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RESEARCH ARTICLE
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Abstract
Amalaria vaccine is a public health priority. In order to produce an effective vaccine, a multi-

stage approach targeting both the blood and the liver stage infection is desirable. The vac-

cine candidates also need to induce balanced immune responses including antibodies,

CD4+ and CD8+ T cells. Protein-based subunit vaccines like RTS,S are able to induce

strong antibody response but poor cellular reactivity. Adenoviral vectors have been effective

inducing protective CD8+ T cell responses in several models including malaria; nonetheless

this vaccine platform exhibits a limited induction of humoral immune responses. Two

approaches have been used to improve the humoral immunogenicity of recombinant ade-

novirus vectors, the use of heterologous prime-boost regimens with recombinant proteins or

the genetic modification of the hypervariable regions (HVR) of the capsid protein hexon to

express B cell epitopes of interest. In this study, we describe the development of capsid

modified Ad5 vectors that express a promiscuous Plasmodium yoelii T helper epitope

denominated PyT53 within the hexon HVR2 region. Several regimens were tested in mice

to determine the relevance of the hexon modification in enhancing protective immune

responses induced by the previously described protein-based multi-stage experimental

vaccine PyCMP. A heterologous prime-boost immunization regime that combines a hexon

modified vector with transgenic expression of PyCMP followed by protein immunizations

resulted in the induction of robust antibody and cellular immune responses in comparison to

a similar regimen that includes a vector with unmodified hexon. These differences in immu-

nogenicity translated into a better protective efficacy against both the hepatic and red blood
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cell stages of P. yoelii. To our knowledge, this is the first time that a hexon modification is

used to deliver a promiscuous T cell epitope. Our data support the use of such modification

to enhance the immunogenicity and protective efficacy of adenoviral based malaria

vaccines.

Introduction
Malaria is the most relevant parasitic disease. Worldwide distributed, half of the human popu-
lation, ~3.2 billion people, is at risk of transmission. Malaria infections account for more than
400,000 deaths every year, with 70% of the deaths occurring in children younger than five years
of age [1]. The emergence, resurgence and spread of antimalarial drug resistance [2–5] along
with vector resistance to insecticides [6, 7] have the potential of reducing the impact of existing
malaria control measures, making a vaccine a public health priority.

Several preclinical and clinical trials have been aimed to develop an ideal malaria vaccine
formulation [8]. The main challenge in designing an effective malaria vaccine is the complexity
of the Plasmodium life cycle, as each of the different stages in the host contains a unique set of
antigens that hinders the development of protective immune responses [9, 10]. Therefore,
developing a multistage vaccine, able to induce strong and balanced cellular and humoral
responses, is essential to obtain an effective formulation.

RTS,S/A01, the most advanced malaria vaccine candidate, is based on the P. falciparum cir-
cumsporozoite protein (CSP), a well characterized Plasmodium pre-erythrocytic stage antigen.
In the course of phase 3 clinical trials, RTS,S/A01 showed a protective efficacy against clinical
malaria of 46% in children and 27% in infants up to 18 months after vaccination [11]. The
short lived efficacy could be attributed to the immunogenicity of the formulation since RTS,S/
A01 induces functional antibodies but weak T cell responses [12]. Specifically, robust anti-CSP
CD8+ T cells induced by immunization with RTS,S/A01 has not been reported [13], further
supporting the need of balanced cellular and humoral responses.

Clinical trials with Ebola, HIV, EBV and malaria vaccines candidates have demonstrated
that adenoviral (Ad) vectors are able to induce strong cellular immunity to a wide array of
pathogens, while being a safe vaccine delivery system [14–19]. In the malaria model, Ad recom-
binant vectors have shown to induce protective cellular immune responses in heterologous
prime boost regimens when boosted with a Modified Vaccinia Ankara Vector (MVA) against
both hepatic [18] and blood stages [20, 21]. Nonetheless, the sterilizing protection in these
studies ranged between 2 and 21%, while inducing reductions in the parasite load of the other
vaccinees when compared to the control group [18, 21]. Similar results have been obtained
with formulations that include a DNA prime Ad boost encoding CSP and the Apical Merozoite
Antigen 1 (AMA-1) with 27% sterilizing immunity [22], a protection mainly mediated by
robust CD8+ T responses [23]. Recently an immunization regimen consisting of a rare adeno-
virus serotype Ad35 vector, expressing the whole P. falciparum CSP without the GPI anchor,
boosted with two RTS,S/AS01 immunizations showed an efficacy of 44%. Despite the high
immunogenicity of this regimen, an immunization regimen consisting of three immunizations
with RTS,S/AS01, had a higher efficacy of 52.4% [24]. These results, although promising, dem-
onstrate the need for improvement in the implementation of malaria vaccine regimens incor-
porating novel adenoviral vectors.

A challenge that arises to implement adenoviral vectors for malaria vaccine development is
the high prevalence of neutralizing antibodies against the best characterized adenoviral vector,
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human adenovirus serotype 5 (Ad5), especially in countries where malaria is endemic [25].
Neutralizing antibodies limit the efficacy of Ad5, even using vaccination regimens that include
different Ad serotypes for boosting immunization [26]. Modifications of the adenoviral capsid,
particularly the hexon protein, have been explored in malaria vaccine development to over-
come pre-existing anti-vector immunity. It has been shown in the murine model that replacing
the hexon hypervariable regions (HVR) of Ad5 for those of a rare adenovirus serotype can be
used to circumvent pre-existing immunity against Ad5 while maintaining its immunogenicity
[27]. Hexon modifications have also been used to increase the immunity against the transgene.
An Ad-based malaria vaccine that expressed a B cell epitope derived from the P. yoelii CSP
within the HVR 1 of Ad5 enhanced the level of protection against an experimental challenge
when compared with unmodified Ad5 expressing CSP [28].

Our research group has developed a chimeric protein-based experimental vaccine derived
from P. yoelii CSP and MSP-1 proteins, called Plasmodium yoelii chimeric multistage protein
(PyCMP). PyCMP is able to induce protective CD4+ T cells and high antibody titers [29]. Our
experimental vaccine includes promiscuous T cell epitopes based on orthologous sequences
reported in P. vivax. These promiscuous epitopes alone have been related to protection in both
the P. berghei and the P. yoeliimurine malaria models [30]. Here we describe the design, pro-
duction and characterization of a hexon-modified Ad5 vector that expresses the promiscuous
T cell epitope PyT53 within the HVR2. This epitope is the orthologous sequence of the P. vivax
promiscuous T cell epitope PvT53 identified in MSP-1 and recognized by humans with differ-
ent genetic backgrounds [30, 31]. Proof-of-principle studies in mice reported here were aimed
to increase the immunogenicity of our formulation and simplify the immunization regimen.

Materials and Methods

Design and characterization of the chimeric protein vaccine construct
The synthetic genes encoding for the P. yoelii pre-erythrocytic/erythrocytic stage antigens have
been previously described [29]. A 1,242 bp synthetic Py-cmp gene, encoding a chimeric antigen
based on the P. yoelii circumsporozoite protein genetically linked to a chimeric P. yoeliiMSP-1
was transformed into E. coli BL21 (DE3) cells (Novagen, Madison, WI), and protein expression
induced with 1 mM IPTG for 3 hours. The 414 amino acid hybrid protein was purified with a
Ni-NTA affinity column according to the manufacturer’s instructions (Qiagen, Valencia, CA).

