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ABSTRACT 
An important problem in intelligent environments is 
how the system can identify and model users’ 
activities. This paper describes a new technique for 
identifying correlations between sensors and activities 
in an intelligent environment. Intelligent systems can 
then use these correlations to recognize the activities 
in a space. The proposed approach is motivated by 
the need for distinguishing the critical set of sensors 
that identifies a specific activity from others that do 
not. We compare several correlation techniques and 
show that logistic regression is a suitable solution. 
Finally, we describe our approach and report 
preliminary results.  

Keywords 
Ambient intelligence, activities, correlation, 
regression 
INTRODUCTION 
In his classic paper “The Computer for the 21st 
Century” [14] Weiser envisions a world of intelligent 
environments that are highly aware of their 
inhabitants. In this vision, physical spaces are 
enhanced with computing capabilities to act more 
intelligently: they observe, interact with and react to 
humans in meaningful ways. They understand human 
reasoning, analyze behaviors and infer intentions. 
Furthermore, intelligent environments actively 
collaborate with their inhabitants to assist them in 
making their surroundings more pleasant. Intelligent 
environments even take decisions and execute 
actions on their own. They become integral 
participants in the daily human activity. 
A critical element that Weiser anticipated, yet has not 
been achieved, is the invisibility of pervasive 
systems. The ability of such systems to disappear 
into the background of everyday life is dependant on 
their ability to correctly interpret the state of the 
environment and to act accordingly: intelligent 

systems that incorrectly interpret the state of the 
world or the intentions of users are likely to take 
inappropriate actions that are not naturally anticipated 
by users [6]. Such incorrect actions could become 
very disruptive and intrusive to users, they distract 
the inhabitants of intelligent spaces from their 
ongoing activity and therefore, they make them more 
aware of the system. This paper begins to address 
the challenge of designing less intrusive intelligent 
environments that can engage in richer and more 
meaningful interactions with users. We believe that 
such systems must have a deep understanding of 
user context and, specifically, should have an 
understanding of activities that a user is engaged in. 
Our approach is thus inspired by concepts from 
activity theory [9] and requires support for three basic 
system functions: 
• Sensing context: By observing and monitoring 

users’ context, intelligent systems can collect 
information about the intelligent space and its 
inhabitants. 

• Analyzing context: By analyzing users’ context, 
intelligent systems can estimate and interpret 
users’ activities. 

• Gracefully reacting to the inhabitants: By 
understanding users’ activities, intelligent 
systems can react unobtrusively to their 
inhabitants and therefore can potentially become 
more invisible. 

In this paper, we focus on one aspect of our system 
design, i.e. how to identify sensors that correlate with 
activities in an intelligent space. First, we motivate 
our use of an activity-centric approach and justify the 
need for precisely identifying correlations between 
sensors and activities. Second, we identify a number 
of desirable properties for activity-aware intelligent 
systems. We then analyze different techniques for 
identifying the correlations between sensors and 
activities and show that statistical logistic regression 
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has the desired properties. Third, we describe in 
detail our regression technique. Finally, we report 
preliminary results and state our conclusions. 

