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Pathogenic Acinetobacter: from the Cell Surface to Infinity and
Beyond

Brent S. Weber,a,b Christian M. Harding,b Mario F. Feldmanb

Department of Biological Sciences, University of Alberta, Edmonton, AB, Canadaa; Department of Molecular Microbiology, Washington University School of Medicine in St.
Louis, St. Louis, Missouri, USAb

The genus Acinetobacter encompasses multiple nosocomial opportunistic pathogens that are of increasing worldwide relevance
because of their ability to survive exposure to various antimicrobial and sterilization agents. Among these, Acinetobacter bau-
mannii, Acinetobacter nosocomialis, and Acinetobacter pittii are the most frequently isolated in hospitals around the world. De-
spite the growing incidence of multidrug-resistant Acinetobacter spp., little is known about the factors that contribute to patho-
genesis. New strategies for treating and managing infections caused by multidrug-resistant Acinetobacter strains are urgently
needed, and this requires a detailed understanding of the pathobiology of these organisms. In recent years, some virulence fac-
tors important for Acinetobacter colonization have started to emerge. In this review, we focus on several recently described viru-
lence factors that act at the bacterial surface level, such as the capsule, O-linked protein glycosylation, and adhesins. Further-
more, we describe the current knowledge regarding the type II and type VI secretion systems present in these strains.

Infections caused by pathogenic members of the genus Acineto-
bacter are emerging as a significant threat to human health.

These Gram-negative bacteria are responsible for increasing num-
bers of infections encountered in hospitals, particularly among
immunocompromised patients (1, 2), and community-acquired
infections are also increasing in prevalence (3). A recently recog-
nized population at particular risk for Acinetobacter infections is
military service members who have suffered combat-related inju-
ries, who often acquire these infections in field hospitals (4–6).
Although Acinetobacter spp. primarily cause pneumonia, they are
also frequent causes of wound and burn infections, meningitis,
urinary tract infections, and sepsis (7). There is a growing trend
for these isolates to display high levels of antibiotic resistance, with
some being resistant to all clinically available antibiotics (8). Col-
lectively, these attributes have led to a pressing need to elucidate
the mechanisms used by pathogenic Acinetobacter to cause dis-
ease.

The bacterial cell surface plays essential roles in sensing of the
environment, interactions with the host, and maintenance of cellular
homeostasis (9). The molecular structures present on the cell surface,
and those that extend beyond the surface, are of central importance
for understanding the pathogenesis of an organism; these are often
the key determinants that mediate bacterial virulence and thus rep-
resent important targets for novel antimicrobials and vaccines (10).
This review highlights the recent research on pathogenic Acinetobac-
ter spp., which has led to several key findings on the strategies used
by these bacteria to elaborate cell surface and secretion compo-
nents that are vital for causing disease (Fig. 1).

CELL SURFACE

The cell surface of Gram-negative bacteria plays myriad roles in
the physiology of these organisms, including transport of mole-
cules into and out of the cell, interaction with and sensing of the
extracellular environment, and protection from external stresses
(9). While all bacterial cell surfaces are composed primarily of
lipids, carbohydrates, and proteins, the diversity in the molecular
composition and arrangement of these structures has vast impli-
cations for virulence in pathogenic bacteria. Recent experimental

investigation into the arrangement and composition of these
structures on Acinetobacter cell surfaces has provided important
insights into their role in the pathobiology of these important
human pathogens.

Lipooligosaccharide. Lipopolysaccharide (LPS), the major
component of the outer leaflet of the outer membrane (OM) of
many Gram-negative bacteria, is an immunostimulatory mole-
cule that plays an important role in bacterial resistance to external
stresses (11). LPS is composed of the endotoxic lipid A, a core
oligosaccharide, and a repeating sugar structure called the O an-
tigen (11). During biosynthesis of LPS, the core oligosaccharide is
built onto the lipid A moiety in the cytoplasm and flipped into the
periplasmic space. The repeat subunit of the O antigen is synthe-
sized separately onto an undecaprenyl phosphate (Und-P) carrier,
which is then flipped to the periplasm and ligated to the lipid A
core by the WaaL ligase enzyme (12); thus, the WaaL ligase is
essential for the production of O antigen. Many pathogens, such
as Escherichia coli and Salmonella spp., produce diverse O-antigen
structures that form the basis for serotyping schemes (13–15).
However, other important bacterial pathogens, such as Neisseria
and Campylobacter, lack a WaaL ligase ortholog and do not pro-
duce O antigen, elaborating only lipooligosaccharide (LOS) (16).

