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ABSTRACT 
 

STRUCTURE OF THE SKAGIT GNEISS COMPLEX IN  
DIABLO LAKE AREA, NORTH CASCADES, WA 

 
by Niki Everette Wintzer 

 
The crystalline core of the North Cascades is part of a thick (>55 km) 96-

45 Ma continental magmatic arc.  The highest-grade part of the arc is the Skagit 

Gneiss Complex, composed mostly of partially migmatitic amphibolite-facies 

orthogneiss, banded biotite gneiss, and paragneiss.  The typically NW-striking 

foliation and mostly gently SE-plunging lineation formed dominantly between 69 

and 51 Ma.  Four-fold generations are recorded in the study area, some of which 

formed from 51 to 46 Ma.  The prominent upright km-scale folds are similar to 

Eocene folds in the southern part of the Skagit Gneiss Complex and suggest at 

least a short interval of regional shortening during an extended period of overall 

transtension.  Latest ductile deformation is marked by strong subhorizontal 

constrictional fabrics in granodiorite, which intrudes all other major units and 

structures at 46-45 Ma.  Microstructures record relatively low-temperature (300-

400º C) and medium- to high-temperature (≥450º C) ductile deformation, which 

are focused in different km-scale domains.  Orientations, sequences, and timing of 

structures are similar in the northern and southern portions of the Skagit Gneiss 

Complex, but structures are different in orientation and apparently do not record 

the switch in direction of non-coaxial shear in the central portion.
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INTRODUCTION 

 

Geologic Setting 

 

North-central Washington State displays the exhumed crystalline core of the 

North Cascades, which provides a window into the mid- and deep crust (Misch, 1966).  

The crystalline core is the southernmost segment of the >1500 km-long Coast Plutonic 

Complex, which is the largest Mesozoic Cordilleran arc (Fig. 1) (e.g., Tabor et al., 

1989; Miller et al., 2009b).  Dominantly tonalitic plutons, ranging from 96- to 45 Ma, 

intrude terranes of arc and oceanic origin (Fig. 1) (e.g., Tabor et al., 1989; Walker and 

Brown, 1991; Miller et al., 2009b).  Plutonism in the crystalline core of the North 

Cascades (Cascades core) was coeval with ductile deformation and amphibolite-facies 

metamorphism (e.g., Misch, 1966; Tabor et al., 1989).   

During the Late Cretaceous (>96- 73 Ma), the crystalline core experienced 

SW-NE contraction and subsequently dextral transpression during the Late Cretaceous 

to early Tertiary (73-57 Ma) (e.g., Misch, 1988; Miller and Bowring, 1990; McGroder, 

1991; Miller et al., 2006).  Mid-Cretaceous burial of the crystalline core is attributed to 

intra-arc shortening resulting from final eastward suturing of the Insular and 

Intermontane superterranes, or increased plate coupling (e.g., Brandon et al., 1988; 

Whitney and McGroder, 1989; Evans and Davidson, 1999), and/or to pluton-derived 

magma loading (Brown and Walker, 1993).  The lack of granulites, depth and 
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Figure 1.  Map of western North American Cordillera.  Arc plutons from the Mesozoic 
and Paleogene are emphasized.  Inset map focuses on the southern Coast Ranges and 
North Cascades arc.  Metamorphic rocks of the Cascades core are blue and Jurassic-
Paleogene plutons are orange.  The Coast Belt thrust system (CBTS), folds and thrusts 
of Eastern Cascades fold belt (ECFB), the Northwest Cascades system (NWCS), Ross 
Lake fault zone (RLFZ), and Cretaceous reverse faults within the Cascades core are 
shown.  The Cascades core is offset from the main part of the Coast belt by the dextral 
Fraser-Straight Creek fault (SCF).  Taken from Miller and Paterson (2001). 
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geochemistry of plutons suggest that crustal thickness was likely ≥55 km dominance 

of metamorphosed supracrustal rocks recording pressures of up to 12 kbar (35-40 km), 

(Miller and Paterson, 2001; Miller et al., 2009b). 

A transtensional strain regime prevailed in the early Tertiary (<57 Ma) (Miller 

and Bowring, 1990; Haugerud et al., 1991; Paterson et al., 2004).  The extension 

direction determined from ductile high-grade rocks is on average orogen-parallel 

(Miller et al., 2009b).  The average extension direction of the shallow crust, as 

determined from Eocene dike swarms, is counter-clockwise (mostly 10º-30º) to the 

ductile stretching direction (Doran, 2009).  Decoupling of deformation between the 

shallow and upper crust is suggested based on this disparity in extension direction 

(Miller et al., 2009b). 

The Eocene Entiat fault divides the Cascades core into the Wenatchee block to 

the southwest and Chelan block to the northeast (Fig. 1) (Tabor et al., 1989; Miller et 

al., 2006).  Magmatism is recorded from ca. 96 to 84 Ma in the Wenatchee block and 

ca. 91 to 45 Ma in the Chelan block.  Young 50-45 Ma Ar/Ar and K-Ar hornblende 

and biotite dates from two domains reveal that parts of the Chelan block, including the 

Skagit Gneiss Complex, remained hot until the Eocene (Haugerud et al., 1991; 

Wernicke and Getty, 1997; Paterson et al., 2004).  

The Skagit Gneiss Complex crops out as a northwest-trending belt in the 

northern portion of the Chelan block (Fig. 2).  This antiformal complex is composed 

of orthogneiss, metamorphosed supracrustal rocks of oceanic and volcanic-arc origin,  
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Figure 2.  Simplified geologic map of the Cascades core.  Terranes and plutons of the 
Chelan block are emphasized.  Numbers are ages of plutons and inferred 
crystallization ages of orthogneisses in the Skagit Gneiss Complex.  Combined dotted 
and wave pattern in Skagit Gneiss Complex represents the banded biotite gneiss 
component.  BPB=Black Peak batholith; BR=Bearcat Ridge Orthogneiss; LJ=Little 
Jack phyllite and schist; MC=Marble Creek pluton; MDO=Marblemount-Dumbell 
Orthogneiss; NQ=Napeequa unit; RC=Ruby Creek plutonic belt; RP=Riddle Peaks 
gabbro; RRC=Railroad Creek pluton.  Dotted pattern indicates Eocene plutons.  Study 
area shown by white box.  Crystallization ages from the Skagit Gneiss Complex are 
from recent U-Pb zircon dates (Shea, 2008; Michaels, 2008; N. McLean, unpub.; 
Gordon, 2009).  Modified from Miller et al. (2009a). 
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trondhjemitic pegmatites, and granitic dikes; portions of the complex are migmatitic 

(Misch, 1966, 1968; Yardley, 1978; Babcock and Misch, 1988).  Recent research 

revealed that the southern and central portions of the Skagit Gneiss Complex are 

almost entirely orthogneiss (Michels, 2008; Shea, 2008). 

Zircon U-Pb analyses from leucosomes in migmatites of the Skagit Gneiss 

Complex at the western and eastern edges of the study area indicate at least two pulses 

of migmatization (69-63 Ma and 54-51 Ma), which is younger to the east (Gordon, 

2009).  Multiple leucosomes and mesosomes yielded monazite U-Pb dates of ca. 69 

and 49-46 Ma, which implies the Skagit Gneiss Complex remained hot until the 

middle Eocene (Gordon, 2009).  Thermobarometric data indicate that the Skagit 

Gneiss Complex experienced near-isothermal decompression from 8-10 kbar to 3-4 

kbar at temperatures of 725-600º C in the Late Cretaceous and/or early Tertiary 

(Whitney, 1992a).  The narrow range of pressures is consistent with the limited crustal 

thickness exposed in the study area (2.1 to 2.8 km), as determined from cross sections 

(see Plates from this study).  Decompression is compatible with rapid Eocene 

exhumation recognized in parts of the Chelan block (Whitney, 1992a; Paterson et al., 

2004; Miller et al., 2009b).  The Skagit Gneiss Complex is the largest domain of hot 

crust exposed due to this exhumation.  To the north, the Chilliwack batholith cuts the 

Skagit Gneiss Complex and all of its ductile structures (Misch, 1966) and is as old as 

34 Ma (Tepper, 1996).  Structural analysis of the Skagit Gneiss Complex is key to 

understanding the Cenozoic ductile deformation history of the Cascades core.  
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Study Area 

 

This thesis focuses on a portion of the Skagit Gneiss Complex along Highway 

20 from Ross Dam to 3 km west of Diablo Dam (Fig. 3).  Excellent exposure, 

accessibility, and a wide range of rock types make this an ideal location to conduct a 

detailed study of the gneiss complex.  The installation of Highway 20 created 

numerous road cuts that expose rock at low elevations.  Surrounding topography has 

high to extremely high relief that only an expert mountaineer can traverse safely.  

