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Temperatures Achieved in Human and Canine Neocortex
During Intraoperative Passive or Active Focal Cooling

Matthew D. Smyth, MD,1 Rowland H. Han, MSE,1 Chester K. Yarbrough, MD,1

Edward E. Patterson, DVM, PhD,2 Xiao-Feng Yang, MD,3,* John W. Miller, MD, PhD,4,5

Steven M. Rothman, MD,6 and Raimondo D’Ambrosio, PhD4,5,7

Focal cortical cooling inhibits seizures and prevents acquired epileptogenesis in rodents. To investigate the
potential clinical utility of this treatment modality, we examined the thermal characteristics of canine and
human brain undergoing active and passive surface cooling in intraoperative settings. Four patients with
intractable epilepsy were treated in a standard manner. Before the resection of a neocortical epileptogenic focus,
multiple intraoperative studies of active (custom-made cooled irrigation-perfused grid) and passive (stainless
steel probe) cooling were performed. We also actively cooled the neocortices of two dogs with perfused grids
implanted for 2 hours. Focal surface cooling of the human brain causes predictable depth-dependent cooling of
the underlying brain tissue. Cooling of 0.6–2�C was achieved both actively and passively to a depth of 10–
15 mm from the cortical surface. The perfused grid permitted comparable and persistent cooling of canine
neocortex when the craniotomy was closed. Thus, the human cortex can easily be cooled with the use of simple
devices such as a cooling grid or a small passive probe. These techniques provide pilot data for the design of a
permanently implantable device to control intractable epilepsy.

Introduction

Although a number of novel antiepileptic drugs have
been introduced in recent years, they remain inadequate

for the control of focal neocortical epilepsy in many patients
(Yang et al., 2002; Grosso et al., 2013). Even with ad-
vancements in the surgical technique, many patients remain
poor candidates for potentially curative surgical intervention
(Fujii et al., 2010). Additional palliative modalities, includ-
ing vagal nerve stimulation, deep brain stimulation, and
transcranial magnetic stimulation, have also not dramatically
reduced the occurrence of seizures (Theodore and Fisher,
2007; Bagic et al., 2008; Fisher et al., 2010; Chambers and
Bowen, 2013; Liu et al., 2013).

Brain cooling is another nondestructive technology that is
known to have antiepileptic properties in both animal models
(Bricolo et al., 1966; Gasteiger et al., 1985; Hill et al., 2000;
Yang and Rothman, 2001; Javedan et al., 2002; Yang et al.,
2002) and humans (Pásztor and Tomka, 1969; Karkar et al.,
2002; Karlov, 2003). Several clinical studies have demon-

strated the utility of systemic cooling as an adjunct for the
treatment of intractable epilepsy (Vastola et al., 1969; Sourek
and Travnicek, 1970; Corry et al., 2008; Guilliams et al.,
2013). We first investigated the effect of focal brain cooling
on seizures after initial observations that the intraoperative
irrigation of exposed cortex with iced saline (4�C) reduced or
abolished the interictal activity. The efficacy of irrigation
with iced saline has made its use a standard clinical practice
for the control of seizures or active discharges during cortical
stimulation mapping procedures for epilepsy or tumor re-
section (Sartorius and Berger, 1998; Karkar et al., 2002).

We have been exploring the use of focal cooling to rapidly
terminate other types of in vitro and in vivo seizures (Hill
et al., 2000; Yang and Rothman, 2001; Burton et al., 2005),
and we recently reported that cooling by just 2�C prevents the
development of epileptic seizures in a fluid percussion injury
model of post-traumatic epilepsy (D’Ambrosio et al., 2013).
In the latter study, passive cooling by 2�C for 5.5 weeks
persistently prevented nearly all ictal activity, and this effect
lasted for at least 10 weeks after the cooling ended.

1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri.
2Department of Clinical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota.
3Department of Pediatrics (Clinical Neuroscience), University of Minnesota, Minneapolis, Minnesota.
4Department of Neurological Surgery, and 5Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle,

Washington.
6Mercy Clinic Child Neurology, St. Louis, Missouri.
7Center for Human Development and Disability, University of Washington, Seattle, Washington.
*Present affiliations: Electrophysiology Laboratory, Xuanwu Hospital Capital Medical University, Beijing, China, and Center of

Epilepsy, Beijing Institute for Brain Disorders, Beijing, China.

