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OPEN

ORIGINAL ARTICLE

Genome-wide association study of lifetime cannabis use based
on a large meta-analytic sample of 32330 subjects from the
International Cannabis Consortium
S Stringer1,2,51, CC Minică3,51, KJH Verweij3,4,5,51, H Mbarek3, M Bernard6, J Derringer7, KR van Eijk8, JD Isen9, A Loukola10,
DF Maciejewski5, E Mihailov11, PJ van der Most12, C Sánchez-Mora13,14,15, L Roos16, R Sherva17, R Walters18,19,20, JJ Ware21,22,
A Abdellaoui3, TB Bigdeli23, SJT Branje24, SA Brown25, M Bruinenberg26, M Casas14,15,27, T Esko11, I Garcia-Martinez13,14, SD Gordon28,
JM Harris16, CA Hartman29, AK Henders28, AC Heath30, IB Hickie31, M Hickman21, CJ Hopfer32, JJ Hottenga3, AC Huizink5, DE Irons9,
RS Kahn8, T Korhonen10,33,34, HR Kranzler35, K Krauter36, PAC van Lier5, GH Lubke3,37, PAF Madden30, R Mägi11, MK McGue9,
SE Medland28, WHJ Meeus24,38, MB Miller9, GW Montgomery28, MG Nivard3, IM Nolte12, AJ Oldehinkel39, Z Pausova6,40, B Qaiser10,
L Quaye16, JA Ramos-Quiroga14,15,27, V Richarte14, RJ Rose41, J Shin6, MC Stallings42, AI Stiby21, TL Wall43, MJ Wright28, HM Koot5,
T Paus44,45,46, JK Hewitt42, M Ribasés13,14,15, J Kaprio10,34,47, MP Boks8, H Snieder12, T Spector16, MR Munafò21,48, A Metspalu11,
J Gelernter49, DI Boomsma3,4, WG Iacono9, NG Martin28, NA Gillespie23,28,52, EM Derks2,52 and JM Vink3,50,52

Cannabis is the most widely produced and consumed illicit psychoactive substance worldwide. Occasional cannabis use can
progress to frequent use, abuse and dependence with all known adverse physical, psychological and social consequences.
Individual differences in cannabis initiation are heritable (40–48%). The International Cannabis Consortium was established with the
aim to identify genetic risk variants of cannabis use. We conducted a meta-analysis of genome-wide association data of 13 cohorts
(N= 32 330) and four replication samples (N= 5627). In addition, we performed a gene-based test of association, estimated single-
nucleotide polymorphism (SNP)-based heritability and explored the genetic correlation between lifetime cannabis use and
cigarette use using LD score regression. No individual SNPs reached genome-wide significance. Nonetheless, gene-based tests
identified four genes significantly associated with lifetime cannabis use: NCAM1, CADM2, SCOC and KCNT2. Previous studies
reported associations of NCAM1 with cigarette smoking and other substance use, and those of CADM2 with body mass index,
processing speed and autism disorders, which are phenotypes previously reported to be associated with cannabis use.
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Furthermore, we showed that, combined across the genome, all common SNPs explained 13–20% (Po0.001) of the liability of
lifetime cannabis use. Finally, there was a strong genetic correlation (rg = 0.83; P= 1.85 × 10− 8) between lifetime cannabis use and
lifetime cigarette smoking implying that the SNP effect sizes of the two traits are highly correlated. This is the largest meta-analysis
of cannabis GWA studies to date, revealing important new insights into the genetic pathways of lifetime cannabis use. Future
functional studies should explore the impact of the identified genes on the biological mechanisms of cannabis use.

Translational Psychiatry (2016) 6, e769; doi:10.1038/tp.2016.36; published online 29 March 2016

INTRODUCTION
Cannabis is the most widely produced and consumed illicit
psychoactive substance worldwide.1 Following initiation, occa-
sional cannabis use can progress to frequent use, abuse and
dependence. About 1 in 10 occasional users becomes dependent,
which is associated with physical, psychological, social and
occupational consequences.2,3 Despite the increasing use of
cannabis for medicinal purposes,4 associations with adverse
health effects have been reported.5,6 These include increased risk
for psychiatric outcomes, including psychosis, schizophrenia,
schizotypal personality disorder and mania.7,8 Early cannabis use
appears to moderate relationship between polygenic risk scores
for schizophrenia and brain maturation.9 In view of expanding
medicalization and decriminalization, the potential consequences,
and the debate surrounding the benefits versus adverse
consequences associated with cannabis use,10 understanding
the genetics of cannabis use should be a public health priority.11

