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Clinical Significance of �II-Spectrin Breakdown Products 
in Cerebrospinal Fluid after Severe Traumatic Brain Injury

JOSE A. PINEDA,1,6,9 STEPHEN B. LEWIS,1,3 ALEX B. VALADKA,10 LINDA PAPA,4
H. JULIA HANNAY,11 SHELLEY C. HEATON,7 JASON A. DEMERY,7

MING CHENG LIU,2 JADA M. AIKMAN,2 VERONICA AKLE,2
GRETCHEN M. BROPHY,12 JOSEPH J. TEPAS III,5,6 KEVIN K.W. WANG,1,2,8

CLAUDIA S. ROBERTSON,10 and RONALD L. HAYES1,2,3,7,8

ABSTRACT

Following traumatic brain injury (TBI), the cytoskeletal protein �-II-spectrin is proteolyzed by cal-
pain and caspase-3 to signature breakdown products. To determine whether �-II-spectrin proteolysis
is a potentially reliable biomarker for TBI in humans, the present study (1) examined levels of spec-
trin breakdown products (SBDPs) in cerebrospinal fluid (CSF) from adults with severe TBI and (2)
examined the relationship between these levels, severity of injury, and clinical outcome. This prospec-
tive case control study enrolled 41 patients with severe TBI, defined by a Glasgow Coma Scale (GCS)
score of �8, who underwent intraventricular intracranial pressure monitoring. Patients without TBI
requiring CSF drainage for other medical reasons served as controls. Ventricular CSF was sampled
from each patient at 6, 12, 24, 48, 72, 96, and 120 h following TBI and analyzed for SBDPs. Outcome
was assessed using the Glasgow Outcome Score (GOS) 6 months after injury. Calpain and caspase-3
mediated SBDP levels in CSF were significantly increased in TBI patients at several time points after
injury, compared to control subjects. The time course of calpain mediated SBDP150 and SBDP145
differed from that of caspase-3 mediated SBDP120 during the post-injury period examined. Mean
SBDP densitometry values measured early after injury correlated with severity of injury, computed
tomography (CT) scan findings, and outcome at 6 months post-injury. Taken together, these results
support that �-II-spectrin breakdown products are potentially useful biomarker of severe TBI in hu-
mans. Our data further suggests that both necrotic/oncotic and apoptotic cell death mechanisms are
activated in humans following severe TBI, but with a different time course after injury.
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INTRODUCTION

IN THE UNITED STATES, an estimated 1.4 million people
sustain a traumatic brain injury (TBI) each year (Lan-

glois et al., 2005). About 50,000 people die and at least
5.3 million live with long-term disabilities related to TBI
(Binder et al., 2005). Currently available technologies to
assess brain injury, such as computed tomography (CT)
scanning and magnetic resonance imaging (MRI), are ex-
pensive and have limited ability to predict outcome, es-
pecially early after injury (Azouvi, 2000; Hanlon et al.,
1999; Kurth et al., 1994; Wilson et al., 1995). Unlike
other organ-based diseases where rapid diagnosis em-
ploying biomarkers prove invaluable to guide treatment
of the disease, no such rapid, definitive diagnostic tests
exist for TBI. Recent reviews of biomarkers of central
nervous system (CNS) injury have highlighted the need
for biomarker development (Choi, 2002; Ingebrigtsen
and Romner, 2002; Pineda et al., 2004). Such diagnostic
tests would provide physicians with quantifiable neuro-
chemical markers to help determine the severity and
anatomical and cellular pathology of the injury, and guide
in the implementation of appropriate triage and medical
management.

The most studied potential biochemical markers for
TBI include creatine kinase (CK), glial fibrillary acidic
protein (GFAP), lactate dehydrogenase (LDH), tau, and
myelin basic protein (MBP), though the bulk of research
in TBI has focused on neuron-specific enolase (NSE) and
S-100� (Berger et al., 2002; Guan et al., 2003; Inge-
brigtsen and Romner, 2002; Raabe et al., 2003). Neuron-
specific enolase is rapidly detectible in cerebrospinal
fluid (CSF) (Berger et al., 2002; Varma et al., 2003) and
serum (Skogseid et al., 1992; Yamazaki et al., 1995) af-
ter TBI (Woertgen et al., 1997). However, studies com-
paring NSE serum or CSF levels to admission GCS in
patients with TBI show conflicting results (Herrmann et
al., 1999; Ross et al., 1996; Yamazaki et al., 1995). Con-
flicting data have also been reported for relationships be-
tween NSE levels and CT scan findings (Fridriksson et
al., 2000) and long-term outcome (Raabe et al., 1998,
1999; Ross et al., 1996; Yamazaki et al., 1995). In mild
TBI, NSE failed to separate patients from controls (Ross
et al., 1996). NSE is also released in the blood by he-
molysis, which could be a major source of error (Cooper,
1994; Johnsson, 1996).

