
Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

2016

Accuracy and precision of an accelerometer-based
smartphone app designed to monitor and record
angular movement over time
Adam J. Bittel
Washington University School of Medicine

Ashraf Elazzazi
Utica College

Daniel C. Bittel
Washington University School of Medicine

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open
Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.

Recommended Citation
Bittel, Adam J.; Elazzazi, Ashraf; and Bittel, Daniel C., ,"Accuracy and precision of an accelerometer-based smartphone app designed to
monitor and record angular movement over time." Telemedicine and e-Health.22,4. 302-309. (2016).
https://digitalcommons.wustl.edu/open_access_pubs/5000

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons@Becker

https://core.ac.uk/display/70385456?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F5000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F5000&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F5000&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:engeszer@wustl.edu


Accuracy and Precision of an Accelerometer-Based Smartphone App
Designed to Monitor and Record Angular Movement over Time

Adam J. Bittel, PT, DPT,1 Ashraf Elazzazi, PT, PhD,2

and Daniel C. Bittel, PT, DPT1

1Program in Physical Therapy, Washington University School
of Medicine, St. Louis, Missouri.

2Physical Therapy Program, School of Health Professions
and Education, Utica College, Utica, New York.

Abstract
Background: Therapeutic exercise is a central component in

the management of many common conditions. It is impera-

tive, therefore, that clinicians monitor and correct patient

performance to facilitate the use of proper form both in

the clinic and during home exercise programs. Although

clinicians are trained to prescribe exercise and analyze form,

there are many subtleties that may be missed by relying on

visual assessment. This study investigated the accuracy and

precision of a novel, exercise-training smartphone applica-

tion (app), running on an iPhone� (Apple, Cupertino, CA) 4

and using its LIS331DLH accelerometer to dynamically

measure and record movement during exercise. Materials

and Methods: The iPhone, running the app, was mounted to

the movement arm of a Biodex� isokinetic dynamometer

System 4 (Biodex Corp., Shirley, NY). Angle and time

measurements taken by the app were compared with the

dynamometer (gold standard) while rotating at 30�/s, 60�/s,
90�/s, 120�/s, and 150�/s. Accuracy was assessed using

limits of agreement and fast Fourier transform analyses.

Precision was assessed using the coefficient of variation.

Results: The mean difference between the app and the

Biodex recordings was less than 1�/s for all test velocities.

The coefficient of variation was less than 3% at velocities from

30�/s to 120�/s and less than 7% at 150�/s. Conclusions: The

app was highly accurate and precise. The validation of apps

designed for motion tracking is a vital prerequisite to clinical

implementation. The app described in this article is clini-

cally identical to the Biodex dynamometer in its ability to

accurately and precisely read angular movement over time.

Key words: rehabilitation, telehealth, telemedicine, sensor

technology

Introduction

R
ehabilitative exercise is a central component in the

management of multiple orthopedic, cardiovascular,

and neurological conditions and is often prescribed

as part of a home treatment program. The effective-

ness of an exercise program is contingent upon (1) performing

exercises with the proper form and (2) using proper com-

binations of frequency, intensity, and time while training.

In many cases, patients make performance errors, such as

moving too quickly, moving too slowly, or not moving

through the entire range of motion. These errors may occur

because an individual is unfamiliar with the prescribed

exercise, has functional limitations that make the exercise

more challenging, or forgot the exercise parameters (reps, sets,

movement velocity, etc.). They may also occur when an

individual loses focus while training (a common occurrence in

busy clinics) or becomes fatigued.1–4 These performance

errors may increase the patient’s risk of injury and reduce the

efficacy and efficiency of the exercise, while inhibiting the

clinician’s ability to determine the patient’s physiological

response—an integral component of exercise modification and

optimization.