Viral vectors
For adenovirus expression, the gene was codon-optimized for mammalian expression and syn-
thesized commercially by GeneArt (Regensburg, Germany). The Py-cmp gene was cloned into
the shuttle vector pShuttle-CMV. The resulting shuttle plasmid pCMVCMP was co-trans-
formed with the Ad backbone E1/E3-negative plasmids, pAdEasy-1 [32], into the E. coli strain,
BJ5183. The BJ5183 strain is recA proficient and supplies the machinery necessary for efficient
homologous recombination between the shuttle plasmid and the Ad backbone plasmid. After
selection on kanamycin, recombinants were screened by restriction digestion and PCR analyses
for the presence of the Py-CMP gene insert. Positive plasmids were then transformed into a sec-
ond E. coli strain, XL10-Gold (Stratagene), for amplification of the recombined Ad plasmids.
The recombinant Ad plasmids were then transfected into HEK293 cells. HEK293 cells comple-
ment the E1 deletion in the Ad backbone plasmid and allow de novo production of Ad virions.
Recombinant Ad vectors were rescued, expanded and purified by double cesium chloride sedi-
mentation centrifugation. The physical titers, or total virus particles (VP), were determined
spectrophotometrically by measuring the O.D. at 260 nm. Infectious titers were determined on
HEK293 cells using a 50% end-point dilution (TCID50) assay. The expression of PyCMP was
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confirmed by western blot and flow cytometry analysis as described [33]. To incorporate the
promiscuous CD4+ T cell epitope into the capsid of Ad5 we used the previously described plas-
mid containing Ad5 hexon DNA, modified to encode a six-histidine tag sequence (6His)
flanked by BamHI and AvrII restriction sites in place of the partially deleted hyper variable
region 2 (HVR2). To this end, oligonucleotide duplex encoding the P. yoelii T cell epitope
TNRQIRDLSILKARLLKRKQ (PyT53) was cloned between BamHI and AvrII sites to generate
the HVR2-PyT53-containing hexon construct. This modified hexon construct was used to
introduce DNA sequences encoding PyT53 within HVR2 of Ad5 genomic DNA by homolo-
gous recombination in E. Coli BJ5183 (Strategene, La Jolla, CA), as we described previously,
resulting in the generation of Ad5redHVR2-T53 vectors (Fig 1). Viral genome was designed to
express DsRed2 fluorescent marker protein under control of CMV promoter in place of the
deleted E1 gene region. The replication incompetent Ad5redHVR2-T53 was rescued by trans-
fecting 293 cells with the corresponding viral genomes. Modifications of the hexon gene were
confirmed by PCR analysis and DNA sequencing.

Fig 1. Schematic representation of the generated Ad5 vectors. (A) The Ad5HVR2T53 genome was constructed to incorporate the
CMV promoter-driven red fluorescent DsRed2 protein gene followed by the Simian Virus 40 (SV40) polyadenylation signal (pA) in place of
the deleted early E1 region. The Ad5HVR2T53PyCMP and Ad5PyCMP vectors contain the CMV promoter-driven gene encoding a
Plasmodium yoelii chimeric multistage protein, PyCMP, in place of E1. In Ad5HVR2T53 and Ad5HVR2T53PyCMP vector, the sequence
encoding hyper-variable region 2 (HVR2) of hexon gene was altered to incorporate a promiscuous Plasmodium yoelii T cell epitope
(PyT53) (B). The amino acid sequence alignment showing wild type HVR2 (in bold) in the upper row aligned with HVR2 incorporating T53
epitope (underlined) in the lower row.

doi:10.1371/journal.pone.0154819.g001
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The titers of physical viral particles were determined by the methods of Maizel and col-
leagues [34]. The titers of infectious virions were determined by plaque assay using 293 cells as
described by Mittereder and colleagues [35]. The ratios of viral particles to plaque-forming
units (pfu) were calculated for each recombinant Ad5 vector as follows: Ad5HVR2T53 (11.2
vp/pfu), Ad5HVR2T53PyCMP (11.7 vp/pfu), and Ad5PyCMP (10.2 vp/pfu).

Synthetic peptides
A synthetic peptide representing the promiscuous T cell epitope PyT53 proteins was used
together with a library of 58 synthetic peptides, representing the complete amino acid sequence
of the hybrid protein PyCMP, for ex vivo stimulation. The 15-mer synthetic peptides were
overlapped by 10 amino acids and commercially synthesized by Sigma-Aldrich (St Louis, MO).
The peptides were dissolved in dimethyl sulfoxide and stock solutions were stored at -20°C.
For ex vivo stimulation three peptide pools were used as described [29]: the first pool contained
14 peptides that represented the CSP sequence (Pool 1), the second pool contained 24 peptides
that represented the region of the PyCMP chimeric protein that contains T cell epitopes
derived from the PyMSP-1 sequence (Pool 2), and the third pool contained 20 peptides that
represented the PyMSP-119 sequence (Pool 3) [29]. The H-2Kd/SYVPSAEQI/APC tetramer
was synthesized at the Tetramer Core Facility (Emory University, Atlanta, GA) representing
the CTL epitope of the P. yoelii CSP included in the chimeric CSP protein [30].

Mice
Female CB6F1/J (H-2d/b) mice, 6 to 8 weeks of age, were purchased from Jackson Laboratory
(Bar Harbor, ME). These hybrid mice were selected based on our published data concerning
the response of syngeneic mice to chimeric antigens [30] and to characterize SYVPSAEQI-spe-
cific CD8+ T cells (H-2Kd restricted) induced by immunization. Mice were housed in micro-
isolation cages and all procedures were approved by Emory University’s Institutional Animal
Care and Use Committee and followed accordingly.

Immunization regimens
Initially, 20 mice were primed intramuscularly with the Ad5HVR2T53 vector, an Ad5 vector in
which its HVR2 was modified to express the P. yoelii promiscuous blood stage epitope PyT53.
This vector was co-administered with 20 μg of PyCMP recombinant protein emulsified in
Montanide ISA 51 (Seppic, Fairfield, NJ). Half of this group received a boosting immunization
with the PyCMP recombinant protein at day 20. As controls, mice were immunized with a
recombinant Ad5 expressing PyCMP as a transgene at a dose of 107 vp and boosted with a
PyCMP 20 days later at 20 μg or immunized with PBS in Montanide ISA 51 (Table 1). In a sec-
ond experiment 20 mice received a priming immunization with 107 vp of
Ad5HVR2T53PyCMP or Ad5PyCMP both expressing PyCMP as a transgene followed by two
boosting immunizations with 20 μg of PyCMP recombinant protein emulsified in Montanide
ISA 51 at days 60 and 90 (Table 1).

Sporozoite challenge
Anopheles stephensi P. yoelii 17XNL infected mosquitoes were obtained from the New York
University School of Medicine insectary core facility. Experimental challenges were done intra-
venously using 100 freshly isolated sporozoites at day 20 after the last immunization. Giemsa-
stained thin smears were made daily and used to quantify parasitemia by counting the percent-
age of infected erythrocytes from at least 1,000 RBC per mouse using light microscopy. The
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procedure was performed under physical restraint equipment for the protection of both the
handlers and the animals. The animals were monitored during the procedure by observing the
respiratory rate and making sure that the animals were not in any distress while being in the
restraint. Mice were euthanized at the end of the follow-up by carbon dioxide exposure. None
of the animals died without euthanasia as a result of the experimental challenge.

ELISA assays
The fine specificity of the antibodies elicited by immunization with the hybrid protein was
determined by ELISA using Immulon 4HB plates (Thermo Labs Systems, Franklin, MA)
coated with 1 μg/ml of the hybrid protein, PyCSP or PyMSP1 recombinant proteins diluted in
carbonate buffer as described [36]. Optical densities were determined using a VERSAmax
ELISA reader (Molecular Device Corporation, Sunnyvale, CA) with a 405 nm filter. The end-
point was measured as the highest dilution of sera that resulted in an O.D. defined by the aver-
age O.D obtained with naïve samples + 3SD. The results are presented as the reciprocal of the
end-point dilution. IgG isotype profiles were also determined by ELISA as described [36]. The
affinity of antibodies was assessed by a thiocyanate elution-based ELISA as described previ-
ously [31, 37].

