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Mycobacterium tuberculosis Transcription Machinery: Ready To
Respond to Host Attacks

Kelly Flentie, Ashley L. Garner, Christina L. Stallings

Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA

Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For
pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed
by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a
change in physiology that contributes to the organism’s survival strategy. Inappropriate responses have consequences; hence,
the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often
regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulat-
ing transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the
host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to re-
spond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in re-
sponse to stress, M. tuberculosis is prepared for battle against the host defense and able to persist within the human population.

The survival of any organism relies on its ability to sense and
respond to changes in its environment. For bacteria, stress

responses are primarily mediated through the regulation of gene
expression. By integrating multiple molecular approaches to gene
regulation, pathogenic bacteria are able to orchestrate condition-
specific patterns that promote survival and pathogenesis in the
face of a strong immune response. This minireview focuses on
mechanisms of transcription regulation required for stress re-
sponses in one of the most successful and deadly pathogens in the
world, Mycobacterium tuberculosis. M. tuberculosis has coexisted
with humans for �50,000 years (1) and continues to cause more
than 1.5 million deaths a year (2). The coevolution of M. tubercu-
losis with the human host response to infection has resulted in a
pathogen that is specialized for long-term infection in people.
Tuberculosis is a complex disease that requires the bacteria to
multiply within phagocytes, survive extracellularly in hypoxic and
necrotic granulomas, and endure a robust immune response to
persist in the host. During infection, the host immune response
restrains M. tuberculosis from proliferating by imposing a battery
of defenses, including reactive oxygen and nitrogen stress, hyp-
oxia, acid stress, genotoxic stress, cell surface stress, and starvation
(3). Despite this onslaught of attacks, M. tuberculosis is able to
persist for the lifetime of the host, indicating that this pathogen
has highly effective molecular mechanisms to resist host-inflicted
damage. In order to enact these defenses and facilitate this special-
ized lifestyle, M. tuberculosis executes a complex, interconnected
web of stress responses that rely on changes in gene expression. In
fact, M. tuberculosis is well suited to respond quickly to diverse
stresses in a coordinated fashion. For instance, the RNA polymer-
ase (RNAP) bears kinetic properties that allow it to be easily mod-
ulated by accessory factors. Compared to other obligate human
pathogens, M. tuberculosis encodes the highest ratio of � factors to
genome size (4), which allows the bacterium to tailor its expres-
sion profile in response to a given environment. Even during ex-
ponential growth in culture, traditionally thought of as a relatively
stress-free environment, M. tuberculosis expresses its entire com-
plement of � factors (5–7), indicating that M. tuberculosis is poised
to quickly respond to stress. M. tuberculosis also integrates stress

responses into basic cellular processes; as a result, some stress-
associated transcriptional regulators are essential in M. tuberculo-
sis. In this minireview, we discuss features of the mycobacterial
transcription apparatus that position M. tuberculosis to be ready to
respond to host attacks, the networks of factors that contribute to
these responses, and how this culminates in a successful patho-
genic strategy. The general strategies to be discussed are illustrated
in Fig. 1, and individual factors touched on in this minireview are
summarized in Fig. 2.