WHY AN ACTIVITY-CENTRIC APPROACH? 
Intelligent environments are inherently social and 
collaborative spaces. Understanding the “behavioral-
level” interaction in such environments requires 
modeling the context in which the inhabitants of the 
space interact [6]. Early research [3,12] in intelligent 
environments focused on establishing simple 
relationships between tangible context and 
appropriate actions, for example, switching on and off 
devices based on user proximity. Intangible context 
such as activities, human moods and human 
intentions and complex relationships between sensor 
data and actions have not received significant 
attention to date. However, to be invisible, intelligent 
systems must understand both tangible and intangible 
aspects of context and the complex relationships 
between sensors and actions. 
We believe that the best method for capturing these 
complex relationships is using the notion of 
‘activities’. Many earlier projects acknowledge a need 
for such a capability. For example, MIT utilizes an 
activity based approach in their second generation 
iRoom [11]. EasyLiving [3] from Microsoft 
acknowledges the need for tracking activity in an 
intelligent environment. Responsive Offices [8] from 
Xerox PARC identifies activity as an essential 
ingredient for determining appropriate reactive 
behaviors. Moreover, numerous studies in 
psychology [9] advocate that individual and group 
behavior should be interpreted in relation to the 
activities people participate in. Indeed, recent work on 
groupware [2] has employed many of these concepts 
(in particular concepts from activity theory) for 
modeling collaborative tasks. Such systems interpret 
behaviors by considering the activity as the 
fundamental unit of analysis.  
Figure 1 shows a high-level view of our activity 
analysis system. Initially, sensors in the intelligent 
space are correlated with activities that interest the 
inhabitants. The system uses empirical data 
(collected from the space) to derive causal 
correlations between activities and sensors. The 
correlations are then used to create a correlation 
matrix that captures all the correlations between 
activities and sensors in an intelligent space. 
Subsequently, the intelligent system can use the 
matrix to interpret the activities in the intelligent 
space, for example, a probabilistic reasoner can use 
the matrix for building a Bayesian network to analyze 
the activities. This might involve assessing the 
uncertainties in the reasoner’s inferences or 
establishing a dialogue with the inhabitants of the 

space to disambiguate activities in situations of high 
uncertainty as proposed by [4,5]. 
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Figure 1, Activity-Aware Intelligent Space 

It is important to emphasize that in a ubiquitous 
environment that is saturated with sensors, it is 
extremely important to distinguish the critical set of 
sensors that correlate with a specific activity from 
others that do not. For example, imagine constructing 
a Bayesian network for the activities in a ubiquitous 
space without knowing the dependencies between 
sensor readings and the activities. Including 
uncorrelated sensors in the Bayesian network will 
result in inaccuracies that can potentially misguide 
the reasoner. Similarly, excluding correlated sensors 
from the Bayesian network could result in ignoring 
some important aspects of the activities that can also 
misguide the reasoner. This paper focuses on how to 
determine the critical set of sensors that correlate to 
activities and proposes a new technique for 
accomplishing that. We begin our discussion by 
examining some of the desirable properties for 
activity-aware intelligent systems.  

DESIRABLE PROPERTIES FOR ACTIVITY-AWARE 
INTELLIGENT SYSTEMS 
Few intelligent environments exist, and those that do 
are confined within research labs. Therefore, to 
identify the desirable properties for activity-aware 
intelligent systems, we examined recent work on 
intelligent environments [3,12,13], studies from 
psychology on individual and group behavior [9], work 
on natural and multimodal human-computer 
interaction (HCI) [6,7] and connectionist and 
statistical modeling techniques [5,10,12]. These 
efforts led us to the following desirable properties: 
Transparency and Comprehensibility 
Intelligent systems must support transparent activity 
modeling. Transparent modeling enables intelligent 
environments to reason in ways that are 
comprehensible to their inhabitants. Such a property 



is critical in order that it is possible to formulate 
precisely how systems reached particular decisions. 
Subsequently, this information could be relayed to 
inhabitants of an intelligent space to support a 
dialogue with the system as proposed by [4,5] to fix 
any incorrect actions. 
Adaptability 
Intelligent systems must be adaptable to endure the 
highly dynamic nature of ubiquitous environments. 
Such adaptability must apply to both physical 
reconfiguration of spaces (e.g. changes in the 
availability of sensors) and to changes in activity 
patterns within these spaces. Different systems will 
require different forms of adaptability including off-
line adaptability in which sensor data is logged for 
later analysis and on-line adaptability in which sensor 
data is examined and adaptation is performed while 
the system is in use.   
Accuracy 
Clearly, achieving high accuracy in terms of 
identifying the activity in an intelligent environment 
from a given set of sensor data is crucial. However, it 
should be noted that the exact requirements in terms 
of accuracy are actually a property of the entire 
system and are influenced by the significance of the 
actions that will be triggered: users will perceive the 
activity analysis process as accurate and indeed as 
invisible when the system’s reactions are correct. 
However, this does not necessarily mean that the 
system has identified the users’ activities correctly. 
For example, imagine a user having a nap while 
watching TV. An intelligent system might detect a 
reduction in the overall mobility in the space and 
therefore infer that no one is in the room; resulting in 
switching off the TV and the lights. Clearly, the 
analysis process misdiagnosed the activity, but the 
outcome is still considered correct by the user. 
Knowledge Portability 
It is important that knowledge about users and their 
activity patterns can be moved between intelligent 
environments, reflecting user mobility inherent in the 
real world. This will require a clear separation 
between the models that represent the system’s 
knowledge about activities and the system-specific 
assumptions and mechanisms. In practice, achieving 
portability is likely to be extremely complex, raising 
many technical challenges (e.g. determining the 
equivalence between sensors in different 
environments) and non-technical challenges in areas 
such as legal and social ethics (e.g. can models 
about activity patterns be exchanged between private 
places and public places without violating the privacy 
of people?).  