Flow cytometry assays
For flow cytometric analysis of the PyCMP-specific CD8+ and CD4+ T cells, peripheral blood was
collected into 3.7% sodium citrate/PBS tubes and erythrocytes were lysed with ACK buffer (Life
Technologies, Carlsbad, CA). After washing, the cells were incubated with α-CD3ε-PerCP
(Clone: 145-2C11 Biolegend), α-CD4-Alexa Fluor 700 (Clone: RM4-5 eBioscience), α-CD11a-
PerCP-Cy5.5 (Clone: M17/4 Biolegend), α-CD49d-FITC (Clone: R1-2 Biolegend), α-CD8-APC-
Cy7 (Clone: 53–6.7 Biolegend), H-2Kd/SYVPSAEQI/APC tetramer (Tetramer Core Facility,
Emory University, Atlanta, GA), and α-PD1-PE Cy7 (Clone: RMP130 Biolegend) for 1 h at 4°C
and then analyzed by flow cytometry. The cells were initially gated on SSC/FSC, and then the fre-
quency of tetramer-positive cells was determined on the gated CD11a+CD8+ population (S1 Fig).

Table 1. Immunization regimens tested with hexonmodified vectors.

Experiment 1. Co-administration regimens

Priming Boosting (Day 20) Nomenclature1

Adenovirus Capsid Modification Transgene Protein Co-administration

Ad5HVR2T53 HVR22 –PyT533 No PyCMP4 PyCMP Ad5HVR2T53+P

Ad5HVR2T53 HVR2 –PyT53 No PyCMP No Ad5HVR2T53+P–P

Ad5 None PyCMP No PyCMP Ad5PyCMP–P

Experiment 2. Regimens with transgene expression vectors

Priming Boosting (Day 60) Boosting (Day 90) Nomenclature

Adenovirus Capsid Modification Transgene

Ad5HVR2T53 HVR2 –PyT53 PyCMP PyCMP PyCMP Ad5HVR2T53PyCMP–P–P

Ad5 None PyCMP PyCMP PyCMP Ad5PyCMP–P–P

1. + Indicates co-administration

- Indicates sequential Immunization.

2. Hexon Hypervariable Region 2.

3. Plasmodium yoelii promiscuous T cell epitope 53.

4. Plasmodium yoelii Chimeric Multistage Protein.

doi:10.1371/journal.pone.0154819.t001
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The activation of CD4+ T cells was determined by gating the CD11a+ CD49dhi population in
CD4+ T cells as previously described [38].

Cellular immune responses in the spleen were measured by intracellular cytokine staining
(ICS), the panel was used to simultaneously analyze IL-2, IFN-γ and TNF-α at the single-cell level
in T cells derived from splenocytes obtained 10 days after the final boosting. Cells were stimulated
for 6 hours with peptide pools, or with the PyCMP recombinant protein at 2 μg/ml, at 37°C in the
presence of GolgiPlug (BD Biosciences). Cells were then incubated for 15 min in the presence of
anti-mouse CD16/CD32 (Fc-block) before surface staining for 30 min with α-CD3ε-PerCP-Cy5.5
(145-2C11 Biolegend), α-CD8α-BV605 (Clone: 53–6.7 Biolegend), and α-CD4-Pacific Blue
(Clone: GK1.5 Biolegend). Permeabilization was performed using Cytofix/Cytoperm solution
(BD Biosciences) according to the manufacturer’s instructions. Cells were stained intracellularly
for 30 min with α-IFN-γ-FITC (Clone: XMG1.2 Biolegend), α-IL-2-APC (JES6-5H4 Biolegend),
and α-TNF-α-PE (Clone: TN3-19.12 Biolegend). All incubations were performed at 4°C. Cells
were resuspended in 1% PFA solution and flow cytometry analyses were performed using an
LSRII (BD Biosciences, San Jose, CA), data were analyzed using FlowJo V10 (Tree Star, Ashland,
OR). The lymphocytes were initially gated on CD3+CD4+ and CD3+CD8+, then antigen-specific
cytokine-secreting T cells were identified. The frequency of antigen-specific cytokine-producing
cells was determined by subtracting the percentage of cytokine producing T cells after incubation
with medium alone from the percentage of cytokine-producing T cells after incubation with
PyCMP, or the corresponding peptide pools (S2 Fig). A threshold for a positive cytokine response
was set above the background, and samples that did not meet this requirement were set to zero.

Statistics
Statistical analysis and graphs were made using GraphPad Prism 5.0 software (GraphPad Soft-
ware Inc., San Diego, CA). Antibody responses were log-transformed to achieve normality,
permitting parametric testing and comparison using one-way ANOVA with Bonferoni’s post-
test. For tetramer cell recognition, cellular surface markers and cytokine secreting cells, Kruskal
Wallis test with Dunns post-test was used. In experimental challenges, parasitemia differences
between groups were evaluated by comparing areas under the curve of parasitemia and parasi-
temia peak values using Kruskal Wallis test with Dunns post-test.

Results

1. Capsid modified vectors, immunization regimens
We have shown that the optimal regimen for the chimeric protein PyCMP includes the use of
three immunizations, as regimens containing single priming or a single boosting immunization
were not protective [29]. We also have recently determined that a homologous prime-boost
regimen with Ad5 expressing PyCMP as a transgene was less protective than 3 immunizations
with PyCMP (manuscript submitted). These unpublished experiments also defined that pro-
tective efficacy is enhanced by using a heterologous regimen with recombinant Ad priming fol-
lowed by two protein boosts immunizations.

A regimen consisting of a single or two immunizations have significant advantages for
implementation in malaria endemic countries, given the limitations in primary care [39, 40].
We hypothesized that increasing the density of T cell epitopes by incorporation within the
HVR2 Ad5 hexon could increase the immunogenicity of the recombinant PyCMP protein,
allowing us to develop a simplified immunization regimen. We therefore initially developed an
Ad5 vector that expressed a P. yoelii T cell epitope, orthologous to a well characterized CD4
promiscuous T cell epitope derived from P. vivax [30], and tested it using a co-administration
with the recombinant PyCMP protein (Ad5HVR2T53+P regimen). To characterize the impact
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of booting immunization, an immunization regimen with a PyCMP protein boost was also
tested (Ad5HVR2T53+P–P regimen). A regimen that included the recombinant Ad5 express-
ing PyCMP as a transgene followed by a protein boost was also tested to evaluate the need of
the transgenic expression of PyCMP in Ad5 (Ad5PyCMP–P regimen) (Table 1).

1.1. Capsid modified adenovirus antibody induction. The Ad5HVR2T53+P regimen
produced an average antibody titer of 1:1,024 against PyCMP (Fig 2A), which was significantly
lower when compared to the Ad5HVR2T53+P–P regimen that received a boosting immuniza-
tion with PyCMP. This latter regimen induced a mean antibody titer of 1:361,472 (p<0.05).
The Ad5HVR2T53+P–P regimen also produced significantly higher antibody titers against the
protein when compared with the Ad5PyCMP–P regimen, which induced mean anti-PyCMP
antibody titers of 1: 6,144 (p<0.05). It is important to note that when two regimens that
received a protein boost were compared the antibody titers induced by the Ad5HVR2T53+P–P
regimen were 59 times higher than those of the Ad5PyCMP–P group. A similar pattern of anti-
body distribution was observed in the different regimens when the antigens present in PyCMP
(i.e. P. yoeliiMSP1 or CSP) were tested in ELISA (Fig 2B and 2C). These results suggest that a
protein boost is essential to induce high antibody titers and that increasing the density of T
helper epitopes will have a positive effect on the B cell responses.

1.2. Cellular immunogenicity induced by the capsid modified adenovirus. The previ-
ously reported protection induced by immunization with the chimeric protein PyCMP was
associated to CD4+ T cells and antibodies [29]. To characterize the impact of immunization
with the Ad vectors used, the frequency of tetramer-specific T cells was determined in PBMCs
collected from immunized mice using flow cytometry 5 days after the final immunization.
Both the Ad5HVR2T53+P and the Ad5PyCMP–P regimens were able to induce CD8+ T cells
able to recognize the P. yoelii CSP derived H-2Kd/SYVPSAEQI tetramer with significantly high
numbers in comparison to mice that received a control immunization regimen (Fig 3A). These
results indicate that the protein boost in the Ad5PyCMP–P regimen was able to maintain the
levels of CD8+ T cells induced by priming with recombinant Ad5, since in the Ad5HVR2T53
+P–P regimen that did not include a transgene the levels of CD8+ T cells able to recognize the
tetramer after the protein boost were not significantly different than the control.