THE MYCOBACTERIAL RNA POLYMERASE—READY TO
RESPOND

Transcription is achieved in all bacteria by a single core RNAP
enzyme, consisting of the essential subunits � and �= and 2 �
subunits along with the nonessential � subunit (8, 9). To recog-
nize and bind promoter sequences upstream from genes, the core
RNAP associates with a � subunit to form an RNAP holoenzyme.
Most transcriptional regulation occurs at the level of initiation
(10), and transcription factors (TFs) can mediate this regulation
by directly affecting the polymerase-promoter interaction, ma-
nipulating the equilibrium between closed and open RNAP-pro-
moter complexes (RPc and RPo, respectively), or affecting rates of
promoter escape (11, 12). The majority of studies on the mecha-
nisms of transcription initiation and its regulation have used Esch-
erichia coli as a model system. However, multiple groups have
recently shown that Mycobacterium bovis RNAP, which differs
from the M. tuberculosis RNAP by only one amino acid (aa), ex-
hibits an inherently unstable RPo complex compared to E. coli
RNAP on the same promoter (13, 14). In these reports, saturating
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concentrations of M. bovis RNAP �A holoenzyme were found to
be incapable of opening a large percentage of the promoters, leav-
ing the majority of bound complexes in the closed state. It has
been proposed (14) that the presence or absence of lineage-spe-
cific insertions within RNAP could contribute to the inherent dif-
ferences in stability of the promoter complexes formed by M. bovis
versus E. coli RNAP. Notably, RNAPs from Bacillus subtilis, Ther-
mus aquaticus, and Thermus thermophilus have also been found to
generate relatively unstable open promoter complexes (15–17).
Based on these observations, it is worth considering that the prop-
erties of E. coli RNAP may not be representative of most bacterial
RNAPs and that there may be significant lineage-specific variation
in enzyme kinetics. The inherent instability of RNAP-promoter
complexes would allow the mycobacterial RNAP to be poised to
respond to changes in the environment by being easily modified in
activity by additional factors.

� FACTORS: THE GENERALS OF STRESS RESPONSES

The first determinant of gene expression in response to different
conditions is the activity of the � factor repertoire. Each � factor
binds a specific promoter sequence, thus determining what pro-
moters are targeted by the RNAP holoenzyme for transcription.
Changes in � factor activity in response to different stresses and
conditions are able to shift a bacterium’s expression profile. The �
factor network of M. tuberculosis includes one essential house-
keeping group 1 � factor (�A), one stress-responsive group 2 �
factor (�B), and 11 group 3 and 4 alternative � factors that also
function as environmentally responsive regulators (�C to �M)
(4, 6, 18). This broad panel of � factors allows M. tuberculosis to

tune its transcriptional response for a large and diverse set of con-
ditions. All of the � factors in M. tuberculosis belong to the �70

family, whose members in E. coli recognize two sequences in the
promoter DNA, the �10 element (recognized by sigma region
2.4) and the �35 element (recognized by sigma region 4.2) (19).
M. tuberculosis promoters contain a conserved �10 sequence that
is essential and sometimes sufficient for transcription, while the
�35 sequences are less conserved (19–21). The spacer region be-
tween the �10 and �35 elements in M. tuberculosis also varies
dramatically compared to E. coli promoters (19, 22, 23). These
differences in promoter elements may reflect the sigma diversity
in M. tuberculosis (19, 23).

The activity of� factors in M. tuberculosis is most often regulated
by anti-� factors that inactivate their cognate � factors until a
signal is received to liberate the � factor for action. Specifically, �B,
�D, �E, �F, �H, �K, �L, and �M are all regulated by a cognate anti-�
factor (24–32). A putative anti-� factor has also been proposed for
�G (33). To investigate under which conditions a particular �
factor is active, the expression levels of � factors have been studied
in vitro under many physiologically relevant conditions, but tran-
scriptional upregulation of a given � factor does not necessarily
equate to � factor activity. Therefore, � factor gene deletion or
overexpression strains have been used to determine the functional
role of individual � factors in response to stress. These data are
summarized here and together paint a picture of an intricate cir-
cuitry of transcriptional regulation that integrates multiple � fac-
tor regulons under many conditions (Fig. 3 and 4), allowing M.
tuberculosis to respond to the arsenal of attacks from the host.