So far, we have described 4 desirable properties for 
activity-aware intelligent systems. It should be clear 

that the above properties are not exhaustive, but we 
have deliberately chosen them because of their 
importance in the context of intelligent environments.  
It should also be noted that many of the properties 
discussed above are greatly exacerbated when 
multiple people are participating in an activity.  
TECHNIQUES FOR CORRELATING ACTIVITIES 
AND SENSORS 
Several techniques can be conceived for correlating 
activities and sensors including: expert correlation, 
statistical correlation and connectionist correlation. 
We briefly describe these approaches and we 
analyze their merits and demerits. 
Expert Correlation 
The easiest way to correlate activities and sensors in 
an intelligent space is to use the opinion of an expert 
who is familiar with the space. For example, in a 
smart classroom, a teacher can identify different 
activities that students participate in such as pop 
quiz, discussion, on-board problem solving exercise 
etc. Subsequently, a rough mapping could be made 
between these activities and the available sensors in 
the classroom. Gaia [13] uses this approach for 
activity analysis where the inhabitants of the 
intelligent space identify the correlations and 
construct a belief network that models their activities. 
This network is then used by a Bayesian reasoner to 
identify the activities.  
Expert correlation suffers from several limitations. 
Firstly, it does not scale well: as more activities and 
sensors are introduced it becomes harder for human 
experts to assess the correlations. Secondly, people 
might have different views about the degrees of 
correlations between sensors and activities. 
Therefore, relying on the subjective assessment of a 
particular individual might lead to inaccuracies. 
Thirdly, adapting the correlations to the dynamic 
nature of a ubiquitous space requires a human 
expert: an undesirable proposition especially when 
intelligent spaces host rapidly changing activities. 
Hence, we believe that expert correlation is of limited 
use in ubiquitous environments that are heavily 
saturated with sensors. 
Connectionist and Statistical Correlation 
Alternatively, connectionist or statistical techniques 
can be used to identify correlations between sensors 
and activities. Connectionist correlation relies on 
neural network analysis that identifies patterns 
between different inputs. This approach has been 
used in the neural house project [12] where a neural 
network observes the lifestyle of the inhabitants of a 
house and programs itself accordingly. Similarly, 
statistical techniques such as regression can identify 
potential causal relationships between different 
variables. In ubiquitous environments, these two 



techniques can certainly handle large amounts of 
data that human experts find cumbersome. Several 
research studies [5,12] have affirmed that neural 
techniques are more accurate than regression 
techniques owing to their ability to capture non-linear 
correlations automatically. However, they suffer from 
the incomprehensibility of the decision making 
process, i.e. it is very hard to reconstruct the rationale 
of a neural network of why a particular correlation 
between a sensor and an activity is strong. In 
contrast, statistical techniques are based upon “well 
understood models of behavior” and therefore, it is 
usually easier to reconstruct the rationale behind their 
decision making process [5]. Moreover, adapting 
neural networks to the continuous changes in an 
intelligent space might often require retraining the 
whole network which can be an expensive process 
especially in cases that require on-line adaptation. 
Analysis 
In light of the above discussion, we can see that 
expert correlation is not a viable solution due to its 
vulnerability to inaccuracies and its inability to deal 
with the abundance of sensor information in 
ubiquitous environments. In contrast, regression and 
neural networks can deal with the richness of sensor 
information in such environments. However, 
regression provides a more comprehensible 
framework than neural based techniques thereby 
making it more suitable for supporting transparent 
modeling where users can establish a dialogue with 
the system. Moreover, reapplying regression to adapt 
to the dynamic nature of a ubiquitous space is likely 
to incur less overhead than retraining a neural 
network. Finally, it should be noted that although 
regression is less accurate than neural techniques, its 
outcome is still comparable [5]. 
However, it would be unfair to give the impression 
that neural analysis is unusable, while regression is 
completely without problems. The major conceptual 
limitation in regression is that it can never identify the 
underlying causal mechanism. For example, one 
would find a strong positive correlation between the 
number of users attached to a particular access point 
in a conference hall and the presentation activities 
taking place. Do we conclude that a presentation 
activity causes an increase in the number of users 
attached to an access point? Even though that might 
be the case in this simple example, in many other 
cases, the causal explanations might not be obvious. 
Moreover, as the number of variables increase, more 
empirical observations are required to avoid having 
significant correlations while in fact one or more 
variables are capitalizing on chance. Finally, even 
though the rationale behind correlations is potentially 
easier to reconstruct using regression, it is unclear 
how easy it is to relay that information to regular 