Basic geologic information was previously published about the study area 

(e.g., Misch, 1966, 1968; Haugerud et al., 1991), including a 1:100,000 scale geologic 

map (Tabor et al., 2003) and numerous detailed studies of migmatite petrogenesis 

(Misch, 1968; Yardley, 1978, Babcock and Misch, 1988, Whitney, 1992b, Gordon, 

2009).  Ample geochronological and thermobarometric data were obtained as well 

(Haugerud et al., 1991; Whitney, 1992a; Wernicke and Getty, 1997; Gordon, 2009), 

but there were only limited structural data, which are necessary for a more complete 

understanding of the geologic history.  

This thesis involved geological mapping at a scale of 1:24,000 and 1:12,000 

(Plates 1 and 2).  Detailed structural data were collected at 255 stations including 

foliation, lineation, axial surface, and hinge line orientations where possible.  Sense-

of-shear from kinematic indicators was recorded and combined with the 

geochronological and thermobarometric data of other workers; these structural data  
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 provide insights into the deformational history and the changing strain field of the 

northern part of the Cascades crystalline core. 

The Skagit Gneiss Complex has been termed the backbone of the North 

Cascades due to its overall antiformal shape (Misch, 1966; Tabor et al., 2003).  The 

hinge zone of this regional NW-SE-trending antiform goes through the middle of the 

study area.  Although the basic geometry of the antiform was known, little data had 

been collected 

before this study on the smaller-wavelength folds.  Thus, a major part of the research 

was to document the scale, geometry, and style of folds. 

The crystalline core of the North Cascades was sufficiently hot to experience 

crustal flow (e.g., Miller et al., 2009b).  Asymmetric meso- and microstructures and 

lineation orientations offer insights into the direction of crustal flow, and sense-of-

shear was determined from kinematic indicators where possible.  Approximate 

deformation temperatures, based on microstructures, were also determined following 

Passchier and Trouw (2005).  Correlations between kinematic indicators, deformation 

temperatures, and rock age were made to evaluate the strain field in the Late 

Cretaceous to early Tertiary.  

Migmatites in the Skagit Gneiss Complex have been studied since the 1950s 

and continue to be a topic of much interest (Misch, 1968; Yardley, 1978, Babcock and 

Misch, 1988, Whitney, 1992b, Gordon, 2009).  Metamorphic differentiation and 

metasomatism were originally thought to be the sole cause of migmatite formation 

(Misch, 1966; Yardley, 1978).  Geochemical, petrographic, and field evidence point to 



 9 
 

infiltration of an aqueous fluid into the Skagit Gneiss Complex along foliation or 

fracture planes (Babcock and Misch, 1988).  Partial in-situ anatexis was later 

attributed to hydrothermal fluids emanating from proximal crystallizing plutons based 

on CO2-rich fluid inclusions originally sourced from water-saturated graphitic 

metasedimentary rocks by a chemical reaction that produces garnet+melt+CO2-CH4 

(Whitney, 1992b).  The zircon and monazite U-Pb dates (Gordon, 2009) from multiple 

leucosomes and mesosomes indicate two migmatization pulses (69-63 Ma and 54-51 

Ma).  It is thus clear that the migmatites formed over a protracted period of time and 

likely formed from multiple mechanisms.  Building on this previous work, I semi-

quantitatively estimated the distribution of migmatites at the 1:24,000 scale.  The 

migmatite distribution map compiled for the study area was used to determine if there 

are correlations between age, migmatite density, and location. 
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ROCK UNITS 

 

Skagit Gneiss Complex 

 

Introduction 

Metamorphosed supracrustal rocks and orthogneiss make up the Skagit Gneiss 

Complex, which is cut by late dacite dikes.  The Diablo Lake study area is comprised 

of roughly 45% migmatitic orthogneiss, 35% migmatitic banded biotite gneiss, 15% 

Diablo Lake orthogneiss, and 5% schist, amphibolite, calc-silicate rock, and 

metaperidotite (Plates 1 and 2).  The protolith of the banded biotite gneiss is uncertain 

because of its non-diagnostic mineralogy and pervasive deformation and 

recrystallization.  Aluminosilicate minerals, such as fibrolite in the paragneiss unit, 

allow for protolith determination; however, they are sparse within the Skagit Gneiss 

Complex.  The Napeequa Schist and the Cascade River Schist are considered to be the 

most likely protoliths of the banded biotite gneiss (Misch, 1966, 1977; Haugerud et 

al., 1991; Tabor et al., 2003).  Amphibolite, quartzite (metachert), and siliceous schist 

and metaperidotite dominate the Napeequa Schist, which is considered to be 

Mississippian-Jurassic (Miller et al., 2009b).  Biotite schist, hornblende schist, calc-

silicate rock, and metaconglomerate make up the Late Triassic Cascade River Schist 

(e.g., Tabor et al., 1989, Miller et al., 2009b).  
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The metamorphosed supracrustal rocks and banded gneiss of uncertain 

protolith host the orthogneiss bodies that are 3 km2 in map view.  The latest 

orthogneiss (46-45 Ma Diablo Lake orthogneiss) crops out in larger bodies (1.5 km2) 

and thick to thin sheets (5-15 m across).  Older and late orthogneiss records distinctly 

different types of strain.  Many of these bodies are shown on a geologic map of the 

Mount Baker quadrangle at the 1:100,000 scale (Tabor et al., 2003).  Additional units 

were recognized in the study area and a much more detailed map was produced.  

All units were examined for kinematic indicators (Figs. 4 and 5).  These asymmetric 

structures include the following: rotated plagioclase porphyroclasts and garnet 

porphyroblasts with mica tails, biotite “fish,” oblique quartz foliation, and deflected 

leucosomes.  Microstructures provide information about temperatures during ductile 

deformation (Fig. 6).  Quartz grain boundary bulging and quartz ribbons with limited 

subgrains and recrystallization, plagioclase microfractures and deformation twins, and 

undulatory extinction in biotite and/or plagioclase imply a deformation temperature 

range of 300 to 400ºC (Passchier and Trouw, 2005).  Core-and-mantle microstructures 

in plagioclase as well as elongated quartz subgrains and grains bounded by 120º angle 

faces are compatible with deformation at ≥450º C (Passchier and Trouw, 2005).  

Recrystallized hornblende and cummingtonite also indicate deformation at ≥500º C 

(Passchier and Trouw, 2005).  The 40 thin sections examined in this study were 

analyzed for microstructures that indicate deformation temperature.  
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Figure 4.  Field photographs of mesoscale kinematic indicators.  Rock type for all 
photographs is banded biotite gneiss.  (A) Rotated plagioclase porphyroclast; (B) 
sigma (σ) and delta (δ) type garnet porphyroblasts; (C) leucosome deflected by two 
shear zones; and (D) sigma (lower) and delta (upper) type plagioclase porphyroclasts. 
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Figure 5.  Photomicrographs of microstructures that give sense-of-shear.  A is top-to-
the-left and under plane polarized light; B through F are top-to-the-right and under 
cross polarized light.  Banded biotite gneiss and paragneiss contain the following:  
(A) S-C fabric (plane polar); (B) asymmetric plagioclase porphyroclast with tails of 
biotite and quartz; (C) asymmetric plagioclase porphyroclasts, S-C surfaces, and 
biotite” fish”; (D) garnet porphyroblasts with asymmetric biotite tails; (E) biotite 
“fish”; and (F) oblique quartz in ribbons. 
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Figure 6.  Microstructures that give deformation temperature.  A through C are 
lower-temperature microstructures (300-400°C); D through F are higher-
temperature microstructures (≥450°C).  (A) Slightly bent plagioclase grain with 
deformation twins; (B) quartz subgrains and bulging between grains (arrow points 
to a bulge); (C) microfractures in plagioclase; (D) plagioclase core and mantle 
structure (arrow point to recrystallized mantle); (E) 120° angle grain boundary 
junctions between recrystallized quartz grains; and (F) cummingtonite 
recrystallized in C-surface. 
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Orthogneiss 

Orthogneiss within the study area was previously categorized as quartz diorite 

orthogneiss, mafic orthogneiss, or coarse-grained banded gneiss and described as 

porphyritic and/or trondhjemitic (Misch, 1966; Tabor et al., 2003).  Most orthogneiss 

in the study area is tonalitic; however, the Diablo Lake orthogneiss is mostly 

granodioritic.  The tonalitic orthogneiss bodies are variably migmatized.  Percent 

leucosome of the outcrop ranges from 0% to 50%; leucosomes are concordant and 

discordant to foliation at the millimeter to meter scale.  The orthogneiss is divided into 

four main units based on locality and modal mineralogy; they are named hornblende 

tonalite gneiss, hornblende ± garnet gneiss, hornblende-cummingtonite-garnet gneiss, 

and Diablo Lake orthogneiss.  