Whether Acinetobacter spp. elaborate LPS or LOS on their cell
surface has been a topic of considerable debate. Several reports
have described the presence of LPS in Acinetobacter, many of
which have used structural or antibody-based methods to detect
O-antigen carbohydrate moieties (17–26). However, most Acin-
etobacter spp. do not show “typical” LPS laddering upon silver
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staining of isolated LPS (27, 28), leading to doubts regarding
whether Acinetobacter spp. actually produce true O antigen. In-
triguingly, Acinetobacter spp. possess either one or two genes, de-
pending on the strain, that encode proteins with domains similar
to those found in WaaL ligase orthologs (29–32); however, those
domains are also found in PglL, the enzyme responsible for O-
linked protein glycosylation (see below) (29). Bioinformatic anal-
ysis alone is not sufficient to distinguish between WaaL and PglL
orthologs, and careful experimental analysis is required to deter-
mine the true function of the proteins possessing these domains.
Recent work has now conclusively demonstrated that, in Acineto-
bacter spp. with a single “waaL-like” gene, the gene actually en-
codes a PglL enzyme with no O-antigen ligase activity (29). In
Acinetobacter spp. with two waaL-like genes, the genes were ini-
tially suggested to encode one PglL enzyme and one WaaL enzyme
(31), but experimental analysis has identified both enzymes as
being exclusively involved in protein O-linked glycosylation, with
no role in O-antigen biosynthesis (30). In light of these recent
data, and in the absence of experimental data showing a protein
possessing divergent O-antigen ligase activity, it seems most likely
that Acinetobacter spp. produce LOS but not LPS. In any case,
targeted mutagenesis and random mutagenesis of genes involved
in synthesis of the LOS core oligosaccharide have shown that this
component is a major contributor to Acinetobacter survival and
virulence (33–35). The cluster of genes that synthesize the sugar
component of LOS are extremely diverse among Acinetobacter
spp., and a number of different structures have been determined
or predicted (36). Modification of the LOS has also been shown to
impart resistance to antimicrobials, similar to the findings for
other bacterial species. Specifically, these modifications occur on
the lipid A structure of Acinetobacter spp. and lead to decreased
susceptibility to antibiotic and antimicrobial peptides and in-
creased survival during desiccation (37–39). Acinetobacter spp.
have also been shown to acquire mutations in the lipid A bio-
synthetic pathway when treated with colistin, resulting in re-
sistance to the antibiotic (40–43). Interestingly, those studies
found that mutations in certain lipid A genes resulted in com-
plete loss of LOS.

Glycoproteins. The posttranslational modification of proteins
with glycans, which were once thought to be exclusive to eu-
karyotes, has been identified in all forms of life. In bacteria, car-
bohydrates can be attached via the amide of asparagine residues
(N-linked) or the hydroxyl of serine/threonine residues (O-

linked). In a series of steps analogous to O-antigen biosynthesis,
glycans are assembled onto the Und-P lipid carrier and flipped to
the periplasmic face of the inner membrane, where an O-oligosac-
charyltransferase (O-OTase) enzyme catalyzes the transfer of the
complete carbohydrate structure to a serine or threonine residue
on the cognate acceptor protein (44).