Given the limited time patients have in the clinic, it is im-

perative that healthcare clinicians monitor and correct patient

performance in order to reinforce the use of proper form

during their visit and during home exercise programs. How-

ever, this supervision may be difficult in busy clinics, and

there are few devices capable of monitoring patient exercises

while at home. Over the last several years there has been a

growing effort to develop technologies designed to assist

clinicians with the identification, diagnosis, and correction

of performance errors during exercise or daily activities. These

technologies include robotic devices, computer vision, com-

puter gaming, virtual reality, and computational modeling.5

Much effort has been recently placed on developing wearable

sensors, which can be smaller, affordable, and less invasive.

Examples include the DirectLife, Fitbit, Jawbone, Nike Fuel-

Band, and Actigraph consumer-based physical activity

monitors.5 Wearable sensors may also offer unique opportu-

nities to monitor various aspects of patient health in the clinic

and at home through telehealth initiatives.6
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Currently, many of these wearable sensor systems are de-

signed to monitor physiological functioning, including heart

rate, blood pressure, respiratory rate, blood oxygen saturation,

and caloric expenditure.7–10 However, there are often several

unique challenges to designing and implementing a system

capable of monitoring physical activity without the use of

large equipment.10 As Corbishley and Rodriguez-Villegas11

acknowledge, an ideal system must use small sensors, such

that they do not interfere with the individual’s movement

pattern. The size of the device has important implications for

its function, including how big the battery must be, the weight

of the sensors selected, and the system’s processing power. It is

of central importance to design a device that reaches an ap-

propriate compromise between its size and clinical utility. One

device that has grown increasingly popular for its small size

and tremendous processing power is the smartphone.

Smartphones, with their internal accelerometers and

gyroscopes, have been used for several movement analysis

applications (apps), including balance training, the early

detection of falls, activity detection, and gait analysis.12–17

Pan et al.,18 for example, outlined an accelerometer-based

system using smartphone software to integrate readings from

multiple sensors in order to monitor patient adherence to

upper extremity exercises for frozen shoulders.

Despite the growing popularity of smartphone technology

in rehabilitation, the devices have had limited usage for

strength training analysis—a central component of most

rehabilitative interventions and home exercise programs.

Currently, one of the only devices capable of monitoring

resistance training is the isokinetic dynamometer. Although

the analytical capabilities of this device make it valuable

in academic research, its use in the clinical setting is often

limited by its high cost and limited mobility. Indeed, today,

most determinations regarding form adherence are made from

the clinician’s experience and familiarity with the exercise.

Clinicians are trained to understand proper exercise pre-

scription and form, but there are many performance errors

that may be missed by relying simply on visual assessment.

Furthermore, even in instances when clinicians can use

isokinetic dynamometry, much interpretation is left to the

therapist regarding the types of errors made, when they

occurred, and how to correct them.

Clinicians need a device that will help monitor patient

exercise performance and identify errors when exercising in

the clinic or at home. This article describes a novel exercise-

testing and training app running on a smartphone that uses its

built-in accelerometer to record patient movement during

exercise, analyze performance for errors, provide real-time

feedback regarding error correction, and store movement and

error information for electronic submission to the clinician.

The purpose of this study is to determine the accuracy and

precision of this app when recording angular movement over

time—a prerequisite to its clinical implementation.

