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Mycobacterium arupense, Mycobacterium heraklionense, and a Newly
Proposed Species, “Mycobacterium virginiense” sp. nov., but Not
Mycobacterium nonchromogenicum, as Species of the Mycobacterium
terrae Complex Causing Tenosynovitis and Osteomyelitis

Ravikiran Vasireddy,a Sruthi Vasireddy,a Barbara A. Brown-Elliott,a Nancy L. Wengenack,b Uzoamaka A. Eke,c* Jeana L. Benwill,a

Christine Turenne,d* Richard J. Wallace, Jr.a

Mycobacteria/Nocardia Research Laboratory, Department of Microbiology, The University of Texas Health Science Center at Tyler, Tyler, Texas, USAa; Mayo Clinic,
Rochester, Minnesota, USAb; Division of Infectious Disease, Washington University in St. Louis School of Medicine, St. Louis, Missouri, USAc; Saskatchewan Disease Control
Laboratory, Regina, Saskatchewan, Canadad

Mycobacterium terrae complex has been recognized as a cause of tenosynovitis, with M. terrae and Mycobacterium nonchromo-
genicum reported as the primary etiologic pathogens. The molecular taxonomy of the M. terrae complex causing tenosynovitis
has not been established despite approximately 50 previously reported cases. We evaluated 26 isolates of the M. terrae complex
associated with tenosynovitis or osteomyelitis recovered between 1984 and 2014 from 13 states, including 5 isolates reported in
1991 as M. nonchromogenicum by nonmolecular methods. The isolates belonged to three validated species, one new proposed
species, and two novel related strains. The majority of isolates (20/26, or 77%) belonged to two recently described species: Myco-
bacterium arupense (10 isolates, or 38%) and Mycobacterium heraklionense (10 isolates, or 38%). Three isolates (12%) had 100%
sequence identity to each other by 16S rRNA and 99.3 to 100% identity by rpoB gene region V sequencing and represent a previ-
ously undescribed species within the M. terrae complex. There were no isolates of M. terrae or M. nonchromogenicum, including
among the five isolates reported in 1991. The 26 isolates were susceptible to clarithromycin (100%), rifabutin (100%), ethambu-
tol (92%), and sulfamethoxazole or trimethoprim-sulfamethoxazole (70%). The current study suggests that M. arupense, M.
heraklionense, and a newly proposed species (“M. virginiense” sp. nov.; proposed type strain MO-233 [DSM 100883, CIP
110918]) within the M. terrae complex are the major causes of tenosynovitis and osteomyelitis in the United States, with little
change over 20 years. Species identification within this complex requires sequencing methods.

Mycobacterium terrae complex (MTC) was first characterized
in 1981 by the International Working Group in Mycobacte-

rial Taxonomy (IWGMT). The initial MTC consisted of two non-
chromogenic slowly growing species: M. terrae and Mycobacte-
rium nonchromogenicum (1, 2). Phenotypic separation within the
group was often difficult, and molecular methods were not avail-
able, making establishment of species pathogenicity uncertain (3).

The complex is recognized as an environmental contaminant
of sputum and a cause of tenosynovitis and osteomyelitis primar-
ily of the fingers and wrist (3–35). Whether one or more members
of the complex are true respiratory pathogens has not been estab-
lished (1, 22).

The first published case report of tenosynovitis caused by the
MTC was by Hirata and Tomiyama in 1976 (4). There have been
approximately 34 additional case reports published since then,
identified using nonmolecular methods (3–25), with 14 cases
identified using molecular methods (26–28, 30–36) (Tables 1 and
2). With the exception of four isolates of M. arupense, including
the original description of M. arupense (28), details of the methods
and/or explicitly stating a 100% 16S rRNA gene sequence identity
to recognized species for the remaining cases with molecular iden-
tifications have been absent (Table 2).

An excellent history and species update of the M. terrae com-
plex based on multigene sequencing targets was published by Tor-
toli et al. (1). He noted that the presence of a two nucleotide
insertion in helix 18 of the 16S rRNA gene (bp �430 to 500;
hypervariable region B or region V3) provided a consistent signa-

ture sequence for members of the MTC compared to other slowly
growing mycobacteria (37, 38). He also characterized several new
species in the complex, including Mycobacterium heraklionense
and Mycobacterium engbaekii (1).

The greater availability of DNA sequencing (59) has resulted in
a “boom” of new species of MTC, beginning with Mycobacterium
hiberniae (39). An additional eight new species have been validly
published since 2006: Mycobacterium arupense (28), Mycobacte-
rium kumamotonense (36), Mycobacterium heraklionense (1), My-
cobacterium senuense (40), Mycobacterium minnesotense (41), My-
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cobacterium longobardum (1), Mycobacterium algericum (42), and
Mycobacterium engbaekii (1). Two other MTC species have been
described that currently have no standing in nomenclature: “My-
cobacterium paraterrae” (43) and “Mycobacterium sinense” (44).

