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Diffusion tensor imaging with direct 
cytopathological validation: characterisation 
of decorin treatment in experimental juvenile 
communicating hydrocephalus
Anuriti Aojula1,2,5†, Hannah Botfield1,2,5†, James Patterson McAllister II3*‡ , Ana Maria Gonzalez1,5, 
Osama Abdullah4, Ann Logan4,5 and Alexandra Sinclair1,2,5,6‡

Abstract 

Background: In an effort to develop novel treatments for communicating hydrocephalus, we have shown previously 
that the transforming growth factor-β antagonist, decorin, inhibits subarachnoid fibrosis mediated ventriculomegaly; 
however decorin’s ability to prevent cerebral cytopathology in communicating hydrocephalus has not been fully 
examined. Furthermore, the capacity for diffusion tensor imaging to act as a proxy measure of cerebral pathology in 
multiple sclerosis and spinal cord injury has recently been demonstrated. However, the use of diffusion tensor imag-
ing to investigate cytopathological changes in communicating hydrocephalus is yet to occur. Hence, this study aimed 
to determine whether decorin treatment influences alterations in diffusion tensor imaging parameters and cytopa-
thology in experimental communicating hydrocephalus. Moreover, the study also explored whether diffusion tensor 
imaging parameters correlate with cellular pathology in communicating hydrocephalus.

Methods: Accordingly, communicating hydrocephalus was induced by injecting kaolin into the basal cisterns in 
3-week old rats followed immediately by 14 days of continuous intraventricular delivery of either human recombinant 
decorin (n = 5) or vehicle (n = 6). Four rats remained as intact controls and a further four rats served as kaolin only 
controls. At 14-days post-kaolin, just prior to sacrifice, routine magnetic resonance imaging and magnetic resonance 
diffusion tensor imaging was conducted and the mean diffusivity, fractional anisotropy, radial and axial diffusivity of 
seven cerebral regions were assessed by voxel-based analysis in the corpus callosum, periventricular white matter, 
caudal internal capsule, CA1 hippocampus, and outer and inner parietal cortex. Myelin integrity, gliosis and aqua-
porin-4 levels were evaluated by post-mortem immunohistochemistry in the CA3 hippocampus and in the caudal 
brain of the same cerebral structures analysed by diffusion tensor imaging.

Results: Decorin significantly decreased myelin damage in the caudal internal capsule and prevented caudal perive-
ntricular white matter oedema and astrogliosis. Furthermore, decorin treatment prevented the increase in caudal 
periventricular white matter mean diffusivity (p = 0.032) as well as caudal corpus callosum axial diffusivity (p = 0.004) 
and radial diffusivity (p = 0.034). Furthermore, diffusion tensor imaging parameters correlated primarily with periven-
tricular white matter astrocyte and aquaporin-4 levels.
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Background
Hydrocephalus is a common paediatric neurosurgical 
presentation with an incidence of 0.48–0.81 per 1000 
live births [1–3]. Communicating hydrocephalus is aetio-
logically heterogeneous; bacterial meningitis, subarach-
noid haemorrhage, trauma, intracranial and intraspinal 
tumours as well as leptomeningeal metastases can all 
cause the disorder [4–10]. The incidence of communicat-
ing hydrocephalus following subarachnoid haemorrhage 
is at least 13 % and can be as high as 67 % [11]. In addi-
tion to ventriculomegaly, communicating hydrocephalus 
is accompanied by extensive global cerebral pathology, 
including widespread reactive gliosis, hydrocephalic 
oedema and demyelination [10, 12].

Although shunting is the current standard of care for 
children with hydrocephalus, the procedure is associ-
ated with severe complications that contribute to an 
increased patient morbidity [13–16]. Furthermore, aca-
demic attainment and social integration difficulties con-
tinue into adulthood for those with the disease [17–19]. 
Therefore, the development of novel therapeutic strat-
egies to prevent the development of hydrocephalus or 
promote recovery is of critical importance. Our recent 
study (Additional file 1: Figure S1) supports the key role 
of transforming growth factor-beta (TGF-β) in commu-
nicating hydrocephalus, as decorin, a TGF-β antagonist 
[20–23] ameliorated subarachnoid fibrosis and therefore 
significantly attenuated the enlargement of the ventricu-
lar system [12]. However, the effectiveness of decorin 
to prevent cytopathology in hydrocephalus is yet to be 
examined thoroughly. Given that cellular pathology is 
largely responsible for the array of functional deficits 
observed clinically and contributes to the impairment 
in patient health-related quality of life, it is important to 
understand whether decorin can attenuate these altera-
tions in vivo [10, 24, 25].

Greater insight into the cytopathological changes 
occurring in communicating hydrocephalus can be 
achieved with the use of advanced non-invasive magnetic 
resonance diffusion tensor imaging (DTI) [26]. DTI is a 
specialised magnetic resonance imaging (MRI) technique 
that examines tissue anisotropic properties and cer-
ebral microstructural integrity [27, 28]. DTI yields a set 
of quantitative metrics, reflecting the magnitude along 
the principal axes of water diffusion, which are sensi-
tive to changes in the underlying brain microstructure. 

Commonly used scalar DTI parameters such as axial 
(AD), radial (RD), and mean diffusivities (MD) (equiva-
lent to the speed of motion in the principal axes of dif-
fusion) or the fractional anisotropy (FA) (equivalent to a 
normalized aspect ratio of the principal axes of diffusion) 
have been useful in the investigation of cerebral abnor-
malities; an increase in the AD, RD and MD alongside a 
decrease in the FA occurs in the cerebral white matter 
of children with hydrocephalus [29–33]. Furthermore, 
the specificity of DTI to act as a surrogate measure of 
cerebral pathology has been highlighted in a variety 
of conditions, including hypoxic ischaemic injury [34, 
35], multiple sclerosis [36–39], spinal cord injury [40], 
obstructive hydrocephalus [41], temporal lobe epilepsy 
[42, 43] and for delineating gliomas [44]. However, cor-
relations between DTI parameters and underlying cyto-
pathology in communicating hydrocephalus have yet to 
be determined (Appendix 1).