Hornblende Tonalite Gneiss.  Located northeast of Diablo Lake (Plates 1 and 

3), this ≥ 4.5 km2 orthogneiss body contains hornblende and lacks cummingtonite and 

garnet found in other orthogneiss bodies within the study area.  The primary modal 

mineral assemblage consists of plagioclase-quartz-hornblende-biotite (42%, 32%, 

16%, and 10%, respectively); accessory amounts of zircon, oxides (magnetite and/or 

ilmenite), and secondary epidote, chlorite, and sericite are present.  Grain size is fine 

to medium.  

Foliation and lineation are defined by biotite, quartz, and hornblende.  This 

orthogneiss shows equally intense foliation and lineation; however, the overall 

intensity of foliation and lineation varies from outcrop to outcrop.  Orthogneiss and 

host rock foliation and lineation are concordant.  Contacts of the orthogneiss with the 
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host rock are marked by 1 to 3 m-wide zones of alternating sheets of orthogneiss and 

banded biotite gneiss.   

Plagioclase has deformation twins, undulatory extinction, and microfractures, 

and ranges from 0.5 to 3 mm in average length.  Quartz displays subgrains and 

ribbons.  As indicated by the microstructures such as quartz grain boundary bulging 

and lack of plagioclase recrystallization, deformation occurred at temperatures of 300-

400º C (Passchier and Trouw, 2005).  Other microstructures, including S-C surfaces 

and biotite “fish,” reveal sense-of-shear in this unit.  

Hornblende ± Garnet Gneiss.  Located around Pyramid Peak, southwest of 

Diablo Lake (Plates 1 and 3), this unit has a homogenous texture.  Foliation and 

lineation are of equal intensity and fabric intensity is similar amongst different 

outcrops.  Contacts with the host banded biotite gneiss are sharp with a narrow,  1 m-

wide zone of alternating banded biotite and orthogneiss.  The younger Diablo Lake 

orthogneiss sharply cuts through the central portion of the hornblende ± garnet 

orthogneiss.   

The primary mineral assemblage is plagioclase-quartz-hornblende-biotite ± 

garnet (50%, 40%, 6%, 2%, and 2%, respectively) with accessory zircon, and oxides 

(magnetite and/or ilmenite), and secondary chlorite and sericite.  Grains are medium to 

coarse, and foliation and lineation are defined by quartz, biotite, and hornblende.  

Plagioclase grains have deformation twins, undulatory extinction, and core-and-mantle 

microstructures, and range in average length from 0.5 to 3 mm.  This well-developed 

core-and-mantle structure and polygonal mosaic of quartz imply deformation 
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temperature is ≥450º C (Passchier and Trouw, 2005).  Oblique quartz foliation and 

biotite-defined shear bands offer kinematic direction.  In one locality, three 0.5 m 

pockets of orthogneiss are suspended within a 3 m wide leucosome layer. 

Hornblende-Cummingtonite-Garnet Gneiss.  This ≥6 km2 orthogneiss body is 

exposed in the eastern and southeastern portions of the study area (Plates 1 and 3, and 

Fig. 3).  Foliation and lineation are defined by quartz, biotite, and cummingtonite; 

fabric intensity varies from weak to moderate at different outcrops.  Grains are fine to 

coarse, and distribution of the various-sized grains is uneven.  There is considerable 

textural variation within this unit.  Contacts are sharp with the surrounding banded 

biotite gneiss and “metagraywacke.”  A few related meter-scale orthogneiss sheets lay 

within the “metagraywacke” west of the main orthogneiss mass along Highway 20.  

Misch (1977) interpreted these sheets as tectonic slices cut from the larger mass and 

incorporated into the host rock; the slices were later recrystallized.  Alternatively, they 

may be intrusive sheets, which because of their competence, localized higher strain in 

the adjacent well-layered gneisses (R.B. Miller, written communication). 

The primary mineral assemblage is plagioclase-quartz-biotite-cummingtonite-

hornblende ± garnet (45%, 35%, 10%, 4%, 4%, and 2%, respectively); the accessory 

minerals are zircon, clinopyroxene, allanite, sphene, and oxides (magnetite and 

ilmenite).  The secondary minerals epidote, chlorite, and prehnite indicate retrograde 

greenschist to prehnite-pumpellyite facies conditions.  Mineral modes from my thin 

sections indicate the orthogneiss is tonalitic; previous workers have reported that some 

of the orthogneiss is dioritic (Misch, 1968; Tabor et al., 2003).  
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A number of garnets have sieve texture, which may represent rapid growth 

(Whitney, 1992a).  Plagioclase-dominated coronas around a few garnets may indicate 

rapid decompression (e.g., Whitney, 1992a; Stowell and Stein, 2005).  Foliation wraps 

around garnets indicating pre- or syn-tectonic growth.  Plagioclase has deformation 

twins, undulatory extinction, bent grains (through angles of 25º), and core-and-mantle 

structure, and ranges in average length from 0.23 to 7 mm.  The grains are also highly 

sericitized.  Quartz subgrains bounded by 120º angle faces and highly elongate quartz 

ribbons are common.  Biotite and cummingtonite define S-C surfaces and “fish,” 

which provide sense-of-shear.  The recrystallized cummingtonite in the C-surfaces 

indicates deformation at ≥500º C or higher (Passchier and Trouw, 2005). 

U-Pb dating of zircon yielded a date of 67 Ma for this unit, which was 

interpreted as the age of igneous crystallization (Mattinson, 1972).  Subsequent U-Pb 

zircon analysis was performed by Hoppe (1984), and in conjunction with Sm-Nd data, 

yielded an inferred igneous crystallization age of 69 Ma.  Ar/Ar hornblende and biotite 

cooling dates of 47 Ma and 45 Ma indicate rapid cooling and presumably exhumation 

of this orthogneiss (Wernicke and Getty, 1997).  

 

Banded Biotite Gneiss  

The banded biotite gneiss was described as plagioclase porphyroblastic gneiss 

and lit-par-lit gneiss by Misch (1966, 1968, 1977).  The Napeequa Schist and/or the 

Cascade River Schist (Fig. 2) are considered potential protoliths for the banded biotite 
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gneiss as described earlier (Misch, 1966, 1977; Haugerud et al., 1991; Tabor et al., 

2003).  Foliation and lineation are defined by quartz and mica, and their intensities are 

roughly equal.  One locality north of Diablo Dam displays pervasive rodding where 

lineation is significantly stronger than foliation.  Grains are fine to coarse.  Banding of 

relatively mafic and felsic layers on the millimeter to tens-of-centimeters scale is 

diagnostic of this unit, which may be due to minimal segregation during 

metamorphism and deformation.  Plagioclase porphyroclasts, some of which are 

asymmetric, are visible at the mesoscale.  Leucosomes are concordant and discordant 

at millimeter to meter scale.  Percent leucosome of individual outcrops typically 

ranges from 5 to 50%.    

Plagioclase-quartz-biotite-garnet ± cummingtonite is the modal mineral 

assemblage with accessory muscovite, apatite, zircon, oxides (magnetite and/or 

ilmenite), and sparse secondary sericite.  Average length of plagioclase grains ranges 

from 0.5 to 5 mm.  Garnet porphyroblasts range from 1- 6 mm in diameter.  Sieve 

texture is present in garnets.  Highly elongate quartz ribbons (aspect ratio of 7:1) 

imply deformation under high strain rates and/or a low temperature (Passchier and 

Trouw, 2005).  Deformation twins, subtle undulatory extinction, and cracked grains of 

plagioclase, and lack of recrystallization suggest that the deformation temperature for 

at least much of this unit is 300-400º C.  Oblique quartz foliation, mica “fish,” and 

plagioclase porphyroclasts with asymmetric biotite tails all indicate sense-of-shear.   
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Paragneiss 

Metapelite.  These rocks form bodies that are roughly 25 to 200 m across, 

which subtly transition into the surrounding banded biotite gneiss.  Ample garnet 

porphyroblasts and plagioclase porphyroclasts are visible in fresh surfaces and in 

discrete millimeter-scale felsic and mafic layers.  Leucosomes occur concordant and 

discordant to layering and foliation, and are commonly folded.  Grain size is fine to 

medium.  Quartz and mica define foliation and lineation. 

The dominant mineral assemblage is plagioclase-quartz-biotite-muscovite ± 

garnet ± fibrolite ± rutile ± magnetite ± ilmenite.  Aluminosilicate minerals are 

diagnostic of this rock unit and have only been recognized in thin section (Fig. 7) 

(Whitney, 1992a).  Sillimanite (fibrolite) is present in the western, central, and eastern 

portions of the study area.  Metapelite occurs as m-scale pockets in banded biotite 

gneiss.  The central and eastern localities, which were discovered during this study, 

contain only fibrolite and lack garnet, thus precluding thermobarometry.  Sillimanite-

bearing paragneiss in two other localities west of Diablo Dam contains garnet and 

yields temperatures of 650-725º C and pressures of 8-10 kbar (Whitney, 1992a).  