Several studies have shown S-100� to be a potential
biomarker for head injury (Herrmann et al., 1999; Raabe
et al., 1998, 1999; Woertgen et al., 1997). S-100� was
previously regarded as specific to astrocytes and
Schwann cells, but has been found in several cell types
including melanocytes, adipocytes, and chondrocytes
(Michetti and Gazzolo, 2002) and is therefore not spe-

cific to the CNS. Questions have also been raised about
the utility of S-100� due to reports of high serum levels
in trauma patients not experiencing a head injury (An-
derson et al., 2001; Pelinka et al., 2003). A supposedly
cleaved form of tau, c-tau, has also been investigated as
a potential biomarker of CNS injury. CSF levels of c-tau
were significantly elevated in TBI patients compared to
control patients and these levels correlated with clinical
outcome (Shaw et al., 2002; Zemlan et al., 2002, 1999).
Though levels of c-tau were also elevated in plasma from
patients with severe TBI, there was no correlation be-
tween plasma levels and clinical outcome (Chatfield et
al., 2002). A major limitation of all of these biomarkers
is the lack of specificity for defining neuropathological
cascades. Other potential biomarkers for TBI, such as F2-
isoprostane (a marker of lipid peroxidation), provide in-
formation on pathological events (Varma et al., 2003),
but are not specific to the CNS.

Our laboratory has focused on �II-spectrin proteolysis
as a biochemical marker of CNS injury (Pike et al., 2004,
2001; Ringger et al., 2004). Alpha-II-spectrin (or alpha-
fodrin) is expressed in brain and other non-erythroid tis-
sues. Studies in our laboratory have demonstrated that al-
pha-II-spectrin is primarily enriched in brain and comes
from neurons rather than glia (Wang et al., unpublished
data). Furthermore, alpha-II-spectrin appears to be local-
ized to axons (Riederer, 1986; Hayes, 1997).

�-II-Spectrin (280 kDa), a structural component of the
cortical membrane cytoskeleton (Goodman et al., 1995;
Riederer et al., 1987), is a major substrate for the calpain
and caspase-3 cysteine proteases (Roberts-Lewis and
Siman, 1993; Seubert et al., 1988; Siman and Noszek,
1988; Siman et al., 1989; Wang, 2000; Wang et al., 1998),
and our laboratory and others have provided considerable
evidence that �II-spectrin is processed by the calpains
and caspase-3 to signature cleavage products in vivo af-
ter experimental TBI in rats, both in brain tissue (Beer et
al., 2000; Buki et al., 1999; Knoblach et al., 2002; New-
comb et al., 1997; Pike et al., 1998; Saatman et al., 1996;
Yakovlev et al., 1997) and in CSF (Hall et al., 2005; Pike
et al., 2001; Ringger et al., 2004; Siman et al., 2004). Un-
derstanding the contributions of these specific proteases
to cell injury and death following TBI may have impor-
tant diagnostic and therapeutic implications. A unique
feature of this technique is the ability to concurrently de-
tect calpain and caspase-3 proteolysis of �-II-spectrin,
providing crucial information on the underlying injury
mechanisms, and potentially the effects of therapy on pre-
vention of calpain and caspase-3 proteolysis. While a
large body of data from animal studies has demonstrated
that proteolysis of �II-spectrin is a reliable measure of
injury that is ultimately detectable in CSF, it is only re-
cently that elevation of calpain and caspase-3 specific
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�II-spectrin breakdown products (SBDPs) has been
demonstrated in humans (Farkas et al., 2005). To our
knowledge, no studies to date have reported data sup-
porting SBDPs as a clinically useful biomarker in patients
with severe TBI. Thus, the present study sought to de-
termine whether signature proteolytic SBDPs were a re-
liable marker of CNS injury in humans.

METHODS

Study Sites

This study was approved by the Institutional Review
Board (IRB) of the University of Florida and Baylor Col-
lege of Medicine. For patients enrolled at the University
of Florida, consent was obtained within 24 h of enroll-
ment through an IRB-approved procedure. Adult patients
presenting to the University of Florida Trauma System
(Shands Hospital in Gainesville and Jacksonville) fol-
lowing a severe head injury defined by a GCS of �8 and
requiring ventricular intracranial pressure (ICP) moni-
toring were enrolled consecutively for 16 months start-
ing in April of 2003 and were followed for 6 months af-
ter study entry. All patient identifiers were kept
confidential.