Therefore, using immunohistochemistry and clinically 
relevant neuroimaging we investigated whether decorin 
is able to attenuate damage-related parameters and if cel-
lular changes in communicating hydrocephalus can be 
quantitatively characterised by DTI using a juvenile rat 
model of the disorder.

Methods
Experimental animals
Three-week-old Sprague–Dawley rats (Charles River, 
Massachusetts, USA) were housed in litters in individ-
ual cages, kept under a 12  h light/dark cycle with free 
access to food and water. Animals were monitored for 
adverse effects of treatments, such as distress, lethargy, 
weight loss and seizures, and any animals showing severe 
adverse effects were euthanised. Experiments were con-
ducted at the University of Utah in accordance with the 
guidelines of the National Institutes of Health Care and 
Use of Laboratory Animals and approved by the Univer-
sity of Utah Ethics Committee.

Experimental design and surgical techniques
The experimental design and surgical techniques are 
described in detail elsewhere [12]. Using a ventral 
approach, the interval between the occipital bone and 
the C-1 vertebral body was exposed and a 30 gauge 
angled needle was inserted into the prepontine (basal cis-
tern) subarachnoid space. 30  µl of 20  % kaolin solution 

Conclusions: Overall, these findings suggest that decorin has the therapeutic potential to reduce white matter 
cytopathology in hydrocephalus. Moreover, diffusion tensor imaging is a useful tool to provide surrogate measures of 
periventricular white matter pathology in communicating hydrocephalus.

Keywords: Hydrocephalus, DTI, Cytopathology, Decorin
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(200 mg/ml in 0.9 % sterile saline; Fisher Scientific, Mas-
sachusetts, USA) was injected to induce communicat-
ing hydrocephalus and the rat was either allowed to 
recover or underwent osmotic pump and intraventricu-
lar cannula implantations. The cannulae were inserted 
into the right lateral ventricle and fixed in place with 
glue and bone cement (Biomet UK Ltd, Bridgend, UK) 
to a stabilising screw, and connected to subcutaneously 
implanted mini osmotic pumps. Osmotic pumps (model 
2002 adapted for use in MRI scanners with PEEK tub-
ing, Alzet, Durect Corporation, California, USA) were 
filled with either 5  mg/ml human recombinant decorin 
(GalacorinTM, Catalent/Pharma Solutions, New Jersey, 
USA) or 10 mM phosphate buffered saline (PBS) pH 7.4 
(Sigma-Aldrich, Missouri, USA). Over the subsequent 
14  days, human recombinant decorin was infused at a 
rate of 2.5 mg/0.5 ml/h.

Rats were randomly assigned to four groups: (1) Intact 
age-matched controls (Intact group, n  =  4); (2) basal 
cistern kaolin injections only (kaolin group, n =  4); (3) 
kaolin injection with intraventricular infusion of PBS 
(kaolin + PBS group; n = 6); and (4) kaolin injection with 
intraventricular infusion of decorin (kaolin  +  decorin 
group; n =  5). Magnetic resonance imaging (MRI) and 
diffusion tensor imaging (DTI) were conducted after 
14  days of treatment to assess the extent of hydroceph-
alus before sacrifice, then the brains were removed and 
processed for histology.

Magnetic resonance imaging and diffusion tensor imaging
Imaging experiments were conducted 14 days post injury 
using a 7-Tesla horizontal-bore Bruker Biospec MRI 
scanner (Bruker Biospin, Ettlingen, MA, USA) interfaced 
with a 12-cm actively shielded gradient insert capable of 
producing magnetic field gradient up to 600 mT/m. Ani-
mals were anesthetised using 1–3 % Isoflurane and 0.8 L/
min O2 and their vital signs (respiration, temperature, 
heart rate and oxygen saturation percentage) were con-
tinuously monitored using a MR-compatible physiologi-
cal monitoring system (SA Instruments, Stony Brook, 
NY, USA). Animals were placed in a 72-mm volume coil 
for signal transmission, and a quadrature surface coil was 
placed on the head for signal reception. Acquisition of 
T2-weighted MRI scans and ventricular volume analysis 
has been described previously [12]. DTI scans were con-
ducted using spin echo diffusion-weighted sequences 
with single-shot EPI readout, with the following parame-
ters (TR of 3760 ms, TE of 44 ms, 15 coronal 1 mm-thick 
slices, a field of view of 2.5 × 2.5 cm, and an in-plane res-
olution of 195 × 195 µm). Thirty uniformly-spaced over 
unit sphere diffusion-weighted gradient directions and 
five non-weighted images were acquired with two signal 

averages and the following diffusion parameters: diffu-
sion gradient duration 7 ms, separation 20 ms, diffusion 
encoding sensitivity 700 s/mm2. Scan time was 4 min. For 
ventriculomegaly analysis, one MRI scan image was cho-
sen from the rostral cerebrum (−0.36 mm from bregma) 
and the caudal cerebrum (−3.72  mm from bregma) for 
each rat, and the ventricular area was determined in each 
scan using ImageJ.