Sericite is pervasive in plagioclase grains, and chlorite replaces biotite in C-

surfaces in the fibrolite-bearing samples.  The average length of plagioclase grains 

ranges from 2 to 5 mm.  Foliation wraps around the garnets indicating that the garnets 

are pre- or syn-tectonic.  Asymmetric porphyroblasts are apparent at the mesoscale. 
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Figure 7.  Fibrolite (fibrous sillimanite) under plane polarized light.  Epidote is the 
high-relief mineral to the upper left of the sillimanite.  
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 At the microscale, numerous mica grains are deformed into “fish.”  Poikiloblastic 

plagioclase grains with deformation twins have asymmetric tails.  Elongate quartz 

grains are oriented obliquely to foliation.  These microstructures offer sense-of-shear.  

Latest ductile deformation temperature was probably 300-400º C, as quartz 

recrystallized, but plagioclase did not.  Zircon grains from the paragneiss leucosomes 

in the western locality were dated at 69 to 63 and are interpreted to represent one of 

two migmatite pulses recorded in the study area (Gordon, 2009).  Monazite U-Pb dates 

from the metapelite are interpreted to record prograde metamorphism at around 69 Ma 

to 49-46 Ma (Gordon, 2009).  

“Metagraywacke” Gneiss.  Both localities of “metagraywacke” are in the 

eastern portion of the study area and are in sharp contact with hornblende-

cummingtonite-garnet gneiss (Plate 1).  The thickness of this unit varies from 0.5 to 

1.5 km.  There are sharply bounded felsic and mafic layers.  Felsic layers are on the 

millimeter to centimeter scale and display numerous plagioclase porphyroclasts.  

Grain size is fine to medium and the rocks are equigranular.  Plagioclase-quartz-

biotite-cummingtonite-hornblende-garnet- zircon ± staurolite ± magnetite ± ilmenite ± 

epidote is the mineral assemblage for this unit.  Plagioclase is recrystallized to a 

mosaic of grains ranging from 0.5 to 3 mm in length, and deformation temperature 

thus reached ≥450º C (Passchier and Trouw, 2005).  

The term “metagraywacke” was first used by Misch (1968) and continued by 

Whitney (1992a) and is based on the high Mg content implied by cummingtonite.  

Also, mineral modes are consistent with known immature volcanic-derived sediments.  
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Thus, it is considered reasonable to refer to this unit as a “metagraywacke” according 

to Whitney (1992a), but the bulk mineral mode is also compatible with a dacitic 

protolith. 

Biotite-Cummingtonite Schist.  This unit occurs at only one locality within the 

study area, and the contact is sharp with the surrounding hornblende-cummingtonite-

garnet gneiss.  The outcrop, which is 10 m across, is highly weathered and eroded.  

Lighter and darker layers consisting of different amounts of plagioclase, quartz, and 

biotite, with and without cummingtonite, alternate on the centimeter scale.  The high 

biotite content and strong foliation and lineation distinguish this unit.  The high 

percentage of biotite also implies that the protolith was sedimentary.   

Foliation and lineation are roughly equal in intensity and are defined by quartz, 

biotite, and cummingtonite.  Accessory muscovite and oxides and secondary sericite 

are present.  Deformation twins and undulatory extinction are typical of the 

plagioclase, and quartz grains are highly elongate with visible subgrains.  These 

features suggest that late ductile deformation occurred at temperatures of 300-400º C.  

Sense-of-shear indicators include mica “fish” and plagioclase porphyroclasts with 

asymmetric biotite tails.   

Calc-silicate Rock and Marble  

Outcrops of calc-silicate rock occur northeast of Ross Dam and east-southeast 

of Diablo Dam along Highway 20 (Plates 1 and 2) (Misch, 1977; Tabor et al., 2003), 

and are roughly 50 m and 7 m across, respectively.  Grain size is fine to very fine; a 
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sugary texture is present in a few places.  The Highway 20 body was interpreted by 

Misch (1977) as a mobilized dike that was emplaced into wall rock; he inferred that 

this body is a recrystallized mylonite that contains cataclastic fragments of gneiss.  

Minor diopside and grossularite occur as suspended grains within the calc-silicate, and 

immature limestone is likely the protolith (Misch, 1968).  Both outcrops represent rare 

metamorphosed calcareous sedimentary rocks in the Skagit Gneiss Complex.  

 

Amphibolite 

 Amphibolite crops out north of Gorge Lake in the western portion of the study 

area and probably extends across the lake in areas that are unmapped.  This unit was 

previously mapped and extends along strike at least 33.2 km northwest of the study 

area (Tabor et al., 2003).  Two additional localities were mapped as part of this project 

(Plates 1 and 2), which are tabular bodies with NW-striking foliation concordant to the 

previously mapped body.  Protoliths of the amphibolites are both meta-sedimentary 

and meta-igneous, the former of which is indicated by a relative abundance of biotite 

and schistose texture according to Misch (1968).  A meta-igneous protolith is 

indicated by relict zoning in the hornblende (Misch, 1968).  

A typical mineral assemblage includes plagioclase-amphibole-biotite-quartz ± 

garnet ± cummingtonite ± hornblende ± diopside (Misch, 1968).  Painstaking care was 

taken by Misch (1968) to document the zoning of the plagioclase and modal mineral 

variation of the amphibolites, along with all Skagit Gneiss Complex units, to gain 
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insight into the metamorphic history.  Grain size ranges from medium to coarse.  

Foliation and lineation are defined by hornblende and cummingtonite.  Leucosomes 

cut the amphibolite and each other and range from 1 to 7 cm in thickness.   

 

Migmatite  

Medium-grained to pegmatitic leucosomes, dominantly trondhjemitic, form 

bodies that are both concordant and discordant to the main foliation in the mesosome 

and are more resistant to weathering than other compositional layers.  Many of the 

leucosomes are only weakly foliated.  A few localities contain mylonitic leucosomes.  

Thickness of the leucosomes typically ranges from 1 cm to 1.5 m.  Leucosomes are 

present in all units of the Skagit Gneiss Complex except for the calc-silicate rock and 

the Diablo Lake orthogneiss.  The leucosome morphology varies significantly and 

includes stromatic, ptygmatic, boudinaged, and pegmatitic types (see Misch [1968] for 

detailed descriptions).  Boudins in leucosomes range in width from 0.5 cm to 1 m.  

Saddle reefs occur at 7 localities within banded biotite gneiss and range from 0.5 to 3 

m in width. 

Plagioclase-quartz-biotite ± garnet is the modal mineral assemblage.  Garnet 

porphyroblasts range in diameter from 1 to 3 mm; they were found at only 7 localities.  

These garnets are inclusion-free and interpreted to be peritectic as they likely formed 

during a partial melting reaction (Whitney, 1992b).  Core-and-mantle structure of 

plagioclase indicates recrystallization and a deformation temperature of ≥450º C.   
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The 68 Ma hornblende-cummingtonite-garnet orthogneiss contains mostly 

folded leucosomes, but there are a few locations of weakly foliated and non-folded 

leucosomes in the most northwestern-most portion of this unit along Highway 20 

(Plate 1).  The host orthogneiss may have shielded the leucosomes from folding.  At 

each possible station, leucosome concentration was recorded.  Leucosomes account 

for 5 to 45% of the outcrop volume.  These values were compiled on a map (Fig. 8) 

that reveals domains of higher, moderate, and lower leucosome concentration (>20%, 

20-5%, and <5%).  There is no obvious correlation between percent leucosome and 

rock type.  This observation suggests that all major units were equally susceptible to 

migmatization, which is not compatible with the range of modal minerals in the 

different units, or that some of the leucosomes were injected from a significant depth 

to the presently exposed crustal level. 

 

Diablo Lake Orthogneiss 

Although briefly mentioned, these rocks were not previously mapped as a 

separate unit, and were referred to informally as late-lineated granite (e.g., Haugerud, 

1991) or lumped with regional orthogneiss units (Misch, 1968, 1977).  Whole-rock 

Rb-Sr analysis of this unit yielded a 45 ± 3 Ma date from a sample locality southeast 

of Diablo Dam (Babcock et al., 1985), and a recent U-Pb zircon analysis yielded a 46 

Ma date for a sample taken <5 km to the north (Gordon, 2009).  I use the name Diablo 

Lake orthogneiss due to the proximity of many of these rocks to Diablo  
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Lake.  This study revealed the Diablo Lake orthogneiss to be more voluminous than 

previously documented.  The orthogneiss crops out as a 1 km2 body in the center of 

the study area, as dikes in western and eastern portions, and as irregularly-shaped 

masses in a few places  1 throughout the study area.  Dikes of this unit range in 

thickness from 0.5 to 18 m (Plates 1 and 2).   

