

measurable in terms of efficiency degradation in a concurrent environment on multicore 

systems.  

This project discusses the causes of the false sharing problem in dual-core CPUs, 

and demonstrates how it lessens the system performance by measuring efficiency of a test 

program in sequential compared to parallel versions. Thus, demonstration programs are 

developed to read a CPU cache line size, and collect the execution results of the test 

program with and without false sharing on the specific system hardware. Certain 

techniques are implemented to eliminate false sharing. These techniques are described, 

and their effectiveness in mitigating the speed-up and efficiency lost from false sharing is 

analyzed. 
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1.0 Introduction 

The current trend of processor design is towards multicore CPUs. Recently, eight-

core and twelve-core CPUs have been in the manufacturing process for both AMD and 

Intel [1]. Processor manufacturers overcome the heat-wall constraint by packing more 

than one computing module, so-called cores, into a package. Sometimes the chip is 

simply referred to as a Chip Multiprocessor (CMP); however, a processor can also be 

coined by the number of its cores. For example, a two core processor is called as a “dual 

core” CPU.  

Having many processing cores working together increases complexity in 

hardware design and software production. The hardware manufacturer is not the only 

party involved in taking advantage of the multiple core processors. Programmers are 

another party that must also understand how to make use of additional cores. They have 

to build software that divides work into many sub-tasks, and assign the tasks on several 

threads working on the multiple cores.  

A potential problem in multiprocessor systems that can cause poor performance 

by mistakenly updating data in a shared cache line is the “False Sharing” (FS) issue.  

Since a multiprocessor architecture could be considered a precursor of a multicore 

processor, the problem has a tendency to occur on a multicore system too. 

Previous research on multiprocessor systems demonstrated the huge impact of the 

false sharing problem [7][8][19][28][29]. The problem can cause performance 

degradation by 20x on a system with four processors, and by 100x on a system with eight 

processors. 
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This project demonstrates the existence of false sharing on systems with dual core 

CPUs, introduces how to observe the problem and measure the impact of the false 

sharing issue, and compares the performance drops caused by false sharing between a 

dual core processor to a multiprocessor system. 

To understand the root causes of false sharing, some facts and theories are 

introduced for background:   

• Directions of CPU technology and programming techniques 

• Needs of parallel programming 

• Memory hierarchy and cache elements 

• Multiprocessor/multicore cache coherency 

• False cache line sharing 

 
1.1 Directions of CPU technology and programming techniques 

The first dual core CPU was released in 2001 by IBM [30]. Nowadays, multicore 

CPUs are ubiquitous [2]. To increase computing performance, the processor makers pack 

more than a single processing core in one package. The processor is generally called a 

multicore or a many-core CPU. The processors are able to gain higher performance by 

using the sum of the computing capability of multiple cores. In 2010, a personal 

computer with a quad-core CPU has become a standard specification in the market, e.g. 

Intel core i7 processors, and AMD Phenom II X4 processors. Increasing the number of 

cores in a processor is expected to be an industrial trend used to augment processing 

power for decades. For instance, Intel’s roadmap announced that they are now developing 

an eighty-core CPU [3].  

 



 
 

3 
 

1.2 Needs of parallel programming 

Section 1.1 shows that the current processor’s trend is many-cored; however, 

most legacy applications were designed to work sequentially on a single processor. 

Though the applications are compatible with multicore processors, they cannot make use 

of the extra cores. In fact, the additional cores are not just rendered useless, they even 

contribute to waste due to their extra power consumption.  

To take advantage of multicore processors, it is mandatory to transform the 

sequential software to a parallel version, or newly rebuild it as a concurrent application. 

Nonetheless, parallel programming knowledge is essential for both alternatives.  

 
1.3 Memory hierarchy and cache elements 

 This section discusses concepts of memory hierarchy and cache elements. Levels 

and types of memories are distinguished by their access time, capacities and 

complexities. Certain types of CPUs, along with their cache and main memory are 

selected as representatives to illustrate the memory hierarchy of multiprocessor and 

many-cored processor systems. As false sharing is previously notorious in multiprocessor 

systems, memory architecture of a Symmetric Multiprocessor (SMP) is compared with 

that of a Chip Multiprocessor (CMP). 

  
1.3.1 Memory architecture in Symmetric Multiprocessor  

 Symmetric Multiprocessor or SMP is a classical configuration for a 

multiprocessor system. A simple diagram of an SMP is shown in figure 1.  

In SMP configurations, the memory hierarchy is categorized in two levels: cache 

memory and main memory. CPU access time, or latency, on the cache is far less than that 

from the main memory.  Processors use the cache memory as a local memory, and 
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consider the main memory to be a remote memory. CPUs need to request data through a 

shared network, bus, or crossbar in order to read from and write to the main memory. 

 

 

Figure 1. Memory hierarchy in SMP [4]  

 
1.3.2 Memory architecture in Chip Multiprocessor  

Chip Multiprocessor (CMP) is a way to name multicore processors. The cache in 

a CMP system is divided into tiers similar to SMP, yet a CMP’s structure adds more 

layers of caches, e.g. a cache level 2, interleaving the L1 cache and the main memory so 

as to reduce the latency gap between the upper and the lower layers as shown in figure 2.    

 

Figure 2. Memory hierarchy in CMP [5] 
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 The diagram shows three distinct layouts of caches. The Intel processor 

implements a shared L2 and L3 cache enabling all cores to access to shared data (left). 

The AMD CPUs have a special dedicated hardware to synchronize shared data between 

each core’s L2 caches (middle). This technology is AMD Hyper Transport technology. 

For a more advanced CPU, such as the Intel Core i5, a processor is composed of two 

levels of separate caches, and a shared L3 cache (right). 

 
1.3.3 Cache line 

 A cache line is the smallest unit that can be transferred between the main memory 

and the cache. The size of a cache line can be determined from the CPU specifications, or 

directly retrieved from the processor by using the manufacturer’s instruction set. In this 

project, the cache line size of the Intel Core2 Duo T5270, the AMD Turion 64 X2 and 

Intel Core i5 520M is 64 bytes. Figure 3 magnifies how a cache line resides on the Intel 

Core2 T5270 processor. A program code to read the cache line size for the Intel processor 

is shown in appendix A.  

 

 

Figure 3. Cache line details of Intel Core2 T5270 processor [2] 
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1.4 Multiprocessor/multicore cache coherency 

 In systems consisting of two or more processors, each one typically has its own 

cache, and machine vendors must ensure that data across processors are coherent. A 

protocol must be used to enforce data consistency among all the cores’ caches so that the 

system correctly processes valid data; this protocol is called a “cache coherency” 

protocol. The protocol manages data to be updated appropriately using a write-back 

policy, resulting in decent overall performance by reducing the number of main memory 

updates.  

Consider an example case of coherency. If CPU1 updates a variable named Z 

from 50 to 60, and CPU2 reads Z, what will happen to the cache of each CPU? At first, 

both CPUs have Z values as 50 in their caches. Then, CPU1 updates Z to be 60. 

Employed with the write-back policy, CPU1’s cache does not need to immediately 

update the new value to the main memory. Therefore, the Z values in the main memory 

and CPU2’s cache remains 50. In case CPU2 needs to read Z, it is mandatory for CPU1 

to write the value 60 back to the main memory, and reload it to CPU2’s cache before 

CPU2 starts a reading or writing process.   

 Intel uses MESI (Modified, Exclusive, Shared, Invalid) cache coherency protocol 

[22], and AMD has the MOESI (MESI plus Owned) protocol [23]. From the previous 

example with the Intel protocol, when CPU1 updates the variable Z, it marks Exclusive 

to the cache line which Z resides, and allows load and store operations on the cache line. 

If CPU2 needs to read Z, it will mark the cache line as Shared. After CPU1 writes 60 as 

a new value into the cache line, the cache line status will become Modified, and force 

CPU2 to Invalidate its cache lines. Therefore, CPU1 needs to backup Z with value 60 to 

the main memory before CPU2 can reload 60 to its cache line, and finally read Z. 



 
 

7 
 

 
1.5 False cache line sharing 

This section reviews more details on the causes and effects of false cache line 

sharing, or false sharing in short. False sharing is a form of cache trashing caused by a 

mismatch between the memory layout of write-shared data across processors and the 

reference pattern to the data. It occurs when two or more threads in parallel programs are 

assigned to work with different data elements in the same cache line [25]. In other words, 

false sharing is a side effect in a multiprocessor system due to cache coherency.  