DTI voxel based analysis
Prior to commencing voxel-based analysis, double blind-
ing was introduced to prevent group identification. 
Using the software, DSI Studio (DSI Studio, Pittsburgh, 
PA), DTI images were reconstructed and processed to 
produce voxel based maps, from which regions of inter-
est (ROIs) could be analysed. The seven ROIs selected 
include: corpus callosum, periventricular white matter, 
caudal and rostral internal capsule, outer parietal cortex, 
inner parietal cortex and CA1 hippocampus. DTI param-
eter values from four serial sections (1.28 mm anterior to 
Bregma to 3.72 mm posterior to Bregma) of the corpus 
callosum and periventricular white matter were analysed 
in a total of 17 rats [Intact (n = 4), kaolin (n = 4), kao-
lin + PBS (n = 5), kaolin + decorin (n = 4)]. The rostral 
corpus callosum and periventricular white matter sec-
tions were defined as 1.28 and −0.36 mm from Bregma. 
The caudal corpus callosum and periventricular white 
matter sections were derived from −2.76 to −3.72  mm 
from Bregma (Fig.  2a). The remaining five ROIs were 
analysed in 16 rats, with four animals being examined 
in each experimental group. Three sections were inde-
pendently analysed for the CA1, caudal internal capsule, 
outer and inner parietal cortex from 0.36 to 3.72  mm 
posterior to Bregma. An average of two sections from 
1.28  mm anterior to Bregma to 0.36  mm posterior to 
Bregma were individually analysed for the rostral internal 
capsule. ROIs were identified using a FA voxel based map 
and an analogous DTI image (Fig. 1). The mean FA, MD, 
AD and RD values were calculated for each ROI of each 
animal.

Tissue preparation for histology
Rats were euthanised and immediately perfused tran-
scardially with PBS followed by 4  % paraformaldehyde 
(Alfa Aesar, Ward Hill, MA, USA) in PBS. Brains were 
immersed in 4  % paraformaldehyde overnight at 4  °C, 
cryoprotected by sequential immersion in 10, 20 and 
30 % sucrose solutions in PBS at 4  °C and embedded in 
optimum cutting temperature embedding matrix (Fisher 
Scientific). Subsequent sectioning and staining of the tis-
sue was conducted at the University if Birmingham. Cor-
onal sections 15-µm thick were cut on a Bright cryostat 
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(Bright Instrument, Huntingdon, UK), serially mounted 
and stored at −20 °C before staining.

Antibodies
Myelin integrity was assessed with an antibody against 
myelin basic protein (MBP; rat, Merck Millipore, Wat-
ford, UK, MAB386). Antibodies against glial fibrillary 
acidic protein (GFAP; mouse, Sigma-Aldrich, G3893) 
and OX-42 (CD-11b; mouse, Serotec, Kidlington, UK, 
MCA527R) were used to assess gliosis and the extent of 
oedema resolution was examined by aquaporin-4 (AQP4) 
antibody staining (chicken, Genway, San Diego, CA, 
USA, 07GA0175-070718).

Fluorescent immunohistochemistry
Immunohistochemistry was conducted on the caudal 
cerebrum of 19 rats [Intact (n = 4), kaolin (n = 4), kao-
lin + PBS (n = 6), kaolin + decorin (n = 5)]. All selected 
sections were at least −2.5 mm posterior to Bregma and 
corresponded with the location of the DTI sections. Sec-
tions were washed in PBST (10 mM PBS pH 7.4 contain-
ing 0.3  % Tween20) and blocked in 2  % bovine serum 
albumin (BSA) and 15 % normal goat serum in PBST at 
room temperature for 1  h. Subsequently, sections were 
washed in PBST, before being incubated at 4 °C overnight 
in primary antibody diluting buffer containing PBST 
and 2 % BSA. After washing in PBST the sections were 
incubated for 1 h in secondary antibody solution (Alexa 
Fluor® 488 or 594 labelled secondary antibodies (Life 
Technologies, Paisley, UK) in PBST with 2  % BSA and 
1.5  % normal goat serum) at room temperature, in the 
dark. After further PBST washes, sections were mounted 
in Vectashield containing DAPI (Vector Laboratories, 
Peterborough, UK). The Zeiss Axioplan 2 imaging epiflu-
orescent microscope (Carl Zeiss, Germany) and the Axi-
oCam Hrc (Carl Zeiss, Jena, Germany) were used to view 
and capture images under the same conditions for each 
antibody at ×400 magnification.

Pixel based analysis of immunofluorescent staining
Quantitative analysis was undertaken using the soft-
ware, Image J and all analyses were undertaken with the 
operator masked to the experimental group. Images for 
each immunofluorescent stain were processed identically 
before being analysed. For each image analysed, four ran-
domly placed regions of interest (ROIs) were drawn with 
each ROI being 2.96  mm wide and 1.57  mm in height. 
For the corpus callosum, periventricular white matter 
and CA1 and CA3 hippocampal regions, a mean of 16 
ROIs (four regions of interest ×  four coronal sections) 
were chosen per rat per stain. An average of 8 ROIs (four 
regions  ×  two coronal sections) were selected for the 
internal capsule, caudate-putamen, parietal cortex and 
occipital cortex. All areas were analysed for GFAP, OX-42 
and AQP4 staining however, as MBP is a marker of white 
matter integrity, only the corpus callosum, periventricu-
lar white matter and internal capsule were analysed for 
this antibody.

GFAP and OX-42 image processing included the 
conversion of images into a gray scale format prior 
to spatial filtering, thresholding and despeckling of 
the images using Image J. Images stained for AQP4 
and MBP were identically processed to the GFAP and 
OX-42 images except thresholding was not performed. 
The mean percentage area of GFAP, OX-42, AQP4 and 
MBP positive staining, for each experimental group 
was calculated.

Bright field microscopy
In order to assess hippocampal size, one cerebral sec-
tion, at least 2.5  mm posterior to Bregma from each 
experimental animal was examined at ×10 magnification 
using the Nikon SM21500 dissecting microscope (Nikon, 
Tokyo, Japan). Images were captured with a Nikon ds-
2mv high-resolution camera (Nikon). Hippocampal area 
was assessed by using the Image J software analyze area 
tool.