Almost all published cases of these 11 new species of the MTC
have been respiratory except for the two previously mentioned
isolates of M. arupense (including the type strain, ATCC BAA-
1242), which were associated with tenosynovitis or hand infec-

tions (28). The distribution of these 11 newer species of the com-
plex as well as the two established members (M. terrae and M.
nonchromogenicum) among clinical isolates from synovial fluid,
tissue, or bone based on DNA sequencing is not known. Thus, we
collected tendon, synovial, and bone isolates of the M. terrae com-
plex recovered over 30 years, including isolates previously identi-
fied as M. nonchromogenicum using nonmolecular methods, and
subjected them to molecular identification (3). We also present a

TABLE 1 Characteristics and species designations of 35 previously reported cases of tenosynovitis due to the M. terrae complex without molecular
species identificationa

No. Age/sex Site of tenosynovitis Diagnosis or risk factor(s)s
Local
steroid Surgery

Granulomatous
inflammation

AFB
smear Species Reference

Location/yr of
publication

1 65/M Right foot (ankle) Farmer; NA � NA NA NA M. nonchromogenicum 4 Japan/1976
2 20/M Left forefinger, wrist NA � � � � M. terrae 5 Texas/1978
3 23/M Left index finger Puncture from fish fin � � � � M. terrae 6 NA/1979
4 57/M Knee RA � NA NA ? M. terrae 7 NA/1981
5 66/F Right index finger Puncture from blackberry

thorn
� � � � M. terrae 8 NA/1981

6 60/M Left hand, forearm Puncture from wooden
splinter

� � � � M. terrae 9 NA/1983

7 47/F Right 4th and 5th
fingers, palm,
thumb

Puncture from straight pin � � � � M. terrae 10 NA/1983

8 72/M left forearm, right 5th
finger, right thumb

Puncture wound � � � � M. terrae 11 France/1984

9 75/M Left index finger Arteritis � � � � M. terrae 12 NA/1985
10 NA Knee NA � NA NA NA M. terrae 13 France/1987
11 54/M Right 3rd finger, PIP

joint
Puncture from fish fin � � � � M. terrae 14 NA/1988

12 55/M Right 3rd finger,
MCP joint

Puncture from fish fin � � NA � M. terrae 14 NA/1988

13 41/F Hand, wrist Renal transplant � NA NA NA M. terrae 15 NA/1988
14 58/F Right, 3rd finger Nurse � � � � M. terrae 16 Sweden/1989
15 28/F Right, 2nd finger Lab technician � � � � M. terrae 16 Sweden/1989
16 71/F Right, 2nd finger Retired � � � � M. terrae 16 Sweden/1989
17 47/F Right 3rd finger Cook � � � � M. terrae 16 Sweden/1989
18 31/F Right, 2nd finger Office worker � � � � M. terrae 16 Sweden/1989
19 38/F Right, 3rd finger Lab technician � � � � M. terrae 16 Sweden/1989
20 48/M 3rd finger NA ? � ? ? M. terrae 17 NA/1989
21 63/F Wrist Gardener NA NA NA NA M. terrae 18 NA/1990
22 58/F Right index finger Gardening, cook (case 1) � � � � M. nonchromogenicum 3 Maine/1991
23 60/M Left wrist Meat cutter (case 2) � � � � M. nonchromogenicum 3 Illinois/1991
24 59/M Left wrist Maintenance work (case 3) � � � � M. nonchromogenicum 3 Florida/1991
25 62/F Right middle finger NA (case 4) � � � � M. nonchromogenicum 3 Texas/1991
26 40/M Left hand, thumb Dermatomyositis on

steroids (case 5)
� � � � M. nonchromogenicum 3 Florida/1991

27 40/F Right 5th finger Fishing, gardening, prior
surgery for carpal tunnel
syndrome (case 6)

� � � NA M. nonchromogenicum 3 Virginia/1991

28 NA NA NA ? ? ? ? M. terrae 19 France/1993
29 31/M Knee RA ? ? ? ? 20 NA/1994
30 36/M Left 3rd finger, palm Puncture glass sliver

(mechanic)
� � � � M. terrae 21 Michigan/1999

31 37/F Right 2nd finger Maintained aquarium,
some planting, no
trauma

� � NA NA M. terrae 22 U.S./2000

32 42/F Right index finger Strain while repairing
garden fence

� � � NA M. terrae 22 U.S./2000

33 31/M Right knee RA on steroids,
methotrexate

� � NA � M. terrae 23 Taiwan/2009

34 76/M Left hand Retired fisherman, prior
debridement for M.
marinum

� � � � M. terrae 24 Hong
Kong/2012

35 61/M Right knee Osteoarthritis � � NA NA M. terrae 25 California/2012
a Abbreviations: M, male; F, female; AFB, acid-fast bacilli; PIP, proximal interphalangeal; NA, not available; RA, rheumatoid arthritis. Symbols: �, factor present; �, factor not
present.
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case report of osteomyelitis due to a previously unrecognized taxa
within the MTC.

CASE REPORT

The patient is a 75-year-old previously healthy male who sus-
tained a chainsaw injury to his leg. He developed a secondary
wound infection and suspected osteomyelitis of the underlying
tibia. He underwent an incision and debridement of the leg. Gram
stain and routine cultures were negative. Special stains, including
acid-fast bacillus (AFB) stains, were negative, but AFB cultures
were positive in broth for a nonpigmented slowly growing organ-
ism initially identified by high-performance liquid chromatogra-
phy (HPLC) patterns and phenotypic characteristics as being in
the M. terrae complex. Histopathology on the tissue was not per-
formed. The patient was treated initially with clarithromycin and
doxycycline because of a history of a rash with sulfonamides. Sub-
sequent susceptibility tests showed the isolate to be susceptible to
clarithromycin, ethambutol, rifabutin, linezolid, and trim-
ethoprim-sulfamethoxazole (TMP-SMX) but resistant to doxycy-
cline. The patient was treated with clarithromycin and etham-
butol, and his wound healed without incident. The isolate
(MO-4693) was subsequently shown by complete 16S rRNA
gene and partial rpoB gene sequencing to be a previously un-
recognized member of the M. terrae complex.