The risk of lifetime cannabis use, defined as any use of cannabis
during the lifetime, varies between individuals. Previous studies
have shown that individual differences in lifetime cannabis use
can be partly explained by genetic differences between indivi-
duals; a meta-analysis of twin studies reported significant
heritability estimates of lifetime cannabis use of 48% for males
and 40% for females.12 Shared environmental factors, such as
cannabis availability and parental monitoring,13,14 also have a role
accounting for 25 and 39% of the risk for males and females,
respectively.12 Also, there is substantial overlap in the genetic risks
underlying lifetime cannabis use and cannabis use disorder.15

Several studies have sought to identify specific genetic risk
factors associated with cannabis use phenotypes. Genome-wide
linkage studies have revealed suggestive evidence for linkage
across many chromosomes.16–20 With very little consistency across
studies, nearly all findings failed to meet genome-wide signifi-
cance. The one study examining lifetime cannabis use16 reported
a nonsignificant linkage locus on chromosome 18 (LOD
score = 1.97).
Candidate gene studies, including reports examining the CNR1,

GABRA2, FAAH and ABCB1 genes have detected some significant
associations with cannabis use but again, replication has been
inconsistent.21–23 On the basis of a sample of 7452 Caucasian
individuals, Verweij et al.21 found no gene-based associations
between the frequency of cannabis use and 10 candidate genes
identified by Agrawal and Lynskey.24 Overall, the results of
candidate-gene studies are inconclusive; some associations have
been replicated a few times, but failed to replicate in other studies.
Moreover, findings may be further distorted due to publication
bias favouring significant results.
As an alternative to the candidate-gene approach, the genome-

wide association study (GWAS) is a hypothesis-free method that
aims to detect novel genetic variants involved in complex traits.
To date, three GWASs of cannabis use phenotypes have been
published: one GWAS of cannabis dependence in 708 cannabis-
dependent individuals and 2346 controls;25 a GWAS meta-analysis
of lifetime cannabis use based on two studies with a combined
sample size of 10 091 individuals (40.7% users);26 and a recent
GWAS of lifetime cannabis use and age of cannabis use onset
based on a sample of 6744 individuals (of whom 20% were

users).27 None of the studies identified any genome-wide
significant associations. This was likely due to the small effect
sizes typical of common variants underpinning highly polygenic
traits,28 thereby indicating a need for larger sample sizes. In this
context, the success of larger GWASs and international consortia
examining a variety of complex traits is encouraging.29 For
example, multiple large meta-analyses of GWA results for number
of cigarettes smoked per day have independently identified
associations on chromosome 15q25 spanning the α5, α3 and β4
nicotinic receptor subunit gene clusters (CHRNA5, CHRNA3,
CHRNB4).30–32

These and other recent GWA findings29 clearly illustrate the
need for larger sample sizes. In response to this need, the
International Cannabis Consortium was established to combine
the results of multiple GWASs to identify the genetic variants
underlying individual differences in cannabis use phenotypes. Our
rationale for focusing on lifetime cannabis use (yes/no) is because
this phenotype is heritable and shares significant genetic risks
with that risk for cannabis abuse or dependence.14,15,33 In contrast
to frequency of use or abuse and dependence, which are not
commonly assessed in large-scaled genetic studies, most general
population studies have assessed lifetime cannabis use, thereby
increasing our sample size and power to detect associations.
Currently, the combined International Cannabis Consortium
sample size for lifetime cannabis is 32 330 individuals from 13
cohorts from Europe, the United States and Australia, along with
four independent replication samples comprising 5627 indivi-
duals. This sample size is considerably larger than the sample size
of the previous GWAS investigating lifetime cannabis use in two
samples from Australia and the UK, thereby providing substan-
tially greater power to detect genetic variants of small effect size.
The aim of the present study is to identify genetic variants

associated with lifetime cannabis use by meta-analysis of the
GWAS results from all contributing International Cannabis Con-
sortium samples. The tests of association for individual genetic
variants will be complemented with gene-based tests of associa-
tion. In addition, we will investigate which proportion of the
heritability inferred by twin studies is explained by common SNPs
captured on GWAS arrays. Finally, we will estimate the genetic
correlation between lifetime cannabis and smoking initiation
based on the analysis of our summary statistics and those from
the publicly available Tobacco Alcohol and Genetics consortium.