Bioinformatic analysis identified a protein in Acinetobacter
baumannii that showed homology to the O-OTase from Neisseria
meningitidis, named PglL (29). PglL proteins often contain do-
mains similar to those of WaaL ligases (Wzy_C domains), and
bioinformatic identification of a PglL-like protein is not sufficient
to differentiate it from WaaL ligases, thus necessitating experi-
mental characterization. When the pglL-like gene from A. bau-
mannii was deleted, loss of a carbohydrate-specific band was de-
tected after SDS-PAGE analysis, with no change in the LOS profile
(29). In-depth characterization of the A. baumannii pglL mutant
by mass spectrometry determined that the pglL-deficient strain
lacked a total of seven glycoproteins, which were glycosylated with
a pentasaccharide in the wild-type strain. Loss of protein glycosy-
lation in A. baumannii resulted in pleiotropic effects on several
virulence-associated phenotypes, including biofilm formation
and survival in a mouse model of systemic infection (29). Protein
glycosylation has been shown to be a conserved modification pres-
ent throughout the genus Acinetobacter, but the composition of
the glycan moiety and the number and identity of the modified
proteins vary among strains (45). Interestingly, the carbohydrate
structure attached to glycoproteins is identical to the repeat units
found in capsular polysaccharide (46). Although the phenotypes
associated with complete loss of protein glycosylation have been
studied, the contributions of individual glycoproteins to these
phenotypes remain unknown.

The pglL gene in A. baumannii is located immediately down-
stream of the predicted major type IV pilin gene, pilA, which en-
codes a common target for glycosylation in several bacteria. In A.
baumannii ATCC 17978, this protein was not found to be glyco-
sylated under laboratory conditions but was glycosylated upon
overexpression in the presence of PglL (29, 30). Intriguingly, most
Acinetobacter spp. actually have two proteins with a domain from
the Wzy_C superfamily that is common to PglL and WaaL or-
thologs. It was originally suggested that this second gene could be
a WaaL ligase involved in O-antigen biosynthesis (31). Through
mutagenesis and functional studies, however, it was determined
that both genes actually encode O-OTases (30). The O-OTase en-

FIG 1 Cell surface components and secretion systems identified in Acinetobacter spp.

Minireview

March 2016 Volume 198 Number 6 jb.asm.org 881Journal of Bacteriology

 on A
pril 19, 2016 by W

ashington U
niversity in S

t. Louis
http://jb.asm

.org/
D

ow
nloaded from

 



coded by the gene near the pilin gene was found to exclusively
glycosylate the cognate pilin protein, similar to the PilO/TfpO
protein from Pseudomonas aeruginosa (47), while the second gene
encoded a general O-OTase that was responsible for the glycosy-
lation of multiple proteins, similar to PglL from Neisseria (48, 49).
Although the functional significance of having two glycosylation
systems remains to be determined, this represents the first known
case of multiple O-OTases present in a single bacterium.

Capsule. Like many other pathogens, Acinetobacter spp. pro-
duce an extracellular capsule that provides a layer of protection
from external threats such as complement-mediated killing (50).
Capsule production and protein glycosylation are exquisitely
linked in Acinetobacter, as the carbohydrate repeat unit found in
the capsule is the same as the single repeat unit attached to pro-
teins (46). The sugar subunits for capsule and protein glycosyla-
tion are derived from the same pathway, in which an initiating
glycosyltransferase, PglC/ItrA, attaches the first carbohydrate to
Und-P, followed by the addition of other sugar monomers by
glycosyltransferase enzymes to complete the repeat unit (46). This
repeat unit is then flipped to the periplasm, and the capsule and
protein glycosylation pathways diverge at this point. In the case of
protein glycosylation, this single repeat unit is attached to the
target protein by the O-OTase (29). For capsule production, indi-
vidual sugar repeat units are instead polymerized and exported to
the cell surface. This bifurcated pathway represents a novel mech-
anism that illustrates the evolutionary connections between cap-
sule and protein glycosylation, which may allow Acinetobacter to
adapt rapidly to changing environments. How A. baumannii par-
titions a given carbohydrate repeat unit to the protein glycosyla-
tion pathway or capsule production remains to be determined.
Although the carbohydrate structures produced by different
strains are highly variable, functional studies have shown that cap-
sule production is essential for Acinetobacter survival during in-
fection and growth in serum (32, 46, 50, 51). It was recently re-
ported that capsule production could be increased by the presence
of subinhibitory levels of antibiotics, which increased resistance to
complement-mediated killing and led to a hypervirulent pheno-
type in a mouse model of systemic infection (52). This capsule
hyperproduction phenotype was shown to be controlled by the
two-component BfmRS system, which regulates several other im-
portant virulence factors in Acinetobacter (53). Acinetobacter spp.
also produce a surface-associated poly-�-1-6-N-acetylgluco-
samine (PNAG) polysaccharide, which is important for virulence
and biofilm formation (54).