MATERIALS AND METHODS
Previous cases. All previously published cases of the association of M.
terrae complex with tenosynovitis or osteomyelitis were sought in the
medical literature. Identification obtained by nonsequence-based versus
sequence-based methods was highlighted.

Current isolates. All synovial tissue, joint fluid, or bone biopsy isolates
of the M. terrae group submitted to the Mycobacteria/Nocardia Research
Laboratory at The University of Texas Health Science Center at Tyler
(UTHSCT) between 1984 and 2014 for identification and/or susceptibil-
ity testing were sought. This number included five isolates identified as M.
nonchromogenicum based on phenotypic features and HPLC patterns
from a 1991 publication (3), including strain MO-233. Clinical informa-
tion was reviewed at the time of presentation. Isolates had been stored
at �70°C in tryptic soy broth with 15% glycerol and were subcultured to
Middlebrook 7H10 agar for molecular testing.

Reference strains included in the study were M. terrae ATCC 15755T,
M. nonchromogenicum ATCC 19530T, M. kumamotonense DSM 45093T,
M. arupense ATCC BAA-1242T, and “M. paraterrae” DSM 45127T.

This study was approved by the Institutional Review Board of
UTHSCT.

DNA extraction. A small loopful of bacteria from isolated colonies
was suspended in 100 �l of preparation reagent (PrepMan Ultra, Life
Technologies, Carlsbad, CA). Samples were held for 30 s and then heat
killed for 10 min at 100°C, and then the samples were cooled down at
room temperature for 2 min and centrifuged at maximum speed in a
microcentrifuge for 2 min. The DNA was extracted by transferring 50 �l
of the supernatant.

16S rRNA complete gene PCR and sequencing. 16S rRNA complete
gene sequencing was performed as previously described by Edwards et
al. (45).

PCR was performed in a 20-�l reaction mixture using a 10 �M con-
centration of each of the primers (pA and pH) (45), 1� FailSafe Premix I,
and 1.25 U of FailSafe enzyme mix (Epicentre, Madison, WI). The PCR
product (5 �l) was run on a 2% agarose gel (Promega, Madison, WI) with
EZ safe stain (1 �l) (eEnzyme, Gaithersburg, MD) and visualized under
UV light using a SYBR gold emission filter.

After purifying the amplicon using USB ExoSap-IT reagent (Af-
fymetrix, Santa Clara, CA), sequencing was performed using primers pC,T
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pD, and pE (45) and a BigDye Terminator v3.1 cycle sequencing kit on an
ABI 3500 genetic analyzer according to the manufacturer’s instructions
(Life Technologies, Carlsbad, CA).

Gene sequence analysis was performed using RipSeq software (Isentio
AS, Bergen, Norway). Primer regions were excluded, yielding a final se-
quence of 1,489 bp for all strains (as is the case for members of the M.
terrae complex). Sequences were compared to those for validated type
strains and all available sequences using RipSeq and NCBI BLAST version
2.3.0�. Three separate NCBI databases were used for BLAST analyses: (i)
16S rRNA sequences (Bacteria and Archaea), (ii) the nucleotide collection
(nr/nt), and (iii) whole-genome shotgun contigs (wgs). A separate BLAST
analysis using only the first 500 bp from the 5 new species was performed
to better assess the presence of similar sequences in the public domain.
Interpretation was in accordance with the Clinical and Laboratory Stan-
dards Institute (CLSI) interpretive criteria for DNA target sequencing
(46) (Table 3).

rpoB partial gene sequencing. Sequencing of region V and region III
of the rpoB gene (720 bp and 315 bp, respectively, excluding the primer
regions) was performed on selected isolates, including isolates whose
complete 16S rRNA gene sequence was not a 100% match to a validated
species type strain as described previously (47, 48). The nucleotide collec-
tion (nr/nt) NCBI database was used for BLAST analyses.

hsp65 partial gene sequencing. A 441-bp region of the hsp65 gene was
amplified (49) and used for molecular analysis of a 401-bp sequence (ex-
cluding the primer regions). Sequencing was done on some of the isolates
that are not 100% to a validated type strain by 16S rRNA gene sequencing
using the BigDye Terminator v3.1 cycle sequencing kit on an ABI 3500
genetic analyzer. Both the nucleotide collection (nr/nt) and whole-
genome shotgun contig (wgs) NCBI databases were used for BLAST
analyses.

Phylogenetic analyses. For all gene targets, sequencing alignments of
strains from this study and chosen sequences from GenBank were created
and phylogenetic analyses were conducted using MEGA version 6 (50). A
web-accessible database of hsp65 sequences from Mycobacterium refer-
ence strains was also used to populate the hsp65 alignment (51).

Members of the M. terrae complex are known to harbor two copies of
the ribosomal operon that may contain differences in the 16S rRNA gene
(52, 53), seen as ambiguous bases in sequence electropherograms. Varia-
tions in positions of ambiguity were not considered in 16S phylogenetic
analyses in this study.

Susceptibility testing. Susceptibility testing of the M. terrae complex
isolates was performed using broth microdilution according to CLSI
guidelines (54).