MATERIALS AND METHODS
Cohorts
We performed a meta-analysis of GWA results from 13 discovery samples
from Europe, USA and Australia including a total of 32 330 individuals of
European ancestry. The size of the samples ranged from 721 to 6778
individuals. The age of the participants ranged from 16 to 87 years with an
average of 34 years. The percentage of females ranged from 30 to 66%
with an average of 53%. Owing to the differences in recruitment strategies,
cultural and temporal difference, combined with likely variation in the drug
availability between countries, there was a wide range in the prevalence of
lifetime use (that is, never/ever used cannabis), which varied from 1 to 92%
with an average of 44.5%.
Four additional independent samples with a total of 5627 subjects were

used for replication. One sample (n= 2660) consisted of African American
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subjects. The other three included subjects of European ancestry. See
Table 1 for individual sample characteristics. The procedures for data
collection per sample are described in the Supplementary Information 1.

Phenotype and covariates
For all individuals, the data were available on whether or not the subject
reported having ever used cannabis during their lifetime: yes (1) versus no
(0). Although phrasing of the question slightly differed between samples
(see Supplementary Information 1), our unit of analysis reflected lifetime
cannabis use in all the samples.
Covariates included age at the time of phenotypic assessment, sex, birth

cohort and principal components (obtained from the genome-wide
genotype data). Spanning 20-year intervals, birth cohort was dummy
coded, with the lowest birth cohort (that is, oldest age group) used as the
reference group. The details about phenotypic assessment and individual
sample characteristics for the discovery and replication samples are
located in Supplementary Information 1 and Supplementary Table 1.

Genotyping and imputation
Genotype imputation was based on the 1000 Genomes phase 1 reference
panel.34 Allelic dosage data were used to account for genotype
uncertainties. See Supplementary Table 2 for the genotyping platform,
imputation program and quality control thresholds used.

Statistical analyses
GWA analysis in each discovery cohort. The GWA analyses were performed
by each group separately. Associations between the binary phenotype and
the genotypes were tested genome-wide using a logistic regression model
including covariates (see above). For family-based samples, familial
relatedness was taken into account by using a sandwich correction as
implemented in PLINK.35 The analyses plan can be found in Supplementary
Information 3. It should be noted that some groups did do the analyses in
a slightly different manner based on the characteristics of their sample. The
analyses plan that was send to the participating groups is included in
Supplementary Information 3. It should be noted that some groups did do
the analyses in a slightly different manner based on the characteristics of
their sample. Supplementary Table 2 lists the program used by each group.

Meta-analysis of GWAS results. Before performing the meta-analysis, we
applied a set of filters to each GWA results set independently. First, we
removed insertions and deletions, ensuring that all base pair positions
were unique and referred to the same genetic variant (that is, SNP).
Second, we removed genotyped SNPs that were not in Hardy–Weinberg

equilibrium (P⩽ 10− 5). Third, we removed SNPs with minor allele
frequency (MAF) o√(5/N), which under the assumption of Hardy–
Weinberg equilibrium corresponded to less than five estimated individuals
in the least frequent genotype group. In the EGCUT1 sample, due to very
low prevalence of lifetime cannabis use (1.3%), we excluded SNPs with
MAFo0.2. Fourth, regardless of the quality score type used, we excluded
SNPs with imputation quality scores below 0.6. Finally, SNPs present in only
one sample and SNPs with alleles or allele frequencies inconsistent with
the 1000 Genomes phase I European reference panel (absolute MAF
difference 40.15) were removed.
We performed a fixed-effects meta-analysis based on the cohort’s effect

sizes and standard errors using METAL.36 Our meta-analysis combined
association summary statistics for 6 444 471 SNPs that passed all the filters.
We applied the conventional threshold of 5 × 10− 8 as an indication of
genome-wide significance (see ref. 37). Although the combined sample
size of the meta-analysis based on the discovery samples is 32 330, the
sample size per SNP varies due to missingness across subsamples.