Pili. Filamentous bacterial surface appendages, termed pili,
mediate interactions between the producing organism and their
environment. Acinetobacter pili have been studied since 1975,
when Henrichsen and Blom observed that Acinetobacter calcoace-
ticus strains displaying surface fimbrial structures exhibited
twitching motility (55, 56), a form of bacterial locomotion now
known to be dependent on functioning type IV pili (57). Further-
more, it has been shown that the nonpathogenic model organism
Acinetobacter baylyi ADP1 produces both thin and thick pili (58);
however, the roles pili play in the biology and pathobiology of
pathogenic Acinetobacter spp. have been only partially elucidated.

A system of chaperone/usher pili, designated Csu pili, has been
identified in all sequenced pathogenic Acinetobacter spp.; how-
ever, the Csu pili have been primarily studied in A. baumannii
(59). The Acinetobacter Csu pili are required for biofilm formation
and maintenance in A. baumannii ATCC 19606 but were found

not to play a role in adherence to human epithelial cells (60).
Another study found that the CsuA/B pilin subunit was the most
abundant protein identified within the pellicle matrix of multiple
A. baumannii strains (61), further strengthening the role of Csu
pili in biofilm formation and maintenance. Previous reports also
identified a single nucleotide insertion in the csuB gene of A. bau-
mannii ATCC 17978, suggesting that this system may be nonfunc-
tional in this strain (62, 63); however, recent resequencing of the
A. baumannii ATCC 17978 genome (GenBank accession no.
CP012004) did not find the same insertion event (64). Lastly,
other chaperone/usher pilus-like systems have been bioinformati-
cally identified in many A. baumannii strains, but none of those
systems has been functionally characterized (61, 62). Mass spec-
trometric characterization of pellicle-associated proteins did find
that non-Csu-pilin subunits were present, indicating that these
systems may be functional.

Medically relevant Acinetobacter spp. have also been shown to
produce type IV pili (Tfp), which are dynamic bacterial surface
appendages known to mediate twitching motility, horizontal gene
transfer, and biofilm formation (65). Although bioinformatic
studies have identified genes predicted to encode proteins re-
quired for the biogenesis of Tfp in A. baumannii, only Acinetobac-
ter nosocomialis strain M2 has been shown conclusively to produce
functioning Tfp (66, 67), which is glycosylated by a TfpO-like
oligosaccharyltransferase (30). Many A. baumannii isolates have
been found to be naturally transformable and to exhibit twitching
motility (63, 68–70), two classic Tfp-associated phenotypes,
which strongly indicates their presence. Tfp-like structures were
also identified on A. baumannii ATCC 17978 (71); furthermore,
mutants in predicted Tfp biogenesis components of A. baumannii
ATCC 17978 exhibited impaired biofilm formation (71) but the
major pilin subunit, PilA, has not been shown to be surface ex-
posed and/or associated with the pilin structures observed. Al-
though Tfp, with roles in Acinetobacter motility and natural trans-
formation, has emerged as a possible virulence factor, no studies
have conclusively linked Tfp to the pathobiology of Acinetobacter,
as is the case for Pseudomonas and Neisseria.