FIG 1 Summary of the branches of transcriptional regulation that are discussed in this minireview. The illustration shows 6 types of factors (� factors, CarD,
RbpA, TCSs, TFs, and RelMtb) that modulate RNAP activity at promoters to mediate reprogramming of the expression profile in M. tuberculosis in response to
different environments. A � factor associates with the core RNAP to form the RNAP holoenzyme, which is then modified by the other factors shown in the
sections of the pentagon. Domains of each protein are shown. For CarD, RID is the RNAP interaction domain and DBD is the DNA binding domain. For RbpA,
NTT is the N-terminal tail, RCD is the RbpA core domain, BL is the basic linker, and SID is the sigma interaction domain. For RelMtb, HYD is the (p)ppGpp
hydrolase domain and SYN is the (p)ppGpp synthetase domain. For TFs, RBD is the RNAP binding domain and DBD is the DNA binding domain. In the
presence of a given stress, these factors coordinate their responses to effectively respond to host attacks.
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FIG 2 Conservation of M. tuberculosis regulatory factors and the stresses that the factors are associated with in M. tuberculosis (160–184). The left side of the table
designates whether the gene for a transcriptional regulator is essential (shaded) or not essential (N) in M. tuberculosis (Mtb) and whether that gene is conserved
(shaded) or not conserved (X) or exists as a pseudogene (P) in the environmental saprophytic M. smegmatis (Msmeg) or the obligate pathogen M. leprae (Mlep).
The right side of the table indicates whether a particular stress condition has been associated with a given transcriptional regulator. Involvement in the response
to a particular stress is designated by shading of the box and may represent expression profiling data or phenotypic analysis of mutants. An unshaded square
indicates that the factor is not induced, is not important for survival, or has not been studied under that particular condition. U, unnamed factor; *, starvation
(including nutrient, phosphate, and nitrogen starvation); **, iron-depleted or iron-replete conditions. See specific references for more information.
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During exponential growth of M. tuberculosis in culture, sigA,
sigB, sigC, sigD, sigE, and sigM are the most highly expressed �
factor genes (7). Upon entry into stationary phase, levels of sigB
transcripts increase (34). Strains with a disrupted sigF gene grow
to a density three times greater than that seen with wild-type cul-
tures in stationary phase, suggesting that �F may have a key role in
regulating this transition (35). Later in stationary phase, there is a
global change in regulation of � factors resulting in downregula-
tion of most of the � factor genes, with the exception of sigG, sigI,
and sigJ, which are upregulated in long-term stationary cultures
(5, 7). �H is a central regulator of the response of M. tuberculosis to
both heat and oxidative stress through regulation of sigE, sigB,
heat shock proteins, thioredoxin reductase/thioredoxin, and syn-
thesis of mycothiol precursors (36). In addition to �B, �E, and �H,
survival during oxidative stress is also dependent on �C and �J (6,
36–39). sigM is also induced during exposure to heat in the M.
tuberculosis CDC1551 strain but not in M. tuberculosis H37Rv,

indicating strain-specific regulation of � factor expression (24, 40,
41). Cold temperatures induce expression of sigB, sigH, and sigI
while repressing transcription of sigC, sigE, sigG, and sigM (7). �I is
the most highly induced � factor during cold shock and has been
proposed to be important for the bacterium’s survival in aerosol
particles between hosts (7). Deletion of sigB, sigE, or sigH has been
shown to increase M. tuberculosis’s sensitivity to cell surface stress
(6, 37, 42, 43). Expression of sigB is also upregulated under hy-
poxic conditions (7) and �B is the only � factor shown to impact
the sensitivity of M. tuberculosis to hypoxia (42). Deletion of sigF
induces permeability changes in the cell envelope, although this
does not affect sensitivity to tested surface stresses (35, 44). In vitro
studies have shown that sigG is induced upon DNA damage but
that deletion of sigG does not sensitize strains to DNA damage
(45). sigB, sigD, sigE, and sigF have all been shown to be upregu-
lated during prolonged nutrient starvation (46).