inhabitants of an intelligent space that have no prior 
knowledge of statistics. Undoubtedly, friendly means 
should be developed to enable such system-user 
dialogues.  We acknowledge these problems and 
recognize the need for exploring them further. 

MULTINOMIAL LOGISTIC REGRESSION 
Multinomial Logistic Regression (MLR) [10] is a 
statistical technique that investigates and models 
relationships between a dependent variable and one 
or more independent variables. It is typically used 
when a dependent variable has the following 
properties: 
• Categorical: The dependent has a limited set of 

values (e.g. for an activity {presentation=0, 
break=1, lunch=2}) that could be ordinal (e.g. 
{strongly agree, agree, disagree}) or non-ordinal. 

• Mutually Exclusive: Any instance of a dependent 
cannot be classified as belonging to more than 
one category. For example, considering an 
activity as a dependant, an instance of an activity 
cannot be a presentation and a break at the same 
time. 

• Polychotomous: The dependent can have 2 or 
more categories. A special case of MLR is the 
binomial logistic regression that deals with the 
dependent when it is a dichotomy. 

MLR can deal with independents of any type (e.g. 
continuous, discrete, dichotomous, polychotomous 
etc.). Generally speaking, MLR has less stringent 
requirements than conventional regression 
techniques including: 
1- It does not assume linearity of relationship 

between the independent variables and the 
dependent. 

2- It does not require normally distributed variables. 
3- It does not assume homoscedasticity (i.e. the 

variance around the regression fit is the same). 
Details of logistic regression techniques can be found 
in [10], below we explain only those aspects critical to 
our discussion. In particular, we explain how to 
assess the adequacy of a logistic regression. 

Logistic 2R  
The logistic 2R  measures the strength of the 
association between the dependent variable and the 
independents. It should be noted that the logistic 2R  
is different from the 2R  in conventional regression. 
The latter measures the goodness of fit relying on the 
variance around the regression fit. However, the 
variance of categorical dependent variables depends 
on the frequency distribution of that variable and 
therefore logistic 2R  just reflects the strength of the 
association. 



Classification Percentage 
The classification percentage reflects how good a 
logistic regression formula is in estimating the correct 
categories of a dependant. In a perfect model, the 
estimated values are the exact actual values making 
the overall classification percentage 100%. It should 
be noted that the classification process relies on a 
probability cutoff where higher cutoffs mean more 
sensitivity in the classification process.  

Model Chi-Square Test 
It is very important to determine the effect of each 
independent in the logistic formula. For example, the 
formula might show better correlation without some 
independents or with some additional independents. 
Model Chi-Square is a technique that measures the 
improvement in a fit that an independent variable 
makes compared to the null model (i.e. model without 
independents). This technique uses the null 
hypothesis to test for individual significance. The null 
hypothesis says that an independent variable 
coefficient has no effect on the dependent variable. 
Therefore, rejecting the hypothesis means that the 
independent should not be deleted from the formula 
because it has a significant contribution. While 
accepting the null hypothesis means that the 
independent variable is insignificant and therefore 
should be deleted.  Generally speaking, when the 
probability of the Model Chi-Square is less than 0.05, 
the null hypothesis is rejected. 