Gene-based test. Results of the GWAS were then used as part of gene-
based tests of association in the Knowledge-based mining system for
Genome-wide Genetic studies (KGG) software package Version 3.5.38,39

This approach uses an extended Simes test that integrates prior functional
information and the meta-analysis association results when combining the
SNP P-values within a gene to obtain an overall association P-value for
each entire gene. We conducted 24 576 gene-based tests of association.
The genome-wide significance level according to the Knowledge-based
mining system for Genome-wide Genetic studies default setting of
Benjamini and Hochberg false discovery rate threshold of 0.05 (ref. 40)
was 9.38 × 10− 6.

Estimation of SNP-based heritability and genetic overlap with lifetime
cigarette smoking. The proportion of phenotypic variance that could be
explained by the SNPs was estimated using the density estimation method
developed by So et al.41 The density estimation method estimates the
genome-wide distribution of effect sizes based on the difference between
the observed distribution of test statistics in the meta-analysis and the
corresponding null distribution. Before estimation, the SNPs present in at
least 25% of the meta-analysis samples were pruned for LD. We used the
r2 = 0.15 pruning level as the primary result for consistency with other
applications of this method. Additional details are located in the
Supplementary Information 2. LD Score regression42,43 was used as an
alternative method to estimate the SNP-based heritability, as well as to
estimate the degree of genetic covariance between lifetime cannabis use
(present study) and lifetime cigarette smoking31 (see Supplementary
Information 2).

Table 1. Discovery and replication sample characteristics

Sample Country N % Users % Female Mean age (range) N SNPs

Discovery
ALSPAC UK 2976 42 56 18 (17–19) 5 182 231
BLTS Australia 721 60 57 26 (18–33) 4 558 509
CADD USA 853 79 30 25 (18–36) 4 972 726
EGCUT1 Estonia 2765 1.3 55 34 (18–66) 6 048 479
EGCUT2 Estonia 970 4.8 51 31 (18–50) 5 171 164
FinnTwin Finland 1029 27 52 23 (20–29) 4 364 135
HUVH Spain 981 20 30 36 (17–87) 4 971 170
MCTFR USA 6241 59 54 37 (18–71) 6 304 767
NTR Netherlands 4653 27 66 37 (18–60) 4 644 238
QIMR Australia 6778 51 54 45 (18–85) 5 901 727
TRAILS Netherlands 1226 51 47 19 (18–21) 5 336 901
Utrecht Netherlands 1173 54 54 21 (18–37) 4 831 885
Yale Penn EA USA 1964 92 40 38 (16–76) 5 856 902

Replication
Radar Dutch 338 59 44 20 (17–22) 10
SYS Canada 551 51 56 50 (36–65) 10
TwinsUK UK 2078 12 93 58 (18–86) 10
Yale Penn AA US 2660 82 46 42 (16–76) 10

Abbreviations: N, sample size; N SNPs, number of SNPs used for the meta-analysis; SNP, single-nucleotide polymorphism; % female, percentage of females; %
users, percentage of users that ever used cannabis.
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RESULTS
Meta-analysis
No genome-wide significant associations between individual SNPs
and lifetime cannabis use were observed (see Manhattan plot,
Supplementary Figure 1a). However, the QQ plot (Supplementary
Figure 1b) reveals strong enrichment of SNPs with Po10− 4.
Supplementary Figures 2a–m and 3a–m illustrate the Manhattan
and QQ plots for each sample. Table 2 illustrates the top 10
independent (R2o0.1) SNPs associated with lifetime cannabis use.
None of these 10 SNPs were replicated in the four independent
replication samples (Supplementary Table 3). In a combined meta-
analysis of the 10 top SNPs (that is, discovery plus replication
samples), none of the SNPs reached genome-wide significance.
Local plots of the most strongly associated regions, including
neighboring genes, are provided in Supplementary Figures 4a–j.
The most statistically significant marker (P-value = 4.6 × 10− 7) was
rs4984460 located on chromosome 15 (see Supplementary
Figure 5 for the forest plot). The SNP is located in an intergenic
region between LOC400456/LOC145820 and NR2F2 and MIR1469
genes. Supplementary Table 4 includes the 153 SNPs identified
with P-values o10− 5. Because not all SNPs passed the post-
imputation quality control steps in all the samples, this table
includes the effective sample size per SNP.