THERAPEUTIC HYPOTHERMIA AND TEMPERATURE MANAGEMENT
Volume 5, Number 2, 2015
ª Mary Ann Liebert, Inc.
DOI: 10.1089/ther.2014.0025

95



On the basis of our intraoperative experience with focal
cooling and the finding that fluid percussion injury-induced
epileptic seizures respond to small brain temperature chan-
ges, we would like to begin the translation of mild focal brain
cooling to the clinical setting. However, before this occurs,
the quantification of the brain’s response to surface cooling is
necessary for assistance with the device design. In this study,
we describe the spatial and temporal characterization of
temperatures achieved during the intraoperative direct focal
surface cooling of human and canine neocortex.

Methods

Patient selection

Institutional review board approval was obtained from the
Washington University Human Research Protection Office
(IRB No. 201105440). Patients who planned to undergo in-
tracranial epilepsy procedures in which tissue was to be re-
sected were invited to participate. If pediatric patients were to
be enrolled, informed consent was obtained from both par-

ents by the neurosurgeon (M.D.S.). In addition, if at any time
the additional 20 minutes of operating room time required to
carry out the experiments would jeopardize the well-being of
the patient, then that patient was excluded from the study; the
clinical team would then proceed with standard clinical care.
Data were ultimately successfully collected from a total of
four patients.

Human cooling modalities

Three distinct cooling modalities were tested to achieve a
range of surface cooling temperatures. Active cooling was
achieved with the use of a sterile electrocorticography
(ECoG) grid constructed with an integrated cooling bladder
over the central electrodes (PMT Corporation, Chanhassen,
MN; Fig. 1A. A Non-Significant Risk pre-Investigational
Device Exemption (pre-IDE NSR No. I090851) was granted
by the FDA for intraoperative use of the modified grid). This
allowed for the circulation of sterile iced normal saline (4�C)
through the center of the grid over the exposed neocortex.

FIG. 1. Intraoperative techniques for active cooling and temperature measurement in humans. (A) Sterile cooling grid
(inset), temperature probes, and the method for the use of the iced saline-perfused cooling grid are shown. (B) An
intraoperative picture showing exposed neocortex with the cooling grid removed before cortical resection. (C) Data
gathered from temperature probes at various depths during cooling through the means demonstrated in (A). The sawtooth
pattern seen at the 0 mm grid–brain interface was caused by the pulsatile pumping of the chilled saline through the bladder
of the grid.
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The area of contact of the cooling portion of the grid was a
1600 mm2 (4 cm · 4 cm). Passive cooling was accomplished
by placing a room-temperature (22�C) surgical-grade stain-
less steel probe (the University of Washington, Scientific
Instruments Laboratory) onto the brain’s surface in the region
of interest. The body of the probe had a length of 130 mm and
a diameter of 30 mm (Fig. 2A). The area of contact with the
brain was a 546 mm2 ellipse (29 mm · 24 mm). The brain was
also cooled through the direct application of iced saline
cortical irrigation (4�C) in the same region in a similar
manner as that used to terminate induced seizures during
standard intraoperative cortical stimulation procedures
(Sartorius and Berger, 1998; Karkar et al., 2002).

Electrocorticography

ECoG was part of the standard clinical care for the selected
patients. It was performed with the standard grid or strip
subdural clinical electrodes (PMT or Ad-Tech Medical In-
strument Corporation, Racine, WI), which were placed on the
brain surface. Standard clinical ECoG equipment (Stellate,
Montreal, Quebec, Canada, and XLTEK, London, Ontario,
Canada) was used to record the electrical activity throughout
the procedure.

Human protocol

The full set of focal cooling experiments involved an ad-
ditional 20 minutes in the operating room for each patient; it
was scheduled at some point after standard clinical ECoG
was performed and before cortical resection. The intra-
operative experiments were limited to a 20-minute duration
because such a window of time should not add increased risk
or morbidity in the context of an operation that typically lasts
4–7 hours. The temperature probes were placed only in the
brain tissue that was to be resected to eliminate any risk to the
surrounding uninvolved cortex. Iced saline (4�C) was used
because of its ready availability, documented clinical utility
and safety, ease of use, and stable temperature without the
need for refrigeration devices.