The clinical data and CSF samples contributed to the
study from the Baylor College of Medicine site were col-
lected from 23 patients admitted to Ben Taub General
Hospital with a GCS �8 between August 29, 2003, and
August 30, 2004, as a part of an IRB-approved protocol.
The patients and/or their relatives gave informed consent
for the CSF samples to be stored and for these samples
as well as the clinical data to be used for IRB-approved
research at a later time. De-identified CSF samples and
data were transferred to the University of Florida for
analysis. A confidentiality agreement with Baylor Col-
lege of Medicine investigators was signed as required by
the University of Florida IRB.

Samples

CSF control samples were obtained from either (1) hy-
drocephalic patients who had ventriculoperitoneal (VP)
shunts placed and who had CSF samples taken intraop-
eratively or (2) unruptured subarachnoid hemorrhage pa-
tients who also had CSF samples taken intraoperatively.
Control patients had a normal mental status at the time
of enrolment, suggesting the absence of acute brain in-
jury. The fact that control CSF samples were obtained
intraoperatively would prevent meaningful increases in
biomarker levels in control samples. The time course for
SBDP levels in control patients was not established given
the fact that control patients had no clinical evidence of

acute brain injury and therefore changes in SBDP levels
over time that could be attributed to brain pathology were
not anticipated.

CSF samples from TBI patients were directly collected
from the ventriculostomy catheter at 6, 12, 24, 48, 72,
96, and 120 h following TBI (ventriculostomy catheters
are placed as routine medical care for patients with se-
vere TBI at these institutions). Approximately 3–4 mL of
CSF was collected from each subject. Samples were im-
mediately centrifuged for 10 min at 4000 rpm to sepa-
rate CSF from blood, and immediately frozen and stored
at �70° until the time of analysis.

Immunoblot Analyses

Human CSF samples (7 mcL) were subjected to sodium
dodecyl sulfate–polyacrylamide gel electrophoresis (SDS-
PAGE) with twofold loading buffer containing 0.25 M
Tris (pH 6.8), 0.2 M dithiothreitol (DTT), 8% SDS, 0.02%
bromophenol blue, and 20% glycerol in distilled H2O on
4–20% or 6% polyacrylamide gels (Invitrogen; catalog
no. EC61352) in Tris-glycine running buffer at 130 V for
2 h. Following electrophoresis, separated proteins were
laterally transferred to polyvinylidene fluoride (PVDF)
membranes in a transfer buffer containing 39 mM glycine,
48 mM Tris-HCl (pH 8.3), and 5% methanol at a constant
voltage of 20 V for 2 h at ambient temperature in a semi-
dry transfer unit (Bio-Rad). After electrotransfer, blotting
membranes were blocked for 1 h at ambient temperature
in 5% non-fat milk in TBST (20 mM Tris-HCl [pH 7.4],
150 mM NaCl, 0.05% [w/v] Tween-20), then incubated
in primary antibody (mouse anti-�II-spectrin; Affiniti,
Cat#.FG6090; at 1/5,000 dilution) in TBST with 5% skim
milk as recommended by the manufacturer at 4°C
overnight. This was followed by three washes with TBST
and a 2-h incubation at ambient temperature with a sec-
ondary antibody linked to horseradish peroxidase (for en-
hanced chemiluminescence [ECL] method; Amersham).
After additional washes of the blots with TBST, ECL
reagents (Amersham) were used to visualize the im-
munolabeling on x-ray film. Molecular weight of intact
�II-spectrin and its breakdown products (BDPs) were as-
sessed by running alongside rainbow-colored molecular
weight standards (Amersham). Quantitative evaluations of
�II-spectrin BDP levels were performed via computer-as-
sisted densitometric scanning (Epson XL3500 high-reso-
lution flatbed scanner) and image analysis with Image-J
software (NIH).