Fig 2. Antibody Responses induced by the vaccination regimens including Ad5HVR2modified vectors.CB6F1/J (n = 5 per group) mice were
primed with 107 v.p. of Ad5HVR2T53 co-administered (+) with PyCMP a multistage Plasmodium yoelii protein vaccine (P) that targets a hepatic stage
antigen the Circumsporozoite Protein (CSP) and a blood stage antigen the Merozoite Surface Protein 1 (MSP-1), one of the groups received a
boosting immunization (-) with the protein alone. A third group received an immunization with Ad5 encoding the multistage protein as a transgene
(Ad5PyCMP) as a prime and a boosting immunization with the multistage protein. Total IgG antibody titers 20 days after the final immunization are
expressed as log against the recombinant protein (A), MSP1 (B) and CSP (C). The differences between the groups were analyzed by one-way
ANOVA with a Bonferroni post-test, significant statistical differences between the groups are denoted by *(p<0.05) and ** (p<0.01).

doi:10.1371/journal.pone.0154819.g002
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Antigen experienced CD4+ T cells are defined by their expression of CD49d and CD11a
[38]. A significant expansion of CD4+CD49d+ CD11a+ T cells after the immunization with all
of the regimens tested (Fig 3B) was observed. Similar to what was observed with the CD8+ T
cells, the levels of antigen experienced CD4+ T cells were higher in the Ad5HVR2T53+P and
the Ad5PyCMP–P regimens in comparison to the control group. However, the frequency of
antigen experienced CD4+ T cells induced by the Ad5HVR2T53+P–P regimen was also signifi-
cantly higher than that recorded in mice that served as controls.

1.3. Cytokine production induced by the capsid modified adenovirus. Splenocytes iso-
lated five days after the final immunization were stimulated ex-vivo with the promiscuous T
cell epitope PyT53, the PyCMP chimeric protein, a peptide pool representing PyCSP (Pool 1),
a peptide pool representing the promiscuous T cell epitopes derived from the PyMSP-1
sequence (Pool 2) or a peptide pool representing the C-terminal region of the chimeric protein
that comprise the PyMSP119 protein fragment (Pool 3). When analyzed by flow cytometry, the
CD8+ T cells produced significantly higher IL-2 with all the antigens used for ex vivo stimula-
tion on every regimen when compared to control mice (Fig 4A). The Ad5PyCMP–P regimen
was the best in inducing IFN-γ secreting CD8+ T cells since these cells were able to recognize
all of the different antigens used for ex vivo stimulation. The Ad5HVR2T53+P–P regimen
induced CD8+ T cells able to produce IFN-γ after ex vivo stimulation with all the antigens
except the peptide pool representing the P. yoelii CSP. Meanwhile the Ad5HVR2T53+P regi-
men only induced IFN-γ secreting CD8+ T cells after ex vivo stimulation with the PyT53 epi-
tope (Fig 4B). The TNF-α production by CD8+ T cells was similar in both Ad5HVR2T53+P
and Ad5PyCMP–P regimens, with both being significantly higher when compared with the
response from mice in the control group. However, the Ad5HVR2T53+P–P did not induce
TNF-α production by CD8+ T cells (Fig 4C).

Fig 3. Cellular Responses induced by the vaccination regimens including Ad5HVR2modified vectors.CB6F1/J (n = 10 per group) mice
received the regimens described in Fig 2. PBMC derived frommice whole blood were obtained 5 days after the final immunization and were
processed by flow cytometry, (A) CD8+ T cells able to recognize the P. yoelii CSP tetramer H-2Kd/SYVPSAEQI. (B) CD4+ T cells expressing CD49d
and CD11 as markers for the differentiation of antigen experienced cells. The results are presented as the number of cells present in 106 PBMC. The
differences between the groups were analyzed by Kruskal-Wallis test with Dunns post-test, significant statistical differences between the groups are
denoted by *(p<0.05) **(p<0.01).

doi:10.1371/journal.pone.0154819.g003
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Regarding IL-2 and IFN-γ secreting CD4+ T cells were produced by all the regimens in
response to all the antigens tested (Fig 4D and 4E). The frequency of TNF-α secreting CD4+ T
cells showed a similar pattern to that observed for CD8+ T cells, with cells from the
Ad5HVR2T53+P–P regimen unable to produce this cytokine.

1.4. Protective efficacy of the capsid modified adenovirus. Twenty days after the final
immunization, mice were experimentally challenged with P. yoelii sporozoites. Protective effi-
cacy was determined by comparing differences in the area under the curve (AUC) of parasite-
mia versus time (Fig 5A). The Ad5HVR2T53+P–P regimen was the only regimen that showed
a protective efficacy with a parasitemia 1.9 times lower than the control mice (p<0.05).
Although the other two immunization regimens showed no protection, the AUC analysis of
parasitemia only accounts for the control of the blood stage infection. In order to define if the
immunization regimens have an impact on liver stage development, the differences in the pre-
patency period were analyzed. A longer pre-patency period indicates a lower parasite load in
the liver, which is related to hepatic immunity [21, 41]. All of the regimens showed a significant
increase in the pre-patency period when compared to control mice (Fig 5B).

2. Heterologous Ad-Protein immunization regimens
In the previous experiments, we demonstrated that using a modified adenovirus expressing
PyT53 within the Ad5 hexon HVR2 without a transgene increases the level of antibody produc-
tion when compared to the recombinant Ad5, but effective antibody titers are only obtained

Fig 4. Cytokine production in splenocytes induced by the vaccination regimens including Ad5HVR2modified vectors.CB6F1/J (n = 5 per
group) mice received the regimens described in Fig 2. Splenocytes were obtained 5 days after the final immunization and were incubated with the
PyT53 epitope present in the vector capsid, the PyCMP protein, or peptide pools (15 amino acids long, overlapping be 10 amino acids) representing
the PyCMP sequence. After stimulation, cells were intracellularly stained and acquired by flow cytometry, Top.CD8+ T cells able to produce IL-2 (A)
IFN-γ (B) and TNF-α (C) after stimulation. Bottom. CD4+ T cells able to produce IL-2 (D) IFN-γ (E) and TNF-α (F) after stimulation. Results were
analyzed after background subtraction. Statistical analysis was performed using the Kruskal–Wallis test with Dunn’s post-test, differences between
the vaccination groups and the control group are presented *(p<0.05) **(p<0.01) ***(p<0.001).

doi:10.1371/journal.pone.0154819.g004
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after protein immunization. More importantly, we learned that despite the protein boost a high
and sustained IFN-γ production by both CD4+ and CD8+ T cells can only be induced if
PyCMP is expressed as a transgene.

Based on this experimental evidence and our previous observations that homologous
prime-boost immunization regimens with recombinant Ad vectors has lower efficacy when
compared to heterologous regimens (manuscript submitted), we decided to test a capsid modi-
fied Ad5 expressing PyT53 within the hexon HVR2 and PyCMP as a transgene. The recombi-
nant Ad5HVR2T53PyCMP vector was used for priming followed by two recombinant PyCMP
boosts (Table 1). This prime-boost immunization regimen was compared to an unmodified
Ad5 expressing PyCMP followed by two protein boosts (Table 1). A group of mice immunized
with PBS and Montanide ISA 51 was used as a control.