TABLE 3 Twenty-six clinical cases of tenosynovitis or osteomyelitis due to M. terrae complex and their causative species based on complete 16S
rRNA gene sequence

Organism and isolate no. Strain name Source
Complete 16S rRNA gene
sequence base pair match % identitya Location/yr

M. arupense (n � 10)
1 MO-3556 Right elbow synovial fluid 1,475/1,475 100 Missouri/2010
2 MO-2220 Fourth finger fluid 1,475/1,475 100 Iowa/2006
3 MO-1791 Right wrist 1,475/1,475 100 Texas/2004
4 MO-4448 Finger 1,482/1,482 100 Arkansas/1999
5 MO-1082, pigmented Right elbow synovial fluid 1,475/1,475 100 Florida/1999
6 MO-1089 Synovial fluid 1,482/1,482 100 Kansas/1998
7 MO-49 Hand 1,482/1,482 100 Florida/1985
8 MO-86, pigmented Left wrist, synovium 1,474/1,474 100 Maine/1986
9 MO-3744 Left index finger 1,474/1,474 100 Missouri/2011
10 MO-4781 Hand 1,465/1,465 100 Texas/2013

M. heraklionense (n � 10)
1 MO-3474 Right index finger 1,427/1,427 100 Texas/2010
2 MO-4449 Tissue, left hand 1,427/1,427 100 Massachusetts/1996
3 MO-786 Finger, tissue 1,427/1,427 100 North

Carolina/1996
4 MO-778 Finger 1,427/1,427 100 California/1996
5 MO-7 Right hand, synovium 1,427/1,427 100 Texas/1984
6 MO-51 Hand 1,427/1,427 100 California/1985
7 MO-4967 Right index finger 1,422/1,422 100 Washington/2014
8 MO-5013 Right index finger 1,422/1,422 100 Texas/2013
9 MO-5024 Right index finger 1,422/1,422 100 Illinois/2014
10 MO-5209 Index finger 1,422/1,422 100 Washington/2015

M. kumamotonense (n � 1)
1 MO 2762 Right hand tendon 1,423/1,424 99.93 Massachusetts/2008

(1 gap)

Proposed new species (n � 5)
1 MO 1300 Knee 1,474/1,474 100 Florida/2001
2 MO-233b Flexor tendon 1,474/1,474 100 Virginia/1991
3 MO-5116 Elbow 1,474/1,474 100 North

Carolina/2014
4 MO-3559 Flexor tendon 1,359/1,359 100 Unknown
5 MO-4693 Tibia 1,359/1,359 100 Missouri/2013

a % identity is the identity of organism against the corresponding type strain. In the case of the final two values, the strains both have same single base pair mismatch.
b Proposed type strain.
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Nucleotide sequence accession numbers. The complete 16S rRNA
sequences of MO-233, MO-1300, MO-5116, MO-2762, MO-3559, MO-
4693 and Mycobacterium sp. strain DSM 45127 (“M. paraterrae”) were
deposited in GenBank (accession numbers KR025879, KR025880,
KR025881, KR025882, KR025883, KR025884, and KT861785). The acces-
sion numbers for rpoB region V sequences deposited in GenBank for
strains MO-233, MO-1300, MO-5116, MO-2762, MO-3559, MO-4693,
M. arupense ATCC BAA-1242T (AR 30097) are KR025885, KR025886,
KR025887, KR025888, KR025889, KR025890, and KT861786, respec-
tively. The accession numbers for rpoB region III sequences deposited in
GenBank for strains MO-233, MO-1300, MO-5116, MO-2762, MO-3559,
and MO-4693 are KR025891 through KR025896.

RESULTS
Previous reported cases. A total of 35 previously published cases
of tenosynovitis and osteomyelitis due to members of the M. terrae
complex and identified using nonmolecular methods since 1976
were reviewed. Biochemical testing and HPLC were primarily
used in the species identification. All cases were previously re-
ported to be due to M. terrae or M. nonchromogenicum. Most
(80%) cases involved the hand, fingers, or wrists, with histopatho-
logic findings of granuloma and growth of the organism from
operative materials (Table 1).

A total of 14 cases of tenosynovitis and osteomyelitis due to the
M. terrae complex identified using molecular methods were inves-
tigated (Table 2). In three cases (cases 1, 9, and 12) 16S rRNA gene
sequencing was used but did not provide a percent match with a
type strain, in one case (case 7) DNA-DNA hybridization was
used, and in three cases (cases 2, 3, and 11) no molecular details
were given. The first three cases (cases 1 to 3) (Table 2) were all
reported as M. nonchromogenicum. Two isolates (cases 4 and 5,
Table 2) underwent complete 16S rRNA gene sequencing as well
as secondary gene target sequencing as part of the original study
describing M. arupense by Cloud et al. in 2006 (28). One of these
(AR 30097T) is the recognized type strain of M. arupense, and both
isolates were a 100% match of the complete 16S rRNA gene to each
other and other identified sputum isolates (28). In two other cases
partial 16S rRNA gene sequencing was used, with 100% match to
the type strain of M. arupense (cases 8 and 13) (31, 35). Two
additional case isolates underwent 16S rRNA partial gene se-
quencing (cases 6 and 10); one reported as M. arupense and the
other as M. longobardum, although both were only a 99.2% match
to the type strain. The isolate in the last case (no. 14) underwent
complete 16S sequencing and was a 99.8% (1,429/1,432 bp) match
to M. arupense (36). By current CLSI standards these last three
isolates are grouped as “most closely related”) (46, 55). Overall,
based on the provided information, only four isolates met current
CLSI sequencing criteria for a specific species identification (cases
4, 5, 8, and 13), and all were identified as M. arupense (46).