Materials and Methods
HARDWARE

For this study, an iPhone� (Apple, Cupertino, CA) 4 was

used. The iPhone 4 contains an ultra-low-power triaxial

LIS331DLH accelerometer, which consists of a silicon proof

mass supported by a set of silicon leaf springs, as well as a

capacitor structure. The proof masses become displaced in

three cardinal axes (x, y, z) as the pitch, roll, and yaw of the

accelerometer change during movement of the iPhone. The

change in position is quantified as a change in the capacitance

across interdigitated, parallel-plate capacitors. The iPhone

uses a low-noise capacitive amplifier to convert the change in

capacitance to an analog voltage, which is used by the analog-

to-digital converter to pass signals from the sensor.19

The accelerometer’s signal is dependent on its position

relative to gravity. This signal can be used for assessing body

segment angles and linear acceleration.20 By design, when

used to distinguish static or dynamic activities on the basis of

minute angle differences of body segments, an accelerometer

is most sensitive to changes in inclination when its sensitive

axis is horizontal. Thus, during movement, there are pre-

dictable, and uneven, changes in its sensitivity. A smart-

phone’s (including the iPhone’s) triaxial accelerometer was

chosen as the sensor for this device due to its capacity to avoid

these nonlinearity issues. With the phone fixed and rotated

about a single point, as the sensitivity of one axis increases,

the sensitivity of the perpendicular axis decreases (Fig. 1).21

Combining those readings yields an accurate, linear response

that does not require special alignment to control sensitivity.

A triaxial accelerometer returns values in three axes, which

were combined to derive a new reading of linear sensitivity

throughout its range of measurement.

SOFTWARE
The app used in this study was created using the smartphone

programming framework AppMobi (https://www.appmobi

.com/), which provided a development environment with a

smartphone simulator for rapid prototyping and testing. The

iPhone was chosen because it ran the application best, but the

same code could run on other platforms as well.

To record movement, the core function of the app uses an

event loop that samples the LIS331DLH accelerometer every

50 ms and displays the data values (in this case, time and

angle). Each time the accelerometer is sampled, the raw values
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are converted to degrees and saved along with the time the

sample was taken. These data are analyzed in real time to look

for performance errors (e.g., moving too quickly, too slowly,

resting during movement). The saved data are also exported

via e-mail to an external computer for saving, processing, and

analysis, including the production of movement graphs and

error pattern detection. Figure 2 shows some of the user

screens for the app described in this article.

ACCURACY AND PRECISION
To test the accuracy and precision of the smartphone

accelerometer-based app, data retrieved from the phone’s

LIS331DLH accelerometer were assessed by comparing

angular movement data recorded (angle and time) concur-

rently by the app and a dynamometer (Biodex� isokinetic

dynamometer System 4; Biodex Corp., Shirley, NY) during a

uniplanar knee flexion and extension motion. The iPhone

was activated and mounted 2 cm from the axis of rotation

of the dynamometer’s movement arm. The phone was

positioned face up, such that the touch screen was facing

away from the exercise seat, with the top of the phone (the

side of the phone with the earpiece) placed proximally

and the bottom of the phone sitting distally on the movement

arm (Fig. 3).

The dynamometer was set to passive mode, which allowed

the movement arm to rotate into knee extension and flexion

(approximately 100� of total rotation), at 30�/s, 60�/s, 90�/s,
120�/s, and 150�/s) without externally applied force. There-

fore, participants were not required for this study. Nine rep-

etitions were performed at each velocity (except for 30�/s, for

which only three repetitions were recorded), and all data from

each repetition were used in the statistical analysis. Nine

repetitions were analyzed to mimic the number of repetitions

recommended per set by the American College of Sports

Medicine.22 Only three repetitions at 30�/s were recorded

because each repetition was two to five times slower than the

other test velocities. A spline interpolation was used to ensure

an equivalent number of data points collected by the iPhone

and Biodex system, which was necessary for the statistical

analysis (see below). The angle and time measurements taken

by each instrument were compared to determine the accuracy

and precision of the smartphone app.

Fig. 1. Accelerometer function. (Top panel) LIS331DLH accelerometer output based on the angle of pitch: black line, accelerometer reading
in z-axis; dotted black line, accelerometer reading in the y-axis; gray line, linear y-axis readings calculated using the equation given
below the graph. (Bottom panels) Behavior of the accelerometer (left, middle, and right) when horizontal, at 45�, and at 90�, respectively.
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STATISTICAL ANALYSIS

Accuracy analysis. Pearson product moment correlation

coefficients were calculated to identify the degree of associa-

tion and the strength of the linear relationship between the

measurements recorded concurrently by the dynamometer and

the app (evaluated at the alpha = 0.05 level). The limits of

agreement between the angle measurements taken by each

instrument were calculated at each test

velocity as described by Bland and Alt-

man.23 Additionally, root mean square

errors between each instrument were

calculated at 15�, 30�, 45�, 60�, 75�, and

90� of knee extension for each test ve-

locity. Finally, fast Fourier transforms

wereused to compare the spectrumof the

waveforms produced when plotting

the rotation of the dynamometer move-

ment arm over time. Spectra were com-

pared for the similarity of the dominant

frequencies.