PROTEIN SECRETION

Extracellular export of proteins is a fundamental process of all
forms of life. Protein secretion systems of Gram-negative bacteria
are extremely diverse in function and composition and often are
important mediators of virulence. Recent research has elucidated
several of the mechanisms Acinetobacter uses to secrete proteins
and the role they play in the biology of Acinetobacter. Here we
describe the recent insights into macromolecular protein secre-
tion systems present in Acinetobacter, with a focus on the systems
that export proteins out of the cell and that have been character-
ized experimentally.

Type II secretion. The most recently described secretion sys-
tem is a functional type II secretion system (T2SS) identified in
both A. nosocomialis strain M2 (119) and A. baumannii ATCC
17978 (72); moreover, it was shown that clinical isolates of Acin-
etobacter pittii, A. baumannii, A. calcoaceticus, and Acinetobacter
junii all were able to secrete type II substrates, indicating that
functioning type II secretion systems seem to be the rule and not
the exception. With regard to the T2SS of A. nosocomialis strain
M2, a two-dimensional differential gel electrophoresis ap-
proach identified multiple putative type II substrates; the LipA
and LipH lipases and the CpaA metallopeptidase were vali-
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dated as bona fide type II secretion substrates. Interestingly,
both LipA and CpaA required specific membrane-associated
chaperones for secretion, which indicates that T2SS chaper-
ones are more widespread than previously recognized. Impor-
tantly, it was shown that an A. nosocomialis strain M2 gspD mu-
tant lacking the outer membrane secretin of the T2SS was severely
attenuated in both the Galleria mellonella and murine pulmonary
infection models. Specifically, mice intranasally infected with the
gspD mutant strain had �2-log lower bacterial burdens in both
the lungs and the spleen after 36 h, compared to both the parental
strain and the complemented mutant. In A. baumannii ATCC
17978, Johnson et al. identified a lipase, LipA, secreted in a T2SS-
dependent manner that was required for growth on medium con-
taining lipids as a sole carbon source (72). Mutants with muta-
tions in lipA or the T2SS structural gene gspD were less
competitive than the wild-type strain in a mixed-infection murine
model of bacteremia. Collectively, these findings indicate that the
Acinetobacter T2SS is a previously unrecognized virulence factor
mediating pathogenesis in a relevant mammalian model. Interest-
ingly, a recent study by Wang et al. utilized an A. baumannii ATCC
17978 gspN mutant for validation of their insertion sequencing
murine pulmonary infection studies, and they subsequently
found that the gspN mutant did not display any virulence defect in
survival or competition models, compared to the parent strain
(51). Although these data are in contrast to the newly defined role
of type II secretion in Acinetobacter, it was demonstrated previ-
ously that gspN homologs were not required for a functioning
T2SS in Klebsiella oxytoca (73); furthermore, gspN homologs are
absent from numerous known T2SSs in other Gram-negative bac-
teria (74), indicating the dispensable nature of GspN in function-
ing T2SSs.

Autotransporters. A type V autotransporter has been charac-
terized in A. baumannii. The Acinetobacter trimeric autotrans-
porter (Ata) was found to be crucial for the ability of certain A.
baumannii strains to adhere to extracellular matrix components,
including collagen I, III, IV, and V (75). Ata is also an important
mediator of A. baumannii biofilm formation and maintenance, as
an A. baumannii ATCC 17978 ata mutant had significantly dimin-
ished biofilm production and was less virulent in a murine intra-
peritoneal infection model, compared to the parental and com-
plemented strains (75).

Type VI secretion. Bacteria interact with each other in a mul-
titude of ways; these interactions are often competitive in nature
and play important roles in niche establishment (76). The bacte-
rial type VI secretion system was first formally described for Vibrio
cholerae and P. aeruginosa and was suggested to play a role against
eukaryotic hosts (77, 78). While several T6SSs have been deter-
mined to secrete antieukaryotic toxins, it has recently been appre-
ciated that many bacteria use their T6SSs to secrete antibacterial
toxins to kill competing bacteria (79, 80). The T6SS is composed
of approximately 15 conserved structural proteins and a variable
number of accessory factors, which work in concert to secrete
proteins extracellularly (81). Important components include Hcp,
which forms a polymerized tubular structure that is secreted out
of the cell and is essential for protein secretion, and VgrGs, which
are present at the tip of this structure and can have effector activity
or facilitate effector secretion (82). The T6SS bears striking simi-
larity to bacteriophage, both structurally and functionally (83).