Fig. 1 Regions of interest (ROIs) for DTI analysis in each experimental group. Representative voxel based map images and analogous diffu-
sion tensor images of the caudal cerebrum at 2.76 mm posterior to Bregma are shown for the four experimental groups. All ROIs selected for 
analysis, except from the rostral internal capsule, are displayed. ROIs were chosen with the aid of a rat brain atlas [45]; white = corpus callosum, 
green = periventricular white matter, cyan = outer parietal cortex, yellow = inner parietal cortex, red = CA1 hippocampus, magenta = caudal 
internal capsule, scale bar = 100 μm
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Statistics
Statistical analysis was conducted using SPSS software, 
version 22 (IBM, Armonk, NY). Normally distributed 
data were analysed using a one-way ANOVA followed 
by a post hoc Tukey test. In the absence of normality, 
data were analysed using the Kruskal–Wallis test and 
tested for significant pairwise comparisons. Normally 
distributed data were expressed as the mean ± standard 
error of the mean (SEM). Correlation analysis was per-
formed using a two-tailed Spearman’s correlation test. 
As immunohistochemistry analysis was performed on 
caudal sections, mean DTI data from Section  2.76 and 
3.72  mm posterior to Bregma were used for correlation 
analysis. Correlation analysis was not undertaken for the 
inner parietal cortex, caudate-putamen, occipital cortex 
or CA3 region of the hippocampus because DTI analy-
sis was not being performed in these areas. Values were 
considered statistically significant when p values were 
*p < 0.05, **p < 0.01, ***p < 0.001 and ****p < 0.0001.

Results
Decorin reduces hydrocephalus induced DTI changes in the 
caudal periventricular white matter and corpus callosum
In the caudal periventricular white matter (−2.76 and 
−3.72  mm from Bregma), compared to Intact con-
trols (0.83 ± 0.00 and 1.20 ± 0.02, respectively; Fig. 2b), 
the kaolin and kaolin  +  PBS groups displayed a sig-
nificant increase in the MD (1.48 ± 0.22, p = 0.023 and 
1.56 ± 0.15, p = 0.031 respectively) and AD (2.04 ± 0.27, 
p =  0.020 and 2.16 ±  0.17, p =  0.018, respectively). By 
contrast, the MD of decorin treated rats (0.85 ± 0.00) was 
significantly lower in comparison to kaolin (1.48 ± 0.22, 
p =  0.032) and kaolin +  PBS (1.56 ±  0.15, p =  0.044) 
rats. No significant differences were observed in any 
DTI parameters in the rostral periventricular white mat-
ter (1.28 and −0.36 mm from Bregma) between the four 
experimental groups.

In the caudal corpus callosum (−2.76 and −3.72  mm 
from Bregma), the AD for kaolin (1.80 ± 0.15, p = 0.010) 
and kaolin + PBS (1.92 ± 0.12, p = 0.001) groups were sig-
nificantly higher than Intact controls (1.56 ± 0.05; Fig. 2c). 
Moreover, kaolin + PBS rats displayed a significant eleva-
tion in the MD (1.17 ± 0.08, p = 0.030) and RD (1.00 ± 0.06, 
p =  0.025), compared to Intact animals (0.88 ±  0.02 and 

0.54 ± 0.02, respectively). Furthermore, decorin treatment 
significantly reduced the AD (1.49 ± 0.02, p = 0.004) and 
RD (0.62 ± 0.03, p = 0.034) compared to the kaolin + PBS 
animals (1.92 ± 0.12 and 1.00 ± 0.06, respectively) in the 
caudal corpus callosum. No significant differences existed 
between decorin treated rats and Intact controls for all DTI 
parameters in the caudal corpus callosum. Similar to the 
rostral periventricular white matter, in the rostral corpus 
callosum (1.28 and −0.36 mm from Bregma), there were no 
significant differences in the DTI parameters between the 
experimental groups.

Alongside the corpus callosum and the periventricular 
white matter, five other regions of interest were examined 
by DTI voxel based analysis (Additional file  2: Figure S2). 
Significant differences in the four DTI parameters were not 
observed in the outer or inner parietal cortex (Additional 
file  2: Figure S2a, b). However, the FA of the kaolin group 
was significantly lower (0.11 ± 0.02, p = 0.036) than Intact 
controls (0.16 ± 0.01) in the CA1 region of the hippocam-
pus (Additional file  2: Figure S2c). Moreover, in the cau-
dal internal capsule (Additional file 2: Figure S2d), decorin 
(0.83 ±  0.01, p =  0.003) reduced the decrease in the MD 
observed in kaolin + PBS animals (0.77 ± 0.00). In the ros-
tral internal capsule (Additional file  2: Figure S2e), kao-
lin + PBS rats displayed significantly greater FA (0.16 ± 0.01, 
p =  0.022) and AD (1.70 ±  0.28, p =  0.039) compared to 
Intact controls (0.23 ± 0.00 and 0.68 ± 0.23, respectively).

Ventriculomegaly is greatest in the caudal hydrocephalic 
cerebrum and correlates with DTI parameters
As DTI parameter abnormalities were predominantly 
observed in the caudal cerebrum, we investigated whether 
non-uniform ventriculomegaly occurs in the basal cistern 
model of communicating hydrocephalus. In the kaolin 
and kaolin + PBS groups, the ventricles expanded signifi-
cantly (p < 0.05) rostrally (8.04 ± 1.74 and 10.12 ± 3.83 
mm3,  respectively) and caudally  (16.22  ±  2.76 and 
21.00 ± 5.43 mm3, respectively) compared to the Intact 
controls (rostral = 1.26 ± 0.11 and caudal = 0.93 ± 0.10 
mm3). Furthermore, significant changes in the mean dif-
ferences between the rostral versus caudal ventricular 
volume were discovered (Table 1).