Precision analysis. From the app’s

angle and time readings, the slopes of

the movement plots (angular velocity)

were calculated during the extension and flexion

phases of rotation. The mean velocity recorded by

the app across the nine repetitions recorded at each

test speed (except for 30�/s [see Accuracy and

Precision section above]) and the standard devia-

tion of those velocities were used to calculate the

standard error of measure.

Results
ACCURACY

Figure 4 shows the concurrent readings taken by

the app and the dynamometer. The Pearson corre-

lation coefficients, quantifying the strength of the

linear relationship between these two instruments,

were significant and high: r = 0.999 at 30�/s, 90�/s,
120�/s, and 150�/s and r = 0.994 at 60�/s (all

p < 0.05).

The limits of agreement between the smartphone

app and the Biodex angle/time readings are listed in

Table 1. The mean difference between the app and

the Biodex was less than 1� for all test velocities.

The limits of agreement for angle readings taken at

each velocity are within 2� (except at 150�/s with a

lower bound of –2.16�), and the velocity with the

highest level of agreement was 30�/s. The root

mean square errors for the selected angles of knee extension

are shown in Table 2. The root mean square error never ex-

ceeded 1.5� for any angle across any test velocity.

The fast Fourier transforms (Fig. 5) compared the spectrum

of the waveforms produced when plotting the rotation of the

Biodex movement arm. At all speeds, the dominant frequen-

cies in the waveforms recorded by each instrument were

Fig. 2. User screens for the app validated in this study. (A) App home screen,
with options to enter patient information, calibrate the accelerometer, and
begin exercise/export exercise data. (B) Accelerometer calibration screen,
with the raw accelerometer values in black, and the angle (in degrees) for
each axis shown in gray. The large gray angle on the top shows the angle
of the movement arm, calculated by combining measurements from all
three axes.

Fig. 3. Experimental setup: (A) anteroposterior and (B) lateral views of the experimental
setup of the iPhone on the movement arm of the dynamometer set to 45� of knee flexion.
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identical (the peaks in the graphs occur at the same location in

the frequency domain), indicating strong similarity between

instruments.

PRECISION
The results of the coefficient of variation analyses demon-

strated that the app was highly precise when measuring angular

movement over time (Table 3). The coefficient of variation was

less than 3% at 30–120�/s, and less than 7% at 150�/s.

Discussion
The purpose of this study was to determine the accuracy and

precision of a novel accelerometer-based smartphone appli-

cation when monitoring and recording angular movement

over time. The results demonstrate that the app was highly

accurate when compared with the gold standard in monitoring

resistance training—the Biodex isokinetic dynamometer. At

all test speeds, the Pearson correlation coefficient between the

app and the dynamometer was 0.994 or greater. The mean

difference between instruments was less than 1� across all test

speeds, with the 95% confidence interval never exceeding

2.2�. This 2.2� error does not exceed the 5� mean error limit

established by the American Medical Association for reliable

evaluation of movement impairments in a clinical context and

is therefore clinically insignificant.24 Furthermore, the fast

Fourier transform analysis revealed that the iPhone app and

dynamometer recorded the same dominant frequencies during

rotation of the dynamometer’s movement arm. Finally, the

iPhone app demonstrated a high level of precision, with the

coefficients of variation measuring less than 3% for all speeds

except 150�/s (6.8%).