Generally, a multiprocessor system is composed of hundreds of racks and 

processors in a huge computer room which supplies high performance computing power 

for special research or critical systems such as an airline reservation center, a financial 

enterprise, or NASA. Although the multiprocessor’s system scale seems quite different to 

a personal computer, its internal architecture of a multiprocessor is comparable to a 

multicore microprocessor chip in terms of the number of processors and memory 

hierarchy. A computer with dual-core, quad-core, or octal-core processors is now 

considered as a type of multiprocessor system. Thus, it would be susceptible to a false 

sharing problem as well. 

One multiprocessor system must maintain data coherency across CPUs to enforce 

data validation. To take advantage of cache, the write back policy must be engaged. 

When a processor makes a change on its cache, other processors must be aware of the 

change, and determine whether its copies of data in cache needs to be reloaded or not. 

Therefore, the cache coherency protocol plays an important role at this point. It defines 

rules to maintain data updates among processor groups with a minimal number of 

requests to the main memory, thereby optimizing system performance.  
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False sharing occurs when threads from different processors modify variables 

which reside on the same cache line. Intel’s processors adopt the MESI protocol. When a 

processor invalidates a cache line with an outdated value, it fetches an updated value 

from the main memory into its cache line to maintain data validity. Figure 4 and 5 

demonstrate two threads with false sharing on SMP and CMP systems respectively. 

Threads 0 and 1 update variables that are adjacent to each other located on the same 

cache line. Although each thread modifies different variables, the cache line keeps being 

invalidated every iteration.  

 

Figure 4. False cache line sharing on SMP [7] 

In figure 4, when CPU1 writes a new value, it makes CPU0’s cache invalidated, 

and causes a write back to the main memory. Consequently, if CPU0’s updates its 

variable with another value, it results in CPU1’s cache invalidation by backing up 

CPU1’s cache line to the main memory. If both CPUs repeatedly write new values to 

their variables, invalidation will keep occurring between their caches and the main 
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memory. As a result, the number of the main memory access increases considerably, and 

causes great delays due to the high latency in data transfers between levels of the memory 

hierarchy. Because of this, sometimes the false cache line sharing problem is called as 

“Cache Line Ping-Pong [19].”  

 

Figure 5. False cache line sharing on CMP [7] 
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2.0 Prior Work  

 This section reviews the prior research regarding false sharing effects on 

multiprocessor and multicore systems. To understand how the problem happens on the 

low level hardware, the detailed specifications of the test system must be described.  

Many researchers point out the great performance degradation caused by the false 

sharing problem on multiprocessor environments. Fewer papers performed tests on 

multicore CPUs since they are a relatively new architecture. The hypothesis in this 

project is that false sharing would happen in a multicore architecture as it does in a 

multiprocessor one because it has many common components, yet the degree of impact 

may be different. More details will be discussed in the experiment and result section. 

 
2.1 Concurrent Hazards: False sharing 

Butler did an experiment on a multiprocessor system to measure false sharing 

effects in [8]. His application was executed on a system with four packages of dual core 

CPUs, eight cores in total. The code drew a graph of speed-up in the cases of with and 

without false sharing.  

The results of false sharing are shown in figure 6. The graph is plotted by speed-

up ratios and the number of thread counts. The best speed-up at the eight-threaded 

execution shows a 100 times difference compared to the worst case. The gap could be 

bigger if the tests are run on 16-core, 32-core, or 64-core systems. Moreover, it can be 

observed from the graph that applying either a Spacing-only or Padding-only method 

does not significantly improve overall performance. Spacing and Padding will be 

described in section 3.2. 
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Figure 6. Speed-up results from Padding and Spacing employed on testing array [8] 

 

2.2 Latency of conflict writes on Multicore Architecture 

Dr. Josef discussed the latency penalty caused by false sharing [9]. The research 

evaluates write performance on both Intel and AMD processors.  

The experiment was performed on the Intel Core Duo T2600 with a 32 Kbyte L1 

cache per core, and a 2 Mbyte L2 shared cache. The result is plotted by values of the 

array size and latency cycles in figure 7. A higher number of cycles per iteration indicates 

lower performance. 

Figure 7 shows that the amount of latency declines when the array is allocated 

between 128 Kbytes and 2Mbytes in size, which fits on cache level two. At this threshold 

of the array size, the high latency that would have been caused by the false sharing 



 
 

12 
 

problem disappears. It is because shared L2 cache is a “true” sharing cache, and both 

cores can access data without cache invalidation, thereby eliminating false sharing. 

In conclusion, the experiment proved that shared cache between cores can wipe 

out the adverse impact stemming from false sharing. 

 

 

Figure 7. Number of latency cycles on varied array size, Intel Core Duo 2600 [16] 

 
There are many approaches to abate false sharing effects. Tor and Susan 

introduced an approach to reduce false sharing on shared memory processors [10]. They 

developed compiler algorithms to analyze parallel programs by examining data structures 

susceptible to false sharing. They also employed the proper transformations to reduce 

false sharing effects. The results show a 2-58% improvement in the transformed versions. 

However, the work was performed on a simulator, and the actual code transformation is 

not revealed. For this reason, no further research could be performed. 
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3.0 Experiment Design 

 In this section, the experiment design in terms of hardware and software is 

discussed. The test application performs five experimental cases: Sequential, Parallel FS, 

Parallel FS + Spacing remedy, Parallel FS + Padding remedy, and Parallel FS + Padding 

and Spacing remedies. This section also describes techniques used to detect and avoid 

false sharing in this project. 

 

3.1 False sharing detection 

  There are no tools to detect the occurrence of false sharing on a system in 

general. In other words, it is easy for the problem to be undetected since there are no 

indicators that any performance problems stem from false sharing. Whenever 

performance degrades, false sharing is just one suspect, and it is one that many 

programmers are not trained to look for. 

 Fortunately, there are certain profiling metrics that can indicate the existence of a 

false sharing issue [12]. It enables a way to narrow down the code by identifying the 

effects of false sharing, and helps the programmer become aware of the memory access 

pattern in a parallel program. 

 If the part of the program that is identified as a bottleneck is relatively CPU and 

memory bound, and that code rarely has I/O or blocking OS calls, then if both of the two 

following symptoms hold true then the existence of the false sharing problem is 

confirmed.  

1. The code does not scale well when the concurrency level is increased by 

executing on more powerful hardware. 
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2. The code sometimes runs significantly slower for different input data that 

requires the same amount of processing and memory accesses, but a different 

pattern of data traversal. [12] 

 CPU performance counters are a set of the important indicators. The statistics 

from the low-level hardware can be used to determine the availability of CPU resources, 

including all other subsystems working with CPUs such as caches, branch prediction 

units, and so on. A profiler is able to retrieve these statistics so that they are analyzed in 

order to identify the type of the bottleneck thereby resolving the performance problems 

correctly. Two important parameters are used to show the occurrence of false sharing: L2 

cache misses, and Cycles per Instruction (CPI).  

 L2 cache misses are a significant indicator to detect false sharing in a 

multiprocessor system. Many L2 cache misses would result in a large amount of data 

fetching from main memory into L2 cache. A root cause of L2 cache misses could be that 

(1) a processor requests data that does not reside in L2 cache, or (2) the corresponding 

cache lines are marked as invalid by data update operations from another processor. The 

latter mostly results from false sharing. Thus, a noticeable spike of L2 cache misses 

could indicate the existence of the false sharing problem. 

CPI is a widely used indicator to diagnostic the overall performance. It 

demonstrates how many clock cycles are spent for each instruction. Therefore, CPI 

provides statistics on how efficient a program performs. CPI plays an important role to 

enumerate the amount of memory latency. Because the speed of a CPU is much faster 

than that of memory, the CPU needs to wait when fetching data from or writing data to 

memory. Thus an instruction takes more time to process. 
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The cache invalidation across processors causes L2 cache misses, and makes the 

CPU wait for data writing/reloading. Therefore, a great number of L2 cache misses 

combined with a high CPI indicates that false sharing is happening on a system.  

3.2 False sharing avoidance techniques 

  Since false sharing results from two or more cores using data in the same cache 

line, one way to get rid of it is to eliminate sharing in the same cache line. Hence, certain 

techniques are proposed in order to avoid data sharing by modifying the data arrangement 

in the cache line. 

 
3.2.1 Spacing technique  

 The Spacing technique is an approach used to split a contiguous allocated space. 