Evidence that alternative � factors are important in M. tuber-

FIG 3 Transcriptional regulation of M. tuberculosis � factor genes in response to various stresses. Transcriptional responses of � factor genes of M. tuberculosis
include responses to entry to stationary phase, the long-term stationary phase, mild cold shock (room temperature), heat shock (45°C), oxidative stress, exposure
to SDS, DNA damage, hypoxia, and starvation. The � factor genes that are transcriptionally upregulated in response to a stress are diagramed with arrows to the
right, and the � factor genes that are transcriptionally downregulated are shown with arrows to the left. The � factor genes that are highly expressed during
exponential growth in culture are shown as being upregulated under this condition. Where no arrow is present to connect a � factor gene to a particular stress,
this indicates that expression of the � factor gene is not significantly changed during exposure to that stress or has not been studied under that particular
condition. References are available in the text.
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culosis during infection has come from cell culture and animal
infection models. sigE, sigF, sigG, sigH, and sigJ are upregulated
during infection of macrophages (47, 48), and both sigE and sigG
are necessary for survival within macrophages (37, 49, 50). Dele-
tion of sigB, sigG, sigJ, or sigM has no effect in animal models (6,
39, 40, 50). Deletion of sigD, sigE, sigH, or sigL results in a delayed
time to death without affecting bacterial burden (51–54), while
deletion of sigC or sigF results in a delayed time to death and a
decrease in bacterial burden during acute (sigC) or chronic (sigF)
infection (35, 44, 55). The importance of individual � factors dur-
ing infection and for survival under stressful conditions highlights
both their central role in guiding M. tuberculosis’s stress response
and the diverse adverse conditions encountered by M. tuberculosis
during infection.

CarD AND RbpA—MAINTAINING THE PEACE, BUT READY
TO DEFEND

The next branch of transcriptional regulation during stress re-
sponses involves RNAP-binding proteins that further modify
gene expression from a given holoenzyme. CarD and RbpA are

RNAP-binding proteins in M. tuberculosis that were each origi-
nally identified in experiments looking for genes upregulated in
response to stress (56, 57). carD expression is upregulated in re-
sponse to oxidative stress, starvation, and a broad panel of antibi-
otics. CarD activity is required for survival under the same condi-
tions as well as for virulence in a mouse model of infection (56, 58,
59). rbpA is upregulated during oxidative stress, stationary phase,
starvation, hypoxia, high temperatures, and treatment with anti-
biotics and during infection in macrophages (46, 57, 60–62).
Overexpression of rbpA in mycobacteria also improves resistance
to the antibiotic rifampin (63). CarD and RbpA both act by stabi-
lizing the inherently unstable mycobacterial RNAP-promoter
complexes, albeit by different mechanisms. While the presence of
RbpA is limited to actinobacteria, CarD is present in members of
numerous other bacterial phyla (56, 64, 65), including Bacillus
and Thermus, where purified RNAPs also generate relatively un-
stable open promoter complexes (15–17), but not in E. coli, where
RNAP generally forms stable open complexes (13, 14) (Fig. 5).
carD and rbpA are essential in M. tuberculosis even during growth
in nutrient-rich cultures (56, 66–68), indicating a general role in

FIG 4 Effects of � factor gene deletions on stress responses in M. tuberculosis. Arrows indicate whether deletion of a � factor gene causes delayed entry into
stationary phase, decreased survival during heat shock, decreased survival during oxidative stress, decreased survival during surface stress or changes in cell
permeability, decreased survival during hypoxia, decreased survival in macrophages, or decreased immunopathology during mouse infection. Where no arrow
is present to connect a � factor gene to a particular stress, this indicates that deletion of that � factor gene did not significantly change survival during exposure
to that stress or has not been studied under that particular condition. References are available in the text.
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promoting efficient gene expression that also allows the RNAP to
optimally respond to stress.

CarD interacts with the RNAP �-subunit �1-lobe through an
N-terminal RNAP interaction domain (RID) and with DNA via a
C-terminal basic patch (56, 58, 59, 65, 69, 70). In mycobacteria
cultured under nutrient-rich conditions, CarD associates with
RNAP-promoter complexes throughout the genome to enhance
RPo stability (14, 58, 59, 65). Using a bulk fluorescence assay to
measure the effects of CarD on transcription initiation kinetics, it
was shown that CarD associates with RPo with high affinity and
slows the rate of DNA closing by preventing bubble collapse and
that CarD associates with RPc with lower affinity and increases the
rate of DNA opening (13). Importantly, the concentration of
CarD in cells is sufficient for both of these activities to be physio-
logically relevant (13). These two activities of CarD change the
kinetics of open complex formation such that the M. bovis RNAP
more closely mirrors the E. coli RNAP (13, 14). The interactions
between CarD and both DNA and RNAP are required for CarD
activity (13). In addition, a conserved tryptophan within the C-
terminal basic patch is also important for CarD’s effects on
RNAP-promoter complex stability and, based on structural stud-
ies, has been proposed to serve as a wedge at the upstream edge of
the transcription bubble that prevents bubble collapse (59, 64, 65).
Taken together, the inherently weak transcription initiation activ-
ity of M. bovis RNAP and CarD’s global promoter localization
suggest that CarD may be a general member of the mycobacterial
transcription machinery.