The presence of a T6SS was initially predicted bioinformati-
cally for A. baylyi, and Hcp was subsequently detected in superna-

tants of A. baumannii ATCC 19606 (84, 85). The genetic organi-
zation and sequences of T6SS genes are remarkably well conserved
across Acinetobacter spp. Based on homology with T6SS genes in
other bacteria, the single Acinetobacter T6SS locus includes most
of the genes required for apparatus assembly and function (86,
87). Notably, the main T6SS cluster does not contain vgrG genes,
which are instead scattered throughout the genome. The VgrG
proteins of Acinetobacter, which differ in number from strain to
strain, do not seem to include effector domains (86, 88). Instead,
bioinformatic analyses suggest that the proteins are most likely to
mediate the secretion of adjacently encoded toxic effectors, with
cognate immunity proteins being encoded nearby (88). However,
no bona fide T6SS-dependent effectors have been experimentally
characterized in Acinetobacter. In A. baylyi, mutation of three
PAAR proteins, which interact with VgrG proteins, results in loss
of Hcp secretion, and one of those PAAR proteins has been exper-
imentally determined to be secreted, although it is not clear
whether the proteins have any effector functions themselves (89).
The primary function of the T6SS in Acinetobacter seems to be to
kill competing bacteria, and Acinetobacter spp. with active T6SSs
are able to kill a wide variety of other bacteria, including other
strains of the same species (64, 87–89).

T6SS expression often is tightly controlled and is activated only
under certain conditions; the molecular mechanisms used to
achieve this regulation are extremely diverse and complex and
differ from organism to organism and even between strains of a
given species (82). Although little is known about T6SS regulation
in Acinetobacter, recent studies have provided insight into some of
the regulatory mechanisms used by these organisms. T6SS activi-
ties vary widely in different strains and species of Acinetobacter,
with some strains showing robust T6SSs and bacterial killing and
others seeming to have inactive systems under laboratory condi-
tions (64, 86–88). However, the available data suggest that strains
with T6SSs invariably express the main protein Hcp to at least
some level, with variations in whether the protein is secreted (thus
determining whether the system is active) (64, 86, 88). In A. bau-
mannii ATCC 19606, Hcp is constitutively secreted in wild-type
cells but is lost in mutants lacking lipid A, potentially due to mem-
brane disruptions (85). In A. baumannii ATCC 17978, T6SS ac-
tivity is controlled by a plasmid (see below), and a chromosomally
encoded histone-like nucleoid-structuring (H-NS) protein may
also regulate the T6SS (90). Several A. baumannii isolates harbor a
resistance plasmid that encodes repressors of the T6SS (64). Upon
spontaneous loss of this plasmid and subsequent loss of the re-
pressors, the T6SS is activated and the resistance genes are lost.
The functional significance of this remains to be elucidated but,
considering the tremendous amount of energy required for T6SS
activity (91) and the fitness defects often caused by harboring
multiple antibiotic resistance genes (92), this may represent a
mechanism to maintain both systems while avoiding potentially
deleterious effects of having them be active at the same time. In the
absence of antibiotic pressure, Acinetobacter strains do not require
resistance genes but are more likely to encounter competitors,
thus losing the resistance plasmid and activating the T6SS, which
could provide a competitive advantage. Because the cells that lose
the plasmid will lose resistance to antibiotics, this strategy could
constitute an altruistic mechanism to ensure Acinetobacter popu-
lation survival. It should be noted that several recent multidrug-
resistant (MDR) A. baumannii strains seem to have permanently
inactivated their T6SSs through chromosomal gene loss; it has
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been suggested that this may be a result of the antibiotic pressure
being great enough to make it evolutionarily advantageous to
completely lose the T6SS, rather than maintaining it in an inactive
state (93). Although there are limited data, there appears to be a
link between antibiotic resistance and T6SS status in Acinetobac-
ter; strains that are multidrug resistant express but do not secrete
Hcp, while those that are not multidrug resistant are more likely to
have an active T6SS (64, 86, 88).