In an array, a set of variables is typically reserved in a chunk to take advantage of locality 

of reference. For instance, when four variables are declared in an array, an allocation 

consisting of four integer-sized adjoining memory blocks is made. Using the Spacing 

technique splits the shared data among the reserved array by shifting the offset between 

each contiguous array element so that each element resides on a separate, different cache 

line. 

In figure 8a, integers D1, D2, D3 and D4 reside in the same cache line. If there 

are four assigned threads, one per core, updating those arrays, the cache coherence 

protocol will repeatedly cause data invalidation and force data to be written to, and 

reloaded from, the main memory. This cache Ping-Ponging greatly increases run time. 

With the implementation of the Spacing technique, false sharing on array data can be 

avoided as shown in figure 8b. 
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Figure 8. Cache line structure with Spacing technique 

3.2.2 Padding technique  

 Besides the Spacing technique, Padding is another technique to reduce false cache 

line sharing effects by filling a cache line with a pad.  

A variable declaration requires an additional piece of information to manage 

memory space for the variable. When a set of an array is declared, the operating system 

needs to define a piece of extra information that contains the array information which is 

called metadata. This metadata uses space just right before actual data, and consists of 

pointers and header information. For example, every array in .NET would require 

metadata consisting of SZARRAY, which stores size information of the array. 

The existence and location of the metadata information in memory needs to be 

factored into account when using the padding remedy. This metadata is read before every 
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access to the array element. As a result, whenever a thread writes to an element, there is a 

read of the metadata, SZARRAY, happening just before the actual read on the data in the 

array. The Spacing technique does not separate the array metadata from the real array 

data, and the metadata still resides on the same cache line with the first array element as 

shown in figure 9a. Therefore, false sharing is still happening between the metadata and 

the first array element. 

 To eliminate sharing on metadata, the cache line where SZARRAY is located is 

padded so that the first array element is shifted to the next cache line. Figure 9b illustrates 

the cache line structure after the metadata SZARRAY is padded. 

 

 

Figure 9. Cache line structure with Spacing only and Padding only techniques 
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3.2.3. Combined Spacing and Padding technique 

 According to Butler, using a Spacing-only or a Padding-only technique would not 

overcome the false sharing problem [8]. Therefore, the combination of both techniques is 

the best way to completely avoid false sharing. Figure 10b illustrates cache lines with 

Spacing and Padding applied. Each element is separated in a single cache line. 

Obviously, Spacing and Padding each requires extra cache memory space. 

Programmers must estimate the memory sacrificed through the use of Spacing and 

Padding before building an actual application in order to maximize the performance (by 

mitigating false sharing) while minimizing the memory usage. 

For example, an array is allocated 320 bytes in figure 10b instead of the originally 

reserved 24 bytes as in figure 10a to space consecutive elements onto separate cache 

lines. 

 

Figure 10. Cache line structure with combined Padding and Spacing technique 
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3.3 Testing code 

The test programs are adapted from [8]. The testing code demonstrates existence 

of the false sharing problem. The processing time of the program with the false sharing 

problem is compared to the program without the problem. The identical experiment is 

executed on three hardware configurations to compare the performance loss among 

different systems. 

The test program begins with worker initialization. It reads the number of 

cores/processors from OS environment variables. The worker then forks one thread per 

core, and binds each thread to a processor. Next, the program divides the total workload 

into equal pieces, and assigns a piece to each thread. The workload in the test program is 

a simple operation that performs a memory access by writing a value to an array element. 

Both false sharing remedies are applied. The size of the Padding and Spacing 

variables are defined to be 64 bytes, which is a size of one cache line, to ensure that every 

element is shifted onto a separate cache line. 

 There are five testing cases:  Sequential, Parallel FS, Parallel FS + Spacing 

remedy, Parallel FS + Padding remedy, and Parallel FS + Spacing and Padding remedies. 

The data arrangement is the crucial focus in order to avoid false sharing. At first, the 

entire array is allocated, and each element is assigned to a thread. Each thread references 

to its own array offset, and repeatedly writes a value to its own element.  

The following code fragments show how to declare the data array, set an offset, 

and execute the workload by writing a value to the array element. 

 
… 

 
… 

 
… 
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 To avoid false sharing, the data layouts for all four FS parallel cases are 

differentiated. The Parallel FS case has all threads working on contiguous array elements. 

Offsets are used to define data layouts in all four parallel test cases. One offset space 

equals to a size of an integer or four bytes.   The Parallel FS with Padding remedy case 

pads metadata by setting the offset variables _Padding to be 16 (64bytes), and _Spacing 

to be 1. The Parallel FS + Spacing remedy case splits off each array element by setting 

the offset variables _Spacing to be 16 (64bytes) and _Padding to be 0. The Parallel FS + 

Padding and Spacing remedies case sets both of the _Padding and _Spacing variables to 

be 16 (64bytes). The completed codes are listed in appendix A. 

 For example, suppose that a system consists of a four core processor, and there 

are only four integer elements; each core works on an array element. The array data is 

arbitrarily defined to start at the memory address 156. Generally an integer requires four 

bytes of memory space; therefore, all four integers can be allocated in one cache line. In 

the Parallel FS case, all four threads work on the contiguous array elements as shown in 

figure 11a. The case has false sharing happening on the cache line. The data layout of the 

Parallel FS + Spacing and Padding remedies case is designed to avoid false sharing. The 

layout separates those four integer elements and the metadata, and spreads them onto 

separate cache lines. Total 320 bytes of address space or five cache lines are required, as 

calculated below.  

 
Data definition code fragment: 

              int[_Padding + (_ThreadCount * _Spacing)] 
 

Calculation: 

              int[16 + (4 x 16)] ���� int[80] ���� 4 bytes X 80 offsets ���� 320 bytes 
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The Parallel FS + Spacing and Padding remedies are performed with isolated 

cache lines as shown in figure 11b. 

 
 

Figure 11. Cache line structures of the Parallel FS case and                                           

the Parallel FS + Spacing and Padding remedies case 
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4.0 Hardware, Software, and Development Kits Used 

The experiments are executed on three different hardware systems. Hardware 

specifications, an operating system, software, and developing tools used in this project 

are enumerated in this section. 

4.1 Hardware specifications 

 The experiments are performed on three specified types of multicore processors: 

Intel Core2 Duo, AMD Turion X2, and Intel Core i5.  

4.1.1 Intel Core2 Duo test system 

A Dell Vostro 1400 laptop represents a test system with an Intel Mobile Core2 

Duo T5270 1.4GHz processor with a 32Kbyte L1 data cache and a 32Kbyte L1 

instruction cache per core. The processor also has a shared 2Mbyte L2 cache on die. 

CPU-Z program displays the processor specifications and cache information in figure 12. 

 

    

Figure 12. Intel Core2 Duo T5270 CPU and cache specifications [13] 
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4.1.2 AMD Turion X2 test system 

Another test system is a HP DV6000 laptop embedded with an AMD Turion 64 

X2 Mobile TL-58 1.9GHz CPU. The processor is composed of a 64Kbyte L1 data cache 

and a 64Kbyte instruction cache per core, and a 512Kbyte L2 cache per core. The AMD 

Turion 64 X2 processor specifications and cache information is exhibited by CPU-Z in 

figure 13. 

 

   

Figure 13. AMD Turion 64 X2 CPU and cache specifications [13] 

 
4.1.3 Intel Core i5 test system 

The last test system is a MacBook Pro laptop with an Intel Core i5 520M 2.4 GHz 

processor with Hyper-Threading (HT) technology. The CPU has three tier of caches: a 

32Kbyte L1 data cache and a 32Kbyte L1 instruction cache per core, a 256Kbyte L2 

cache per core, and a 3Mbyte L3 shared cache. Since the experiment must carry out on 

the Windows platform, Boot Camp, a utility on the Macintosh system, is used to install 

Windows XP SP3 prior to Visual Studio and other applications.  
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 Figure 14 exhibits the Intel Core i5 520M processor specifications and cache 

information retrieved by CPU-Z on Windows XP SP3 with Boot Camp. 

 

    

Figure 14. Intel Core i5 520M CPU and cache specifications [13] 

 
4.2 Software   

Software installed on the test systems is an operating system, utilities, and a 

software development tool. The system runs Windows XP service pack 3 as an operating 

system, and the program used in experiments are developed in C and C# languages on 

Visual Studio 2010. CPU-Z is a utility used to retrieve processor specifications and cache 

information. 
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5.0 Experiment Results 

 In this section, the results of the experiments are analyzed to understand how false 

sharing happens, and how to avoid it. 