RbpA consists of a central RbpA core domain (RCD) flanked
by an unstructured 26-aa N-terminal tail and a C-terminal � in-
teraction domain (SID) linked to the RCD by a 15-aa basic linker

(BL) (68, 71, 72). RbpA forms a stable binary complex with the
�2-domain of group 1 (�A in M. tuberculosis) and certain group 2
(�B in M. tuberculosis) � factors through its SID (68, 71, 72), with
additional contacts made between the N terminus and the � factor
(68). Based on structural modeling, the RbpA BL domain and
adjacent residues interact with the DNA phosphate backbone of
the nontemplate strand upstream of the �10 promoter element in
the RPo conformation (68). Additional contacts between RbpA
and RNAP � have been proposed based on cross-linking experi-
ments (63, 73, 74), but the recent structural modeling of RbpA
onto an RNAP-promoter open complex would be incompatible
with these interactions (71), suggesting that further analysis will
be needed to resolve these inconsistencies. RbpA has been shown
to increase the affinity of the � factor to the core RNAP, increase
the affinity of RNAP holoenzyme to promoter DNA, and facilitate
the formation of RPo (71, 75, 76), all of which could contribute to the
ability of RbpA to promote RNAP-promoter complex formation
and stability. The housekeeping � factor �A has been reported to
have an affinity for M. tuberculosis RNAP core enzyme similar to
that of the alternative � factor �F (74), in which case RbpA may be
necessary to improve �A affinity and competitiveness for RNAP
under conditions that require the activity of �A. In E. coli, in con-
trast, �70 has a very high affinity to the RNAP core enzyme and
thus can outcompete other � factors under conditions where it is
required without accessary factors such as RbpA. The RbpA SID
and BL are important and sufficient to partially activate transcrip-
tion in vitro (71, 72), but full activation of transcription requires
the full-length protein, although the function of the N terminus of
RbpA remains elusive.

Based on structural modeling performed with the information

FIG 5 Phylogenetic distribution of CarD and RbpA. The BLAST database of completed genomes was searched for homologs of M. tuberculosis CarD and RbpA.
Homologs of each protein were schematically drawn on a phylogenetic tree using a previously calculated phylogenetic distribution of bacteria based on the
sequence conservation of RNAP subunits (185). Blue-shaded phyla have members that encode CarD homologs, members of the pink-shaded phylum (actino-
bacteria) encode RbpA, and phyla that are not shaded do not encode CarD or RbpA.
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currently available, association of CarD and RbpA with the same
RNAP holoenzyme is feasible (71), but why M. tuberculosis re-
quires both CarD and RbpA activities is unknown. CarD and
RbpA transcriptional regulatory activities have thus far been ana-
lyzed only on limited promoters under limited conditions. How-
ever, their roles and effects at individual promoters likely depend
on the kinetic properties of individual RNAP-promoter com-
plexes and the presence of additional transcriptional regulators.
The roles for CarD and RbpA during stress responses indicate that
their effects on RPo stability also provide a mechanism for adjust-
ing gene expression during the switch between different physio-
logical states in response to stress. Indeed, RPo formation and
stability comprise a commonly regulated step of transcription ini-
tiation during stress responses in bacteria, including during the
stringent response (77, 78). It is possible that CarD and RbpA are
important in stabilizing transcription complexes activated by
stress-responsive transcription factors or alternative � factors.
While the functions of CarD and RbpA in stress responses remain
unclear, the diversity of the stresses that they respond to suggests
that they are acting at a common point shared among numerous
stress responses.