2.1. Antibody induction of heterologous Ad-Protein immunization regimens. The
Ad5HVR2T53PyCMP–P–P regimen produced mean anti-PyCMP titers of 1:5,505,024 while
the Ad5.PyCMP–P–P regimen produced mean titers of 1: 2,396,160 (Fig 6A). Although the dif-
ference between the regimens was not significant, mice immunized with the
Ad5HVR2T53PyCMP–P–P showed a lower individual variation in the response with antibody
titers ranging between 1: 1,310,720 and 1: 10,485,760 while the Ad5PyCMP–P–P showed a
high variability in the antibody response with antibody titers ranging between 1: 20,480 and 1:
5,242,880. As occurred with the regimens tested previously, when the anti-MSP1 and anti-CSP
responses were assessed, the antibody profile was similar to the responses against PyCMP (Fig
6B and 6C).

To further characterize anti-PyCMP antibody responses, the quality of the antibodies was
assessed through the antibodies avidity and evaluating the elicitation of cytophilic antibody
response. The Ad5HVR2T53PyCMP–P–P regimen induced antibodies with a mean avidity

Fig 5. Protection induced by the vaccination regimens including Ad5HVR2modified vectors.CB6F1/J (n = 10 per group) mice received the
regimens described in Fig 2. Twenty days after the last immunizations mice were challenged with Plasmodium yoelii sporozoites and the kinetic of
parasitemia expressed as an AUC (A) and the pre-patency period (B) were analyzed by Kruskal-Wallis test with Dunns post-test significant
statistical differences between the groups are denoted by *(p<0.05) **(p<0.01).

doi:10.1371/journal.pone.0154819.g005
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index of 0.88 higher than the avidity index of 0.68 of the antibodies induced by the
Ad5PyCMP–P–P regimen (Fig 6D). Interestingly, the cytophilic profile was significantly differ-
ent between the regimens, with the Ad5PyCMP–P–P regimen showing an antibody production
biased towards IgG1 with a mean IgG2a/IgG1 ratio of 0.6 while the Ad5HVR2T53PyCMP–P–
P regimen showed a predominant IgG2a production with a mean IgG2a/IgG1 ratio of 3.7 (Fig
6E).

2.2. Heterologous Ad-Protein regimens cellular immunogenicity. The frequency of
CD8+ T cells able to recognize the P. yoelii CSP derived H-2Kd/SYVPSAEQI tetramer induced
by immunization with these regimens was analyzed at different time points in the course of
immunization (Fig 7A). Both regimens were able to elicit CD8+ T cells able to recognize the
tetramer with the highest numbers being 20 day after the priming. The frequency of tetramer
positive T cells seems to wane overtime resulting in a frequency 36% lower in mice immunized
with Ad5HVR2T53PyCMP–P–P and 21% lower in mice immunized with Ad5PyCMP–P–P at
day 110 in comparison to the frequency of tetramer positive T cells obtained at day 20.

The frequency of CD4+ T cells expressing CD49d and CD11a (Fig 7B) was similar at days
10 and 20 after the priming immunization. There was a significant higher number of CD4
+ CD49d+ CD11a+ T cells in the Ad5HVR2T53PyCMP–P–P regimen when compared to the
Ad5PyCMP–P–P regimen at day 50 (p<0.05). An increase in the frequency of CD4+ CD49d
+ CD11a+ T cells was observed 10 days after the first boosting immunization (day 70). The fre-
quency of CD4+ CD49d+ CD11a+ T cells were 20% higher at day 110 in comparison to the
numbers obtained at day 10 in the Ad5HVR2T53PyCMP–P–P regimen while in the
Ad5PyCMP–P–P regimen this number was 6% lower.

Fig 6. Antibody Responses induced by the vaccination regimen based on the Ad5HVRT53PyCMP vector.CB6F1/J (n = 5 per group) mice
were primed with 107 v.p. of Ad5 expressing the PyT53 epitope within the HVR2 hexon region and expressing PyCMP as a transgene or Ad5
expressing PyCMP. Both regimens included boosting immunizations at day 60 and at day 90 with the recombinant PyCMP protein. Top. Total
IgG antibody titers 20 days after the final immunization expressed as log against the recombinant protein (A), MSP1 (B) and CSP (C) are
presented. The differences between the groups were analyzed by unpaired Student’s t test, no significant statistical differences between the
groups were found.Bottom. (D) Affinity index of the mice sera samples after treatment with 1M NH4SCN. (E) IgG1 and IgG2a titers were
measured separately by isotype-specific ELISA, with sera obtained 20 days after the final immunization. Data are plotted as the ratio of the
endpoint log titer of IgG2a/IgG1. Differences between the groups were analyzed by Student’s t test, significant differences are denoted by
*(p<0.05).

doi:10.1371/journal.pone.0154819.g006
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2.3. Heterologous Ad-Protein regimens cytokine production. The levels of cytokine
producing CD8+ T cells were consistently higher in the splenocytes of mice immunized with
the Ad5HVR2T53PyCMP–P–P regimen when compared to mice immunized with the
Ad5PyCMP–P–P regimen. The levels of IL-2 producing CD8+ T cells were significantly higher
in the Ad5HVR2T53PyCMP–P–P regimen when compared to Ad5PyCMP–P–P after the
stimulation with P. yoelii CSP and the Peptide Pool encoding for this protein (p<0.01 for the
protein p<0.05 for the peptide pool) The production of IL-2 by CD8+ T cells was also signifi-
cantly higher when stimulated with the peptide pool containing the different promiscuous T
cell epitopes present in PyCMP (p<0.01) (Fig 8A). Strikingly, the frequency of IFN-γ produc-
ing CD8+ T cells was significantly higher in the modified adenovirus regimen after ex vivo
stimulation with all the antigens tested, suggesting a better functional T cell phenotype in mice
immunized with Ad5HVR2T53 in comparison to mice immunized with the unmodified Ad5
(Fig 8B). The TNF-α producing CD8+ T cells were significantly higher in the
Ad5HVR2T53PyCMP–P–P regimen when stimulated with P. yoelii CSP and MSP-1 and in the
pool containing the MSP-119 sequence. There were no differences in the Pool 1 representing
the P. yoelii chimeric CSP and the Pool 2 representing the promiscuous T cell epitopes derived
from P. yoeliiMSP-1 since the recognition was high in both the Ad5PyCMP–P–P and the
Ad5HVR2T53PyCMP–P–P regimens (Fig 8C). Multifunctionality of both antigen-specific
CD4 and CD8 T cells was assessed using a Boolean analysis, no differences were found between
the immunization regimens (data not shown).

2.4. Expression of PD-1 induced by heterologous Ad-Protein regimens. To analyze
whether the high density of T cell epitopes within Ad5HVR2T53PyCMP leads to T cell exhaus-
tion, in comparison to the unmodified Ad5PyCMP, the levels of PD-1, an inhibitory receptor
overexpressed in exhausted T cells was measured in antigen experienced CD4+ T cells (i.e.,
expressing high levels of CD11a and CD49d) and antigen specific CD8+ T cells present in
PBMC cells at different time points during the immunization schedule. CD8+ T cells obtained
from Ad5PyCMP immunized mice expressed significantly higher levels of PD-1 than the con-
trol at days 20 and 50 after priming (Fig 9A). In CD4+ T cells the PD-1 levels were also signifi-
cantly higher after Ad5PyCMP priming at day 20 (Fig 9B). However, there were no differences

Fig 7. Cellular Responses induced by the vaccination regimen based on the Ad5HVRT53PyCMP vector.CB6F1/J (n = 5 per group) mice
received the regimens described in Fig 6. PBMC derived frommice whole blood were obtained during the immunization schedule on the days stated
in the graph and were processed by flow cytometry, (A) CD8+ T cells able to recognize the P. yoelii CSP tetramer H-2Kd/SYVPSAEQI. (B) CD4+ T
cells expressing CD49d and CD11 as markers for the differentiation of antigen experienced cells. The results are presented as the number of cells
present in 106 PBMC. The differences between the groups were analyzed by Kruskal-Wallis test with Dunns post-test, significant statistical
differences between the groups are denoted by *(p<0.05) **(p<0.01) ***(p<0.001).

doi:10.1371/journal.pone.0154819.g007
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between the Ad5HVR2PyCMP and the control at day 20 and 50, or between both experimental
groups and the control after the protein boosts at day 60 and 90.