Relationships between Biomarkers 
and Clinical Variables

To examine the relationship between accumulation of
SBDPs and clinical variables, severity of injury was as-
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sessed using the Glasgow Coma Scale (GCS) as previ-
ously described (Teasdale and Jennett, 1976) in the im-
mediate post-resuscitation phase. Patients were classified
according to a commonly used dichotomization of the
GCS (GCS score 3–5 versus GCS score 6–8) (Narayan
et al., 1981). A similar analysis was conducted for the
best GCS score on day 1 post-injury. The best day 1 GCS
was reported because it is less likely to be influenced by
confounding factors that are not necessarily related to in-
jury severity, and it has been found to be a significant
predictor of outcome (Phuenpathom, 1993). We also
studied the relationship between the presence of pre-hos-
pital hypotension or pupillary abnormalities and SBDPs
in the spinal fluid. Hypotension (systolic blood pressure
�90 mm Hg) and pupillary abnormalities (one or both
non-reactive or dilated pupils) were defined as recom-
mended by the Guidelines for Management and Progno-
sis of Severe Traumatic Brain Injury (2000a,b). Hypoxia
(oxygen saturation less than 90%) was documented in
only three subjects and therefore not included in our
analysis. Using the Marshall classification of CT find-
ings after TBI (Marshall et al., 1992), we studied the re-
lationship between CT findings on the day of injury and
SBDPs. Patient outcome was assessed using the Glasgow
Outcome Score (GOS) at 6 months after injury (Wilson
et al., 1998). Information to assess GOS was obtained by
direct patient contact in the context of a larger outcome
assessment, or via telephone interview with the patient
and/orˇa family member. The GOS score was determined
using the following standard neurological parameters:
good recovery: resumption of normal life despite minor
deficit; moderate disability: person is disabled but inde-
pendent, travels by public transportation, can work in
sheltered setting (exceeds mere ability to perform activ-
ities of daily living); severe disability: the person is con-
scious but disabled, dependent for daily support (may or
may not be institutionalized); persistent vegetative state:
unresponsive and speechless; and death (Jennett and
Bond, 1975). For the purpose of our analysis, outcome
was further classified into two groups dichotomized GOS
(good recovery/moderate disability versus severe dis-
ability/vegetative/dead) as previously described (Choi et
al., 2002). GOS was compared to changes in levels of
SBDPs from 6 through 120 h after admission.

Statistical Analysis

For statistical analysis, biomarker levels were treated
as continuous data, measured in arbitrary densitometric
units (adu) and expressed as mean � SEM. Data were as-
sessed for equality of variance and distribution. Appro-
priate univariate techniques were chosen according to the
type of data; these include Fisher’s Exact test, t-tests with

pooled or separate variances as appropriate, and the
Mann-Whitney U test. Statistical significance was set at
a p-value of �0.05. Number of subjects at each time point
(n values) represent patients who had both clinical in-
formation and CSF samples available for analysis. All
analyses were performed using the statistical software
package SPSS version 10.0.5.

RESULTS

Demographic data from patients whose data were an-
alyzed in this study are shown in Table 1. Control sam-
ples were obtained from 11 patients with normotensive
hydrocephalus (NPH) in whom a ventricular catheter was
placed for routine clinical care. Figure 1 demonstrates a
representative immunoblot showing both intact �-II-
spectrin and �-II-spectrin breakdown products. In TBI
patients. Levels of the 150 kDa �-II-spectrin breakdown
product (SBDP150) were predominantly elevated in the
first 24 h post-injury, while the 145-kDa �-II-spectrin
breakdown product (SBDP145) remained significantly
elevated up to 72 h post-injury. The 120-kDa �-II-spec-
trin breakdown product (SBDP120) was significantly el-
evated at all time points except 24 h post-injury in TBI
patients, compared to control patients (Fig. 2).

Sample analysis focused mainly on the first 24 h post-
TBI. Comparisons of CSF levels of SBDPs and severity
of injury revealed no significant differences between pa-
tients with a post-resuscitation GCS score of 3–5 versus
patients with less severe injury (GCS score of 6–8) in the
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TABLE 1. DEMOGRAPHIC AND CLINICAL DATA

FOR ALL SUBJECTS INCLUDED IN THE STUDY

Total
Characteristics (n � 41)

Mean age (years) 38
Range (18–67)
Gender male/female 33/8
Median scene GCS 4
Median post-resuscitation GCS 5
Marshall classification

Diffuse Injury class I 2
Diffuse Injury class II 16
Diffuse Injury class III 5
Diffuse Injury class IV 0
Evacuated mass lesion 15
Non-evacuated mass lesion 3

Pre-ICU hypoxia 3
Pre-ICU hypotension 11
Intoxicated (alcohol or drugs) 12/20

Data from patients enrolled at three Level I trauma centers.