The Diablo Lake orthogneiss forms prominent outcrops.  Grains are medium to 

coarse, mineral lineation is prominent, and foliation is significantly weaker than 

lineation or absent.  The Diablo Lake orthogneiss has elongate quartz grains (7:1 on 

average) indicating solid-state deformation.  Lineation (and foliation) is defined by 

quartz, biotite, and plagioclase.   

Most of the orthogneiss is granodiorite; the mineral assemblage includes 

plagioclase-quartz-biotite-orthoclase ± hornblende.  Misch (1968) also reported 

accessory amounts of muscovite, sphene, allanite, and oxides (magnetite and/or 

ilmenite).  Secondary sericite and chlorite are present in moderate amounts.  Average 

length of plagioclase grains range from 0.5 to 8 mm.  Potassium feldspars commonly 

show relict zoning (Misch, 1977), and myrmekitic texture is present but sparse.  

Orthoclase grains are perthitic and fractures are common.  Plagioclase shows relict 

compositional zoning, deformation twins, and undulatory extinction.  Biotite displays 

undulatory extinction.  The lack of feldspar recrystallization indicates deformation 

temperature at 300-400º C.  
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Felsic Dikes 

 

These dikes occur in a main western cluster and one eastern location and cut 

orthogneiss and biotite gneiss.  Dike widths are 20 to 100 cm.  Outcrops of this unit 

are prominent and resistant to weathering as compared to its host gneiss.  Grains are 

fine to coarse.  The felsic dikes, which are mostly granodioritic, cut the Diablo Lake 

orthogneiss.  Foliation and lineation of roughly equal intensity are defined by quartz 

and mica; however, overall deformation intensity is significantly weaker than the 

Diablo Lake orthogneiss.  These dikes are thus given an igneous rather than a 

metamorphic name and are not grouped within the Skagit Gneiss Complex. 

The mineral assemblage is plagioclase-quartz-potassium-feldspar ± biotite 

 ± muscovite ± magnetite ± ilmenite.  Potassium feldspar occurs as microcline and 

orthoclase.  Plagioclase is pervasively sericitized and displays relict zoning, 

undulatory extinction, and cracks.  Oblique quartz foliation is defined by extremely 

fine (0.5 mm in length) grains with aspect ratios ranging from 3:1 to 5:1.  Rotated 

plagioclase porphyroclasts with micaceous tails and quartz-defined shear bands offer 

kinematic direction.  Based on microstructures, deformation temperature was 300-400º 

C.  The very low color index distinguishes these felsic dikes from the Diablo Lake 

orthogneiss.   
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Dacite Dikes  

 

In the center of the study area, dacite dikes intrude banded biotite gneiss and 

probably the Diablo Lake orthogneiss (Plate 1).  These dikes form prominent outcrops.  

Fresh rock faces reveal an aphanitic matrix with phenocrysts of feldspar and 

amphiboles.  Phenocrysts are medium grained and subhedral to euhedral.  There is no 

deformational fabric in this rock, which along with the intrusive relations suggests that 

this unit is the youngest in the study area (<46 Ma).  Plagioclase-quartz-hornblende-

cummingtonite and accessory oxides define the mineral assemblage.  Secondary 

sericite and chlorite are sparse.  Plagioclase is zoned.  Cummingtonite has 

characteristic polysynthetic twinning, and some grains have thin hornblende rims.  The 

fine-grained matrix minerals are indiscernible, except for a few amphibole grains.  The 

coeval occurrence of cummingtonite and hornblende, which is based on optical 

identification in this study, is very rare and suggests the magma had a relatively low-

temperature and high partial-water pressure (Geschwind and Rutherford, 1992).  

 



 31 
 

STRUCTURAL ANALYSIS 

 

Introduction  

 

Significant insight into the deformational history of the mid- to deep crust can 

be gained from structural analysis of deeply exhumed crystalline rocks.  In this study, 

foliation, lineation, fold measurements, and evaluation of kinematic indicators 

combined with cross-cutting relationships and absolute dating are effective tools to 

unravel the local and regional deformational history.  The structural data collected 

provide information about the strain regime at the time of deformation.  Additionally, 

cross-cutting relationships combined with geochronological data elucidate 

deformational “episodes.”  In an effort to better understand the deformation history of 

the Skagit Gneiss Complex, foliation, lineation, axial plane, and hinge line orientations 

were measured and analyzed. 

 Brittle structures are common in the map area, but were not analyzed as part of 

this study.  The most prominent brittle structure is the steeply dipping Thunder Lake 

fault, which trends roughly N-S through the central portion of the study area (Plates 1 

and 2) (e.g., Tabor et al., 2003), and has uncertain displacement.  Numerous outcrop-

scale faults reveal a complex pattern (Clay and Miller, 2008). 
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Foliation  

 

The dominant foliation strikes NW and dips mostly moderately to steeply in 

the Skagit Gneiss Complex.  Mean average strike is 346º and dips for two maxima, on 

a lower hemispheric equal area stereonet plot of poles to all foliations (n=223), are 43º 

NE and 35º SW (Fig. 9).  There are more NE than SW dipping foliation 

measurements.  The poles to foliation form a moderately well-defined girdle that is 

interpreted to represent the regional antiform (Fig. 9).  The pole to the girdle is 19º to 

150º.  The scatter of some data points away from the girdle indicates that the regional 

fold is not cylindrical.   

The foliation map pattern (Plate 1) reveals nine, km-scale folds; most hinge 

lines plunge shallowly to the SE and a few plunge shallowly to the NW.  Most of these 

folds are upright.  Curvature of the hinge lines in map view indicates that these folds 

are non-cylindrical.  The km-scale folds have a similar trend to the regional antiform 

that characterizes the overall structure of the Skagit Gneiss Complex and are likely 

parasitic to this regional structure.  

Foliation and lineation are defined by quartz, biotite, and amphiboles in 

outcrop and thin section.  Fabric intensity is strong and consistent throughout the 

banded biotite gneiss and metapelites with a few areas of higher strain.  Orthogneisses 

show the weakest foliation of the gneiss units.  In the orthogneisses, strain is 

partitioned, as some outcrops show significantly stronger foliation and lineation than  
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Figure 9.  Stereonet plot of poles to foliation measurements (n=223).  The pole to the 
girdle (red square) defined by foliations is 19° to 150º.  Contour interval is 2.0 σ 
following the method of Kamb (1959), which is used in all subsequent plots with 
contours.  
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others.  Some of the strongest orthogneiss fabric is the mineral lineation in the 46-45 

Ma Diablo Lake orthogneiss. 

 

Lineation  

 

Mineral lineations, which are defined by amphiboles, biotite, and quartz grains 

and aggregates of these minerals, plunge shallowly to moderately and mostly trend SE 

or NW in the Skagit Gneiss Complex.  A lower hemispheric stereonet plot of lineation 

measurements (n=236) indicates a well-defined maxima of 14º to 145º (Fig. 10).  The 

relatively few NW-plunging lineations occur mainly in a domain in the northern 

section of the study area.  A subtle culmination is thus suggested by the pattern of 

lineation plunges.  The lineations dominantly trend parallel to subparallel to the 

foliation strike and are roughly the same direction throughout all units regardless of 

the age of the rock.  The relative degree of intensity between foliation and lineation 

varies amongst units.  In the Diablo Lake orthogneiss, lineation is much stronger than 

foliation, which makes foliation difficult to measure in most places.  In contrast, 

banded biotite gneiss, paragneiss, amphibolite, felsic dikes, and all orthogneisses 

display roughly equal intensity of foliation and lineation.  Leucosomes in migmatites 

have variable foliation intensity and are generally less well lineated.  Along Highway 

20, the sparse calc-silicate rock and marble show little to no foliation or lineation;  
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Figure 10.  Stereonet plot of lineations in the study area (n=236). 
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however, northeast of Ross Dam folded foliation is present and defined by alternating 

lighter- and darker-colored bands. 

 

Folds  

 

Folds occur in 60 of the 255 outcrops studied during this research.  Refolded 

folds occur in 9 of the 60 outcrops with folds.  Most of the folds are in banded biotite 

gneiss, metapelite, and “metagraywacke.”  This pattern presumably reflects the much 

less well-developed rock anisotropy in the orthogneisses.  Four generations of folds 

are expressed in the study area as described below. 