2.5. Protective efficacy of the heterologous Ad-Protein regimens. As was done with the
regimens described above, protective efficacy of the Ad5HVR2T53PyCMP–P–P and the

Fig 8. Cytokine production in splenocytes induced by the vaccination regimens based on Ad5HVR2T53PyCMP vectors.CB6F1/J (n = 5 per
group) mice received the regimens described in Fig 6. Splenocytes were obtained 5 days after the final immunization and were incubated with
recombinant P yoeliiMSP1 (Black Bars) or CSP (White Bars) proteins or 15 AA overlapping peptide pools representing the PyCMP structure (Grey and
Pattern Bars). After stimulation cells were intracellularly stained and acquired by flow cytometry, Results are presented after background subtraction.
Top. CD8+ T cells able to produce IL-2 (A) IFN-γ (B) and TNF-α (C) after stimulation. Bottom. CD4+ T cells able to produce IL-2 (D) IFN-γ (E) and TNF-α
(F) after stimulation. Differences between the immunization regimens were analyzed by the Mann-Whitney test, significant statistical differences between
the groups are denoted by *(p<0.05) **(p<0.01).

doi:10.1371/journal.pone.0154819.g008

Fig 9. T cell PD-1 expression in PBMC induced by the vaccination regimen based on the Ad5HVRT53PyCMP vector.CB6F1/J (n = 5 per
group) mice received the regimens described in Fig 6. PBMC derived frommice whole blood were obtained during the immunization schedule on the
days stated in the graph and were processed by flow cytometry, (A) CD8+ Tetramer+ T cells PD-1 expression (B) CD4+ CD11+ CD49d+ T cells PD-
1 expression. The results are presented as the number of PD-1 positive cells present in 106 PBMC. The differences between the groups were
analyzed by Kruskal-Wallis test with Dunns post-test, significant statistical differences between the groups are denoted by **(p<0.01).

doi:10.1371/journal.pone.0154819.g009
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Ad5PyCMP–P–P regimens was tested with a P. yoelii sporozoite challenge performed 20 days
after the final immunization. Parasitemia was assessed as differences in the area under the
curve (AUC) of parasitemia versus time (Fig 10A). The Ad5HVR2T53PyCMP–P–P regimen
showed a significant reduction of the parasitemia (p<0.01) being 61.4% lower than the
reported in the control group. Although the Ad5PyCMP–P–P regimen was able to reduce the
parasitemia when compared to the control group in 24.0% this reduction was not significant.
When the pre-patency period was analyzed, the parasitemia was significantly delayed in the
AdHVR2T53PyCMP +P+P regimen, when compared to the control regimen (p<0.05). There
were no differences in the pre-patency period between the Ad5PyCMP +P+P regimen and the
control.

Discussion
Novel vaccine platforms are needed to achieve the challenges imposed by the complexity of
developing an effective vaccine against intracellular pathogens including malaria. Currently,
RTS,S/AS01 is the only malaria vaccine candidate studied in phase III clinical trials. With
boosting immunizations RTS,S/A01 achieves protection in 21% of children aged 6–12 weeks
and in 30% of children aged 5–17 months [42]. The limited protection despite the immunoge-
nicity of the formulation [13, 43] can be explained by the ability of sporozoites to evade the
immune response in the liver, since the vaccine only targets the Plasmodium falciparum Cir-
cumsporozoite Protein (CSP) a sporozoite and early liver stage antigen, facing the possibility
that a single sporozoite that evades the immune system could lead to a blood stage infection
and clinical malaria [44, 45]. Therefore, a multistage malaria vaccine able to control the hepatic
and the blood stage of the parasite is needed.

We developed an experimental protein-based vaccine that incorporates chimeric sequences
derived from the P. yoelii CSP and the Merozoite Surface Antigen 1 (MSP1) that we called
PyCMP. Proof-of-principle studies using this murine malaria parasite model showed that
PyCMP is able to induce protective CD4+ T cells and high levels of functional antibodies [29].
Based on the evidence that CD8+ T cells able to recognize either the hepatic [46–48] or the
erythrocytic [49] stage of Plasmodium are also involved in protection, we produced recombi-
nant adenovirus vectors (Ad) that expressed PyCMP as a transgene. Ad vectors were used, as

Fig 10. Protection induced by the vaccination regimens based on the Ad5HVRT53PyCMP vector.CB6F1/J (n = 10 per group) mice
received the immunization regimens described in Fig 6. Twenty days after the last immunizations mice were challenged with Plasmodium yoelii
sporozoites, the kinetics of parasitemia expressed as an AUC (A) and the pre-patency period (B) were analyzed by Kruskal-Wallis test with
Dunns post-test, significant statistical differences between the groups are denoted by *(p<0.05), **(p<0.01).

doi:10.1371/journal.pone.0154819.g010
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they have had been considered a suitable and safe viral vector to induce antimalarial cellular
responses [18, 21, 22, 24, 50–52].

Despite being powerful inducers of cellular immune responses, the low antibody production
elicited against the transgene has been considered a limitation of viral vectors. It has been
recently reported that an immunization regimen that includes Ad35, a rare human adenovirus
serotype, encoding the CSP C terminal region and 2 boosting immunizations with RTS,S/AS01
induced a protective efficacy of 44%, the highest protective efficacy of a malaria vaccine adeno-
virus regimen tested in humans. Nonetheless, the protection was still less effective than 3
immunizations with RTS,S/AS01 which induced protection in 52% of the vaccinated [24]. The
lack of efficacy reported in adenoviral regimens that target blood stage antigens in malaria has
been linked to the low antibody responses induce by immunization with recombinant Ads
[21].

In the search of novel methods to increase the antibody production elicited by recombinant
Ad vectors, capsid-modified vectors have been produced. These modifications allow the pro-
cessing of the antigen by the exogenous pathway, inducing a strong humoral response [53]. Of
the adenovirus capsid proteins, the most abundant is the hexon that consists of 240 trimers for
a total of 720 copies per virion. Hexon represents 62.1% of the structural polypeptides by mass
[54], making it an excellent target to include foreign antigens. Studies that have included anti-
gens within the hexon, have targeted the hypervariable regions (HVR), since these sequences
are not conserved and their modification do not affect the virion functionality, stability and
structural integrity [55]. Of the HVR regions, HVR2 and HVR5 have shown better antigen
exposure [55] and higher flexibility for incorporation of long foreign protein sequences [56].

Here we report a modification on the Ad5 hexon HVR2 by including a P. yoelii promiscu-
ous T helper epitope denominated PyT53. This epitope is present on MSP1 and was defined
based on a P. vivax orthologous sequence [30, 31]. Although most of the studies modifying the
adenovirus hexon HVR have used B cell epitopes [28, 57–62], we decided to use a T helper epi-
tope to test if the high copy number provided by the hexon modification results in the induc-
tion of a more robust and balanced cellular immune response rather than only boosting the
humoral immunity. We have shown that a chimeric synthetic peptide that included the PyT53
epitope used here linked to P. yoelii B cell and cytotoxic (CTL) T cell epitopes was able to
improve the antibody response and IFN-γ production when compared to immunizations with
synthetic peptides representing either the B cell epitope or the CTL epitope alone [30]. PyT53
together with the B and CTL epitopes used in the previous study are also included in the
PyCMP sequence.

We decided to include the PyT53 epitope within the Ad5 hexon HVR2 since our original
work demonstrated the feasibility of heterologous peptide incorporation into the Ad5 HVR 2,
3, 5, 6 and 7 without significantly affecting thermostability and infectivity of hexon-modified
Ad vectors [55]. We have shown that antibody binding against a hexa-histidine tag incorpo-
rated in HVR2 and HVR5 were improved as compared to HVR 3, 6, and 7 suggesting that
HVR2 and 5 allow better accessibility of foreign epitopes for recognition in the context of the
viral capsid. HVR2 in particular was employed to incorporate a 24 AA peptide from the HIV
gp41 membrane proximal ectodomain region (MPER). Immunization with an Ad5 vector con-
taining hexon-incorporated MPER resulted in epitope-specific humoral immune response in
mice [57], suggesting that the MPER epitope is presented within the hexon in its native confor-
mation. These findings were recently supported by cryoEM data, which revealed a variety of
conformations for HVR2-incorporated MPER, including an extended form or an induced
extended form amenable for recognition by a neutralizing monoclonal antibody [63]. In the
aggregate, these studies provided strong rationale for incorporation of the promiscuous T cell
epitope PyT53 within the HVR2.