Gene-based tests
The gene-based tests of associations were run on 24 576 genes/
genetic regions (see ‘Materials and Methods’ section for details).
The Manhattan and QQ plot for this test are shown in Figures 1a
and b. Results for the top 100 genes can be found in
Supplementary Table 5. As shown in Table 3, four genes and
one intergenic noncoding RNA region were significantly (false
discovery rate-corrected Po0.05) associated with lifetime canna-
bis use: (i) neural cell adhesion molecule 1 (NCAM1, on 11q23); (ii)
cell adhesion molecule 2 (CADM2, on 3p12); (iii) short coiled-coil
protein (SCOC) and (iv) SCOC antisense RNA1 (SCOC-AS1, both
located on 4q31); and (v) potassium channel, subfamily T, member
2 (KCNT2, on 1q31). Regional plots44 of these top genes are
located in Supplementary Figure 6.
The smallest gene-based P-value was found for the NCAM1

gene. Within this gene, rs4471463 had the lowest SNP P-value, and
was also among the top 10 associated SNPs. The forest plot in
Figure 2 illustrates the effect of this SNP in each sample. In most
samples, the effect is in the same direction, such that the major (T)

allele is associated with a decreased risk of lifetime cannabis use.
The forest plot for two SNPs with lowest P-values in the other
significant gene regions can be found in Supplementary Figure 5.
Of the five genes included in our replication analyses, none

were replicated in two of the independent replication samples
(see Table 3). In the African American replication sample,
suggestive associations with SCOC-AS1 (P= 0.044) and SCOC
(P= 0.027) were found.

SNP-based heritability and genetic overlap with lifetime cigarette
smoking
Using the density estimation method (see ‘Materials and Methods’
section for a description), all the SNPs available in at least 25% of
the samples when combined explained 20% of the total variance
in lifetime cannabis use (Po0.001). Alternative estimation with LD
score regression also yielded a significant heritable component of
13% (h2LD = 0.13, s.e. = 0.02, P= 1.4 × 10− 7). These variance esti-
mates were robust across pruned sets with similar r2 thresholds
(see Supplementary Table 6). Stricter LD pruning (that is, r2 = 0.05),
or restricting analyses to SNPs present in all studies substantially
decreased the estimate of variance explained. Both SNP herit-
ability estimates confirmed that lifetime cannabis use has a
significant heritable component (13–20%), indicating that GWAS
should be able to identify these common SNPs (but effect sizes are
small and large sample sizes are thus required). However, because
these estimates are only based on common SNPs, the total
heritability of lifetime cannabis use is likely to be higher.
The LD score regression analyses revealed a strong and highly

significant genetic correlation (rg = 0.83, s.e. = 0.15, P= 1.85 × 10− 8)
between lifetime cannabis use and lifetime cigarette smoking
(based on the Tobacco Alcohol and Genetics consortium31

summary results), implying that SNPs for lifetime cannabis use
and lifetime cigarette smoking are highly correlated.

DISCUSSION
To date, this is the largest GWA study of lifetime cannabis use. We
performed meta-analysis of the GWA results based on a discovery
sample comprising 32 330 individuals from 13 cohorts, and a
replication sample comprising 5627 subjects from four cohorts
(including one African American cohort). There were no genome-
wide significant SNP associations. However, heritability analyses
revealed that between 13 and 20% of the variation in lifetime
cannabis use could be explained by common SNPs. Moreover,

Table 2. Top 10 SNPs with meta-analysis results of discovery samples, and results of combined discovery and replication samples