5.1 Gather cache line size 

 Before drawing a data layout diagram how false sharing occurs in a cache line, 

we need to gather cache specifications on the test system. 

CL Reader is a program developed to read a cache line size of the Intel CPUs. It 

resorts to the Intel’s manual which provides instruction sets for reading specific cache 

specifications from processor’s registers. The utility shows a cache line size of the Intel 

test system equal to 64 bytes in figure 15. Nevertheless, the utility does not work on 

AMD processors because of compatibility between Intel and AMD instruction sets. Thus, 

the AMD processor’s specifications are looked up by CPU-Z and manufacturers’ 

specification manuals [14][15].   The program code of CL Reader is in appendix A. 

 

 

Figure 15. Cache line size reported by CL Reader 

 

5.2 Execution results 

 This experiment results are collected from the executions of five different test 

cases:  Sequential, FS parallel, Parallel FS + Spacing remedy, Parallel FS + Padding 

remedy, and Parallel FS + Spacing and Padding remedies. These five cases are designed 

to execute the same amount of workload with different data layouts. The details of data 

arrangement in each case are: 
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- Sequential—a sequential execution of the assigned workload on one core. 

- Parallel FS—an execution of the assigned workload on all available cores in 

parallel. The amount of workload is divided equally for every core. There will be 

data contention in cache lines. The runtime on this case is expected to be 

influenced by false sharing. 

- Parallel FS + Spacing remedy—an execution of the assigned workload on all 

available cores in parallel. The amount of workload is divided equally for every 

core. Additionally, this case applies the Spacing technique to avoid false sharing 

effects. 

- Parallel FS + Padding remedy—an execution of the assigned workload on all 

available cores in parallel. The amount of workload is divided equally for every 

core. This case implements the Padding technique to prevent false sharing 

occurring on the array metadata. 

- Parallel FS + Spacing and Padding remedies—an execution of the assigned 

workload on all available cores in parallel. The amount of workload is divided 

equally for every core. Moreover, this case combines Spacing and Padding 

techniques so as to completely eliminate false sharing effects on the array 

elements and metadata.  

The program execution is performed fifty iterations. The runtime is collected, and 

sorted in order. The five maximum and minimum figures are discarded to reduce data 

variation. The filtered data set of runtime is averaged to alleviate interferences from 

system environmental programs such as the anti-virus program, user applications, and 

system processes.  
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The performance comparison is measured by time to complete the workload. The 

workload is simply a write operation of a value to an array element, but repeatedly 

performed ten million times with a different value for each time. At the end of each 

execution, runtime results on the five different cases are printed, and speed-up ratios and 

efficiency are calculated from the runtime. Both numbers are computed as relative 

parallel performance based upon the sequential runtime as follows. The raw data table is 

listed in appendix B.  

Speed-up(x) = sequential runtime / parallel runtime 

Efficiency (%) = [(sequential runtime / parallel runtime) / number of cores]*100 

Or    

      Efficiency (%) = (speed-up / number of cores) *100   [11] 

5.2.1 Intel Core2 Duo T5270 results 

 The following table shows runtime, speed-up ratios, and efficiency percentage of 

the five test cases executed on the Intel Core2 Duo T5270 system.  

  
Sequential 

Parallel 

FS 

Parallel FS Parallel FS Parallel FS + 

+ Spacing  + Padding  Spacing & Padding 

Runtime 

(millisecond) 
115.75 227.11 152.90 117.08 66.08 

Speed-up (X) 1 0.51 0.76 0.99 1.75 

Efficiency (%) 100 25.48 37.85 49.43 87.58 

 
Table 1. Intel Core2 Duo T5270 experiment results 

 The analysis compares the four parallel cases to the Sequential case, which is set 

as base performance. The Parallel FS case takes the greatest runtime (227.11ms) than any 

other cases. Usually, two processors working simultaneously on the same amount of 
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workload should take a half of time executed by one processor. However, the Parallel FS 

runtime is a doubled number of the Sequential one. The increased runtime is caused by 

false sharing which boosts the number of cache line invalidation and adds up the actual 

runtime with data reloading latency. 

 The Parallel FS + Spacing remedy shows a certain improvement when it is 

compared to the Parallel FS. Yet its runtime (152.90ms) is not satisfying since it is still 

greater than runtime in the Sequential case (115.75ms). 

 The Parallel FS + Padding remedy case spends less time (117.08ms) than the two 

prior cases. The number is even competitive to the Sequential case (115.75ms), but 

runtime with two cores would be a half of that on one core to gain equal efficiency. 

Therefore, performance degradation still shows up in this case because of the false 

sharing problem.  

 
  

Figure 16. Average runtime on Intel Core2 Duo T5270 test system 
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According to a false sharing research, Butler proves that using solely either 

Spacing or Padding technique is unable to remove false sharing effects [8]. The theory is 

consistent to the experiment results.  

 Finally, Parallel FS + Padding and Spacing remedies case wins the best runtime 

(66.08ms). Since the data layout is deliberately defined to completely eliminate cache 

line sharing, it shows an outstanding performance compare with other cases. Figure 16 

shows runtime of all test cases on the Intel Core 2 Duo T5270 system. The lower time 

indicates the better performance. 

 
 

Figure 17. Speed-up ratios on Intel Core2 Duo T5270 test system 

 To further analyze the execution performance, the graph in figure 17 plots speed-

up ratios of all cases calculated on the basis of Sequential case speed-up (1.0x).  

The speed-up ratios demonstrate that false sharing has the most influences on the 

Parallel FS execution (0.51x), and less impacts on the two cases with remedial 

techniques, Parallel FS + Spacing remedy (0.76x) and Parallel FS + Padding remedy 
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(0.99x). The Parallel FS + Spacing and Padding remedies case obtains a practical value at 

1.75x in speed. 

Theoretically, two cores should accelerate system performance for two times (2x). 

However, the speed-up ratio in practical does not reach the theoretical value because 

some system resources are used to fork working threads, and synchronize data among 

those threads. A speed-up ratio range of 1.5x to 1.9x is considered practical in the level of 

parallelism with two processing cores [30].  

 

Figure 18. Efficiency percentage on Intel Core2 Duo T5270 test system 

  Efficiency is a fairly good indicator to measure performance per processing unit, 

or per core. The Sequential case is a base value with 100% efficiency. For two cores 

working in parallel, the system must run two times faster than single core to gain full 

efficiency. Figure 18 shows the efficiency that has a similar pattern to speed-up ratios: 

Parallel FS 25.48%, Parallel FS + Spacing remedy 37.85%, Parallel FS with Padding 

remedy 49.43%, and Parallel FS + Spacing and Padding remedies 87.58%. The amount 
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of lost efficiency results from the different degrees of false sharing impact. The more 

false cache line sharing occurs in a case, the lower performance it obtains. 

 
5.2.2 AMD Turion 64 X2 Test Results 

 Table 2 shows the experiment results on the AMD Turion 64 X2. The average 

runtime, speed-up ratios, and efficiency percentage have similar characteristics to the 

Intel Core2 Duo T5270 experiment results.  

  
Sequential 

Parallel 

FS 

Parallel FS Parallel FS Parallel FS + 

+ Spacing  + Padding  Spacing & Padding 

Runtime 

(millisecond) 
147.00 292.64 202.59 234.80 74.73 

Speed-up (X) 1 0.50 0.73 0.63 1.97 

Efficiency (%) 100 25.12 36.28 31.30 98.34 

 
Table 2. AMD Turion 64 X2 experiment results 

 The Parallel FS runtime (292.64ms) obtains the worst rank compared to all other 

cases. It takes approximated doubled runtime to the Sequential case. 

 The Parallel FS + Spacing remedy case (202.59ms) and the Parallel FS + Padding 

remedy (234.80ms) cases take less runtime than the Parallel FS, but not less than the 

sequential running. Unlike the Intel Core 2 Duo T5270 test, the Parallel FS + Spacing 

remedy outperforms the Parallel FS + Padding remedy. 