Outer membrane vesicles. A special case of protein secretion is
the production of outer membrane vesicles (OMVs), which are
blebs of outer membrane (OM) released from the bacterial cell
surface (94). There is significant debate regarding whether OMVs
are produced by a directed process or simply represent cellular
debris. Proteomic comparisons between the OM and OMVs of
some bacteria have shown that the protein profiles differ between
these two fractions, indicating that some OM proteins are ex-
cluded from OMV recruitment and suggesting that OMV forma-
tion is a directed process (94). However, many studies also de-
tected cytoplasmic proteins in OMV preparations, indicating that
cell lysis could also be a major contributor to OMV formation
(94). OMVs have been implicated in numerous biological func-
tions, with particular attention being devoted to their role in vir-
ulence (95). Several studies on OMVs in Acinetobacter have sug-
gested that they have many functions, including roles in
horizontal gene transfer, antibiotic resistance, and virulence. A
wide variety of cargo types have been identified in OMVs from
different Acinetobacter strains, including virulence proteins, anti-
biotic resistance determinants, and DNA (96–102). An important
virulence factor of A. baumannii, OmpA, has also been found to be
associated with OMVs, and OMVs have been suggested to act as a
mechanism for delivery for this protein to host cells (103). Fur-
thermore, OmpA has been suggested to be involved in the biogen-
esis of OMVs (104). OMVs from Acinetobacter may have an im-
portant role in the development of novel therapeutics, as they can
stimulate a strong immune response and are protective when ad-
ministered as a vaccine (105–107).

FUTURE DIRECTIONS

The surge of infections caused by Acinetobacter spp. has led to
increased interest from the scientific and medical communities
and attempts to understand the disease-causing mechanisms of
these organisms. Many recent studies have greatly increased our
understanding of Acinetobacter infection mechanisms but have
also illuminated what a formidable pathogen the health care com-
munity is facing. There is intense interest in discovering novel
strategies to fight this pathogen, which is quickly becoming un-
treatable with our current antibiotic repertoire. Although the vast
majority of patients who become infected with Acinetobacter spp.
are immunocompromised, which complicates intervention strat-
egies, vaccines have been proposed as an alternative method to
fight MDR Acinetobacter (108, 109), and several promising candi-
dates have been described (107, 110–114). Individuals for whom
immunocompromise could potentially be predicted a priori, such
as patients undergoing cancer treatments or surgery and military
personnel entering conflicts, may benefit from a prophylactic vac-
cination strategy (115). Carbohydrate structures present in Acin-
etobacter, such as the capsule and glycoproteins, represent attrac-
tive antigenic targets for vaccine development; since the
carbohydrate moieties are the same in both, targeting these struc-
tures may provide broad protection (46). Indeed, capsule-based

vaccines have shown efficacy in soft tissue, pneumonia, and bac-
teremia rodent models (116, 117). A drawback to this approach,
however, is that the strain-to-strain variations in carbohydrate
structures are so great that a multivalent vaccine to target all
pathogenic Acinetobacter strains is unrealistic. Extensive epidemi-
ological data on the capsular/glycoprotein serotypes most preva-
lent in a given health care institution may allow for a more di-
rected approach to vaccine design. Indeed, PCR-based schemes
have been proposed to accomplish this, and advances in the speed
and cost of genome sequencing may make this a feasible approach
(118). Because the production of capsular polysaccharides and
glycoproteins is essential for virulence, targeting common steps in
the biosynthetic pathway of these structures may be more feasible.
Given the genomic plasticity of Acinetobacter, it is likely that a
“one size fits all” solution to the problem is not possible, and
multiple strategies should be investigated in order to determine
the most beneficial approach for a given health care setting.
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