SNP Chr BP (hg19) A1 A2 Freq A1 Discovery Combineda

Beta (s.e.) P-value Directionb Beta (s.e.) P-value

rs4984460 15 96424399 T G 0.75 − 0.11 (.023) 4.6 × 10−7 +−−++−−−−−−−+ − 0.11 (0.023) 2.2 × 10− 6

rs2099149 12 30479358 T G 0.81 − 0.16 (0.032) 9.8 × 10− 7 −−− ?− ??− ?−−+− − 0.17 (0.034) 5.1 × 10− 7

rs7675351 4 141218757 A C 0.86 − 0.15 (0.031) 1.4 × 10− 6 −−− ?+−−− ?−−−− − 0.13 (0.033) 1.1 × 10− 4

rs4471463 11 112983595 T C 0.55 − 0.09 (0.020) 1.5 × 10− 6 −−−−+−+−−−−+− − 0.1 (0.021) 9.0 × 10− 7

rs7107977 11 915764 A G 0.60 0.27 (0.058) 1.9 × 10− 6 ??+++?+???+?+ 0.29 (0.064) 6.4 × 10− 6

rs58691539 2 52753909 T G 0.91 − 0.29 (0.062) 2.1 × 10− 6 − ????− ?− ????− − 0.29 (0.062) 2.2 × 10− 6

rs2033867 2 175188281 A G 0.06 0.24 (0.051) 2.6 × 10− 6 +??????+++??+ 0.23 (0.050) 4.2 × 10− 6

rs35053471 3 47124761 A T 0.38 − 0.10 (0.022) 2.7 × 10− 6 −−−−− ?+−−−−−− − 0.09 (0.022) 9.2 × 10− 5

rs12518098 5 60864467 C G 0.68 0.10 (0.022) 3.0 × 10− 6 ++++−++++++++ 0.09 (0.023) 4.7 × 10− 5

rs73067624 1 196333461 T C 0.90 − 0.18 (0.039) 3.1 × 10− 6 − ?− ?−−−− ?−−−− − 0.16 (0.041) 6.3 × 10− 5

Abbreviations: A1, allele 1; A2, allele 2; BP (hg19), location in base pairs in human genome version 19; Chr, chromosome; Freq A1, frequency of allele 1; SNP,
single-nucleotide polymorphism. aThe combined sample contains the discovery samples and the Radar, SYS and TwinsUK replication samples. bDirection per
sample: allele A1 increases (+) or decreases (− ) liability for cannabis use, or sample did not contribute to this SNP because it did not pass the post-imputation
quality control (?). Order of samples: ALSPAC, BLTS, CADD, EGCUT1, EGCUT2, FinnTwin, HUVH, MCTFR, NTR, QIMR, TRAILS, Utrecht, Yale Penn EA. Sample
information can be found in Table 1. SNPs are displayed when not in linkage disequilibrium (R2o0.1. For SNPs with R2⩾0.1, only the most significant SNP is
shown in the top 10).
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gene-based tests of association identified four protein-coding
genes and one intergenic region significantly associated with
lifetime cannabis use including NCAM1, which has previously been
linked to substance use.45–48 Finally, we revealed that the genetic
liability to lifetime cannabis use correlated to a large extent
(r= 0.83) with the genetic liability to lifetime cigarette smoking.
Our results are consistent with the hypothesis that lifetime
cannabis use is a highly polygenic trait, comprising many SNPs
each with small effects contributing to lifetime risk. Moreover,

portions of the genetic risk in lifetime cannabis use likely
correlates with other substances including cigarette smoking.
Our top gene associated with lifetime cannabis use was NCAM1,

a known candidate for nicotine dependence.45 The role of NCAM1
is to regulate pituitary growth hormone secretion as a membrane-
bound glycoprotein that mediates cell–cell contact by hemophilic
interactions.46 NCAM1 is part of the NCAM1–TTC12–ANKK1–DRD2
(NTAD) gene cluster, which is related to neurogenesis and
dopaminergic neurotransmission. Importantly, the NTAD cluster

Figure 1. The Manhattan (a) and the QQ plot (b) based on results of the gene-based analysis performed in the discovery sample using HYST
(hybrid set-based test).