 The best runtime belongs to the Parallel FS + Spacing and Padding remedies. It is 

very close to ideal runtime of two processing cores which is the sequential runtime 

divided by two (73.5ms).  Showing the differences among all cases, figure 19 displays a 

bar graph of the runtime. The lower runtime is the better performance. 
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Figure 19. Average runtime on AMD Turion 64 X2 test system 

Consider the speed-up ratios, the number of the Parallel FS case does not scale 

well (0.5x) compared to the sequential case (1.0x). When the Parallel FS case is 

employed with the Spacing technique to become the Parallel FS + Spacing remedy, the 

speed-up augments to be 0.73x. The Parallel FS + Padding remedy also reaches a greater 

speed-up (0.63x) compared to the Parallel FS case as shown in figure 20.  

 
 

Figure 20. Speed-up ratio on AMD Turion 64 X2 test system 
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False sharing turns down speed-ups of the three mentioned cases in different 

degrees. However, the Parallel FS + Spacing and Padding remedies case (1.97x) gains a 

promising speed-up at 1.97x, which is virtually close to an ideal value at 2.0x.  

 Among parallel cases, only the Parallel FS + Spacing and Padding (98.34%) can 

perform well in terms of efficiency as shown in figure 21. The efficiency in any other 

cases reflects the different performance degradation by different degrees of false sharing 

effects, Parallel FS (25.12%), Parallel FS + Padding remedy (31.30%), and Parallel FS + 

Spacing remedy (36.28%) respectively. 

 
 

Figure 21. Efficiency percentage on AMD Turion 64 X2 test system 
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false sharing, and leads to better runtime compared to the Parallel FS case, 82.95ms on 

the Parallel FS + Spacing remedy and 89.16ms on the Parallel FS + Padding remedy case. 

The Parallel FS + Spacing and Padding remedies case reaches the best runtime 

(40.41ms), which is a half runtime of the Sequential case. 

  
Sequential 

Parallel

FS 

Parallel FS Parallel FS Parallel FS + 

+ Spacing  + Padding  Spacing & Padding 

Runtime 

(millisecond) 
87.74 154.03 82.95 89.16 40.41 

Speed-up (X) 1 0.57 1.06 0.98 2.17 

Efficiency (%) 100 28.48 52.89 49.21 108.57 

 
Table 3. Intel Core i5 520M experiment results 

Figure 22 exhibits the runtime bar graph of the Intel Core i5 520M. The lesser 

time is the better performance. 

 

Figure 22. Average runtime on Intel Core i5 520M test system 
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Parallel FS + Padding remedy case (1.06x) and the Parallel FS + Spacing remedy case 

(0.98x). The Parallel FS + Padding and Spacing remedies case gains the highest speed-up 

ratio than two previous systems at 2.17x in speed.   

 
 

Figure 23. Speed-up ratios on Intel Core i5 520M test system 

 

Figure 24. Efficiency percentage on Intel Core i5 520M test system 
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the Parallel FS + Padding and Spacing remedies is noticeable with a “superlinear” 

number (108.57%). It is the case that efficiency exceeds 100%. The term Superlinear is 

explained in “Superlinear: an investigation into concurrent speed-up” [24]. The work 

exemplified a program that makes use of data stored in a shared cache. When the 

program is repeatedly executed, the performance will substantially boost up because of 

memory locality, both temporal and spatial.  

In addition to benefits from locality of references, another condition to achieve a 

superlinear efficiency is capable of executing multiple concurrent threads. The Intel Core 

i5 520M processor comes up with Hyper-Threading technology which is able to execute 

two threads on a core at a time. Therefore, it increases probability for threads to take 

advantage of memory locality; thereby reaching to the point of the superlinear efficiency.  

5.3 Performance drops caused by false sharing 

 This section illustrates performance drops caused by false sharing. From prior 

experiment results in section 5.2, the numbers of efficiency loss are observed as follows. 

 

 Sequential 
Parallel 

FS 

Parallel FS Parallel FS Parallel FS  

+ Spacing + Padding + S & P 

Intel Core2 Duo T5270 

Efficiency (%) 100 25.48 37.85 49.43 87.58 

Loss (%) - 74.52 62.15 50.57 12.48 

AMD Turion 64 X2 

Efficiency (%) 100 25.12 36.28 31.30 98.34 

Loss (%) - 74.88 63.72 68.70 1.66 

Intel Core i5 520M 

Efficiency (%) 100 28.48 52.89 49.21 108.57 

Loss (%) - 71.52 47.11 50.79 0 (+8.57) 

 
Table 4. Efficiency loss caused by false sharing on the test systems 
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 The Parallel FS case suffers from false sharing the most. The system performance 

drops by three fourth of the speculated efficiency, which caused efficiency loss 70-75%. 

The Parallel FS + Spacing remedy and the Parallel FS + Padding remedy cases also have 

significant performance degradation approximate 50-70% in loss, but less efficiency 

deficit compared to Parallel FS. Thus, the Parallel FS + Spacing and Padding remedies 

case performs efficiently, especially on the Core i5 520M processor. The case has a small 

number of losses on all three test systems: Intel Core2 Duo T5270 at 12.48% in loss, 

AMD Turion 64 X2 at 1.66% in loss, and Intel Core i5 520M at 8.57% in excess. 

 
5.4 False sharing impacts comparison on multiprocessor and dual core systems 

 The previous research points out the severity of the false sharing impact on 

multiprocessor systems in two orders of magnitudes (-100x) [8]. However, the 

experiment results in this project demonstrate the worst case of performance degradation 

by a factor of four (-4x). An important observation is the degree of impact on a 

multiprocessor system is far aggressive than that on a dual core system. The suspicious 

factor is memory hierarchy. 

 

Figure 25 Cache Ping-ponging on multi-level memory in a multiprocessor system 
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Figure 26. Cache Ping-ponging on multi-level memory in a dual core system 

Figure 25 and 26 show block diagrams of a multiprocessor system and an Intel 

dual core processor system with multi-level memory hierarchies. Supposed that the 

program similar to the one that runs in the test experiment is executed in a multiprocessor 

system, false sharing will happen on the system. In the Parallel FS case, the array 

elements in a cache line are updated by many processors; false sharing happens leading 

to cache line invalidation. When a processor writes a new value to its array elements, the 

whole cache line needs to be written back to the main memory, and reload to all 

processors’ caches, known as cache Ping-Pong in figure 25. The CPUs’ read and write 

operations befall between their caches and the (shared) main memory, in other words, 

between the cache and the main memory hierarchy. Since the processors need to access 

to the main memory through a shared bus, the system suffers from cache misses penalty. 

The amount of CPU waiting time substantially increases by the cache miss penalty as a 

following equation:   

Cache miss penalty (X bytes) = main memory access latency + X bytes/data receive rate [26] 
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Cache miss penalty is computed by adding up a delay of main memory access and 

data transfer time from main memory to cache memory. The data transfer rate depends on 

the shared memory bus. Because the bus is used by all processors to access to main 

memory and peripheral devices, transfer time of the bus has much higher latency than 

that of an internal bus between caches and CPUs.  Therefore, the substantial amount of 

increasing time caused by cache miss penalty results in significant performance reduction 

stemmed from the false sharing problem. 

In case the similar scenario of false sharing occurs on a dual core system, the 

Cache Ping-Ponging also happens in the system as shown in figure 26. Yet, the cache 

invalidation in the dual core system takes place in between the L1 cache and the shared 

L2 cache, instead of in between the cache and the main memory in multiprocessor 

systems. The on-die caches are local memories having low latency since they reside 

internally in the CPU package. Data transfers among caches do not require bus 

transactions like data transfers between cache and main memory. Therefore, the severity 

degree of false sharing on a dual core system does not cause significant performance 

degradation like it does on a multiprocessor system. 
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6.0 Conclusion 

 The study of false sharing effects on dual-core CPUs demonstrates the existence 

of false sharing on multicore CPUs. The issue apparently degrades overall performance 

in a concurrent execution.   

(1) In the case of Parallel FS running on dual core processors, the efficiency 

degrades by approximately 70-75%. In other words, the test program works 

slower than speculated by four times; it runs at 25-30% efficiency instead of 

100% efficiency.  

(2) For the partially FS resolved cases, the Parallel FS + Spacing remedy and 

Parallel FS + Padding remedy have certain runtime improvements to be 30-

50% efficiency. However, the false sharing impact still stalls the two test 

cases, and leads to significant efficiency loss.  

(3) On the best case, the Parallel FS + Spacing and Padding remedies case 

completely avoids false sharing, and obtains performance at nearly 100% 

efficiency.  

All the test systems, Intel Core2 Duo T5270, AMD Turion 64 X2, and Intel Core 

i5 520M processors, are consistently suffering from false sharing effects resulting in 

performance drops at 50%-75% efficiency. 