ESSENTIAL TCSs AND TFs—ALWAYS ON THE LOOKOUT FOR
HOSTILITY

M. tuberculosis encodes 12 complete two-component systems
(TCSs), which are classically recognized as bacterial systems that
sense and respond to stress and changes in the environment (79).
Each TCS consists of at least one sensor histidine kinase (HK) that
responds to specific environmental conditions by autophosphor-
ylation and phosphotransfer to its cognate response regulator
(RR), which then binds DNA and activates transcription of a spe-
cific regulon (79). Two TCSs in M. tuberculosis, MtrAB (80) and
PrrAB (81), are essential for growth under unstressed culture con-
ditions and have been integrated into the basic physiology of the
bacteria. The HK MtrB colocalizes with cell division machinery at
the bacterial septa and poles (82). Upon stimulation by an un-
known signal, MtrB phosphorylates its cognate RR MtrA, which
then binds DNA and activates transcription of a regulon that in-
cludes essential replication and cell division genes dnaA and ripA
as well as the fbpB and rpfB genes that encode proteins with roles
during infection (82–84). Integration of a TCS with the cell divi-
sion machinery could allow these slowly replicating bacteria to
sense environmental stress and abort cell division if unfavorable
conditions surface. The second essential TCS in M. tuberculosis is
the PrrAB system. The RR PrrA can bind DNA in the unphosphory-
lated state, but its binding affinity increases once phosphorylated
by HK PrrB (85). The stimulus that results in activation of the
PrrAB TCS has not been characterized, but expression of the
prrAB operon is induced by nitrogen limitation and growth inside
macrophages (81, 86), suggesting a possible role for this TCS un-
der these conditions.

M. tuberculosis also encodes a series of essential iron-binding
transcription factors (TF). M. tuberculosis does not contain func-
tional homologues of the common redox-sensing TFs, FNR,
SoxR, and OxyR, that allow other bacteria to sense and respond to
redox state and reactive nitrogen and oxygen species (87–91). In-
stead, M. tuberculosis encodes a 7-member family of WhiB iron-
sulfur (Fe-S) cluster TFs that sense the redox state in the cell and
regulate gene expression accordingly (92). Of these, whiB1 and
whiB2 are predicted to be essential, although their regulons have

yet to be defined (93–95). whiB1 is also upregulated during hyp-
oxia and within infected mouse lungs (96, 97). WhiB2 may play a
role in cell cycle progression, as a conditional whiB2 mutant in
Mycobacterium smegmatis was filamentous during depletion (95).
The iron-binding TF IdeR is also essential for M. tuberculosis via-
bility (98). IdeR dimerizes when bound to iron (99) and binds
DNA as a dimer to inhibit transcription of genes involved in iron
uptake and storage in order to promote adaptation to changing
levels of iron (100, 101). By reducing levels of intracellular iron
that can catalyze formation of reactive oxygen species, IdeR pro-
tects M. tuberculosis from oxidative and nitrosative stress and is
important for survival in macrophages and mice (98, 100, 101).
The essentiality of whiB1, whiB2, and ideR indicates a particular
need for M. tuberculosis to couple redox sensing and iron avail-
ability with basic cellular processes to maintain homeostasis.

NONESSENTIAL TCSs AND TFs: SPECIAL FORCES OF THE
STRESS RESPONSE TEAM

In addition to the essential TCSs and TFs mentioned above, M.
tuberculosis maintains 10 nonessential TCSs and a number of non-
essential TFs that are not required for bacterial growth in vitro but
respond to particular stresses.

• The SenX3/RegX3 TCS is activated under low-phosphate
conditions to regulate expression of genes encoding pro-
teins involved in phosphate uptake, translation, lipid me-
tabolism, DNA replication, and DNA repair (102, 103). The
SenX3/RegX3 TCS is important for optimal M. tuberculosis
growth during phosphate starvation and for survival in
macrophages and mice where the bacteria encounter low
phosphate levels (102).

• The DosRST system responds to nitric oxide and hypoxia to
activate the “dormancy regulon” in M. tuberculosis (104).
This TCS contains 2 separate HKs, DosS and DosT, that are
both capable of activating the DosR RR. DosS acts as a redox
sensor and DosT as a hypoxia sensor, illustrating the inte-
gration and differentiation of M. tuberculosis stress re-
sponses (105). Genetic disruption of the dosRST TCS results
in reduced bacterial survival under low-oxygen conditions,
in mouse models that develop hypoxic lesions, and in a non-
human primate macaque model of infection (106–109).