first 24 h post-TBI (Table 2). Interestingly, patients
whose GCS score did not improve (post-resuscitation
GCS to best day 1) demonstrated significantly higher
mean post-injury values of SBDP150 and SBDP145
SBDP (p � 0.007 and 0.01, respectively) but not
SBDP120 (p � 0.9) in samples obtained within the first

12 h post-injury than patients who showed improvement.
Patients with more severe injury on day 1 post TBI (best
day 1 GCS score 3–5) had significantly higher mean lev-
els of the SBDP150 and SBDP145 in the first 24 h post-
injury (p � 0.031 and p � 0.029, respectively) as com-
pared to patients with less severe injury (best day 1 GCS
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FIG. 1. Representative immunoblot of �-II-spectrin with individual control and TBI human CSF samples: Intact �-II-spectrin (280
kDa) and SBDP150, SBDP145 and SBDP120 are demonstrated. These are compared to rat CSF samples (control and TBI). Cal-
pain produces two major �-II-spectrin breakdown products of 150-kDa and 145-kDa (SBDP150 and SBDP145) in a sequential man-
ner. On the other hand, caspase-3 initially produces a 150-kDa SBDP that is further cleaved into a 120-kDa fragment (SBDP120).
Immunoblots of �-II-spectrin degradation provide concurrent information on the activation of calpain and caspase-3.

FIG. 2. Comparison of levels of SBDPs in patients with TBI versus control at all time points. Levels of the SBDP150 and
SBDP145 were predominantly elevated in the first 24–72 h, post-injury, respectively, while the SBDP120 were significantly el-
evated at all time points except 24 h post-injury in TBI patients, compared to control patients (n � 22–47 for each time point;
*,#,&p � 0.05 compared to control). Values represent arbitrary densitometry units (adu) means � SEM.



score 6–8). This relationship was not seen for the
SBDP120 (Fig. 3). Patients with more severe findings on
admission CT scan (Marshall classification category I–II
versus III–IV or presence of mass lesion) had similar
mean 12- and 24-h levels of SBDPs post-injury (Table
2), but were noted to have significantly higher levels of
the SBDP150 at the 48-h time point post-injury (p �
0.02). The difference was not significant for the
SBDP145 or the SBDP120 (p � 0.1 and 0.1, respec-
tively). Analysis was not conducted for mean values of
samples obtained within 48 h after injury, given the num-
ber of samples available for each individual patient. We
studied the relationship between pupillary abnormalities
post-resuscitation and SBDPs in the first 24 h post-in-
jury, but found no relationship between pupillary exam
and SBDPs in CSF (Table 2). Mean SBDP150 and
SBDP145 in the first 12 h post-injury were significantly
elevated in patients with documented pre-hospital hy-
potension versus patients without hypotension (Fig. 4).
This relationship was not significant for the SBDP120.

When individual time points were analyzed, only the 12-
h post-injury SBDP145 elevation reached statistical sig-
nificance, although the SBDP150 trended towards sig-
nificance at this same time point (p � 0.04 and p � 0.06,
respectively).

To study the correlation between the change in CSF
SBDP levels and clinical outcome in TBI patients, we di-
chotomized clinical outcome into two groups (good re-
covery/moderate disability vs. severe disability/vegeta-
tive/dead) as previously described (Choi et al., 2002). As
shown in Figure 5 and Table 2, our analysis revealed a
statistically significant association between clinical out-
come and the SBDP150 and SBDP145 but not the
SBDP120 at 12 h post-injury (p � 0.01, p � 0.02, and
p � 0.07, respectively). This relationship remained sig-
nificant for the SBDP150 and SBDP145 but not the
SBDP120 when the mean values of samples all samples
collected within 12 h post-injury were compared (p �
0.01, p � 0.02, and p � 0.7, respectively). Analysis com-
paring SBDPs and mortality revealed higher levels of the
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TABLE 2. RELATIONSHIPS BETWEEN SBDP VALUES AND CLINICAL VARIABLES

SBDP150 SBDP145 SBDP120

Clinical variable 12 h 24 h 12 h 24 h 12 h 24 h

Post-resuscitation GCS
3–5 88.5 � 18 88 � 14 97.8 � 18 92.8 � 14 13.4 � 4 16.3 � 6
6–8 107.9 � 15 84.7 � 15 120.3 � 17 86 � 15 18.9 � 7 13.5 � 6

Best day–1GCS
3–5 138.4 � 25a 120.3 � 18a 144.8 � 27 124.8 � 19a 17.6 � 4 24.2 � 12
6–8 82.6 � 12 73 � 11 94.3 � 14 75.6 � 11 15 � 4 11.3 � 4