So far, we have described some important concepts 
for our following discussion.  Next, we describe how 
to use logistic regression for identifying the 
correlations in an intelligent environment.  

CORRELATION IN INTELLIGENT 
ENVIRONMENTS 
In the context of intelligent environments, we are 
using MLR for identifying the critical set of sensors 
that highly correlate with activities in an intelligent 
space. Sensor data is collected for some period of 
time while users are required to record their activities. 
The system records this information along with 
statistical data from all sensors. The collected data is 
then analyzed by a logistic regression engine to 
identify the sensors that are showing high correlation 
with the activities. The output of the regression 
engine takes the form of a correlation vector. 
Definition 

In an activity-aware environment with the following 
properties: 

• A is a set of n+1 activities defined by 
}{},...,,{ 21 ϕaaaa n ∪  where ϕa  denotes the 

unrecognized activity, and 
• S is a set of k sensors in the intelligent space defined 

by },...,,{ 21 ksss , 

a Correlation Vector (CV) identifies the critical set of 
sensors that highly correlate with 1 or more activities (and 
is thus influential in identifying the activities). A CV has the 
following form: 

kiandc
andAAwherecccACV

i

k
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,...,,)( 21  

where ic  reflects the correlation between the activities 

belonging to A′  and sensor is  such that: 0=ic  

indicates no or insignificant correlation and 1=ic  

indicates significant correlation. 
 
For example, in a space with three sensors 
{ sensoretemperaturs =1 , sensorprojectors =2 , 

sensorcountpeoples =3 }, a correlation vector for a 
presentation activity might look as follows: 

>=<=′ 1,1,0}){( onpresentatiACV  
This indicates that a presentation activity is highly 
correlated with the projector sensor and the people 
count sensor but not with the temperature sensor.  
Sensor Selection and the Correlation Matrix 
Our current regression engine relies on the Chi-
Square test and the classification percentage to 
determine the CV. We can configure the engine to 
select the highly correlated sensors in one of two 
ways: 
a. Forward Selection: In this procedure, the best 

sensor is found. Next, the sensor that adds the 
most to the logistic fit is included. This process 
continues until specific cutoff thresholds (in the 
Chi-Square and in the classification percentage) 
are reached or none of the sensors add a 
significant value to the strength of the 
association. 

b. Backward Selection: In this procedure, all the 
sensors are initially included in the logistic model. 
Subsequently, sensors are deleted from the 
model based on their level of significance. Again, 
this process continues until all the sensors left are 
at a specific significance level. 

It should be noted that higher cutoff values reduce 
the number of sensors that correlate with particular 
activities. This potentially simplifies the reasoner’s 
logic, for example, a rule-based reasoner that relies 
on a small set of sensors is likely to generate simpler 
rules than reasoners that account for a big set of 
sensors. 
Furthermore, sensor selection is directly influenced 
by the number of categories of the dependent. When 
the logistic engine is given some empirical data, it 
tries to account for all the categories of the 
dependent using one single logistic formula. For 
example, imagine a space with the configuration 



shown in figure 2 where the links between sensors 
and activities indicate the presence of a correlation.  
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Figure 2, Example Intelligent Environment 

Analyzing empirical readings from the above space, 
the logistic regression engine produces the following 
CV: 

>=<=′ 0,1,1,1,1}),,{( 321 aaaACV  

Obviously, the CV fails to reflect the exact 
dependencies shown in figure 2. This can potentially 
result in inaccuracies when disambiguating activities. 
For example, suppose an intelligent system wants to 
disambiguate two particular activities },{ 21 aa , 
relying on the above CV includes 4s  which is 
uncorrelated to the two activities. Clearly, this can 
potentially misguide the reasoner. To resolve this 
issue, we use binomial logistic regression to identify 
the CV of sensors for each activity with respect to φa  