After clinical ECoG was performed and the area of
proposed resection was verified by the epilepsy team, a
thermocouple array was inserted into the cortex that was

designated for resection. The thermocouple array comprised
four sterile clinical brain temperature probes (Integra Life-
Sciences Corporation, Plainsboro, NJ): three Licox brain
tissue temperature probes (Catalog No. C8B) that were in-
serted into the cortex and one 110-4BT probe that was placed
on the brain surface. The depth–temperature probes were
placed at depths of 5, 10, and 15 mm. They were placed
vertically, perpendicular to the brain surface, as close to each
other as practicable, and at the center of the region to be
cooled. Finally, the thermocouples were connected to stan-
dard clinical temperature monitors (Category No. AC3.1;
Integra LifeSciences Corporation).

At the beginning of the 20-minute window, baseline ECoG
and brain temperature measurements were recorded. The
20-minute time window did not allow for trials of each of the
cooling modalities in each patient, so one or two cooling
modalities were tested in each of the four patients (Table 1).
In Patient 1, surface cooling with iced saline irrigation was
performed for 5 minutes and this was followed by a 5-minute
rewarming period. Similar to its clinical use for the termi-
nation of intraoperative seizure activity during cortical
stimulation procedures, the iced saline was irrigated directly
on the brain surface with a syringe over the implanted ther-
mocouples. Next, the active cooling grid was placed over the
temperature probes, and the area was actively cooled for 5
minutes; this was also followed by a rewarming period. The
cooling was performed by the manual irrigation of fluid
through the grid, with the cooling bladder portion of the grid
placed directly over the thermocouples. The fluid tempera-
ture was measured at the iced saline supply reservoir (4�C),
but some ambient warming occurred as a result of the fluid
moving through the tubing before reaching the cooling
bladder portion of the grid. Patient 2 underwent similar iced

FIG. 2. Intraoperative techniques for passive cooling. (A) Demonstration of the intraoperative use of a heat sink for
passive cooling with concurrent temperature measurement. (B) Data gathered with the use of the heat sink for cooling
followed by a period of rewarming after the removal of the device.

Table 1. Cooling Modalities Tested on Each Patient

Patient no. Cooling modality 1 Cooling modality 2

1 Iced saline Active
2 Iced saline Passive
3 Passive —
4 Passive Iced saline
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saline surface irrigation and rewarming, but this was then
followed by the application of the passive cooling probe for 5
minutes and another rewarming period. Patient 3 underwent a
more prolonged passive cooling period and rewarming pe-
riod, and Patient 4 underwent iced surface saline irrigation
after the passive cooling trial. Temperature and ECoG were
recorded for the entire cooling and rewarming periods in all
patients. After the cooling experiments, the passive cooling
probe or grid was removed from the operative field, the
temperature monitor array was withdrawn from the brain, and
the standard operative technique was used for the completion
of the surgical procedure.

Human data analysis

All data were analyzed offline after the completion of the
patient’s clinical procedure. Cooling and rewarming periods
for the various cooling modalities were identified in the raw
temperature–time data for all four probes and saved sepa-
rately. Each cooling or rewarming period was fitted by way of
regression to Newton’s Law of Cooling, which states that

dT(t)

dt
¼ � rDT(t) (Eq: 1),

with the solution

T(t)¼ Tssþ (T(0)� Tss)e
� rt (Eq: 2):

Here, T(t) is the temperature at time t, T(0) is the initial
temperature, Tss is the steady-state or final temperature, and r
is a positive rate constant. The rate constant has units of
time - 1, and 1

r
is a time constant that can be interpreted as the

amount of time required to reach 63.2% of the temperature
change achieved at steady state. The time constants were
plotted separately for the cooling and rewarming processes as
a function of temperature probe depth (Fig. 3).

Next, the steady-state temperature change (DT(00)) was
defined as

DT(00) � T(0)� Tss (Eq: 3),

which is the difference between the initial and steady-
state temperatures for each temperature probe and cooling
process. Furthermore, the final surface temperature (Tss,0 mm)
was defined as the steady-state temperature achieved at
the 0 mm depth for each cooling process. With these def-
initions in mind, steady-state temperature changes were
plotted against the final surface temperatures of the three
temperature probes at depths of 5, 10, and 15 mm. Al-
though the passive cooling probe itself is slightly warmed
by the brain during the 5 minutes of direct contact (Fig.

FIG. 3. Sample regression curves. (A) Temperature–time data for Patient 1 undergoing active cooling with the use of a
grid. (B) Temperature–time data for Patient 1 undergoing rewarming after active cooling with the use of a grid. (C)
Temperature–time data for Patient 3 undergoing passive cooling with the use of the heat sink. (D) Temperature–time data
for Patient 3 undergoing rewarming after passive cooling. The solid lines in (A–D) represent best-fit curves.
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2B), for the purposes of modeling, the effect was consid-
ered negligible.