The findings in this study coincide with the findings of

work previously performed regarding the accuracy and pre-

cision of applications using smartphone hardware to monitor
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Fig. 4. Biodex dynamometer and iPhone recordings. Graphs show movement recordings (angle and time) taken concurrently by the iPhone app
(straight line [——]) and the Biodex (dotted line [- -- --]). Nine repetitions were performed at each test speed except for 30�/s (three repetitions).

Table 1. Limits of Agreement

SELECTED VELOCITY

30�/S 60�/S 90�/S 120�/S 150�/S

Mean

difference

(�)

0.12 0.19 -0.42 -0.41 -0.80

Limits of

agreement

(95% CI)

-0.65 to 0.62 -2 to 2 -1.5 to 0.65 -1.97 to 1.15 -2.16 to 0.58

Mean difference, and 95% CI between angle measurements taken by the

iPhone app and Biodex isokinetic dynamometer for all test velocities.

CI, confidence interval.
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uniplanar movement. Ockendon and Gilbert25 reported a

correlation coefficient of 0.947 between a smartphone

accelerometer-based knee goniometer and a traditional go-

niometer. Their iPhone goniometer demonstrated superior

intra- and inter-rater reliability to the traditional goniometer,

reducing inter-rater discrepancy by more than 70%.25

Smartphone accelerometers have also been shown to be valid

and reliable when measuring combined movements. The apps

used by Yamada et al.26 and Nishiguchi et al.13 demonstrated

‘‘remarkable consistency’’ during gait analysis (e.g., peak

frequency and acceleration peak intervals) and correlated

significantly (r > 0.82) with more traditional triaxial acceler-

ometers. Likewise, the iPhone app used by Tousignant-

Laflamme et al.27 demonstrated good inter-rater reliability

and validity when measuring cervical range of motion.

The use of these mobile devices has become a growing

trend in the field of rehabilitation due to their small size,

significant processing power, portability, prevalence in

the general population, long battery life, and low cost.

Additionally, smartphones use internal real-time clocks,

allowing these devices to differentiate activity patterns over

extended recording periods. For apps designed to recognize

inappropriate exercise performance, validation of their

ability to accurately and precisely track a user’s movement

is a vital prerequisite to their clinical implementation.

However, in a recent systematic review, Milani et al.28

determined that, to date, no movement tracking smartphone

app has been properly validated in dynamic conditions

(e.g., validating measurements during active rotations,

rather than at static positions), as was done in this study.

Additionally, the authors identified a paucity of validation

Table 2. Root Mean Square Errors

TEST
VELOCITY

SELECTED KNEE EXTENSION ANGLE

15� 30� 45� 60� 75� 90�

30�/s 0.42� 0.53� 0.56� 0.63� 0.41� 0.45�

60�/s 0.89� 0.49� 0.30� 0.36� 0.58� 0.61�

90�/s 0.69� 0.64� 0.62� 0.75� 0.70� 0.59�

120�/s 0.76� 0.79� 0.90� 1.1� 1.0� 0.54�

150�/s 1.3� 1.1� 1.4� 1.5� 1.3� 1.1�

Root mean square errors between the iPhone application and the Biodex isokinetic

dynamometer at different angles of knee extension and test velocities.
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studies on apps measuring angular movement during

therapeutic exercise.28

Pernek et al.29 did investigate the reliability of smartphone

hardware when measuring exercise data. Specifically, they

found that after 3,598 repetitions, the repetition miscount rate

was approximately 1%, with a temporal detection error of

11%—indicating that a smartphone could detect correct

repetition start and end times based on their time-warping

algorithm.29 Spina et al.30 also investigated an app using the

Android� (Google, Mountain View, CA) SDK on a smart-

phone to monitor rehabilitative exercise performance and to

provide corrective audio voice prompts based on several

different errors nested within their performance detection

algorithm. Their validation process, however, was limited, and

the app was not compared with a reliable external measure

as was done in this study (Biodex isokinetic dynamometer

System 4). As a result, the feedback prompts designed to

correct performance were only 63% accurate.30

The app validated in our study is written to monitor patient

exercise performance, to identify movement errors (e.g.,

deviations from the velocity, range of motion, or control

instructions established by the therapist or physician), and to

provide real-time feedback regarding the errors made and

how to correct those errors on subsequent repetitions. After

their exercise session, or following completion of their home

exercise program, patients can export their performance data

(time and angle data, as well as performance summary)