Hexon Modified Ad Vector Platform for Malaria Vaccines

PLOS ONE | DOI:10.1371/journal.pone.0154819 April 29, 2016 16 / 26



We first tested adenoviral regimens without the transgene in order to see if the T cell epitope
presentation alone was able to increase the protective efficacy of the recombinant protein
PyCMP. We found that the Ad5HVR2T53+P regimen was not able to elicit antibody titers
above 1x103. Nonetheless, after a protein boosting the antibody titers increased to a level higher
than 1x106. Meanwhile, the Ad5PyCMP–P regimen induced higher antibody titers than the
modified adenovirus with protein co-administration, but not as high as the co-administration
with protein boost. These results indicate that the PyT53 presentation within the hexon HVR2
increases the number of CD4+ T cells able to provide help for B cells in the recognition of the
chimeric PyCMP protein and the individual P. yoelii CSP and MSP1 recombinant proteins,
suggesting that PyT53 can provide help to heterologous antigens as we have previously demon-
strated [30, 31, 36, 64, 65]. Our results therefore confirmed that the priming of the immune
system with a T helper epitope within the adenovirus capsid induces stronger antibody
responses than that induced when the same epitope is presented within the transgene. It was
also observed that a boost is required to obtain a high antibody response as the Ad5HVR2T53
+P–P regimen had the highest antibody response. In the malaria model, our results are similar
to those reported with a replicative Ad5 expressing a P. falciparum CSP B or a T/B cell epitope
[66], and to those from a study using an adenovirus expressing a P. yoelii CSP B cell epitope
within the HVR1 or the HVR5 and P. yoelii CSP as a transgene [28], as both regimens required
between two and three boosting immunizations to induce high antibody titers [28, 66]. It is
worth noting that higher Ad dosage was used in these reported studies in comparison to those
tested here [28, 66]. Interestingly, Douglas et al reported a reduction in the antibody titers
when a simian adenovirus AdCh63 and protein based on PfMSP1 were co-administered
instead of being administered as a two-step immunization [67].

Both the Ad5HVR2T53+P and the Ad5PyCMP–P regimens, were able to induce a CD8+ T
cell response able to recognize a tetramer based on a CTL epitope from the P. yoelii CSP.
Importantly this CTL epitope is present in PyCMP, but it was not part of the adenovirus capsid
modification. These observations suggest that the T cell epitope present in the adenovirus cap-
sid can provide effective help for the induction of specific CD8+ T cells. An enhancement of
CD8+ responses with the co-administration of Ad and protein in mice was also observed by
Douglas et al [67]. In that study, the CD8+ epitope PfMSP142 was expressed in the Ad vector
within the transgene while the protein was PfMSP119 a C-terminal fragment of PfMSP142 that
is poorly processed by CD8+ cells due to its structural properties [68]. The data support the
idea that cognate T cell epitopes delivered within recombinant Ad vectors enhance the immune
response elicited by a protein delivered in a co-administration regimen, the mechanism for this
effect demands further research. Importantly, the CD8+ T cells induced by the Ad5HVR2T53
+P regimen exhibit a short life, as demonstrated by a drop in the frequency of tetramer-specific
CD8+ T cells in the Ad5HVR2T53+P–P regimen, a reduction not seen in the Ad5PyCMP–P
regimen despite that both regimens received a protein boost. The capability of PyCMP to boost
the CD8+ T cells induced by the adenovirus transgene, and not the capsid, can be explained by
the long lasting expression of the transgene encoded in replication-incompetent adenoviruses
as they can persist for periods longer than a year [69].

When cytokine production was evaluated only the Ad5PyCMP–P regimen was able to
induce CD8+ T cells IFN-γ production in response to all of the different components of
PyCMP, confirming that a transgene is necessary to induce an IFN-γ oriented CD8+ T cell
response in heterologous immunization including adenoviral vectors. Our modified adenovi-
rus was able to induce IFN-γ production by CD8+ T cells in response to PyT53. Production of
IFN-γ in response to the epitopes presented in the adenovirus hexon HVR was also demon-
strated by Worgall et al, using a Pseudomonas aeruginosa B cell epitope [62]. CD8+ IFN-γ pro-
duction towards antigens present in the adenovirus HVR can be explained by the recognition
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of the adenovirus capsid by dendritic cells that are able to present antigens via cross-presenta-
tion, an event related to the efficacy of the responses induced by Ad-based vaccines [70, 71].

In our study, protection against a P. yoelii sporozoite challenge was analyzed using AUC of
parasitemia versus time to determine the effect of immunization on the course of the blood
stage infection. To analyze the immunization effect in the liver stage we used the prepatency
period, as this measurement has been used as a surrogate model of parasite load and as evi-
dence for protection against liver stages [41]. Of the immunizations tested here, the only regi-
men that showed an effect against both the hepatic and the blood stage was the Ad5HVR2T53
+P–P regimen. This was expected, as antibodies elicited against both CSP and MSP-1have been
involved in protection. In other intracellular parasites, like T. cruzi, antibodies induced by
HVR modified adenovirus have also shown a protective effect [59]. Despite the low CD8+ T
cell reactivity observed in the Ad5HVR2T53+P–P regimen, CD4+ T cells able to produce IFN-
γ were induced by this regimen, confirming their protective role, as observed in previous
PyCMP studies [29]. Protection against the liver stages was observed with the Ad5HVR2T53
+P and the Ad5PyCMP–P regimens as both significantly increased the pre-patency period.
The fact that these regimens did not induce protection against blood stage malaria can be
explained by the poor antibody response elicited. Consistent with these results, a phase II clini-
cal trial testing P. falciparumMSP1 and the Apical Membrane Antigen 1 (AMA1) as vaccine
candidates delivered using recombinant Simian adenovirus AdCh63 and Modified Vaccinia
Ankara (MVA) vectors in prime-boost immunization regimens reported an efficacy of 11% in
volunteers that received vectors encoding both antigens, while none of the antigens delivered
separately was able to achieve protection. This lack of efficacy was considered an effect of the
low antibody response induced by the viral vectors despite their potent cellular responses [21].
Furthermore, as stated earlier, a single parasite able to escape the immune system in the liver is
considered enough to produce a patent blood malaria infection.

We demonstrated that a modified adenovirus expressing PyT53 within the Ad5 hexon
HVR2 without a transgene and co-administrated with PyCMP is protective since this regimen
increases the level of antibody production achieving optimal titers after a protein boost. In
RTS,S studies antibodies alone have been shown to be protective preventing 32% of the infec-
tions [44]. Nonetheless, clinical trials also showed that the generation of an effective cellular
immune response is able to increase vaccine efficacy to 40% [44]. In this study we showed that
only a transgene presentation is able to induce optimal cellular immune responses, therefore a
capsid modified Ad5 expressing PyT53 within hexon HVR2 and PyCMP as a transgene seemed
to be the best regimen to induce effective antibody and cellular immune responses.

To our knowledge, all of the studies involving adenovirus hexon HVR modifications have
used homologous adenoviral regimens. The use of a heterologous Ad-Protein was decided,
since antibodies against the foreign epitope expressed in different hexon HVR have demon-
strated a neutralizing activity against the Ad infection of target cells, limiting the ability of the
vector to boost the cellular responses induced by the transgene [28, 62]. Of note, a recombinant
Ad5 vector with a hexon HVR2 incorporation of a 24 amino acid region of the HIV membrane
proximal ectodomain region (MPER) and expressing HIV gag as a transgene was able to
increase the CD8+ T cell recognition of gag after a homologous boost, but was neutralized by
polyclonal Anti-Ad5 antibodies [57]. An Ad-Protein co-administration was not used given the
reduction of antibody titers induced by co-administration schemes previously observed in this
and other studies [67].