 On one hand, programmers can be optimistic for improvements on multicore 

CPUs since the ratio of performance drops caused by the false sharing problem on a dual 

core system is not as high as that on a multiprocessor system. The findings in this project 

indicates that performance of a dual core system drops approximately by a factor of four 

(-4x). Unlike the false sharing impact on a multiprocessor system, the previous research 

reported the performance loss as high numbers as one hundred times (-100x) on an eight 

processor system. The different degrees of the false sharing impacts come from the 
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differences in memory architectures between those two systems.  The shared cache 

implementation on Intel dual core processors alleviates the adverse impact caused by 

false sharing. For AMD processors, although each core has a separate L2 cache which is 

subject to have false sharing problems, the processor handles the data synchronization 

among caches on all cores by using MOESI coherency protocol and dedicated data paths. 

This interconnection technology is called AMD Hyper Transport technology. In brief, 

both Intel and AMD have deliberately come up with the intelligent designs to cope with 

the data sharing issue across cores. 

 On the other hand, the programmers must still be aware of performance 

degradation caused by false sharing, because a program working four times slower in 

parallel on a dual core system means it runs even slower than sequential execution on a 

single core processor. The false sharing issue, therefore, is a major potential issue in 

parallel programming on multicore CPUs.  

 This project proposed and implemented the Spacing and Padding techniques to 

avoid false sharing. The Spacing technique separates many variables in a shared cache 

line into a variable for each cache line. The Padding technique isolates shared array 

metadata from the actual variables with a pad. The combination of both techniques is 

necessary to completely eliminate false sharing on the test scenario. Nevertheless, there 

is a trade-off for the implemented techniques. The implementation of Spacing and 

Padding techniques barters with memory space. On the dual core test systems, the 

amount of memory used in the Parallel FS case is 8 bytes for the array plus the metadata 

size, which can be rounded up to be 16 bytes. The modified array size in the Parallel FS + 

Spacing and Padding remedies case becomes three cache lines, or 192 bytes, which are 

one element in a cache line per core plus another cache line for metadata. Thus, the cost 

to avoid false sharing is rather expensive.   
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7.0 Future Work 

 The processors with four cores, six cores, and eight cores will be a standard for 

personal computers in the foreseeable future. Also, the internal architecture of processors 

keeps changing to handle inter-core communication efficiently. For Intel Core-i7, data on 

each core is synchronized through inter-core connection paths known as Intel Quick Path 

technology [1]. AMD Phenom X4 Quad-core uses Hyper Transport 3.0 technology 

maximizing throughput to be 51.2Gbit/second [27]. All break-though technologies are 

invented to tackle data synchronization among cores. However, does the new cutting 

edge technology really work on all types of applications without the false sharing issue? 

If it does, that is good news for programmers. However, this project shows the existence 

of false sharing on dual core CPUs. It is most likely that false sharing would still occur 

on a more-than-two-core processor. In case the problem does exist, how much is the 

impact on a quad core CPU?  How much is the performance loss on an eight core or a 

sixteen core processor? The evaluation of the false sharing impact on such many cores 

CPUs will be subject to further research in the future. 
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Appendix A: Source codes 

 
CL_Reader.c 

#include "stdafx.h" 
#include <stdio.h> 
#include <string.h> 
#include <windows.h> 
#include "conio.h" 
 
ULONG get_basic_info(void); 
 
int _tmain(int argc, _TCHAR* argv[]) 
{ 
 printf("Cache line size is: %u bytes",get_basic_info()); 
 getch(); 
 
 return 0; 
} 
 
ULONG get_basic_info(void){ 
 _asm{ 
  MOV EAX,80000006h 
  CPUID 
  MOV EAX,ECX 
  AND EAX,0xff 
 } 
} 

 

Program.cs 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Windows.Forms; 
 
namespace FS 
{ 
    static class Program 
    { 
        /// <summary> 
        /// The main entry point for the application. 
        /// </summary> 
        [STAThread] 
        static void Main() 
        { 
            Application.EnableVisualStyles(); 
            Application.SetCompatibleTextRenderingDefault(false); 
            Application.Run(new Form1()); 
        } 
    } 
} 

 

Form1.cs 

#define PERF_FALSEX 
#define PERF_TRUEX 
 
using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Linq; 
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using System.Text; 
using System.Windows.Forms; 
using System.Diagnostics; 
using System.Threading; 
using System.Threading.Tasks; 
using ZedGraph; 
 
namespace FS 
{ 
    public partial class Form1 : Form 
    { 
        SynchronizationContext _Sync = null; 
 
        public Form1() 
        { 
            InitializeComponent(); 
 
            Shown += new EventHandler(HandlesShown); 
 
            _Sync = SynchronizationContext.Current; 
        } 
 
        void HandlesShown(object sender, EventArgs e) 
        { 
#if PERF_FALSE 
   for ( int i = 0 ; i < 9 ; i++ ) Work( Environment.ProcessorCount, false 
); Close(); 
#elif PERF_TRUE 
   for ( int i = 0 ; i < 9 ; i++ ) Work( Environment.ProcessorCount, false, 
padding: true, spacing: true  ); Close(); 
#endif 
        } 
 
        private void button1_Click(object sender, EventArgs e) 
        { 
            Begin(); 
        } 
 
        void Begin() 
  { 
   int REPEAT = 1; 
   bool oneWriter = false; 
   //pb.Value = 0; 
 
            var nn = new PointPairList(); 
            var ny = new PointPairList(); 
            var yn = new PointPairList(); 
            var yy = new PointPairList(); 
 
   var task = Task.Factory.StartNew( () => 
    { 
     Trace.WriteLine( "\n\nRun: " + DateTime.Now.TimeOfDay + 
"\n" ); 
 
     
     int max = Environment.ProcessorCount * 4; 
     int cur = 0; 
 
     for ( int threads = 1 ; threads <= 
Environment.ProcessorCount ; threads++ ) 
     {               
      nn.Add( threads, Enumerable.Range( 0, REPEAT 
).Median( i => Work( threads, oneWriter ) ) ); 
       
      ny.Add( threads, Enumerable.Range( 0, REPEAT 
).Median( i => Work( threads, oneWriter, spacing: true ) ) ); 
       



iii 
 

                        yn.Add( threads, Enumerable.Range( 0, REPEAT ).Median( i => Work( threads, 
oneWriter, padding: true ) ) );       
 
      yy.Add( threads, Enumerable.Range( 0, REPEAT 
).Median( i => Work( threads, oneWriter, padding: true, spacing: true ) ) ); 
       
                    } 
    } ); 
             
  } 
 
  double Work( int threadCount, bool oneWriter, bool padding = false, bool spacing 
= false, int affinity = -1 ) 
  { 
   int iPadding = padding ? 16 : 0; 
   int iSpacing = spacing ? 16 : 1; 
 
   var trace = String.Empty; 
   trace += "ThreadCount: " + threadCount; 
   trace += " - Padding: " + iPadding; 
   trace += " - Spacing: " + iSpacing; 
   if ( affinity != -1 ) trace += " - Affinity: " + affinity; 
   Trace.WriteLine( trace ); 
 
   if ( affinity == -1 ) affinity = 1; 
 
   var sequential = Task.Factory.StartNew<TimeSpan>( new Worker( 1, 
oneWriter, iPadding, iSpacing, affinity ).Work ); 
 
   var parallel = sequential.ContinueWith<TimeSpan>( prev => new Worker( 
threadCount, oneWriter, iPadding, iSpacing, affinity ).Work() ); 
 
   double y = 0d; 
 
   var results = parallel.ContinueWith( prev => 
    { 
     var speedup = sequential.Result.TotalSeconds / 
parallel.Result.TotalSeconds; 
     var slowdown = 1d / speedup; 
     var efficiency = 100d * speedup / threadCount; 
 
     Trace.WriteLine( 
      "Speedup: " + speedup.ToString( "N2" ) + 
      " ; Slowdown: " + slowdown.ToString( "N2" ) + 
      " ; Efficiency: " + efficiency.ToString( "N2" ) + 
"%\n" ); 
 
     y = speedup; 
    } ); 
 
   results.Wait(); 
 
   return y; 
  } 
  
    } 
} 

 