Rostrally, ventricular volume significantly corre-
lated with the FA, MD, AD and RD measurements of 

(See figure on next page.) 
Fig. 2 Decorin reduced hydrocephalus induced abnormalities in the caudal corpus callosum and periventricular white matter as evident from DTI. a 
Representative FA images of the locations at which the corpus callosum and periventricular white matter were analysed. Section 1 (1.28 mm anterior 
to Bregma) and Section 2 (0.36 mm posterior to Bregma) are classified as the rostral periventricular white matter and corpus callosum. Section 3 
(2.76 mm posterior to Bregma) and Section 4 (3.72 mm posterior to Bregma) refer to the caudal periventricular white matter and corpus callosum. 
Line graphs displaying decorin’s ability to reduce abnormalities in the (b) corpus callosum and (c) periventricular white matter on DTI; blue = Intact, 
green = kaolin, red = kaolin + PBS, orange = kaolin + decorin [Intact (n = 4), kaolin (n = 4), kaolin + PBS (n = 6), kaolin + decorin (n = 5)]. Error bars 
represent the standard error of the mean; *p < 0.05, **p < 0.01, ***p < 0.001
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the corpus callosum and periventricular white matter 
(Table 2). Likewise, the caudal ventricular volume corre-
lated with all DTI parameter measures in the corpus cal-
losum and all except the AD in the periventricular white 
matter (Table 2).

Decorin reduces caudal periventricular white matter 
cytopathology
As DTI parameter abnormalities were observed in the 
caudal periventricular white matter, corresponding 
immunohistochemistry analysis was conducted to aid 

hydrocephalic cytopathology characterisation of these 
tissues. We determined that the levels of GFAP positive 
immunostaining (Fig.  3a) were significantly increased 
in kaolin rats (2.49 ±  0.23  %, p =  0.048) compared to 
Intact controls (0.82  ±  0.11  %) indicating the pres-
ence of astrogliosis in the caudal periventricular white 
matter. Furthermore, the GFAP positive astrocytes of 
hydrocephalic animals exhibited features typical of 
reactive astrocytic morphology; cytoplasmic processes 
underwent thickening in kaolin and kaolin +  PBS rats. 
The increase in GFAP positive staining observed in the 
kaolin rats (2.49 ±  0.23  %) was prevented with decorin 
treatment (0.49 ± 0.11 %, p = 0.002). Additionally, kao-
lin (1.77  ±  0.14  %, p  =  0.040) and kaolin  +  PBS rats 
(1.34  ±  0.29  %, p  =  0.056) displayed a significant and 
non-significant increase respectively in periventricular 
white matter AQP4 positive immunostaining (Fig.  3b) 
compared to Intact controls (0.80 ± 0.12 %). Importantly, 
AQP4 immunostaining in kaolin +  decorin treated rats 
was significantly lower (0.56 ±  0.09  %, p =  0.006) than 
in kaolin animals (1.77  ±  0.14  %). No significant dif-
ference existed in periventricular white matter AQP4 
immunostaining between decorin treated and Intact con-
trol rats (p =  0.860). In contrast, significant differences 
in OX-42 and MBP levels were not present between the 
experimental groups in the periventricular white matter 
(Fig. 3c, d). Furthermore, significant differences in GFAP, 
OX-42, MBP and AQP4 immunostaining were not pre-
sent between the experimental groups in the caudal cor-
pus callosum (Additional file 3: Table S1).

Decorin protects from myelin damage in the caudal 
internal capsule
Although significant differences in myelin levels were not 
present in the caudal corpus callosum and caudal periven-
tricular white matter, loss of myelin (assessed by measure-
ment of MBP) in the caudal internal capsule was present 
in kaolin and kaolin + PBS animals (Fig. 4); compared to 
Intact controls (8.11 ± 0.49 %), a decrease in MBP immu-
nostaining was present in kaolin (3.13 ± 0.28 %, p < 0.001) 
and kaolin +  PBS (5.15 ±  0.47  %, p =  0.001) rats. Fur-
thermore, decorin treated rats displayed higher MBP 
levels (5.87 ± 0.29 %) compared to kaolin (3.13 ± 0.28 %, 
p  =  0.002) and kaolin  +  PBS rats (5.15  ±  0.47  %, 
p =  0.018), although the levels did not quite reach the 
same as in intact rats (p = 0.009), indicating some myelin 
protection. Qualitatively, the longitudinal organisation of 
myelin was disrupted, with discontinuity present along 
the length of the myelin fibres in animals receiving kaolin 
and kaolin + PBS compared to Intact controls. The regu-
lar parallel arrangement of MBP staining was protected 
with decorin treatment.

Table 1 Significant changes in  the mean differences 
between  the rostral versus  caudal ventricular volumes 
amongst the four experimental groups

p

Intact vs Kaolin 0.005

Intact vs Kaolin + PBS <0.001

Intact vs Kaolin + decorin 0.946

Kaolin vs Kaolin + PBS 0.530

Kaolin vs Kaolin + decorin 0.015

Kaolin + PBS vs Kaolin + decorin 0.001

Table 2 DTI parameter values of  the corpus callosum 
and  periventricular white matter correlated with  rostral 
and caudal ventricular volume

Statistically significant correlations = p < 0.05

CC corpus callosum, PVWM periventricular white matter, FA fractional anisotropy, 
MD mean diffusivity, AD axial diffusivity, RD radial diffusivity, R correlation 
coefficient (Spearman’s rho)

DTI parameter R (Spearman’s rho) p

Rostral ventricular volume

CC FA 0.831 <0.001

CC MD 0.539 0.026

CC AD 0.527 0.030

CC RD 0.733 0.001

PVWM FA 0.949 <0.001

PVWM MD 0.706 0.002

PVWM AD 0.507 0.038

PVWM RD 0.642 0.005

Caudal ventricular volume

CC FA −0.676 0.003

CC MD 0.723 0.001

CC AD 0.777 <0.001

CC RD 0.838 <0.001

PVWM FA −0.520 0.033

PVWM MD 0.537 0.026

PVWM AD 0.441 0.076

PVWM RD 0.547 0.023
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Decorin attenuates hippocampal atrophy 
in communicating hydrocephalus
Upon examining total hippocampal area, significant dif-
ferences were present between the four experimental 
groups; a decrease in normalised hippocampal area was 
identified in the kaolin (47 ±  9  %, p =  0.006) and kao-
lin + PBS rats (69 ± 9 %, p < 0.001) compared to Intact 
controls (100 ±  6 %). Decorin treatment attenuated the 
hippocampal atrophy (89 ± 7 %, p = 0.008) compared to 
kaolin rats but failed to maintain the hippocampal size to 
that in Intact controls (100 ± 6 %, p < 0.001). In the CA1 
region of the hippocampus, similar levels of GFAP, OX-42 
and AQP4 were observed between all the experimental 
groups. In the CA3 region, GFAP levels were comparable 
among all four groups however kaolin rats (0.43 ± 0.02 %, 
p = 0.057) demonstrated a trend towards reduced OX-42 
levels compared to Intact controls (0.89 ±  0.03  %), and 
kaolin +  PBS rats (1.04 ±  0.13  %, p =  0.043) displayed 
a significant increase in AQP4 levels compared to Intact 
controls (1.60 ± 0.10 %; Additional file 4: Table S2).