Table 3. Top five genes from the gene-based tests of association with corrected P-values (Benjamini and Hochberg) based on the meta-analytic
discovery and replication samples

Gene Chr Start position
(hg19)

BP length N SNPS Nominal P-values
discovery

Corrected P-values
discovery

Nominal P-values EU
replication samples

Nominal P-values
replication African

Americans

NCAM1 11 112831968 303 952 400 6.26 × 10− 7 0.015 0.381 0.302
CADM2 3 85008132 1 115 448 978 2.13 × 10− 6 0.026 0.744 0.112
SCOC-AS1 4 141204879 89 668 81 5.76 × 10− 6 0.046 0.681 0.044
SCOC 4 141264614 39 097 111 7.85 × 10− 6 0.046 0.636 0.027
KCNT2 1 196194909 382 653 237 9.38× 10−6 0.046 0.269 0.201

Abbreviations: BP length, base pair length; chr, chromosome; hg19, human genome version 19; N SNPs, number of SNPs used for the meta-analysis; SNP,
single-nucleotide polymorphism.
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has been associated with smoking behavior and nicotine
dependence,45,47–52 alcohol dependence,53,54 heroin
dependence,55 as well as other substance use disorders.54

Although it is plausible that NCAM1 is capturing pleiotropic risks
underpinning the liability to licit and illicit substance use in
general, we note that NCAM1 was not identified either by the
Tobacco Alcohol and Genetics consortium or other consortia for
cigarette smoking.30–32 The functions of the putative variants
responsible for the associations in the candidate-gene studies
remain to be determined.
The second gene, CADM2, is a synaptic cell adhesion molecule

(SynCAM family) belonging to the immunoglobulin (Ig) super-
family. Variants in the CADM2 gene have been previously
associated with body mass index,56 processing speed57 and
autism disorders.58 Interestingly, these phenotypes were asso-
ciated with cannabis use in previous studies,59–61 which together
suggest that CADM2 can be considered an important gene related
to a variety of complex traits. It is possible that the association
with lifetime cannabis use may be driven, for example, by
differences in personality rather than as a direct relationship with
lifetime use.
The third gene, SCOC, encodes a short coiled-coil domain-

containing protein that localizes to the Golgi apparatus. Many
coiled-coil-type proteins are involved in important biological
functions such as the regulation of gene expression through the
regulation of transcription factor binding.62 The function of SCOC
is largely unknown and no previous association studies have
linked SCOC to cannabis or other substance use phenotypes. The
SCOC antisense RNA1 gene is located in the same chromosomal
region.
Finally, KCNT2 encodes a potassium voltage-gated channel

(subfamily S, member 2). The sodium-activated potassium
channels Slack and Slick are encoded by KCNT1 (potassium
channel, subfamily T, member 1) and KCNT2, respectively, which
are found in neurons throughout the brain. Suggestive association
for SNPs near KCNT2 have previously been found for cocaine
dependence and for early-onset, highly comorbid, heavy opioid
use.63,64 This suggests that potassium signaling may have a role in
addiction.
The lack of genome-wide significant associations for individual

SNPs is consistent with previous GWA studies of lifetime cannabis
use26,27 and cannabis dependence.25 The difficulty of identifying
specific SNPs for lifetime cannabis use may be attributable to

several reasons. First, complex traits are known to be influenced
by many variants, each with very small effect sizes. Although
power calculations reveals suitable power (96%) to detect odds
ratios of 1.15 based on common SNPs (MAF= 0.2), the power to
detect smaller effect sizes remains lower. For example, there is
only 28% power to detect effect sizes with odds ratio of 1.1 and
MAF= 0.2. Therefore, our data suggest that the effect sizes of
single variants contributing to lifetime cannabis use are likely to
be smaller than 1.15. Combining variants within larger units (that
is, genes) did however reveal four significant genes associated
with lifetime cannabis use implying that these genes are
appropriate targets for future functional studies of cannabis use.
Unfortunately, our gene-based results were not replicated in the
replication samples, probably due to low sample sizes and
therefore low power. In the African American replication sample,
we did find suggestive association with SCOC-AS1 and SCOC.
On the basis of twin studies, the heritability of lifetime cannabis