Current isolates. A total of 26 patients with available isolates
for study were identified (Table 3). Five of these isolates were
identified in the presequencing era (all as M. nonchromogenicum)
(3), and 21 were new isolates. The 25 patients from known loca-
tions were from 13 states: Texas (5), Missouri (3), Florida (3),
Massachusetts (2), California (2), Washington (2), Iowa (1), Ar-
kansas (1), Kansas (1), Maine (1), North Carolina (2), Illinois (1),
and Virginia (1). Isolates were from the finger, hand, or wrist (18)
(69%), elbow (3) (11.5%), knee (1) (4%), flexor tendon (2) (8%),
tibia (1) (4%), and synovial fluid (1) (4%).

16S rRNA complete gene sequencing. By complete 16S rRNA
gene sequencing, a 100% identity to a validated type strain se-

quence (Table 3) was obtained for three species: M. arupense (10
isolates or 38%), M. heraklionense (10 isolates or 38%), and M.
kumamotonense (one isolate or 4%). There were no matches to M.
terrae or M. nonchromogenicum. Of note, strain MO-2762, iden-
tified as M. kumamotonense, presented with a gap in the 3= end
compared to the type strain sequence. For a clinical respiratory
isolate of M. kumamotonense from Canada (unpublished data;
strain B0621B018392 [Fig. 1]), a sequence electropherogram of
this region revealed the presence of two 16S copies where one
sequence contained the gap and the other did not. This resulted in
a single base pair shift at that position, making all subsequent
sequence data uninterpretable. We considered, then, that this gap
could be a feature of some strains of M. kumamotonense and there-
fore was not considered a true base pair difference.

There were three isolates (MO-233, MO-1300, and MO-5116)
with 100% identity to each other but no match to any validated
species or other GenBank sequence (“new species”) using the top
250 matches from nucleotide collection database. The closest es-
tablished species were M. arupense, with a mismatch of 5 bp
(99.7%), followed by M. nonchromogenicum and M. heraklionense,
with mismatches of 9 bp (99.4%) and 10 bp (99.3%), respectively.
These isolates and their relationship to other isolates of the M.
terrae complex using the complete 16S rRNA gene are shown in
Fig. 1.

The two other isolates, MO-3559 and MO-4693, did not match
any known species or the proposed new species and (after exclud-
ing positions of ambiguity) have 100% identity with each other.
The closest validated species for MO-3559 is M. arupense (7-bp
mismatch [99.5%]) followed by M. nonchromogenicum and M.
heraklionense, with mismatches of 9 bp (99.4%) and 10 bp
(99.3%), respectively. For MO-4693, the closest validated species
is M. arupense (5-bp mismatch [99.7%]), followed by M. nonchro-
mogenicum and M. heraklionense, with mismatches of 6 bp
(99.6%) and 8 bp (99.4%), respectively. MO-3559 has two base
pair differences compared to the proposed new species MO-
233, and MO-4693 presents with only one base pair change
from MO-233 after excluding ambiguous bases (the second
base pair change in 16S rRNA gene between MO-3559 from
MO-233 is an ambiguous base in the 16S rRNA gene sequence
of MO-4693). This indicates that some of the 5 ambiguous
bases in the 16S rRNA gene of MO-4693 might be true base pair
mismatches with MO-3559, which is also supported by signif-
icant sequence variations observed between the two isolates by
other genes (rpoB and hsp65).

The isolate MO-4693 presented with 5 ambiguous bases that
could not be resolved upon repeat sequencing from a single col-
ony and are presumed to be due to 2 differing copies of the 16S
rRNA gene.

Comparing against nonvalidated species, the closest match for
the 5 new species strains was “M. paraterrae” (GenBank accession
number EU919229.1), with four base pair mismatches over the
full gene. For this reason, the proposed type strain for the species
was obtained from the Deutsche Sammlung von Mikroorganis-
men und Zellkulturen (DSMZ) (DSM 45127) for confirmation
and comparison. However, it was determined that the isolate sub-
mitted to DSMZ as the type strain of “M. paraterrae” has a strik-
ingly different 16S rRNA gene sequence than that deposited in
GenBank, differing from it by 47 bp (96.8%). This was also con-
firmed in the DSMZ (with a 100% sequence identity to that deter-
mined in our facility) and stated on their website along with strain
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info for DSM 45127 (https://www.dsmz.de/catalogues/details
/culture/DSM-45127.html?tx_dsmzresources_pi5%5BreturnPid
%5D�304). The complete 16S rRNA gene sequence determined
for the strain of “M. paraterrae” presently in the DSMZ collection
(DSM 45127) appears to represent a novel species closest to M.
cookii ATCC 49103T (GenBank accession number AF480598)
(9-bp difference [99.4% identity]). Interestingly, a BLAST analysis
of the corresponding rpoB sequence of “M. paraterrae” previously
deposited in GenBank (accession number EU919230) reveals a
closest match (283/298 bp [95.0%]) with that of M. cookii
CIP105396T (accession number AY544904). Similarly, BLAST
analysis of the corresponding hsp65 sequence of “M. paraterrae”
deposited in GenBank (accession number EU919228) reveals a
close match only to a single entry (579/583 bp) described as M.
cookii-like (accession number JX566891).