After the immunization with the Ad5HVR2T53PyCMP–P–P regimen the antibody titers
were not significantly different that the ones obtained by the Ad5PyCMP–P–P regimen. None-
theless, the response induced by the Ad5HVR2T53PyCMP vector was less variable than the
one induced by Ad5PyCMP. It is possible that the help induced by the T helper epitope induces
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a better B cell reactivity, an effect seen with the PyT53 epitope and the humoral immune
response against P. yoeliiMSP1 [36]. This effect could be further enhanced when the same epi-
tope is presented within the Ad capsid, since adenoviruses are able to infect Antigen Presenting
Cells [72]. Moreover, Worgall et al, showed that a protein immunization with an amount equi-
molar to the one that would be presented by the viral particles of an adenovirus capsid present-
ing the same protein, induced lower humoral responses [62].

Circumventing the antigen genetic restriction could be another advantage of presenting a
promiscuous T helper epitope, through an adenovirus capsid. Recently, a hexon modified ade-
novirus expressing a P. falciparum CSP epitope tested in monkeys reported differences in the
strength of the humoral response which were attributed to the genetic diversity of the Aotus
population [73]. We have been able to circumvent genetic restriction towards Plasmodium
antigens both in mice [36] and humans [64, 65] using our promiscuous T cell epitopes as criti-
cal component of the vaccine construct, this could also explain the less variability in the mice
receiving the Ad5PyT53+P+P regimen.

Since the antibody titers were not significantly different we decided to explore differences in
the antibody profile between the Ad5HVR2T53PyCMP–P–P and the Ad5PyCMP–P–P regi-
mens. The avidity of the antibodies induced by both regimens showed no statistical differences
but was higher in the capsid modified adenovirus regimen. The development of high affinity
antibodies like the one induced by the capsid modified adenovirus is encouraging as high anti-
body affinity against PfCSP has been related to protection using a transgenic P. berghei parasite
murine model [74]. Clinical studies assessing P. falciparum blood stage antigens have also dem-
onstrated that anti-parasite antibody dependent cellular inhibition is related to the antibody’s
avidity [75]. A significantly higher IgG2a to IgG1 ratio was obtained with the hexon modified
Ad regimen, although adenoviral vectors usually skew the IgG antibody responses toward cyto-
philic ones [26, 76, 77], the presentation of the foreign epitopes in the hexon seems to induce a
better cytophilic response when compared to other adenoviral capsid regions [78]. The use of a
Th1 epitope can also be responsible of this bias as Th1 cells promote the production of IgG2a
[79], as seen by the high number of CD4+ T cells able to produce IFN-γ induced by our modi-
fied adenovirus. The production of cytophilic antibodies like the ones produced by the
Ad5HVR2T53PyCMP–P–P regimen has been related to the inhibition of red blood cell inva-
sion in malaria as cytophilic antibodies promote antibody mediated complement dependent
immune responses [80].

Although the number of CD8+ or CD4+ T cells induced by Ad5HVR2T53PyCMP–P–P
and the Ad5PyCMP–P–P regimens was not significantly different, the quality of the cellular
responses was significantly better in the hexon modified adenovirus regimen inducing the pro-
duction of IFN-γ and TNF-α by CD8+ T cells in response to P. yoelii CSP and MSP1 demon-
strating a multistage cellular response. Importantly after the adenoviral priming the CD8+ and
CD4+ T cells induced by the Ad5PyCMP priming expressed higher levels of PD-1 a marker
related to T cell exhaustion [81]. The significant differences in the Th1 phenotypic response
between the modified and unmodified adenovirus as observed by a lower levels cytophilic anti-
bodies and the low IFN-γ production in the unmodified Ad5 can be explained by the PD-1
expression [82, 83]. These results are in contrast with the data reported by Teigler et al, in that
study all the Ad5 HVR were replaced for those of Ad48 a rare human adenovirus serotype and
both the wild type and the modified Ad5 vectors induced the expression of PD-1 and a dys-
functional phenotype when compared to Ad48 [84]. The main difference between Ad48 and
Ad5, reported by the authors, is the modulation of tghe innate immune response, triggered by
the different adenoviral capsid proteins [85]. The innate immune response towards the capsid
and different modifications and its relation with exhausted phenotypes requires therefore fur-
ther characterization.
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As expected the Ad5HVR2T53PyCMP–P–P regimen induced a statistically significant pro-
tection against a P. yoelii challenge when compared to placebo, this regimen was able to reduce
the parasite load both in the blood and in the liver. The Ad5PyCMP–P–P regimen was not sig-
nificantly protective despite reducing the blood parasite load in 24% compared to the control
group. This can be related to the higher expression of PD-1 by both CD4+ and CD8+ T cells
induced by the unmodified Ad5. In the LCMVmodel the PD-1 expression has been related to
low anamnestic potential and low protection[86]. Notably when we used the same Ad5+P+P
regimen but with a shorter dose interval we obtained a high protective efficacy but when a
higher adenoviral priming dose was used the protective efficacy was diminished, an effect that
was linked to a lower expression of memory markers (i.e. CD62L and CD127) (Cabrera-Mora
et al, submitted). Therefore, the Ad5HVR2T53PyCMP–P–P regimen has the potential to be
optimized.

It can be considered that the use of Ad5 as a platform is a limitation of this study since the
pre-existent immunity against this vector is between 82.2–90.5% of the population in living in
malaria endemic areas [87]. Several groups have shown potential in HVR modifications to cir-
cumvent pre-existent Ad5 immunity [27, 28, 88], since the neutralizing antibodies against Ad5
are mainly directed against the hexon. The switch of Ad5 HVR for the ones of rare human
serotypes has been a useful strategy, nonetheless more than one modification is usually
required to achieve this effect [27, 89], since the modification of a HVR that induces high
humoral responses is not necessarily related to the evasion of pre-existent anti-adenoviral anti-
bodies [90]. We therefore consider that the promiscuous T cell epitope HVR incorporation
should be performed on rare human serotypes or simian adenovirus that are not affected by
the pre-existent Ad5 immunity [25, 91, 92], a strategy currently under development by our
group.

In summary, in this study we generated an Ad5-based adenovirus vector that expresses a
Plasmodium promiscuous T cell epitope within the HVR2 of the hexon capsid protein and a
multistage protein vaccine as a transgene. When this vector was used in a heterologous Ad-pro-
tein immunization regimen it was able to induce a better humoral and cellular immune
response in comparison to an Ad5 vector expressing the same transgene. The better immuno-
logical profile of the capsid modified vector regimen translated into a higher protective efficacy
against a murine malaria challenge. The optimization of this antigen capsid incorporation will
include the use of both simian and rare human serotypes adenoviral vectors to develop more
attractive vectors for clinical development.

Supporting Information
S1 Fig. Gating strategy for flow cytometry analysis, tetramer. In this sample gating, cells
were first gated for lymphocytes (SSC-A vs FSC-A) and then for singlets (FSC-H vs FSC-A).
The singlets gate was further analyzed for CD3 expression taking only the T cell population
(CD3+). CD4 and CD8 surface expression was then determined and the CD8+ T cells were fur-
ther analyzed to measure tetramer recognition.
(PDF)

S2 Fig. Gating strategy for flow cytometry analysis, ICS. In this sample gating, cells were first
gated for lymphocytes (SSC-A vs FSC-A) and then for singlets (FSC-H vs FSC-A). The singlets
gate was further analyzed for their uptake of the Alexa 430 Live/Dead Stain. The samples were
then analyzed by gating on the live population and CD3+ T cells selected for further characteri-
zation of CD4+ and CD8+ T cell subsets. IFN-γ, TNF-α and IL-2 producing CD4+ or CD8+ T
cells were then quantified.
(PDF)
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