(i.e. the no activity state). We give the resulting CV a 
special name: the Reference Correlation Vector 
(RCV). In the example shown in figure 2, the RCVs 
are: 
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Notice that the RCVs precisely reflect the 
dependencies shown in figure 2. More importantly, 
the disjunction of RCVs is the CV for the union of 
their activities. For example, the disjunction of the 
above 3 equations is the correlation vector for all the 
activities shown in figure 2: 
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Furthermore, combining RCVs of all activities is 
simply a matrix that represents all the critical 
correlations in an intelligent environment. We call this 
a correlation matrix. The following equation shows the 
general form of this matrix: 
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The above matrix can also be represented as a 
simple correlation graph. Figure 3 shows an example 
of a graph that correlates 4 sensors with 3 activities. 
Finally, we note that a correlation matrix does not 
reflect the exact degree of correlation between a 
particular activity and its sensors. However, the 
degree of correlation can be roughly estimated using 
the reduction in the logistic 2R  of the model as a 
result of omitting the term of a particular sensor from 
the regression formula. We further elaborate on this 
particular issue in the results section. 
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Figure 3, Correlation Matrix and Correlation Graph 

Using the Correlation Matrix 
Referring back to our discussion about an activity-
centric approach, we highlighted the need to identify 
the activities in an intelligent space. We explained 
that the abundance of sensors in ubicomp 
environments complicates activity analysis: including 
uncorrelated sensors or excluding correlated sensors 
from the decision making process can potentially 
mislead any reasoner. The correlation matrix 
(described above) serves as a filter that reflects the 
strong dependencies between activities and sensors 
in an intelligent space. Reasoners that use the 
correlation matrix will deal with a reduced set of 
sensors that are highly correlated with the activities 
they are trying to recognize. Clearly, this simplifies 
the task of a reasoner. 
In situations of high uncertainty, intelligent systems 
fail to identify the activities with reasonable 
confidence. The logistic engine can be used with 
higher cutoff values to determine the sensors that 
show the highest correlation and therefore could be 
considered more reliable. These sensors can then be 
used to identify the activities. Moreover, when 
sensors are removed from the space, their values are 
replaced with zeros in the matrix. Depending on the 
accuracy of the classification process and the weight 
of the removed sensors, the system might decide to 
include one or more correlated sensors to 
compensate for the removed sensors. Similarly, when 
sensors are added to the space, the system gathers 
empirical data from the new sensors. Subsequently, 
activities that are frequently misclassified can be 
reexamined with the new sensors included for 
potentially improving the classification process. 



PRELIMINARY RESULTS 
In this section, we describe preliminary results of our 
approach. We use publicly available traces recorded 
over three days at the ACM SIGCOMM’01 
conference (held at U.C. San Diego in August 2001) 
to demonstrate that logistic regression is effective in 
correlating sensors with activities. A detailed 
description of these traces can be found in [1]. The 
traces record data samples from wireless access 
points serving the conference. Note that due to the 
lack of availability of information on the no activity 
state ( φa ), we are unable to calculate the RCV and 
therefore we present measurements based on 
analysis of the CV. 
Two important pieces of information can be identified: 
the number of mobile nodes attached to a particular 
access point and the load on each access point. 
These two quantities will serve as sensors for our 
experiment. In addition, two different activities can be 
identified including: sessions and breaks. Intuitively, 
we would expect a correlation between these sensors 
and the activities. For example, during breaks the 
load over an access point is likely to drop and 
therefore the load sensor will show a negative 
correlation with breaks.  Our experiments used 100 
sample readings from one day to identify the logistic 
regression formula. We also performed 3 
experiments to classify 100 activities using the 
regression formula with the throughput sensor only, 
the number of nodes sensor only and both sensors.  
Throughput and Activities  
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Figure 4, Proportion of Correct Classifications Vs. Cutoff 

(using Throughput) 