Of the five isolates from the 1991 publication by Ridderhof et
al. (3) identified by nonmolecular methods as M. nonchromogeni-
cum, two were identified by complete 16S rRNA gene sequencing
as M. arupense, two were M. heraklionense, and one belonged to
the proposed new species, “M. virginiense” (MO-233).

rpoB partial gene sequencing region V. Two of the five mem-
bers of the proposed new species (MO-233 and MO-1300) had
100% sequence identity to each other by rpoB region V partial
gene sequencing but differed by 21 bp (97.1%) from its closest
species, M. nonchromogenicum. The sequence of the third member
(MO-5116) differed by 5 bp (99.3%) from the first two isolates.
The last two isolates (MO-3559 and MO-4693) differed from each
other by 29 bp (96.0%) of the rpoB region V sequence and from
the proposed type strain MO-233 by 28 bp (96.1%) and 18 bp
(97.5%), respectively. Their relationship to other available mem-
bers of the M. terrae complex is shown in Fig. 2.

Clinical isolate MO-2762, with a single deletion in the 3= end of
the 16S rRNA gene sequence in comparison with the type strain
sequence of M. kumamotonense, corresponded also to M. ku-
mamotonense NCTC 1342T (accession no. JN571251) by rpoB re-
gion V (3-bp difference [99.6%]) and by rpoB region III (see be-
low). This high degree of similarity further confirms that
MO-2762 is a strain of M. kumamotonense. To our knowledge, this
is the first reported case of tenosynovitis due to this new species,
first described in 2006 (36).

FIG 1 Near-complete 16S rRNA gene sequence dendrogram of both established and nonvalid species of the Mycobacterium terrae complex, representative
sequences for clinical strains of M. arupense, M. heraklionense, and M. kumamotonense described in this study, and the proposed new species based on
neighbor-joining and partial deletion analysis using a site coverage cutoff of 95%. Sequences derived from available whole-genome sequences of members of the
M. terrae complex (indicated by “WGS”) were also included. Mycobacterium cookii and “Mycobacterium paraterrae” are included as outliers. The bar represents
the number of nucleotide differences.
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rpoB partial gene sequencing region III. A 315-bp fragment of
rpoB region III was analyzed (analysis with a shorter fragment
depending on available matches is otherwise indicated). Two of
the five members of the new species (MO-233 and MO-1300) had
100% sequence identity to each other by rpoB region III sequenc-
ing but differed by 15/305 bp (95.1%) from the type strain of its
closest established species, M. arupense. The sequence of the third
member (MO-5116) differed from the other two by 15 bp (95.2%)
and only by 7/312 bp (97.8%) from its closest species, M. herak-
lionense. This does not represent the type strain (no examples are
available for this region); however, this GenBank entry is from the
same reference (and authors) that described the species (1). The
sequences of the last two (MO-3559 and MO-4693) differed from
the “new species” proposed type strain MO-233 by 17 bp (94.6%)
and 16 bp (95.0%), respectively. Their relationship to other mem-
bers of the M. terrae complex is shown in Fig. 3.

The isolate with a 1-bp difference (a deletion) in complete 16S
rRNA gene sequence from M. kumamotonense (MO-2762) had an
rpoB gene region III sequence that differed by only 1 bp (99.7%
identity) from M. kumamotonense NCTC 12342T.

hsp65 partial gene sequencing. hsp65 gene sequencing was
done on isolates MO-233, MO-1300, MO-5116, MO-3559, and
MO-4693 using the primers used by Telenti et al. (49). A 401-bp
hsp65 sequence (within-primer region) was analyzed for all 5
strains. MO-1300 and MO-5116 differed from the proposed type
strain, MO-233, by 1 bp and 3 bp, respectively, representing 99.8%
and 99.3% similarities. The closest match for MO-233 to the type

strain of an established species was with M. engbaekii (8 bp
[98.0%]), followed by M. arupense (13 bp [96.8%]). Strain MO-
4693 diverged from MO-233 by 10 bp (97.5%), and its closest
established species was M. engbaekii (12 bp [97.0%]). Strain MO-
3559 diverged by 20 bp (95.0%) from MO-233, and its closest
established species was M. heraklionense (7 bp [98.3%]). Their
relationship to other members of the M. terrae complex is shown
in Fig. 4.

Sequence comparisons with non-type strains by BLAST
analysis. To assess the presence of the novel species elsewhere, a
BLAST analysis was also performed using only the first 500 bp of
the 16S rRNA gene, allowing for comparison with GenBank se-
quences closer to 500 bp in length, as is performed in many clinical
laboratories. Sequences of clinical isolates presenting with a 100%
match were strains FI-10193 (accession number JN571170.1) (1)
and N177 (accession number AY215361.1), both indicated as
members of the M. terrae complex. Upon BLAST analysis of the
16S rRNA gene (full) against the whole-genome shotgun contigs
(wgs) database, a 99.9 to 100% match (0 to 1 bp) was achieved
with 3 of 4 strains obtained from the trunk washes of captive
elephants. These strains were described as new genomospecies
within the M. terrae complex (56).