• The PhoPR TCS is stimulated by low pH (110). The PhoP
regulon includes multiple genes involved in cellular lipid
synthesis, dosR, dosS, and genes involved in the ESX1 secre-
tion system (111, 112). M. tuberculosis strains deficient in
PhoPR activity display defects in replication in mice and
macrophages (111–113). Supporting the idea of a role in M.
tuberculosis virulence, mutations in phoPR in M. bovis and
Mycobacterium africanum are associated with reduced my-
cobacterial virulence (114). In addition, M. tuberculosis
phoPR mutants have defects in cell morphology and lipid
production in the absence of stress, suggesting that PhoPR is
required to maintain normal cell physiology under all
growth conditions (113).

• The MprAB TCS regulates expression of a subset of genes in
the DosR regulon, the stress-responsive chaperone pepD,
and the espA operon, which encodes ESX-1 substrates (115–
118). The MprAB TCS also activates expression of sigB and
sigE in response to envelope stress and indirectly regulates
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the stringent response mediator M. tuberculosis rel gene
(relMtb) through �E activity (119, 120). Deletion of this TCS
compromises M. tuberculosis viability during a persistent
infection in mice but renders M. tuberculosis hypervirulent
in macrophages, suggesting a role for this TCS in allowing
the bacteria to appropriately respond to their specific in vivo
niche (80, 121).

• Genes encoding six additional TCSs, KdpDE, TrcRS,
TcrXY, NarLS, PtdaRS, and Rv0600c/Rv0601c/TcrA, have
been identified in the M. tuberculosis genome but have yet to
be investigated in detail (79).

• M. tuberculosis encodes five nonessential Fe-S cluster WhiB
TF family members that have been implicated in a variety of
cellular responses (96, 97). In particular, WhiB3, WhiB4,
and WhiB5 impact M. tuberculosis virulence (122–124). Of
these, WhiB3 has been studied in the most detail. WhiB3
promotes mycobacterial lipid regulation, and whiB3 mu-
tants demonstrate altered macrophage cytokine release and
reduced pathology in vivo, without directly impacting bac-
terial titers (125, 126). A model has been proposed in which
WhiB3 senses the intracellular redox state and redirects
lipid synthesis pathways to cope with reductive stress gen-
erated by host lipid catabolism during infection (125).

• M. tuberculosis encodes a number of other known and
predicted TFs not highlighted in this review. Recently,
researchers overexpressed 200 predicted TFs in M. tubercu-
losis and performed chromatin immunoprecipitation se-
quencing experiments and microarray analyses to catalogue
a genome-wide characterization of TF binding events and
target gene expression (127–129). These reports describe
16,000 binding sites for 154 TFs and identify regulatory
routes for �70% of the genome. The complex regulatory
circuits that were uncovered highlight how much remains
to be investigated regarding how M. tuberculosis regulates
transcription to integrate precise stress responses.

THE STRINGENT RESPONSE: WHEN RATIONS RUN LOW

The stringent response is a conserved global stress response in
bacteria that provides an additional layer of gene regulation in
harsh environments. The stringent response is best characterized
during amino acid starvation, when the RelMtb enzyme senses un-
charged tRNAs in ribosomes and responds by transferring the
pyrophosphate (PPi) group from ATP to GDP and GTP to syn-
thesize hyperphosphorylated guanine nucleotides ppGpp and
pppGpp [collectively called (p)ppGpp] (130). (p)ppGpp then co-
ordinates downstream regulation of bacterial physiology and me-
diates changes in the transcriptional profile to support survival
during stress. Deletion of relMtb led to differential expression of
159 genes during starvation, including genes involved in coordi-
nating metabolic rate reduction, production of mycobacterial cell
wall and lipids, secreted proteins, and cell division machinery
(131). (p)ppGpp synthesis by RelMtb is required for survival under
low-nutrient conditions, in long-term culture, and during infec-
tion in animal models, all indicative of a strict requirement for
RelMtb during exposure to stress (131–135). In E. coli, (p)ppGpp
directly affects transcription initiation by binding the RNAP
(136, 137). In contrast, in a number of Gram-positive bacteria,
(p)ppGpp inhibits GTP biosynthesis by directly interacting with
GTP synthesis enzymes, which impacts gene expression by alter-