GFAP and AQP4 levels correlate significantly in the corpus 
callosum, periventricular white matter, caudate‑putamen, 
parietal cortex and occipital cortex
No significant differences in AQP4, OX-42 and GFAP 
immunostaining were present between the experimen-
tal groups in the caudate putamen, parietal cortex and 
occipital cortex (Additional file  4: Table S2). However, 
in the corpus callosum, periventricular white matter, 
caudate-putamen, parietal cortex and occipital cortex, 
GFAP immunostaining positively correlated with AQP4 
levels (Table 3). No significant correlations were present 
between OX-42 and AQP4 levels in any of the regions of 
interest.

Hydrocephalic cytopathology correlates 
with abnormalities on DTI
In the caudal corpus callosum, increased astrocyte 
(GFAP) and AQP4 levels positively correlated with the 
AD (Table 4). Furthermore, in the caudal periventricular 
white matter (Table  4), GFAP and AQP4 positively cor-
related with AD, MD and RD. Moreover, the presence of 

cytopathology discouraged anisotropic water diffusion in 
the caudal periventricular white matter as the FA nega-
tively correlated with astrocyte (GFAP), microglial (OX-
42) and AQP4 immunostaining. A negative correlation 
was also present between myelin levels (MBP) and the 
MD of the caudal periventricular white matter.

Discussion
This study demonstrates that decorin is able to pro-
tect and maintain DTI parameter values at normality 
in the caudal corpus callosum and caudal periventricu-
lar white matter. Likewise, decorin prevents astrogliosis 
and oedema in the caudal periventricular white mat-
ter and preserves myelin integrity in the caudal internal 
capsule. Furthermore, cytopathology in communicating 
hydrocephalus is predominantly localised to the cau-
dal cerebrum. Moreover, DTI parameters correlate with 
cytopathology specifically in the caudal periventricular 
white matter. DTI is therefore a useful tool to act as a 
surrogate measure of cytopathology in communicating 
hydrocephalus.

Recent studies in post-haemorrhagic hydrocephalus 
suggest that occipital horn enlargement is greater and 
precedes the dilation of the remaining ventricular system 
[46–48]. This asymmetry is a pattern that is repeated in 
other types of hydrocephalus including congenital hydro-
cephalus [49] and idiopathic chronic hydrocephalus [50], 
although this feature has not been explored in depth or 
quantitatively. In feline infants [51], neonatal rats [41, 52] 
and adult dogs [53] with non-communicating hydroceph-
alus induced by kaolin injections into the cisterna magna, 
the occipital horns of the lateral ventricles are conspicu-
ously larger than the frontal horns. Our results support 
these findings, albeit in an experimental model of com-
municating hydrocephalus, by showing that caudal por-
tions of the lateral ventricles expand more than frontal 
regions, and DTI abnormalities are largely situated in the 
caudal white matter.

Asaaf and colleagues [54] suggested that DTI could be 
used as a marker of white tissue compression in obstruc-
tive hydrocephalus. Furthermore there have been no 
observed DTI changes in the white matter of idiopathic 

(See figure on previous page.) 
Fig. 3 Decorin prevented an increase in GFAP and AQP4 in the periventricular white matter. Representative images comparing the level of (a) GFAP 
immunostaining (green), (b) AQP4 immunostaining (red), (c) OX-42 immunostaining (green) and (d) MBP immunostaining (green) in the periven-
tricular white matter; scale bar = 10 μm. a kaolin and kaolin + PBS rats displayed thickening of astrocytic processes (white arrow). b Accumulation of 
AQP4 staining was observed in kaolin rats (white arrow). AQP4 was further arranged around the circumference of blood vessels (yellow arrow).  
c Elongated, amoeboid microglia (yellow arrow) were particularly evident in kaolin rats. Microglia of kaolin + PBS rats were captured transitioning 
from branched resting microglia to activated amoeboid microglia (blue arrow). d Decorin treatment improved the myelin loss and disorganisation 
present in kaolin and kaolin + PBS rats (white arrow). Each corresponding bar graph displays the mean percentage of GFAP, AQP4, OX-42 or MBP 
positive pixels above threshold or background in the periventricular white matter across the four experimental groups; V lateral ventricle, error bars 
represent the standard error of the mean, *p < 0.05, **p < 0.01
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Fig. 4 Decorin prevented myelin loss in the caudal internal capsule. a Representative images comparing caudal internal capsule MBP immu-
nostaining (green) across the four experimental groups. Myelin organisation was better maintained with decorin use. b A bar graph displaying the 
mean percentage of MBP positive pixels above threshold in the internal capsule across the four experimental groups. Decreased MBP levels were 
present in kaolin and kaolin + PBS rats which was incompletely attenuated with decorin treatment; error bars represent the standard error of the 
mean, *p < 0.05, **p < 0.01, ***p < 0.001; scale bar = 50 μm
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intracranial hypertension patients (high ICP but no ven-
triculomegaly [55]) suggesting that compression of tissue 
impacts DTI parameters. In the caudal periventricular 
white matter, our findings replicate the abnormalities 
in the MD, AD and RD observed in hydrocephalic chil-
dren [29–31]. In contrast to our findings, the MD of the 
periventricular white matter does not increase in post-
haemorrhagic hydrocephalus in adults [56], therefore 
the maturity of the brain appears to influence DTI altera-
tions. Similar to the findings of Yuan et al. [41] in rats of 
the same age with obstructive hydrocephalus (blockage of 
the cisterna magna), our communicating hydrocephalic 
animals display an increase in MD and reduced FA in the 
caudal corpus callosum. Our study has also revealed an 
increase in the AD and RD of the caudal corpus callosum 
in communicating hydrocephalus, which is additionally 
preventable by decorin treatment.