First, we characterize the strength of the correlation 
between the throughput at the access point and the 
activities in the conference hall. Figure 4 shows the 
proportion of the correctly classified activities using 
the regression formula for different cutoffs. From the 
figure, we see that throughput sensor can indeed 
classify all the activities correctly when the cutoff is 
very low (i.e. we accept classifications with a broad 
error margin). However, its accuracy decreases 
rapidly as the cutoff is increased (i.e. demanding less 

deviation from the categories). With a 0.5 cutoff the 
regression formula classifies 83% of our test cases 
correctly. 
We also found that the logistic 2R  for the regression 
formula is equal to 0.55. This reflects a moderate 
association between the throughput and the activities.  
Number of Nodes and Activities  
Our second experiment characterizes the strength of 
the correlation between the number of nodes 
attached to the access point and the activities in the 
conference hall. Figure 5 shows the proportion of the 
correctly classified activities using the regression 
formula for different cutoffs. From the figure, we see 
that the number of nodes sensor can also classify all 
the activities correctly for low cutoffs. However, the 
sensor is more robust to higher cutoffs than the 
throughput sensor. In other words, its accuracy 
decreases more slowly than that in the throughput 
case as the cutoff increases. With a 0.5 cutoff the 
regression formula classifies 92% of our test cases 
correctly.  
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Figure 5, Proportion of Correct Classifications Vs. Cutoff 

(using Number of Users) 

We also found that the logistic 2R  for the regression 
formula is equal to 0.966. This reflects a strong 
association between the number of nodes and the 
activities. 
Number of Nodes, Throughput and Activities  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Prop Group Correct vs Cutoff

Cutoff

Pr
op

or
tio

n 
G

ro
up

 C
or

re
ct

activity
Break
Session

 
Figure 6, Proportion of Correct Classifications Vs. Cutoff 

(using Number of Users and Throughput) 



Finally, our third experiment characterizes the 
strength of the correlation between both the number 
of nodes and their throughput, and the activities in the 
conference hall. Figure 6 shows the proportion of the 
correctly classified activities using the regression 
formula for different cutoffs. From the figure, we see 
that the regression formula can still classify all the 
activities correctly with low cutoffs. However, the 
classification percentage does not seem to improve 
from the one that uses the number of nodes only. 
With a 0.5 cutoff the regression formula classifies 
92% of our test cases correctly.  
We also found that the logistic 2R   for the regression 
formula is equal to 0.80. This means that the strength 
of the association between the number of nodes and 
the throughput, and the activities is significant.  
Sensor Selection and the Correlation Matrix 
When the logistic regression engine performed 
forward and backward selection on the (throughput 
and number of nodes) regression, it omitted the 
throughput in both cases. First, the engine measured 
the reduction in  2R  when omitting the throughput 
term. This reduced the strength of the association by 
0.00172. Second, the engine measured the reduction 
in 2R  when omitting the number of nodes term. This 
resulted in a reduction of 0.24. Clearly, including the 
throughput sensor does not improve the strength of 
the association between the activities and the 
independents. Moreover, including the throughput has 
not improved the classification percentage beyond 
92%. Therefore, the regression engine omitted the 
throughput from the correlation matrix: 

throughputs

ersnumberOfUsswhere
sessionRCV
breakRCV

=

=







=









2

101
01

)(
)(  

Finally, we note that the reduction in 2R  can be used 
as a rough estimate for the weights of sensors. 

DISCUSSION AND FUTURE WORK 
In this paper, we have highlighted the importance of 
correlating sensors with activities in an intelligent 
space. Our approach uses logistic regression. We 
described some desirable properties for activity-
aware environments including: transparency and 
comprehensibility, adaptability, accuracy and 
knowledge portability. In light of these properties, we 
analyzed several techniques for correlating activities 
with sensors including: expert correlation, regression 
correlation and connectionist correlation. We 
concluded that regression provides a more 
comprehensible framework for correlating activities 
than the other approaches. We then described in 
detail our logistic regression approach. Finally, we 
reported preliminary results. 

Our plan for future work is to assess our approach in 
the intelligent environment in our research lab. We 
are currently developing software components for 
hardware and software sensors to use them for 
collecting empirical data. We are also working on 
building a probabilistic reasoning system that will use 
our correlation matrix to identify activities in the 
intelligent space. In addition, we are developing 
techniques for exporting and importing contextual 
knowledge across intelligent environments to allow 
spaces to identify unfamiliar activities using imported 
knowledge from other spaces. Finally, we intend to 
deploy all these components in our research lab and 
to make our system accessible to a user community 
that can report on the impact of our system on user 
perceptions of activity analysis. 
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