Further investigation against non-type strain sequences was
also done using hsp65. With the large number of hsp65 sequences
related to the MTC deposited in public sequence databases, many
of which are either not identified or misidentified, comparison
was restricted to only those with a 100% match. A BLAST analysis

FIG 2 rpoB partial gene sequence dendrogram of region V (47) for the three members of the proposed new species, “M. virginiense” (MO-233, MO-1300, and
MO-5116), the unidentified isolates MO-3559 and MO-4693, and the isolate that by 16S rRNA complete gene sequencing differed by a single deletion from M.
kumamotonense (MO-2762). There is no region V sequence for M. arupense ATCC BAA1242T in GenBank, so the rpoB V region was sequenced and the sequence
was used; the sequence was submitted to GenBank. The strain relationships are based on neighbor-joining and complete deletion analysis.
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of 401 bp of the hsp65 of strain MO-233 against the nr (nucleotide
collection) revealed a 100% match with 4 sequences in GenBank:
(i) strain InDRE Chiapas1942, a clinical isolate from Mexico
(accession number JX154109.1); (ii) strain IEC35, a pulmonary
specimen from Brazil (accession number HM056146.1); (iii)

strain P51, a clinical isolate from Brazil (accession number
GQ478699.1); and (iv) strain FI-10193, a clinical specimen from
Italy and described as an unassigned strain of the M. terrae com-
plex (accession number JN571212.1) (1). Strain MO-4693 re-
vealed a 100% match with “M. terrae” variant MS699 (accession

FIG 3 rpoB partial gene sequence dendrogram of region III (48), including the three members of the proposed new species, “M. virginiense” (MO-233, MO-1300,
and MO-5116), the unidentified isolates MO-3559 and MO-4693, and the isolate that by 16S rRNA complete gene sequencing was closest to M. kumamotonense
(MO-2762). The strain relationships are based on neighbor-joining and complete deletion analysis.

FIG 4 hsp65 gene sequence (fragment highlighted by Telenti et al.) (49) phylogeny, including the three members of the proposed new species, “M. virginiense”
(MO-233, MO-1300, and MO-5116) and the unidentified isolates MO-3559 and MO-4693. Representative type strain sequences were obtained from the curated
hsp65 database created by Dai et al., a curated database (51). The tree is rooted using M. crocinum and M. rhodesiae, the two closest species to MO-233 outside the
M. terrae complex. The strain relationships are based on neighbor-joining and pairwise deletion analysis. The bar represents the number of base pair differences.
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number AY550212.1) (57) and FI-11039 (accession number
JN571213.1) (1). No identical matches were found for the remain-
ing 3 strains, though close matches (1 to 3 bp) were found.

Susceptibility testing. Antimicrobial agents active against the
six species of M. terrae complex associated with tenosynovitis or
osteomyelitis included clarithromycin (26/26, or 100%), etham-
butol (24/26, or 92%), rifabutin (26/26, or 100%), and sulfame-
thoxazole (3/4) or trimethoprim-sulfamethoxazole (19/22, or
86%). The isolates were almost all resistant to rifampin (23/26)
and the quinolones ciprofloxacin (26/26) and moxifloxacin (23/
23) (Table 4).

DISCUSSION

This study clearly demonstrates the inability of phenotypic tests
and mycolic acid analysis (HPLC) to recognize newer mycobacte-
rial species defined by DNA sequencing, including members of the
M. terrae complex. Tenosynovitis or osteomyelitis caused by
members of the M. terrae complex was believed on the basis of
phenotypic testing by mycolic acid analysis (HPLC) to be due to

M. nonchromogenicum or M. terrae for more than 30 years. The
recognition of M. arupense as a cause of tenosynovitis in 2006 (28)
was the first indication that other species might be responsible.
The current study suggests that neither M. terrae nor M. nonchro-
mogenicum is a cause of tenosynovitis and that earlier isolates
identified as these species by nonsequencing methods were mis-
identified (3).

There is no treatment of choice for M. terrae complex tenosyn-
ovitis. Previous reports have noted the benefits of a macrolide
combined with one or more additional agents that included
ethambutol, rifabutin, and/or a sulfonamide, including trim-
ethoprim-sulfamethoxazole (TMP-SMX) (3, 31). The major
pathogens defined in the current study are M. arupense and M.
heraklionense. These species are generally susceptible to clarithro-
mycin, ethambutol, rifabutin, and TMP-SMX. A recent report of
susceptibilities of 40 isolates of M. arupense by Beam et al. gave
similar results to the current study (31) with 100% of tested iso-
lates susceptible to clarithromycin, ethambutol, and rifabutin,
and approximately 50% susceptible to TMP-SMX (31).

TABLE 4 Antimicrobial susceptibilities of isolates of species within the M. terrae complex producing tenosynovitis or osteomyelis

Organism and
isolate no.

MO strain
designation

MIC (�g/ml)a

AMK RMP RBT EMB CIP MOX CLA DOX LZD MIN SMX TMP-SMX

M. arupense
1 49 16 8 1 �8 2 32
2 1082 �64 16 �0.25 0.5 �16 �8 2 �16 16 �32 2/38
3 1791 4 �0.25 1 �16 �32 2 16 16 64
4 3556 �64 2 �0.25 �0.5 �16 �8 0.25 16 16 2/38
5 3744 �64 8 �0.25 �0.5 �16 �8 1 �16 8 8/152
6 4448 �64 2 �0.25 �0.5 �16 �8 0.25 �16 8 0.25/4.25
7 2220 32 4 0.12 �0.5 16 �8 2 8 0.5/9.5
8 86 64 4 �0.25 �0.5 �16 �8 0.5 16 8 4/76
9 1089 �64 4 �0.25 �0.5 �16 �8 0.12 16 16 1/19
10 4781 2 1 �0.25 �0.5 8 �8 1 8 8 8/152