 

First Fold Generation (F3)  

The earliest folds are isoclinal to tight and are only observed at the outcrop 

scale.  Foliation, compositional layering, and leucosomes are folded.  Wavelengths 

range from 2 to 22 cm, and folds have angular and slightly thickened hinges.  Axial 

planes are inclined to recumbent (Fig. 11).  The lower hemispheric stereonet plot of 

axial planes shows scatter that probably resulted from subsequent refolding.  Variably 

oriented hinge lines plunge from 2º to 51º, mostly to the SE (Fig. 12).  
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Figure 11.  Stereonet plot of poles to F3 axial planes (n=13). 
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Figure 12.  Stereonet plot of F3 hinge lines (n=15). 
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Second Fold Generation (F4) 

Later folds are mostly open to gentle and thicknesses of layers change little 

between hinges and limbs indicating a nearly parallel (Class 1B) geometry.  

Wavelength ranges from outcrop scale (1-13 cm) to map scale (0.7 to 2.6 km; 1.3 km 

on average).  The second generation folds are developed throughout the study area and  

are present in all rock types except the Diablo Lake orthogneiss, felsic dikes, and 

dacite dikes, which cut these folds.  Refolded folds were observed at three outcrops on 

different ends of the study area in the banded biotite gneiss and “metagraywacke.”  

Refolding of the first generation folds formed type 2 to type 3 interference patterns 

(Fig. 13).  Axial planes of the second generation folds are upright to gently inclined 

and strike NW (Fig. 14).  The poles to these axial planes form a girdle on a lower 

hemispheric stereographic projection; the pole to the girdle is 15º to 144º (Fig. 14).  

Hinge lines of the second generation folds plunge shallowly and almost exclusively to 

the SE, forming a moderate cluster of data points on a stereonet plot (Fig. 15).  The 

pole to the girdle of all foliation measurements (19º to 150º; Fig. 9) is similar to the 

mean hinge line plunge and trend of the second fold generation (17º to 152º; Fig.15) 

strongly implying that the map-scale folds are second generation folds. 

In order to evaluate the consistency of folding at different scales, outcrop- and 

intermediate-sized (2 km2) areas were analyzed.  The intermediate scale is represented 

by all foliation measurements from the Thunder Arm map area (Plate 2). 
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Figure 13.  Refolded folds with type 2-3 interference patterns (note quarter for scale). 
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Figure 14.  Stereonet plot of poles to F4 axial planes (n=18).  Pole to the girdle (red 
square) is 15º to 144º. 
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Figure 15.  Stereonet plot of F4 hinge lines (n=18). 

 

 



 43 
 

The pole to the girdle of the foliations in this area is 17º to 155º and is consistent with 

the pole to the girdle for foliations in the entire study area (Fig. 16).  The foliation 

plots of both the intermediate- and map-scale domains reveal NW and SE trending 

folds.  The foliations in the intermediate-scale domain fit less tightly in a girdle than in 

the large map area.  This observation suggests that the folds are less cylindrical in this 

intermediate-scale domain than elsewhere.   

To assess fold consistency on a more detailed scale, a well-exposed antiformal 

hinge zone and adjacent limbs with a 75 m wavelength was studied in the central 

portion of the study area directly west of Thunder Arm (Fig. 17 and Plate 1).  Foliation 

strikes NW and dips shallowly to steeply (Fig. 18).  The pole to the girdle of the 

foliation measurements is 13º to 149º.  Smaller wavelength (0.5 to 3 m) and amplitude 

(0.25 to 1 m) parasitic folds that have “S,” “M,” and “Z” geometries are also present 

(Fig. 18).  The 75 m antiformal hinge zone is parasitic to the regional antiform as they 

have similar orientations and geometries.  Thus, parasitic folds occur on both the 

kilometer and meter scale in the study area.  Stereographic plots of the foliation 

measurements for the 75-m-wavelength fold (Fig. 18) are equivalent to those of the 

intermediate-sized area (Fig. 16) and the entire study area (Fig. 9); specifically, the 

poles to the girdles corresponding to the intermediate-scale and map-scale folds are 

similar (compare Figs. 9, 16, and 18).  There is also consistency between outcrop-scale 

hinge line orientations and the poles to the girdle of the larger folds.  In summary, 

orientations of the second fold generation are consistent at the map-, intermediate-, 

and outcrop-scale. 
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Figure 16.  Stereonet plot of detailed map area foliation measurements (n=100).  The 
pole to the girdle (red square) defined by foliations is 17° to 155°.  
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Figure 17.  Photograph of the well-exposed hinge zone.  Foliation strikes NW and dips 
shallowly to steeply.  Smaller wavelength and amplitude folds within the hinge zone 
form S, M, and Z parasitic folds (traced with light green line). 
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Figure 18.  Stereonet plot of poles to hinge zone foliation measurements (n=10).  Pole 
to the crude girdle (red square) is 13° to 149°. 
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Third Fold Generation (F5) 

The third fold generation is not seen in outcrop, but is inferred from the poles 

to the F4 axial planes that plot moderately well in a girdle suggesting the axial planes 

were folded (Fig. 14).  The pole to the girdle is 15º at 144º.  The geometry and scale 

cannot be determined for these cryptic folds from stereonet projections.  

 

Fourth (?) Fold Generation  

A poorly-defined generation of late and very weak folds is suggested by the 

curvature of map-scale F4 hinge lines.  Crude estimates of wavelengths range from 0.5 

to 1 km.  The folds are open to gentle and indicate minimal shortening.  Axial traces of 

these loosely constrained folds trend roughly NE-SW, which is about 90º from the 

other fold generations. 

 

 

Microstructures  

 

Kinematic Indicators 

Thin sections were cut in the inferred X-Z plane of the strain ellipsoid (parallel 

to lineation and perpendicular to foliation) and analyzed to obtain detailed information 

about asymmetric microstructures that enable determination of sense-of-shear.  Non-
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coaxial shear is recorded by asymmetric microstructures from 52 localities in the study 

area.  Banded biotite gneiss and paragneiss contain most of the kinematic indicators.  

Orthogneiss units contain 9 out of the 52 stations with consistent asymmetric 

microstructures.   

Asymmetric microstructures used for kinematic analysis include the following: 

S-C fabrics, plagioclase porphyroclasts and garnet porphyroblasts with asymmetric 

biotite tails, biotite “fish,” and oblique quartz foliation (Fig. 5).  Asymmetric 

porphyroclasts and porphyroblasts, sigmoidal leucosomes bound by C-surfaces, and S-

C fabrics are also recognized at the outcrop scale (Fig. 4) in 10 locations.  At all of 

these locations, the outcrop- and thin-section analyses are in agreement.  Biotite 

“fish,” S-C fabrics, and sigmoidal porphyroclasts of plagioclase are the most abundant 

types of kinematic indicators (in descending order).  The least abundant indicators are 

oblique quartz foliation, cummingtonite “fish,” and delta-type rotated grains.  

Asymmetric leucosomes bounded by narrow shear surfaces range from 7 to 80 cm in 

width.  Recrystallized biotite and quartz best define the C-surfaces.  The average angle 

between S- and C-surfaces is 25º.  The asymmetric porphyroclasts and porphyroblasts 

are almost exclusively sigmoidal; only 2 out of the 22 thin sections with asymmetric 

rotated grains are delta-type.  

Dextral and sinistral shear are roughly equally developed.  Their distribution 

does not fit a simple pattern.  If it is assumed that asymmetric structures were folded 

along with foliation by the second fold generation, and if foliation is restored to 

roughly horizontal, kinematics can be evaluated based on their pre-folding orientation.  
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In this orientation, domains are apparent that trend roughly NW-SE; some of the 

domains record top-to-the-NW shear and others have top-to-the-SE shear (Fig. 19).  

Some of the domain boundaries are poorly constrained, and the domains do not 

correlate with rock types.  

 

Deformation Temperature 

Mineral microstructures are used to estimate temperature of deformation 

throughout the study area (Fig. 6).  Assuming that strain rates did not vary drastically, 

ductile deformation overall probably occurred in two distinct regimes.  Relatively low-

temperature (300-400º C) and medium- to high-temperature (≥450º C) regimes are 

implied by the microstructures.  It is more straightforward to assign temperatures for 

orthogneiss units, as metapelites and amphibolites were presumably deformed under 

amphibolite-facies conditions to form the dominant foliation.  A few samples 

displaying higher-temperature deformation also contain lower-temperature 

microstructures such as undulatory extinction in quartz and bent or cracked 

plagioclase grains.  These indicate overprinting probably occurred during or after 

significant exhumation and cooling of the gneiss complex.  No samples examined in 

this study exhibit overprinting of lower-temperature microstructures by higher-

temperature ones.   

Samples with lower (n=22)- and higher (n=15)- temperature microstructures 

are apparently focused in different km-scale domains, although more data are needed 
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to refine the locations of the domain boundaries (Fig. 20).  As with the kinematic 

domains, rock type and deformation temperature do not appear to correlate; 

deformation temperature domains transect unit contacts.  The kinematic and 

deformation temperature domains, however, seemingly roughly correlate (Fig. 21).  