Canine brain cooling

Because we did not have the institutional review board
approval to fully implant an active cooling grid into a human
patient with the bone replaced and the scalp closed, and
because the human experiments were limited to 20–30-
minute periods, we also performed large animal experiments
to verify that mild cooling can conveniently be implemented
for hours with a fully implanted fluid cooling grid. These
grids were tested in two dogs as surrogates for humans at the
University of Minnesota College of Veterinary Medicine.
These experiments had approval from the University of
Minnesota’s Institutional Animal Care and Use Committee.
Each dog was premedicated with midazolam and butor-
phanol; anesthesia was induced with thiopental and main-
tained with isoflurane given through an endotracheal tube.
After the establishment of stable general anesthesia, a cra-
niotomy was performed and a bone flap was removed to
expose the dura.

A standard Silastic ECoG grid with a 4 · 2 recording
electrode array was inserted over the neocortex and covered
with dura before the control ECoG (XLTEK) was obtained.
The grids were positioned laterally in the subdural space,
underneath intact dura, bone, muscle, and skin. The bone flap
itself was not replaced due to the configuration of the elec-
trode wires and ingress/egress cooling tubing. After initial
recording, the standard grid was then replaced with the grid/
cooling bladder; this was similar to the one shown in Figure
1A, but it was smaller, with a 4 cm · 2 cm cooling/electrode
surface rather than a 4 cm · 4 cm cooling surface within an
8 · 8 electrode array. The cooling grid was positioned later-
ally under the dura, bone, muscle, and scalp and the scalp
incision was reapproximated. The perfusion tubing was then
connected to a standard clinical peristaltic pump. The tubing
flowed through a cooling chamber placed within 2 feet of the
head to minimize the temperature drop between the cooling
chamber and the grid/cooling bladder. Temperature was

measured within the bladder and at the interface between the
bladder and the neocortex with standard thermocouples. The
electrodes on the cooling grid were connected to the same
ECoG amplifier, with the output archived on a laptop com-
puter. Each of these experiments lasted *2 hours, during
which, 20-minute periods of baseline, cooling, and rewarm-
ing were performed using two different cooling temperatures
per animal.

Results

Human cooling

We tested three focal cooling modalities (passive, active,
and iced saline irrigation) on four patients with brain tissue
that was to be resected for intractable epilepsy (Figs. 1 and
2). Temperature–time curves for probes positioned at depths
of 0, 5, 10, and 15 mm in the neocortex were obtained for
each cooling and rewarming period. We used Newton’s Law
of Cooling (Eq. 1) to approximate the cooling and re-
warming processes. We found that we could analyze the
data under the assumption that the brain comprises slices
with boundaries at each of the temperature probe depths so
that the temperatures within each slice are approximately
uniform.

We used the regression analysis to separately fit cooling
and rewarming data from each probe, and we drew the re-
sulting curves over the original temperature–time data (Fig.
3). The time constants determined for each depth and method
were obtained and compared (Fig. 4). This analysis demon-
strated a direct relationship between the depth of the brain
tissue from the surface and the time constant, which supports
the internal consistency of the experiment (i.e., the positions
of the temperature probes and cooling devices or possible
changes in regional cerebral blood flow did not significantly
affect the results).

We were interested in determining the degree of surface
cooling required to achieve 1–2�C of steady-state cooling
deep in the sulci of the neocortex (Fig. 5). This was estimated
by plotting steady-state temperature changes during cooling
against final surface temperatures for temperature probe

FIG. 4. Time constants as functions of temperature probe depths. Regression constants from the fitting of the temperature
data were converted into time constants. (A) Time constants for all cooling processes analyzed in the patients. (B) Time
constants for all rewarming processes analyzed in the patients. Error bars are shown at one standard deviation above and
below the mean time constant at each depth. The time constant can be interpreted as the amount of time required to reach
63.2% of the temperature change achieved at steady state.
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depths of 5, 10, and 15 mm (Fig. 5). We used the final surface
temperature as the measure of the degree of surface cooling in
response to the rapid equilibration of the surface temperature
to the applied cooling temperature, which was observed
during the experiments.

The difficulty of cooling deeper regions of the brain can be
explained by the anatomic changes that occur with depth and
the rapid heat dissipation that is facilitated by robust cerebral
blood flow. The results of our experiments involving direct
brain cooling agree with those of a previous theoretical
simulation and with several clinical trials of localized ex-
ternal head cooling in patients with traumatic brain injuries
(Zhu and Diao, 2001; Wang et al., 2004; Forte et al., 2009;
Harris et al., 2009). In those trials, external cooling was ap-
plied with cooling helmets or ice packs to achieve a com-
parable change in temperature within the brain of about 2�C.