The cytopathology observed in our model supports 
current literature and is largely preventable with decorin 
treatment [10, 12, 57–64]. Although white matter abnor-
malities discovered were similar to those in hydroce-
phalic children [29–34], decorin was only able to protect 
the internal capsule from myelin damage. TGF-β medi-
ated signaling promotes central nervous system myeli-
nation by enhancing oligodendrocyte progenitor cell 
differentiation and maturation [65, 66]. It is possible that 
internal capsule oligodendrocyte progenitor cells may 
be more susceptible to abnormalities in TGF-β signal-
ing than those of the corpus callosum or periventricular 
white matter, hence explaining the observed result.

The relationship between DTI parameters and cerebral 
histopathological changes has been discussed extensively 
in recent literature [27, 31, 32, 67–71]. Events that dis-
courage directional water movement, such as interstitial 
oedema and neurodegeneration cause a decline in the FA 

[27, 28, 72–77]. The AD and RD are two DTI parameters 
that influence the FA and provide insight into axonal and 
myelin integrity, respectively [73, 76]. Both the AD and 
RD are also influenced by gliotic tissue changes [27, 72, 
76]. Furthermore, an increase in average amount of dif-
fusion in a given volume of tissue, caused by the pres-
ence of interstitial oedema or the loss of cellular barriers, 
results in a rise in the MD [27, 77, 78].

Consistent with the results of Yuan et al. [41] in juvenile 
rats with obstructive hydrocephalus, our findings in com-
municating hydrocephalus show positive correlations 

Table 3 AQP4 levels correlated significantly with  the 
marker of  gliosis, GFAP, in  the corpus callosum, perive-
ntricular white matter, caudate-putamen and  parietal 
and occipital cortex

Statistically significant correlations = p < 0.05

R correlation coefficient

Region of interest R p

Corpus callosum 0.614 0.005

Periventricular white matter 0.854 <0.001

CA1 hippocampus 0.332 0.166

CA3 hippocampus 0.446 0.056

Internal capsule 0.291 0.226

Caudate-putamen 0.495 0.043

Parietal cortex 0.528 0.020

Occipital cortex 0.607 0.006

Table 4 The marker of  gliosis, GFAP, and  AQP4 levels cor-
related with  DTI parameter values in  the periventricular 
white matter

FA fractional anisotropy, MD mean diffusivity, AD axial diffusivity, RD radial 
diffusivity, R the correlation coefficient

* Statistically significant correlations = p < 0.05

ROI Immunostain DTI parameter R p

Corpus callosum GFAP FA −0.370 0.144

MD 0.306 0.232

AD 0.600 0.011*

RD 0.424 0.090*

OX-42 FA −0.086 0.743

MD 0.002 0.993

AD 0.352 0.165

RD 0.120 0.646

AQP4 FA −0.323 0.205

MD 0.191 0.462

AD 0.566 0.018*

RD 0.409 0.103

MBP FA 0.091 0.729

MD −0.031 0.903

AD 0.159 0.541

RD −0.115 0.660

Periventricular white 
matter

GFAP FA −0.485 0.048*

MD 0.647 0.005*

AD 0.667 0.003*

RD 0.680 0.003*

OX-42 FA −0.495 0.043*

MD 0.292 0.256

AD 0.299 0.244

RD 0.213 0.411

AQP4 FA −0.640 0.006*

MD 0.799 <0.001*

AD 0.801 <0.001*

RD 0.829 <0.001*

MBP FA 0.346 0.174

MD −0.495 0.043*

AD −0.360 0.155

RD −0.458 0.064*
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between GFAP increases and MD, AD, and RD in cau-
dal periventricular white matter. Likewise, the increased 
levels of OX-42 (a marker of microglia) correlated nega-
tively with the FA. This result may seem surprising since 
cytoarchitecturally in the periventricular white matter 
of kaolin and kaolin +  PBS rats, the majority of micro-
glial processes were longitudinally oriented; therefore an 
increase in FA would have been predicted [58]. However, 
as others have reported in congenital hydrocephalus [64], 
the cell bodies of reactive microglia in the periventricu-
lar white matter of our kaolin and kaolin + PBS animals 
were enlarged and widened. This cytopathological char-
acteristic may have obstructed the parallel diffusion of 
water causing the FA to decrease. Since the pathophysi-
ology of hydrocephalus is extremely multifactorial, it is 
unlikely that glial alterations alone exert a causative effect 
on DTI parameters.

The MBP levels of the caudal periventricular white 
matter correlate with the MD. These results corroborate 
the current literature; by increasing the volume of the 
extracellular space, myelin disorganisation and demyeli-
nation increases the MD of water molecules [27, 73, 76]. 
In support of the Tourdias et al. [78] report on communi-
cating hydrocephalus, AQP4 levels positively correlated 
with the MD measurements in the caudal periventricu-
lar white matter. AQP4 levels also positively correlated 
with the FA, RD and more interestingly the AD measure-
ments. Although sparse literature exists on the relation-
ship between AQP4 and AD, we suggest that the removal 
of excess interstitial fluid by high levels of AQP4 may 
promote the unobstructed parallel movement of water 
through the periventricular white matter, hence resulting 
in an increase in the AD measurement. Further investiga-
tion of this hypothesis needs to be undertaken in order to 
substantiate such claim.