Specifically, 10 of the 14 lower-temperature microstructures correlate with the top-to-

the-NW deformation, and 5 out of the 7 higher-temperature microstructures correlate 

with top-to-the-SE deformation.  Top-to-the-SE shear is inferred to have occurred 

earlier, while the Skagit Gneiss Complex was near peak-metamorphic temperature.  

Deformation during and/or after subsequent cooling is postulated to have captured a 

change in the strain field to top-to-the-NW shear 

 

 

DISCUSSION 

 

Timing of Deformational “Episodes” 

 

Interpretation of the timing of deformational “episodes” in the Skagit Gneiss 

Complex and younger intrusive units is based on field and microscopic observations 

and zircon and monazite U-Pb dates.  Separating out “episodes” of deformation 

facilitates analysis of the complex history of these rocks.  This approach is not  
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intended to convey that structures formed simultaneously throughout the study area or 

that there were necessarily sharp temporal gaps between “episodes.”  For example, 

folds from the F3 deformational “episode” may have formed earlier in the western part 

than in the eastern part of the study area.  Also, plutons emplaced at different times 

would record different lengths of deformational history.  “Episode,” for the purposes 

of this analysis, is defined on the basis of the sequence of structures observed in 

different parts of the study area (e.g., foliation, lineation, or folds).  Although each 

deformational “episode” is probably time transgressive and spatially variable, the 

“episode” concept allows for a simpler treatment of the structural data collected in this 

study.  Quotations are used to acknowledge the simplistic nature of this treatment. 

 Number assignments for each deformational “episode” build on the numbering 

scheme of Haugerud et al. (1991).  The earliest foliation (S1) and lineation (L1) were 

recognized in amphibolite xenoliths within an orthogneiss body on Custer Ridge north 

of the study area in British Columbia (Haugerud et al., 1991).  S1 and L1 were not 

recognized in the study area, hence, the earliest deformational “episode” is D2.  

There are five main ductile structural “episodes” recorded in the study area that 

are described from oldest to youngest (Table 1).  The main foliation and lineation, 

which represent the oldest recorded deformation (D2), are well developed in all units 

except the Diablo Lake orthogneiss, felsic dikes, and dacite dikes.  Leucosomes, that  



 54 
 

 



 55 
 

cut the foliated units, yield U-Pb zircon dates of 69-63 and 54-51 Ma (Gordon, 2009) 

from the western and eastern margins of the study area, respectively.  The dates from 

the younger leucosomes that contain the main foliation and lineation (S2 and L2), 

indicate that D2 deformation probably at least in part during regional transtension. 

indicate that D2 deformation probably occurred at least in part during regional 

transtension.  

Leucosomes are strongly to weakly foliated and lineated and generally share 

the same fabric as their hosts.  Partially melting rocks are weak and should deform 

readily.  Host rocks may thus have been actively deforming when leucosomes were 

also injected, and their shared fabric indicates that the leucosomes and host rocks were 

deformed together.  The timing of deformation in older rocks that record multiple 

deformation sequences is less clear. 

 

 

Table 1: Ductile deformational “episodes” in the study area. 

Number  Deformational “Episode” Date 

D2 Main Foliation and Lineation (S2=L2) ≥69-51 Ma 

D3 First Fold Generation (F3) ≥51-46 Ma 

D4 Second Fold Generation (F4) ≥51-46 Ma 

D5 Third Fold Generation (F5) ≥51-46 Ma 

D6 Strong Constrictional Fabric (L6>>S6) 46-≥34 Ma 
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The earliest folds only fold the main foliation and lineation.  The second 

generation folds the first generation and migmatitic leucosomes as seen in outcrop and 

map pattern (Figs. 13 and 17).  Folds of the third generation are similarly oriented to 

earlier folds.  The latest and fourth-generation (?) folds have crude NE-SW axial 

traces, which are about 90º from the previous fold generation.  The NW-SE shortening 

has not been recognized in the Cascades core outside of the Skagit Gneiss Complex 

and its significance is uncertain.   

The 46-45 Ma Diablo Lake orthogneiss cuts all fold generations and provides a 

younger limit for folding (e.g., Misch, 1968).  At the western edge of the study area, 

leucosomes in folded metapelite yield dates inferred to represent melt crystallization at 

69-63 Ma (Gordon, 2009).  Folding of the meta-supracrustal rocks probably initiated 

prior 51 Ma.  Regional strain during the mid-Cretaceous was shortening and/or 

transpression that affected much of the Cascades core and flanking lower-grade rocks 

(Fig. 1); therefore, it is likely that the folds formed under these boundary conditions 

(e.g., Misch, 1966, 1988; Brown, 1987; Miller et al., 2006).  However, there are no 

dates or field relations that directly demonstrate folding before 51 Ma.   

The second and third fold generations likely formed during regional dextral 

transtension postulated to have begun at 57 Ma and continuing to at least 45 Ma (e.g., 

Johnson, 1985; Miller and Bowring, 1990; Haugerud et al., 1991).  The timing of the 

fold generations are not well constrained, but at least some folding occurred during the 

transtensional regime.  Folds can form during transtension but probably do not 

produce much shortening on a regional scale (Dewey, 2002).  In the study area at least 
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32% shortening is recorded by the second fold generation.  Upright folds in the 

southern part of the Skagit Gneiss Complex record at least 25% shortening (Shea, 

2008).  Parts of the Swauk basin, 155 km south of the study area, were also shortened 

by at least 25 to 30% in the Eocene (Doran, 2009).  Thus, the magnitude of Eocene 

shortening by the second fold generation within the study area is consistent with 

known Eocene shortening in other parts of the Skagit Gneiss Complex and Swauk 

basin and suggests at least a short interval of regional shortening during an extended 

period of overall transtension.   

Leucosomes within orthogneisses, particularly the hornblende-cummingtonite-

garnet orthogneiss with an inferred crystallization age of 68 Ma, are minimally folded 

compared to those in better-layered units.  This pattern may indicate that 

migmatization mostly postdated folding in some locations.  More likely, the lack of 

folds indicates that the rheologically strong orthogneiss bodies shielded the 

leucosomes from folding.  Within the banded biotite gneiss, leucosomes are locally 

boudinaged and thus were more competent than their host during deformation.   

The latest ductile deformation observed in the study area is the lineation-

dominated constrictional fabric (L6) in the 46-45 Ma Diablo Lake orthogneiss.  The 

Chilliwack batholith that cuts the Skagit Gneiss Complex to the northwest is dated at 

34 Ma and constrains the last deformational episode (Fig. 2).  The lineation in the 

Diablo Lake orthogneiss is oriented similarly to the main lineation in older rocks.  

Stretching direction thus most likely remained roughly constant during all of the 

deformational “episodes.”  During deformation of the Diablo Lake orthogneiss, 
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subvertical shortening was accompanied by subhorizontal shortening.  This late strain 

might have been partitioned into the relatively warmer and weaker Diablo Lake 

orthogneiss.   

An undated dacite dike, mapped directly northeast of Thunder Knob, cuts 

banded biotite gneiss.  It shows no significant ductile deformation and caps the ductile 

deformational history recorded in the study area.  

 

Kinematic Indicators, Deformation Temperatures, and Folds  

 

Combining various data for the study area reveals a number of correlations and 

patterns.  Sense-of-shear and deformation temperature broadly correspond.  

Specifically, top-to-the-NW shear occurs mostly in the lower-temperature (300-400º 

C) deformation domains, and top-to-the-SE shear correlates mostly with higher-

temperature (≥450º C) domains.   

In one scenario, the position of the top-to-the-NW and top-to-the-SE domains 

reflects structural level.  This scenario is unlikely as there is only limited structural 

thickness exposed in the study area and no regional strain gradient or decollement has 

been recognized.  

Exhumation of the Skagit Gneiss Complex probably occurred during the 

Eocene (Wernicke and Getty, 1997) and decompression from 8-10 to 3-5 kbar was 

nearly isothermic between 725-600º C (Whitney, 1992a).  Some high-temperature 
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microstructures are visible in thin section and may have formed during initial 

exhumation but before significant cooling.  For example,  recrystallized 

cummingtonite is found in the C-surfaces in three samples and formed at temperatures 

of ≥500º C (Passchier and Trouw, 2005), and additional microstructures record a 

moderate- to high-temperature (≥450º C), as described above.  These microstructures 

may have formed before, during, or after exhumation, as the Skagit Gneiss Complex 

remained hot during initial near-isothermal decompression.  Lower-temperature (300-

400º C) microstructures probably occurred after significant exhumation.  