Although one of the goals of the study as initially designed
was to evaluate the effects of surface cooling on base-
line human ECoG, as a result of difficulties with obtaining
artifact-free ECoG data during the short 20-minute time
window allowed for each patient, we did not obtain enough
human ECoG data for analysis.

Canine cooling

The fluid-cooled grid was tested in two dogs for 2 hours
each to determine if perfusing the bladder with cold saline at
a steady rate with a peristaltic pump would safely cool the
underlying neocortex. For these experiments, the grid was
covered with dura and scalp and placed along the lateral
parietal cortex between the cranial vault and the brain, cov-
ered by dura, skull, muscle, and skin; time-stamped cooling
was then performed during continuous ECoG. This config-
uration is similar to the way the grid would have to be po-
sitioned if it was left in place for several days during invasive
monitoring to localize the human epileptogenic cortex. The
results achieved in the dogs reflected the temperature re-
ductions described previously for the human tests. When the
cooling bath was held at *10�C, the lowest temperature
reached inside the grid was 21�C (This was the average of the
minimum temperatures found in both dogs at perfusion rates
of 10 and 20 mL/min; see the green lines in Fig. 6.). Reducing
the cooling bath temperature to 0�C decreased the grid tem-
perature to 17�C. At both cooling bath temperatures, the
temperature at the grid–cortex interface was 4–5�C higher
(see the red lines in Fig. 6). Cooling reached a steady state and
was maintained during 20-minute cooling periods with each
temperature. We did not see a dramatic effect of the perfusion
rate on the grid or interface temperature.

ECoG was recorded with the use of a standard grid and
again after the cooling grid was inserted. There was no
qualitative difference in the appearance of the ECoG results

FIG. 5. Steady-state temperature changes. (A) The dif-
ferences between the initial and final temperatures achieved
during cooling at a temperature probe depth of 5 mm are
plotted as functions of the final surface temperatures. The
desired 1.2–2�C of cooling can be achieved at this depth
with the use of an applied surface temperature of 28–33�C.
(B) An identical analysis is shown for a temperature probe
depth of 10 mm. The desired cooling can be achieved at this
depth with the use of an applied temperature of 22–27�C.
(C) An analysis identical to that given in part A is shown for
a temperature probe depth of 15 mm. The desired cooling
can be achieved at this depth with the use of an applied
temperature of less than 12�C. The solid black lines in (A–
C) represent the linear fittings of all data points.
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with the standard grid compared with the cooling grid.
Moreover, the quality of the ECoG recorded with the modified
cooling grid was not noticeably altered by perfusion as rapid as
20 mL/min (Fig. 7). This makes us optimistic that the modified
grid will allow for simultaneous cooling and ECoG without
any loss of fidelity if it is used for invasive human monitoring.
This amount of cooling did not have a significant effect on
baseline normal ECoG in the canine model, and the effect of
this cooling on an epileptiform activity was not evaluated.

Discussion

In this article, we presented data obtained through the in-
traoperative cooling of human and canine neocortex with the

use of active and passive methods. In four patients, intra-
operative data that reflect cooling at the surface and multiple
depths of the cortex were recorded and analyzed. In our data,
focal neocortical brain cooling (DT(00)) depended primarily
on the surface temperature (Tss,0 mm) and the depth of the
probe relative to the cortical surface. In addition, the time
required to achieve steady-state cooling was directly related
to depth in relation to the cortical surface (Fig. 3A, C). In
accordance with previously published data from studies of
animal models, a therapeutically effective temperature de-
crease was found to be achievable and predictable to a depth
of 10–15 mm from the cortical surface (Fig. 5).

Cooling has been investigated in many clinical scenarios,
and systemic cooling is commonly used to manage patients
with cardiac arrest and neonatal hypoxic–ischemic encepha-
lopathy. Improved neurologic outcomes have been docu-
mented, although they are not without certain shortcomings
(e.g., infection risk, thromboembolic phenomena). The risk
for the development of seizures after neonatal hypoxic–
ischemic insults may be decreased by mild systemic cooling
(Srinivasakumar et al., 2013). However, systemic cooling can
only be used for short time periods in an intensive care setting.
The antiepileptic effects of systemic hypothermia have been
reviewed in detail elsewhere (Motamedi et al., 2013).