Here we have used kaolin to induce communicat-
ing hydrocephalus to help us determine the therapeutic 
effects of decorin. It is important to recognize the pos-
sibility that some decorin-treated animals may not have 
developed ventriculomegaly simply because of induction 
failures. However, it is unlikely that a significant propor-
tion of the decorin-treatment group would not develop 
ventriculomegaly given the fact that 82 % of kaolin-only 
or kaolin  +  PBS animals demonstrated significantly 
enlarged ventricles [12]. In addition, 79  % of adult rats 
with identical induction procedures developed ventricu-
lomegaly [79]. Thus, we believe that the improvements 
in the decorin-treated animals were due primarily to the 
drug intervention. Another consideration of the study is 
that the kaolin model of hydrocephalus is not the most 
clinically relevant model, however it is the best charac-
terised and most widely used, successfully replicating 
the development and pathophysiological consequence 

of acquired hydrocephalus. Kaolin induces an inflam-
matory response with concomitant deposition of fibrosis 
in areas of the subarachnoid space close to the injec-
tion site [80, 81] which is very similar to that observed 
in subarachnoid haemorrhage rat models [82]. The 
next step would be to determine the effects of decorin 
in a post haemorrhagic model. Recently, Yan et  al. [83] 
demonstrated that pretreating rats with decorin in a 
subarachnoid haemorrhage model led to a reduction 
in ventriculomegaly and markers of fibrosis, indicating 
that decorin may have beneficial effects in subarachnoid 
haemorrhage. However further work needs to be con-
ducted looking at the changes in cerebral cytopathol-
ogy and microstructure with decorin treatment in this 
model.

Conclusions
Our findings highlight the therapeutic potential of 
decorin to attenuate hydrocephalus-induced changes in 
astrogliosis, oedema and demyelination, particularly in 
the caudal periventricular white matter. Our study also 
helps to validate the use of DTI as a surrogate marker 
of cytopathology in communicating hydrocephalus and 
demonstrates that the caudal region of the brain appears 
to be the most affected, showing the greatest changes in 
ventriculomegaly, DTI and cytopathological measures in 
our experimental model.

Additional files

Additional file 1: Figure S1. Decorin prevents ventriculomegaly 
assessed by T2 weighted MRI images. A bar graph showing a signifi-
cant increase in ventricular volume in hydrocephalic rats compared 
to Intact controls. Furthermore, ventriculomegaly was prevented with 
2.5 μg/0.5 µl/h infusion of human recombinant decorin treatment; 
***p < 0.001. Corresponding representative T2- weighted MRI images 
displaying the differences in ventricular volume between the experimen-
tal groups in the rostral and caudal brain. Arrows highlight the size of the 
lateral ventricles (LV) or third ventricle (3V). Ventriculomegaly was evident 
by MRI in the hydrocephalic rats but not in Intact controls or rats that 
received decorin. Adapted from [12] with permission.

Additional file 2: Figue S2. DTI parameter abnormalities in the CA1 
hippocampus, rostral and caudal internal capsule. Mean values + the 
standard error of the means are displayed for the fractional anisotropy 
(FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity 
(RD) in the (A) outer parietal cortex, (B) inner parietal cortex, (C) CA1 
hippocampus, (D) caudal internal capsule and (E) rostral internal capsule; 
significant differences (p < 0.05) in the DTI parameter values from intact (*) 
or kaolin + PBS (+) levels are presented.

Additional file 3: Table S1. In the corpus callosum, no significant cyto-
pathological changes were observed in hydrocephalic animals. The mean 
values ± the standard error of the means of GFAP, OX-42, AQP4 and MBP 
immunostaining in the four different experimental groups are expressed.

Additional file 4: Table S2. AQP4, GFAP and OX-42 levels in the CA1 and 
CA3 hippocampus, internal capsule, caudate-putamen, parietal cortex 
and occipital cortex in the four experimental groups; values represent the 
mean ± standard error of the means, * = p<0.05.

http://dx.doi.org/10.1186/s12987-016-0033-2
http://dx.doi.org/10.1186/s12987-016-0033-2
http://dx.doi.org/10.1186/s12987-016-0033-2
http://dx.doi.org/10.1186/s12987-016-0033-2
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Appendix 1
Diffusion tensor imaging (DTI). DTI is a specialised 
magnetic resonance imaging technique that is used to 
gain greater appreciation of white matter disease-related 
pathophysiology via probing the random translational 
motion of water molecules [26]. The scalar parameters 
in DTI provide a quantitative method to assess cerebral 
water motion by specifically examining the magnitude 
and direction of water diffusion, which is quantified by 
measuring key parameters such as axial diffusivity (AD), 
radial diffusivity (RD) and their derivatives mean diffu-
sivity (MD) or fractional anisotropy (FA). The FA values 
provide insight into the anisotropy of water diffusion. 
Water may diffuse isotropically, i.e. equally in all direc-
tions, or along a specific direction, therefore becoming 
anisotropic in nature. Moreover, the FA can be influenced 
by changes in microstructural integrity [27]; neurodegen-
eration and axonal reorganization hinders isotropic water 
movement, decreasing the FA. Furthermore, in ventricu-
lomegaly-induced cerebral compression, increased AQP4 

levels and gliosis raise the FA [74]. The RD and AD are 
two parameters that directly influence the FA. In white 
matter, the proportion of water diffusing perpendicular 
to neuronal fibres is assessed by RD, whilst the degree 
of water diffusion parallel to tract orientation is deter-
mined by the AD. Increased RD and AD are indicators 
of myelin and axonal integrity, respectively. Both RD and 
AD are also reported to increase upon astrogliosis [27]. 
Quantification of the average magnitude of diffusion in a 
given volume of tissue is provided by the MD value. MD 
is decreased by the presence of cellular barriers [80]. In 
contrast, interstitial edema and greater AQP4 and micro-
glial presence are responsible for a rise in the MD [80].
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