M. heraklionense
1 7 8 2 4 8 2 �32 8
2 51 8 8 16 �8 1 �32 16
3 778 64 8 �0.25 2 �16 �8 1, 0.25 �16 8 1/19
4 786 64 �8 1, 1 4 �16 �8 1 �16 32 2/38
5 3474 16 4 0.5 2 �16 �8 2 �16 64 1/19
6 4449 16 1 �0.25 2 �16 �8 0.5 �16 32 2/38
7 4967 64 0.5 �0.25 8 16 �8 0.5 �16 �64 �0.12/2.38
8 5013 �64 8 0.5 2 �16 �8 4 �16 64
9 5024 16 �8 �0.25 2 �16 �8 0.5 8 16 1/19
10 5210 32 �8 0.5 2 �16 �8 0.5 �16 32 1/19

M. kumamotonense
1 2762 64 �8 1 �0.5 16 4 1 4 16 0.25/9.75

Newly proposed
species
1 233b �8 1 1 4 �16 �8 1 �16 16 1/19
2 1300 �64 64 �0.25 2 �16 �8 1 16 64 �16 2/38
3 5116 �64 �8 1 2 �16 �8 1 �16 32 �8 2/38

Unique strains
1 3559 �64 �8 �0.25 2 �16 �8 0.5 �16 32 2/38
2 4693 �64 4 �0.25 1 8 8 0.25 16 2 1/19

a Abbreviations: AMK, amikacin; RMP, rifampin; RBT, rifabutin; EMB, ethambutol; CIP, ciprofloxacin; MOX, moxifloxacin; CLA, clarithromycin; DOX, doxycycline; LZD,
linezolid; MIN, minocycline; SMX, sulfamethoxazole; TMP-SMX, trimethoprim-sulfamethoxazole.
b Original MICs determined in 1988 on MO-233.

Vasireddy et al.

1348 jcm.asm.org May 2016 Volume 54 Number 5Journal of Clinical Microbiology

 on M
ay 31, 2016 by W

ashington U
niversity in S

t. Louis
http://jcm

.asm
.org/

D
ow

nloaded from
 

http://www.ncbi.nlm.nih.gov/nuccore?term=AY550212.1
http://www.ncbi.nlm.nih.gov/nuccore?term=JN571213.1
http://jcm.asm.org
http://jcm.asm.org/


Five of these 26 isolates (19%) belonged to a previously unrec-
ognized species. Three of the five isolates had 100% sequence
identity for their complete 16S rRNA gene and differed by 5 bp
from its closest validated species. Three isolates, including the
proposed type strain (MO-233, MO-1300, and MO-5116), exhib-
ited �99% sequence identity for region V of the rpoB gene, the
sequence of the hsp65 gene highlighted by Telenti et al., and two-
thirds of region III of the rpoB gene. Strain MO-3559, however,
exhibited 	96.2% identity for these sequences, and MO-4693 ex-
hibited from 97.9% to 95.3% identity for the same sequences. The
high degree of variance of the strains MO-3559 and MO-4693
from each other and from the other three strains of the proposed
new species possibly indicates emergence of new species that is
beyond the scope of this study. The proposed name for the three
isolates, “M. virginiense,” refers to the geographic location of the
first recognized case.

Like the other previous 11 members of the M. terrae group, this
new species has a two-nucleotide insertion in helix 18 of the 16S
rRNA gene (37, 58) characteristic of members of the M. terrae
complex. It also shares other culture features of this group, includ-
ing lack of pigmentation and growth rate of more than 7 days.

In the current study, one isolate of M. kumamotonense, whose
complete 16S rRNA gene sequence differed by one deletion from
the type strain, was identified. Given the likelihood of the presence
of two ribosomal operons and the high degree of similarity of
region V of the rpoB between the current strain and the type strain
(99.6%), it is highly likely that the current isolate is M. kumamo-
tonense. The extra base pair occurs within 20 bp of the 3= end of
the sequence in GenBank, while the current sequence with the
gap is approximately 80 bp longer (1). Recent studies have
shown this species to have two copies of the 16S rRNA gene,
and this is the most likely explanation of this single base pair
difference (53).

Description of new species. Isolates of the newly proposed
species “M. virginiense” were acid fast, slowly growing, and non-
pigmented on Middlebrook 7H10 agar. The isolates were buff
colored and grew in �7 days. They did not grow at 42°C, and their
optimal growth temperature was 35°C.

By CLSI guidelines, the isolates were susceptible to clarithro-
mycin, ethambutol, rifabutin, and TMP-SMX and resistant to ri-
fampin, the quinolones, including moxifloxacin, amikacin, and
the tetracycline analogues doxycycline and minocycline (54).
Their complete 16S rRNA gene, the hsp65 fragment highlighted by
Telenti et al., and regions III and V of the rpoB gene are different
from those of other members of the M. terrae complex.

The proposed type strain is MO-233, which is an acid fast
slowly growing, nonchromogenic isolate on Middlebrook agar
that produced tenosynovitis in a 58-year-old woman from Vir-
ginia (case 1 in the paper by Ridderhof et al. [3]). The isolate was
niacin negative, had a strongly positive (5�) nitrate score, had a
semiquantitative catalase score of �45 mm, had a negative aryl-
sulfatase at 3 and 14 days, was urease negative, was positive for
Tween hydrolysis, and did not reduce tellurite (3). The isolate has
been submitted to the Collection de l’Institut Pasteur (CIP)
(CIP110918) and the Deutsche Sammlung von Mikroorganismen
und Zellkulturen (DSMZ) (DSM 100883).
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