Worker.cs 

using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
using System.Diagnostics; 
using System.Threading.Tasks; 
using System.Threading; 
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using System.Runtime.InteropServices; 
 
namespace FS 
{ 
 public class Worker 
 { 
  const int ITERS = ( int ) 1e7; 
 
  int _ThreadCount = 0; 
  bool _OneWriter = false; 
  int _Padding = 0; 
  int _Spacing = 0; 
  int _Affinity = 0; 
 
  public Worker( int threadCount, bool oneWriter, int padding, int spacing, int 
affinity ) 
  { 
   _ThreadCount = threadCount; 
   _OneWriter = oneWriter; 
   _Padding = padding; 
   _Spacing = spacing; 
   _Affinity = affinity; 
  } 
 
  [DllImport( "kernel32.dll" )] 
  static extern IntPtr GetCurrentThread(); 
 
  [DllImport( "kernel32.dll" )] 
  static extern UIntPtr SetThreadAffinityMask( IntPtr hThread, UIntPtr 
dwThreadAffinityMask ); 
 
  public TimeSpan Work() 
  { 
   var data = new int[ _Padding + ( _ThreadCount * _Spacing ) ]; 
   Array.Clear( data, 0, data.Length ); 
 
   var iters = ITERS / _ThreadCount; 
   
   using ( var mre = new ManualResetEvent( false ) ) 
   using ( var countdown = new CountdownEvent( _ThreadCount ) ) 
   { 
    TimeSpan[] tss = new TimeSpan[ Environment.ProcessorCount ]; 
 
    for ( int i = 0 ; i < _ThreadCount ; i++ ) 
    { 
     int iThread = i; 
 
     if ( !_OneWriter || iThread == 0 ) 
     { 
      new Thread( () => 
      { 
       SetThreadAffinityMask( 
GetCurrentThread(), new UIntPtr( 1u << ( iThread * _Affinity ) ) ); 
 
       var offset = _Padding + ( iThread * 
_Spacing ); 
 
       mre.WaitOne(); 
 
       for ( int x = 0 ; x < iters ; x++ ) 
data[ offset ]++; 
       countdown.Signal(); 
 
      } ) { IsBackground = true, Priority = 
ThreadPriority.Highest }.Start(); 
     } 
     else 
     { 
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      new Thread( () => 
      { 
       SetThreadAffinityMask( 
GetCurrentThread(), new UIntPtr( 1u << ( iThread * _Affinity ) ) ); 
 
       var offset = _Padding + ( iThread * 
_Spacing ); 
       int dummy = 0; 
       mre.WaitOne(); 
       for ( int x = 0 ; x < iters ; x++ ) 
dummy = data[ offset ]; 
       countdown.Signal(); 
 
      } ) { IsBackground = true, Priority = 
ThreadPriority.Highest }.Start(); 
     } 
    } 
    Thread.Sleep( 100 ); 
 
    var sw = Stopwatch.StartNew(); 
    mre.Set(); 
    countdown.Wait(); 
    var ts = sw.Elapsed; 
 
    Trace.WriteLine( "False : " + data.Sum( i => ( long ) i 
).ToString( "N0" ) + " in " + ts.TotalSeconds + " secs" ); 
 
    return ts; 
   } 
  } 
 } 
} 

 
EnumerableEx.cs 
using System; 
using System.Collections.Generic; 
using System.Linq; 
using System.Text; 
 
namespace FS 
{ 
 static class EnumerableEx 
 { 
  public static U Median<T, U>( this IEnumerable<T> e, Func<T, U> fn ) 
  { 
   var list = e.Select( fn ).OrderBy( u => u ).ToList(); 
 
   if ( list.Count == 0 ) return default( U ); 
 
   return list[ list.Count / 2 ]; 
  } 
 } 
}  



vi 
 

Appendix B: Result tables 

 

Intel Core 2 Duo T5270 

  Sequential Parallel FS 
Parallel FS 

+ Spacing 

Parallel FS 

+ Padding 

Parallel FS 

+ S & P 

Run 1 0.1163863 0.1166894 0.1648988 0.1152791 0.0684922 

Run 2 0.1192282 0.202907 0.1875805 0.1140728 0.0845467 

Run 3 0.1153833 0.2469059 0.1250019 0.1178538 0.0847937 

Run 4 0.1109213 0.2465726 0.1693793 0.1201258 0.0643503 

Run 5 0.111287 0.1944945 0.1638333 0.122339 0.0882128 

Run 6 0.1121318 0.2439458 0.1679624 0.1171785 0.0643919 

Run 7 0.1178423 0.2424299 0.1507663 0.0684436 0.0649143 

Run 8 0.1186988 0.2437536 0.1575376 0.1039701 0.0653907 

Run 9 0.119711 0.118541 0.1553775 0.1059232 0.0642609 

Run 10 0.1106445 0.1962922 0.0710894 0.1156297 0.0652434 

Run 11 0.1152157 0.1799734 0.1464814 0.1198414 0.0655823 

Run 12 0.1117273 0.1899749 0.1469859 0.1177579 0.0646953 

Run 13 0.1313647 0.1584975 0.1706342 0.1242836 0.0731129 

Run 14 0.1171766 0.2654264 0.1655056 0.1190972 0.0649755 

Run 15 0.115473 0.2713819 0.1243029 0.1219775 0.064274 

Run 16 0.1187363 0.2638603 0.1605715 0.119043 0.0738674 

Run 17 0.1148833 0.2527399 0.1595881 0.1204496 0.0658807 

Run 18 0.1134353 0.2492632 0.1705026 0.0703986 0.0655452 

Run 19 0.1138292 0.1589822 0.0648518 0.1204834 0.0645908 

Run 20 0.1196124 0.259736 0.1240978 0.1182301 0.0653658 

Run 21 0.1153462 0.2503658 0.1618054 0.1137119 0.0676974 

Run 22 0.1114705 0.2437496 0.1213894 0.1196012 0.0644316 

Run 23 0.1380485 0.1909373 0.1720525 0.1048675 0.0660567 

Run 24 0.1154143 0.1983179 0.1636168 0.1200063 0.0670546 

Run 25 0.1103374 0.1976837 0.1631693 0.1168229 0.0646023 

Run 26 0.1104897 0.2504888 0.1715332 0.1173017 0.0641992 

Run 27 0.1134498 0.2633097 0.1900356 0.1294441 0.064138 

Run 28 0.1207801 0.1994795 0.1654271 0.1068839 0.0646693 

Run 29 0.1137963 0.257914 0.1647617 0.1152283 0.0653063 

Run 30 0.1171732 0.2460578 0.1575895 0.1188349 0.0662235 

Run 31 0.1174568 0.1962844 0.0643442 0.1248831 0.0679058 

Run 32 0.1189816 0.2355944 0.1469748 0.118075 0.0641522 

Run 33 0.1324319 0.1188821 0.0714238 0.1087384 0.068046 

Run 34 0.1149972 0.2429143 0.1649047 0.1228781 0.0644945 

Run 35 0.1170564 0.1165321 0.1256352 0.1177772 0.0640031 

Run 36 0.1152266 0.2425576 0.1741059 0.1207946 0.0658664 

Run 37 0.1296438 0.2461751 0.1815102 0.1281872 0.0676767 

Run 38 0.1124229 0.2462891 0.1533088 0.1192615 0.0651163 

Run 39 0.1163762 0.2548483 0.1460316 0.1068091 0.0652152 

Run 40 0.1135214 0.1932932 0.1470739 0.1147958 0.065068 

Run 41 0.1255637 0.2422662 0.0845557 0.1178412 0.0696267 

Run 42 0.1166874 0.2531805 0.2122903 0.1154359 0.0746368 



vii 
 

Run 43 0.1150442 0.2451118 0.1747428 0.1186946 0.0644227 

Run 44 0.1126391 0.2498711 0.0671247 0.1150813 0.0704315 

Run 45 0.1116261 0.2426386 0.1689354 0.1132931 0.0704597 

Run 46 0.1239244 0.1925761 0.1264965 0.1216216 0.0685559 

Run 47 0.112564 0.2572349 0.159482 0.1186628 0.063781 

Run 48 0.1147472 0.117816 0.1670477 0.1189436 0.0643556 

Run 49 0.1118812 0.2465656 0.1627371 0.1136152 0.064552 

Run 50 0.1180127 0.2553268 0.124168 0.1160155 0.0644308 

 