use is estimated at 40–50%.12 In our study, all common SNPs
combined explained 13–20% of the variance in the liability to use
cannabis depending on the method used. Stricter LD pruning
(that is, r2 = 0.05) or restricting to SNPs observed (genotyped or
imputed) in all the analyses, substantially reduces the estimate of
variance explained. Speculatively, this may indicate that much of
the variance explained comes from SNPs located in the regions of
weak LD. Such effects are likely to be poorly tagged for the
estimation of variance explained after strict LD pruning, and are
likely to be more difficult to impute owing to a lack of strongly
correlated genotyped SNPs (and thus missing from some studies).
Our SNP-based heritability estimates lie in between two previous
heritability estimates for lifetime cannabis use based on the
Genome-wide Complex Trait Analysis65 software package. Verweij
et al.26 estimated that 6% of the variance in lifetime cannabis use
is explained by aggregated common SNPs (MAF40.05). Minică
et al.27 found an estimate of 25%. Provided that the current
sample is much larger than the samples used in the previous
studies, we conclude that approximately one-third to half of the
heritability is explained by common SNPs captured on a GWAS
array. Other sources of variation may explain the discrepancy
between SNP- and twin-based heritability estimates. For example,
age-related genetic differences, non-additive genetic variance,
interactions between genetic variants and environmental risk
factors, epistasis and/or rare mutations may also have a role.
Our results indicate a very high genetic overlap (r= 0.83)

between our measure of lifetime cannabis use and lifetime
cigarette use when based on the SNP panel. Twin studies have
shown moderate to high genetic correlations of 0.59–0.74
between lifetime cannabis and nicotine use.66 Kendler et al.67

also reported significant biometrical genetic correlations between
the levels of cannabis, nicotine and alcohol use, which were
increasingly influenced by common genetic risks detectable in
early adulthood.
Our findings should be interpreted in the context of at least four

potential limitations. First, our study was underpowered to detect
very small effects of individual variants. Power analyses revealed
that a twofold increase in sample size is required to detect SNP
effect sizes with odds ratios of 1.1. Second, lifetime cannabis use is
a dichotomous measure combining single lifetime, regular and
chronic users. Consequently, our sample may compromise
heterogeneous patterns of use, which has the potential to reduce
the power to detect genetic association.68 Third, prevalences of
lifetime cannabis use varied between 1% (EGCUT1) and 92% (Yale
Penn EA). This was likely due to differences in the sample
characteristics, recruitment strategies and the political differences
between countries. Despite these differences, the forest plots of
the key SNPs (see Figure 2; see also Supplementary Figure 5)
revealed that the 95% confidence intervals surrounding the effect
estimates typically included the estimated meta-analytic effect,
which tends to overlap across studies. This indicates that the input

Figure 2. Forest plot for the top-SNP rs4471463 in the NCAM1 gene
on chromosome 11. SNP, single-nucleotide polymorphism.
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samples were representative of the same population of users.
Finally, the average age of participants varied between 18
(ALSPAC) and 45 (QIMR) years. Consequently, some younger
participants might have initiated cannabis use at a later age, but
have been classified as ‘never users’ in the current study. This can
decrease power, but does not invalidate our results. In addition,
we note that the average age of each sample did not correlate
with sample prevalences (r=− 0.04, P= 0.91).
On the basis of our observations, the following recommenda-

tions for future studies can be made. We have identified four
genes significantly associated with cannabis use, which are
candidates for follow-up functional studies. In particular, the role
of NCAM1 can be examined to determine the functional role of
this gene, possibly in combination with other genes in the same
gene cluster (NCAM1–TTC12–ANKK1–DRD2).
The next goal of the International Cannabis Consortium is to

perform a meta-analysis on GWA studies investigating the age at
first cannabis use. Our rationale is based on the observation that
early initiation of cannabis use is associated with rapid progression
towards cannabis abuse and dependence, polysubstance use and
other substance use disorders.69–71 Methods other than GWASs
may also be used to reveal the biological pathways of cannabis
use, such as rare variant association analyses. The environmental
risk factors may be incorporated to investigate gene × environ-
ment interactions. Hopefully, the combination of advanced
technologies and novel statistical approaches with larger samples
will further contribute to our understanding of the genetic
architecture of cannabis use.

CONCLUSION
We have performed the largest meta-analysis to date of GWASs
investigating cannabis use phenotypes. With a sample of over
32 000 individuals, our results implicate four genes as involved in
lifetime cannabis use: NCAM1, CADM2, SCOC and KCNT2. Our
results illustrated that lifetime cannabis use is under the influence
of many common genetic variants. The combined SNPs explained
13–20% of the phenotypic variation, and revealed a high degree
of genetic sharing (r= 0.83) with lifetime cigarette smoking. Future
studies should investigate the impact of these genes on the
biological mechanisms leading to lifetime cannabis use.
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