ing initiating nucleotide levels (137–140). Although (p)ppGpp
has not been demonstrated to directly bind M. tuberculosis RNAP
or GTP synthesis enzymes, (p)ppGpp has been reported to influ-
ence mycobacterial RNAP activity in vitro, suggesting that the
mechanism of (p)ppGpp action in M. tuberculosis transcriptional
modulation requires further investigation (136, 138, 141).

RelMtb also encodes a second distinct catalytic domain that
hydrolyzes (p)ppGpp into PPi and GDP or GTP (142). It was
recently shown that (p)ppGpp hydrolysis by RelMtb is important
for growth and normal physiology in culture and during infection
(135). These observations suggest that RelMtb constitutively pro-
duces (p)ppGpp independently of activation during nutrient lim-
itation and may act continuously to maintain M. tuberculosis ho-
meostasis under all growth conditions in addition to its role in
survival during stress.

FINAL THOUGHTS

In order to respond to host-derived stresses, M. tuberculosis has
evolved a complex network of strategies to modify gene expression
and promote survival. The responses to different stresses are inte-
grated and coordinated, often resulting in overlapping regulons
and stress responders (Fig. 2, 3, and 4). Not only do these highly
effective stress response strategies protect M. tuberculosis from
host immunity, but the resulting changes in physiology also con-
tribute to antibiotic tolerance, which precludes eradication of the
infection (143–148). The recalcitrance of M. tuberculosis in re-
sponse to antibiotic therapy has led to an increase in drug-resis-
tant M. tuberculosis infections to the point that we are not
equipped to successfully battle the M. tuberculosis epidemic (2).
Therefore, new therapeutic strategies that target M. tuberculosis
stress responses could increase the susceptibility of the bacteria to
both the immune system and antibiotic treatment.

As an obligate pathogen, M. tuberculosis is specialized for sur-
vival in a mammalian host. Analysis of the conservation of tran-
scriptional regulators across different mycobacterial species re-
veals some interesting patterns that reflect their respective
lifestyles (Fig. 2). Mycobacterium leprae is an even more special-
ized pathogen than M. tuberculosis and has undergone a drastic
reduction in genetic material to the point that this degenerate
genome has retained only 4 functional � factor genes (sigA, sigB,
sigC, and sigE) and 5 TCSs. On the other end of the spectrum,
environmental mycobacteria such as Mycobacterium smegmatis
must adapt to a larger diversity of conditions within a larger range
of environments. As such, M. smegmatis encodes 28 � factors to
facilitate a more versatile lifestyle. In addition, even when a tran-
scriptional regulator is conserved across mycobacterial species, it
can be coopted to perform a function specific for a particular
species. For example, �F homologs are differentially regulated and
activated in M. tuberculosis, M. smegmatis, and M. bovis (7, 29,
149).

Finally, this minireview is in no way exhaustive in terms of all
of the mechanisms of transcriptional regulation that M. tubercu-
losis employs to respond to stress. In particular, there is a growing
area of research into the roles of nucleoid-associated proteins and
small RNAs (150–155). M. tuberculosis also contains 11 serine/
threonine protein kinases (STPKs) that, like TCSs, are involved in
signal transduction pathways that aid M. tuberculosis in adapta-
tion to its environment (156). However, unlike TCSs that consist
of HKs that activate RRs to directly modulate M. tuberculosis tran-
scription, STPKs are single proteins that phosphorylate numerous
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downstream targets (156). Although STPKs do not directly affect
M. tuberculosis transcription, they do influence gene expression by
modifying the activity of other M. tuberculosis proteins with more-
direct roles in transcription, such as � factors, nucleoid-associated
proteins, anti-anti-� factors, and TCSs (24, 154, 157–159). These
and other aspects of gene regulation further add to the complexity
of stress responses in M. tuberculosis.
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