AMD Turion 64 X2 

  Sequential Parallel FS 
Parallel FS 

+ Spacing 

Parallel FS 

+ Padding 

Parallel FS 

+ S & P 

Run 1 0.1463781 0.2441405 0.2169434 0.2303356 0.0761409 

Run 2 0.1536357 0.2388756 0.21555 0.2360635 0.0737962 

Run 3 0.1457229 0.3525182 0.2135168 0.2330824 0.0738638 

Run 4 0.1855121 0.2369482 0.1915695 0.2321286 0.0722237 

Run 5 0.1602119 0.3270278 0.2374659 0.231849 0.0744494 

Run 6 0.1464915 0.3447681 0.216735 0.2342638 0.0728081 

Run 7 0.1422543 0.2936454 0.1855607 0.2444081 0.0728701 

Run 8 0.1512125 0.3468837 0.21496 0.2370787 0.0769103 

Run 9 0.1529554 0.3478101 0.2142459 0.235367 0.0741298 

Run 10 0.2037918 0.3450033 0.1812182 0.0876114 0.0746075 

Run 11 0.1574694 0.2372723 0.2169007 0.240794 0.0774048 

Run 12 0.1579535 0.3424778 0.1928736 0.2358428 0.0770159 

Run 13 0.1456025 0.2440986 0.1937749 0.2351667 0.0832072 

Run 14 0.1431011 0.3412816 0.194461 0.2529905 0.0742591 

Run 15 0.1470983 0.3573348 0.1911857 0.2290014 0.0784493 

Run 16 0.1436333 0.310785 0.0756286 0.2395279 0.0738317 

Run 17 0.1442406 0.3500905 0.1881378 0.2456362 0.071518 

Run 18 0.1602577 0.3486124 0.2082024 0.2366948 0.0723499 

Run 19 0.1428782 0.3114418 0.1920431 0.2345457 0.0738619 

Run 20 0.1425094 0.2709243 0.2166166 0.2382411 0.0725494 

Run 21 0.1435327 0.309118 0.2207962 0.2377173 0.073126 

Run 22 0.1455545 0.3557021 0.1929449 0.2333 0.0718029 

Run 23 0.1427994 0.2982937 0.1906697 0.2334992 0.0721678 

Run 24 0.1556072 0.2259845 0.2124121 0.2369242 0.0767723 

Run 25 0.143495 0.3543159 0.2091536 0.2353762 0.0715909 

Run 26 0.144551 0.2674887 0.1928828 0.2384699 0.081472 

Run 27 0.1426469 0.361062 0.1945009 0.2150616 0.0727128 

Run 28 0.1438098 0.2808326 0.2080121 0.2344591 0.081724 

Run 29 0.1448128 0.3072971 0.0715705 0.0806717 0.0754813 

Run 30 0.1484476 0.2134748 0.2095459 0.2429817 0.0760764 

Run 31 0.1428161 0.2399237 0.2149792 0.23223 0.0804688 

Run 32 0.1443496 0.2349167 0.1840963 0.236487 0.0866962 

Run 33 0.1461437 0.2411161 0.2191935 0.2329994 0.0727924 

Run 34 0.1430712 0.2841059 0.1918908 0.2328094 0.0771223 

Run 35 0.1440129 0.3408651 0.2114726 0.2330653 0.0744918 
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Run 36 0.1449723 0.2374653 0.2106136 0.2505709 0.0722097 

Run 37 0.155903 0.2424062 0.0734121 0.237003 0.0761753 

Run 38 0.1466027 0.2203274 0.227701 0.2320979 0.0831745 

Run 39 0.1502291 0.2470489 0.1825768 0.2355866 0.0726368 

Run 40 0.143747 0.3424248 0.207549 0.2320864 0.0713819 

Run 41 0.1435391 0.2415865 0.2139785 0.2355514 0.077949 

Run 42 0.154069 0.3452544 0.1923037 0.2323887 0.073685 

Run 43 0.1432777 0.2477275 0.1933413 0.2329594 0.0765102 

Run 44 0.1452005 0.2330815 0.215032 0.237134 0.076653 

Run 45 0.1438029 0.3405902 0.1943358 0.2367342 0.0772408 

Run 46 0.1540486 0.341228 0.2149806 0.2310327 0.0724801 

Run 47 0.1453307 0.2421662 0.189721 0.2334679 0.0733459 

Run 48 0.1426022 0.2390775 0.0713867 0.2369703 0.0715677 

Run 49 0.1544028 0.2372234 0.2162995 0.2306645 0.0749335 

Run 50 0.1442864 0.3503886 0.2140878 0.217441 0.0729634 

 

Intel Core i5 520M 

  Sequential Parallel FS 
Parallel FS 

+ Spacing 

Parallel FS 

+ Padding 

Parallel FS 

+ S & P 

Run 1 0.084880 0.085782 0.036394 0.037759 0.035863 

Run 2 0.085164 0.092071 0.036957 0.038240 0.035942 

Run 3 0.085194 0.097520 0.037173 0.043674 0.036421 

Run 4 0.085333 0.116838 0.039118 0.043867 0.036699 

Run 5 0.085340 0.117396 0.042244 0.060990 0.036787 

Run 6 0.085447 0.119555 0.065374 0.078303 0.037076 

Run 7 0.085468 0.121064 0.065441 0.080320 0.037163 

Run 8 0.085649 0.122478 0.070888 0.080473 0.037166 

Run 9 0.086041 0.122833 0.071614 0.080515 0.037234 

Run 10 0.086063 0.126431 0.071843 0.080788 0.037367 

Run 11 0.086136 0.147522 0.073237 0.081040 0.037461 

Run 12 0.086269 0.147558 0.074111 0.081515 0.037498 

Run 13 0.086529 0.147669 0.078568 0.081594 0.037563 

Run 14 0.086671 0.148318 0.079253 0.081774 0.037716 

Run 15 0.086778 0.148882 0.082583 0.082260 0.037773 

Run 16 0.086835 0.149359 0.082889 0.082281 0.037803 

Run 17 0.086894 0.149412 0.083346 0.082453 0.037814 

Run 18 0.086922 0.149487 0.083366 0.082505 0.038688 

Run 19 0.087093 0.149742 0.083532 0.082776 0.038772 

Run 20 0.087104 0.150505 0.083630 0.083050 0.038957 

Run 21 0.087192 0.151366 0.083760 0.083069 0.039489 

Run 22 0.087208 0.151890 0.083812 0.083152 0.039503 

Run 23 0.087265 0.152022 0.084123 0.083702 0.039647 

Run 24 0.087271 0.152210 0.084478 0.084741 0.039837 

Run 25 0.087297 0.152671 0.084525 0.085098 0.039856 

Run 26 0.087323 0.153750 0.084631 0.087071 0.040086 

Run 27 0.087432 0.154017 0.084995 0.087223 0.040208 

Run 28 0.087566 0.154271 0.085021 0.087301 0.040242 



ix 
 

Run 29 0.087617 0.154716 0.085741 0.088082 0.040508 

Run 30 0.087668 0.154876 0.085939 0.088925 0.040867 

Run 31 0.087696 0.155394 0.085996 0.089573 0.041131 

Run 32 0.087700 0.156354 0.086130 0.090966 0.041171 

Run 33 0.087881 0.156692 0.086776 0.096338 0.042474 

Run 34 0.087925 0.157802 0.086862 0.097293 0.042621 

Run 35 0.087960 0.159466 0.086913 0.097507 0.042685 

Run 36 0.088336 0.159751 0.087424 0.097528 0.042690 

Run 37 0.088421 0.161695 0.087499 0.097750 0.042830 

Run 38 0.088689 0.164490 0.087521 0.098482 0.043274 

Run 39 0.089500 0.167511 0.087654 0.098523 0.043725 

Run 40 0.089635 0.173836 0.087661 0.098662 0.043928 

Run 41 0.089701 0.179274 0.088607 0.099555 0.043947 

Run 42 0.089973 0.179446 0.089201 0.105104 0.044681 

Run 43 0.090087 0.182819 0.089671 0.105724 0.044786 

Run 44 0.092762 0.184848 0.091036 0.106250 0.045009 

Run 45 0.093898 0.189566 0.092395 0.107221 0.045137 

Run 46 0.093944 0.189953 0.098260 0.107317 0.045725 

Run 47 0.097575 0.192927 0.099534 0.107730 0.045842 

Run 48 0.099108 0.195304 0.120271 0.109740 0.046145 

Run 49 0.103327 0.197995 0.127399 0.110509 0.069305 

Run 50 0.103458 0.198995 0.129841 0.121024 0.070142 
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