directly to their therapist, physician, or physiatrist for analysis

through e-mail. The time and angle data can be used to

generate detailed graphs for movement pattern analysis. Also,

the performance summary includes the number of errors, the

type of error, and when the error occurred in the exercise (time

and angle) in a neatly organized table. These features were

used in a subsequent study in which 38 participants trained

with the app to determine its ability to monitor participant

movement and to identify and count errors. Participant

movement and performance data were exported through

email to determine the app’s ability to improve exercise form

and assess for common patterns of resistance training errors

(e.g., use of improper range of motion, moving too quickly,

not controlling the weight).

Data obtained through these built-in features can be used in

progress reports and to help justify continuation or discon-

tinuation of health services—providing objective, accurate

evidence of patient progress during treatment. In the current

clinical model, it is difficult to determine the level of adher-

ence to home exercise programs, and even harder to determine

if patients are following the prescription (reps, sets, movement

speed, etc.) outlined by their doctor or therapist. This app can

bridge this gap—allowing clinicians to closely monitor patient

adherence, increase their access to the patient, and increase

supervision outside the clinic. Although the app does not

currently support live-streaming of data, a live-streaming

feature could be developed and would facilitate the use of

smartphone accelerometer data with other motion capture

devices, such as video, infrared, or electromagnetic systems.

Given the accuracy and precision of this app, the next steps

are (1) to determine its accuracy and precision during multi-

planar movement and (2) to determine its ability to identify

and correct movement errors and to improve exercise per-

formance. The app uses LIS331DLH measurements in the x, y,

and z directions to yield linear sensitivity, suggesting that

angle/time data recorded in the other axes may be just as

accurate as the single axis measurements taken in this study.

Apps designed to inform patients of the errors they are

making during exercise, and how to correct them through

real-time feedback, may improve the safety and efficacy of

the exercise while promoting long-term motivation and

adherence.31 Thus, accurate and timely feedback is crucial.

To establish a system of accurate feedback and prompting,

validation of movement tracking against accurate devices

is a necessity.

Conclusions
Based on the findings in this study, the smartphone app

written by the authors of this study, designed to use the iPhone

4S’s LIS331DLH accelerometer, is statistically and clinically

identical to the Biodex isokinetic dynamometer in its ability

to accurately and precisely record angular movement over

time. Moreover, the app can use movement data to identify

resistance-training errors and provide real-time feedback

regarding the type of error made and how to correct the error

during subsequent repetitions. Further investigation is needed

to determine the ability of this app to identify and correct these

Table 3. Precision Analysis for the iPhone Application

APP

SELECTED REFERENCE DYNAMOMETER VELOCITY

30�/S 60�/S 90�/S 120�/S 150�/S

App average

velocity (�/s)

29.78 59.96 89.75 121.13 137.48

SD (�/s) 0.87 0.45 1.56 3.38 9.39

Coefficient

of variation (%)

2.9 0.7 1.7 2.8 6.8

For each selected velocity on the Biodex isokinetic dynamometer are given the

average velocity recorded by the application (app), the standard deviation (SD) of

the average velocities, and the coefficient of variation of the average velocities.

BITTEL ET AL.
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movement errors, which would allow clinicians to monitor

patient exercise performance at home or in the clinic.
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31. Möller A, Scherr J, Roalter L, Diewald S, Hammerla N, Plötz T, Olivier P, Kranz M.
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