 

Distribution and Timing of Intrusions and Migmatites 

 

Contacts of the moderately to slightly foliated orthogneiss bodies are mostly 

concordant to foliation.  This pattern may indicate concordant emplacement or that 

contacts were rotated into parallelism with the surrounding host rock as a result of 

progressive deformation.  The only moderate to weak strength of foliation and 

lineation probably precludes major rotation of contacts and thus these orthgneisses 

were likely emplaced concordantly as sills.  Subsequent younger deformation and lack 

of diagnostic criteria make it difficult to determine if pluton emplacement was 

syntectonic.   

Deformation temperature can offer insight into timing of pluton emplacement.  

The hornblende orthogneiss in the northeastern portion (Plates 1-3) of the study area 
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contains three stations with lower-temperature microstructures (300-400º C) and no 

higher-temperature microstructures (≥450º C) were recognized, which is compatible 

with emplacement after some exhumation of the Skagit Gneiss Complex.  The 

younger Diablo Lake orthogneiss also contains only lower-temperature 

microstructures.  

Migmatite distribution within the study area could be influenced by folding.  

The Skagit Gneiss Complex is in the core of a regional antiform, and the center of the 

main antiform contains the highest concentration of leucosomes according to Tabor 

and Haugerud (1999, Fig. 53).  This pattern may result from originally subhorizontal 

isotherms, which led to depth-controlled partial melting at deeper structural levels.  

Upright folding then brought these deeper levels up in the core of antiforms.  In detail, 

this interpretation is undoubtedly too simple for three main reasons.  Migmatites 

formed at more than one time interval (Gordon, 2009), bulk rock composition 

presumably influenced distribution of migmatites, and multiple migmatite types are 

developed in the study area (Misch, 1968; Yardley, 1978; Whitney, 1992b).   

 

General Implications for Cascades Core 

 

              The data collected from this study of the northern part of the Skagit Gneiss 

Complex combined with other recently completed work 40 km and 65 km to the 

southeast (Michels, 2008; Shea, 2008) offer insights into the structure of the Skagit 
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Gneiss Complex as a whole.  In the southern (Shea, 2008) and northern portions (this 

study) of the complex, foliation strikes NW with variable dips.  In contrast, foliation in 

the central part of the complex mainly strikes N-S to NNE with variable dips (Michels, 

2008).  Lineations in the northern and southern sections plunge moderately to 

shallowly to the SE (Shea, 2008); however, lineations in the central Skagit Gneiss 

Complex plunge shallowly to the NNE (Michels, 2008).  These data suggest that the 

NW-striking foliation and shallow to moderately SE plunging lineation are the 

dominant fabrics for the Skagit Gneiss Complex, and that foliation and lineation are 

deflected in the central section.   

Four fold generations are recorded in the southern part of the Skagit Gneiss 

Complex (Shea, 2008) and four (although not identical) fold generations are recorded 

in the northern part as described above.  The F4 folds in the north and south are upright 

and plunge shallowly, and they likely represent the same deformation.  Upright folds 

are much less common in the central part of the complex (Michels, 2008).   

Traced from the southern end of the gneiss complex northward, the foliation 

strike swings over a distance of 25 km from WNW to NW to NNE and then over a 

distance of 40 km back to a NW orientation in the study area (Miller, 1987; Miller and 

Bowring, 1990; Michels, 2008; Shea, 2008; R.B. Miller, unpublished data).  This 

regional fold is tens of kilometers in wavelength and has a steep NE striking axial 

plane and a steep plunge (Shea et al., 2007).  It represents the youngest folding on a 

regional scale within the complex (Shea, 2008).  The fourth and probably youngest 

fold generation proposed for the study area may correlate with the large regional fold. 
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The sense of non-coaxial shear, similar to the foliation and lineation in the 

Skagit Gneiss Complex, are also homologous in the northern and southern portions 

but differ in the center.  Both top-to-the-NW and -SE shear are present in the north and 

south, whereas mostly top-to-the-N shear domains occur in the central part of the 

complex (Michels, 2008).  Deformation temperature is 300-400º C or ≥450º C in the 

north and south, but the central section mainly records only higher-temperature 

deformation of 400-650º C (Michels, 2008; Shea, 2008; this study).  Top-to-the-NW 

shear probably correlates with the low-temperature deformation, and top-to-the-SE 

motion with the medium to high-temperature deformation in both the northern and 

southern parts of the Skagit Gneiss Complex.  Shea (2008) postulated that the change 

in shear direction is coincident with the regional change from transpression to 

transtension at 57 Ma.  In summary, the northern and southern portions of the gneiss 

complex have similar orientations of structures and deformational history, but the 

central portion differs in some important aspects and its structure is enigmatic (see 

Michels, 2008). 

Eocene deformation in the crystalline core is both brittle and ductile (e.g., 

Tabor et al., 1989; Miller et al., 2009a).  Deformation in the brittle crust is 

accommodated by numerous high-angle map-scale fault systems, including the 

Straight Creek-Fraser fault, Entiat fault, Foggy Dew fault, and Ross Lake fault (Figs. 1 

and 2).  Also, dike swarms in both the Eocene Swauk basin and Cascades core imply 

WNW-ESE to NW-SE stretching (Miller et al., 2009a).  South of the study area, 

Eocene ductile deformation was accommodated in part by the Dinkelman decollement 
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(Fig. 2), which separates Late Cretaceous Swakane Gneiss in the footwall from the 

Napeequa unit and 91-72 Ma arc plutons in the hanging wall.  Motion on the 

decollement and pervasive non-coaxial shear in the Swakane Gneiss are top-to-the-N, 

which is slightly oblique to the orogen (Paterson et al., 2004; Miller et al., 2009a).  

The latest motion on the Dinkelman decollement is likely extensional, as indicated by 

differences in Ar/Ar cooling ages, and displacement probably continued until around 

48 Ma (Matzel et al., 2004; Paterson et al., 2004).  The top-to-the-N displacement on 

the Dinkelman decollement, the orogen-parallel NW stretching indicated by lineation-

dominated fabric in the study area, and the top-to-the-NW shear in the Skagit Gneiss 

Complex roughly correspond temporally.  The differing stretching directions of the 

shallow and deep crust suggest some degree of decoupling during deformation (Miller 

et al., 2009b).  
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CONCLUSIONS 

1. Older orthogneiss (>46 Ma) is delineated into three units by location and 

mineral modes (occurrence of garnet, cummingtonite, and/or hornblende). 

2. Metapelite occurs in two newly-discovered localities.  

3. Felsic and dacite dikes cut the Skagit Gneiss Complex.  

4. The main foliation and lineation (D2) mostly formed from  ≥69 to 51 Ma. 

5. The earliest mesoscopic folds are isoclinal to tight with wavelengths ranging 

from 2 to 22 cm; hinges are slightly thickened and angular.  Axial planes are 

inclined to recumbent, and hinge lines plunge from 2º to 51º, mostly to the SE. 

6. The second generation of folds are outcrop- to map-scale, upright, open to 

gentle, and parasitic to the regional antiformal structure of the gneiss complex.  

Hinge lines plunge shallowly and almost exclusively to the SE.  Refolding of 

the first generation folds formed type 2 to type 3 interference patterns.  The 

second generation folds likely formed between 51 and 46 Ma.  

7. The third generation of folds are inferred from the poles to the F4 axial planes 

that plot moderately well in a girdle.  The pole to the girdle is 15º to 144º. 

8. A fourth and youngest fold generation is postulated based on the curvature of 

map-scale hinge lines.  Folds are open to gentle with wavelengths ranging from 

0.25 to 1 km, and crude axial traces trend roughly NE-SW. 
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9. Kinematic indicators at the micro- and mesoscale give top-to-the-NW and top-

to-the-SE sense-of-shear.  Km-scale domains recording the same sense-of-

shear broadly trend NW-SE across the study area. 

10. Deformation of the gneiss complex can be broken into lower-temperature 

(300-400º C) and medium- to higher-temperature (≥450º C) regimes.  Top-to-

the-NW-directed shear correlates with the lower-temperature deformation 

(300-400º C) and top-to-the-SE-directed shear correlates with higher-

temperature deformation (≥450º C).  

11. At least two of the four fold generations formed from 51 to 46 Ma and suggest 

an interval of shortening during an overall transtensional strain regime.  

12.  Late lineation-dominated fabric preferentially imprinted on the Diablo Lake 

orthogneiss, and is bracketed between 46-34 Ma.  

13.  Migmatitic leucosome outcrop volumes plot in higher, moderate, and lower 

(>20%, 20-5%, and <5%) domains.  

14.  Foliation, lineation, folds, shear sense, and deformation temperatures in the 

northern and southern portions of the Skagit Gneiss Complex are similar, but 

the central portion differs significantly. 
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