Despite previous investigations that have focused on cor-
tical cooling, the depth to which the cortex must be cooled for

FIG. 6. Canine neocortical cooling. (A, B) Results ob-
tained in two separate dogs in which the brain was focally
cooled with the modified grid. In both dogs, the lowest
temperature achieved was not dramatically affected by in-
creasing the grid perfusion rate from 10 to 20 mL/min. Not
surprisingly, reducing the temperature of the cooling cham-
ber from 10�C to 0�C did have a noticeable effect on
cooling. There was a 15–20�C temperature gradient between
the cooling chamber and the grid as a result of the warming
of the saline as it left the chamber and entered the grid. The
cooling chamber had to be adjusted during the trials, which
explains the temperature instability (black line). The interval
between the separate cooling trials was not always identical,
although the parts of this figure show them as equal.

FIG. 7. Canine sample electrocorticography (ECoG).
Sample ECoG tracings created with the use of a modified
4 · 2 ECoG grid (PMT Corporation, Chanhassen, MN). (A)
ECoG with the grid in place but no perfusion. (B) The same
grid and the same animal with 20 mL/min of perfusion with
0.2�C saline. There is no pulse artifact degrading the ECoG.
The scales for (A and B) are identical.
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therapeutic effect has not been extensively studied. In fact, it
may only be several millimeters from the cortical surface.
This is clearly a major unanswered question that could be
resolved by clinical studies that involve invasive monitoring
during possible cortical resections for epilepsy. Radiographic
studies suggest an average sulcal depth in adults of *7 mm
(Yun et al., 2013). We have demonstrated that potentially
therapeutic cooling can reach between 10 and 15 mm from
the cortical surface, a depth that would include cooling of
gray matter in the majority of the sulci. For deeper seated
lesions such as the insula or mesial temporal structures, a
depth cooling probe with a superficial heat dissipation would
be required to achieve therapeutic cooling below the surface
and sulci. Such a device concept has been described by the
members of our group (Smyth and Rothman, 2011).

The goals of this line of research include the potential
development of an implantable cooling device for therapeutic
benefit. The possible uses of such a device include the pre-
operative confirmation of the accurate localization of an ep-
ileptogenic focus, the identification of neurologic deficits that
could result from the removal of epileptogenic cortex, and the
possible treatment (Smyth and Rothman, 2011) or prevention
(D’Ambrosio et al., 2013) of epilepsy. As a next step, a
subdural grid with a cooling bladder could be used during
multistage epilepsy surgery to establish the therapeutic effi-
cacy of cooling for the prevention of neocortical seizures and
to determine the threshold cortical temperature necessary for
seizure termination. The cooling grid that was tested intra-
operatively could also be implanted temporarily in patients
undergoing multistage epilepsy surgery. Such a patient
would undergo standard craniotomy and placement of the
modified grid per standard clinical techniques. The grid
would be anchored to the dura and the electrode tails an-
chored to the scalp as per routine. The cooling tubing would
be similarly secured. After a typical period of standard ECoG
during which typical seizures are characterized and captured,
and the second-stage surgery is planned for resection of a
seizure focus, the cooling grid could then be utilized for
periods of cooling. Individuals with high baseline seizure
frequency could be evaluated for reduction in seizure fre-
quency or severity during cooling periods compared with
baseline rates. Other electrocorticographic features, such
as epileptiform discharges and interictal spikes, and high-
frequency oscillations could be evaluated. At second-stage
surgery, the modified grid would be removed and standard
resection carried out. Once the critical temperatures to
quench human seizures are established, a permanent implant
could be designed with a better knowledge of power and heat
dissipation requirements. Ideally, such studies would reveal
the parameters necessary for the design of compact practical
thermoelectric-based cooling systems. Given the use of ad-
vanced techniques for the prediction of epileptic events
(Martinerie et al., 1998; Osorio et al., 1998; Le Van Quyen
et al., 1999), the use of focal cooling on an ongoing basis as a
smart device may present a unique opportunity for a break-
through in the management of epilepsy.

In conclusion, human neocortex can be cooled by 0.6–2�C
to a depth of 10–15 mm with relatively simple techniques
such as passive cooling through a probe of sufficient thermal
mass or the use of a cooling grid that circulates saline coolant,
with a predictable change in temperature. These findings
support the concept that a practicable cooling device could be

designed for implantation in humans for the control of epi-
leptic seizures.
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