Improvement in GCS
No 121.9 � 16a 103.8 � 14a 130.4 � 18a 104.7 � 14 16.7 � 4 16.2 � 6
Yes 66.7 � 14 60.5 � 12 79.2 � 15 67.1 � 13 14.5 � 6 13.2 � 7

Admission CT scan
I–II 94.3 � 16 100.5 � 13 104.5 � 17 101.5 � 13 10.9 � 4 8.6 � 2
III–IV mass lesion 98.5 � 18 74.7 � 14 109 � 19 79.7 � 16 19.7 � 5 20.4 � 8

Pupillary abnormalities
No 108.7 � 18 100 � 18 119.4 � 18 107.2 � 18 16.2 � 4 20.1 � 9
Yes 87.9 � 16 74.1 � 12 98 � 18 78.5 � 13 15.3 � 5 12.6 � 4

Pre-hospital hypotension
No 81.8 � 14b 81.3 � 12 91.5 � 14b 84.1 � 12 14.3 � 4 13.8 � 5
Yes 140.7 � 15 104.1 � 14 153.1 � 17 108.3 � 15 19.9 � 8 19 � 11

GOS 6 months post-injury
Poor outcome 121.4 � 15c 98.1 � 13 131.2 � 16c 99 � 14 17.6 � 4 19.2 � 6
Good outcome 60 � 16 69.8 � 16 72.6 � 19 77.6 � 17 14.4 � 7 9.4 � 4

Mean (� SEM) for SBDP arbitrary densitometric units (mean value for samples obtained within the first 12 h and 24 h post-
injury, respectively) after severe TBI. Admission CT scans were classified according to the Marshall Classification. Pupillary 
abnormalities represent post-resuscitation abnormal size and or abnormal reaction to light. GCS, Glasgow Coma Scale; GOS,
Glasgow Outcome Scale; Hypotension is defined as systolic blood pressure of �90 mm Hg.

ap � 0.05 versus GCS 6–8.
bp � 0.05 versus no hypotension present.
cp � 0.05 versus Good Outcome.



SBDP150 and SBDP145 but not SBDP120 at 12 h post-
injury in patients who died (p � 0.04, p � 0.03, and p �
0.98, respectively). This relationship remained un-
changed when the mean values of all samples collected
within 12 h post-injury were compared (p � 0.01, p �
0.02, and p � 0.8, respectively).

DISCUSSION

Examination of �-II-spectrin proteolysis is a powerful
technique that has been studied extensively in animal
models to characterize the mechanisms of calpain and
caspase-3 mediated proteolysis following both TBI (Beer
et al., 2000; Buki et al., 1999; Knoblach et al., 2002;
Newcomb et al., 1997; Pike et al., 1998; Ringger et al.,
2004; Saatman et al., 1996; Siman et al., 2004; Yakovlev
et al., 1997) and acute cerebral ischemia (Pike et al.,
2004; Siman et al., 2005). This present work extends find-
ings collected in animal models and humans following a
severe head injury and supports the hypothesis that break-
down products of �-II-spectrin are a potentially reliable
marker of severe TBI in humans. Importantly, this ap-
proach possesses the ability to distinguish between brain-
injured patients and uninjured controls as levels of �-II-
spectrin and SBDPs were significantly elevated in injured
subjects across most time points examined. Moreover,
SBDP 150 and SBDP145 peak at 6 h post-injury and re-

main significantly elevated for 24 and 72 h, respectively,
while SBDP120 has a initial peak at 6 h, followed by a
sustained elevation that persisted for at least 5 days post-
injury (Fig. 2). The SBDP150, predominantly produced
by calpain activity, exhibited a time course similar to that
of the SBDP145, a signature product of calpain activity
(Fig. 1). Elevations of calpain-related SBDPs correlated
significantly with initial severity of injury (presence of
pre-hospital hypotension, best day-1 GCS score, Marshall
CT scan classification) and 6-month outcome. Samples
obtained 12 h post-injury and the mean value of all sam-
ples obtained within the first 12 h post-injury appear to
be the strongest predictors of severity of outcome. Analy-
sis of the earliest sample collection time point (6 h) was
limited by the number of samples available. In contrast
to the best day-1 GCS score, the post-resuscitation GCS
score did not correlate with SBDPs. This could be ex-
plained by the limitations of the GCS in assessing sever-
ity of injury (Stocchetti et al., 2004), for example, due to
the presence of alcohol, sedative drugs, and neuromus-
cular blockade agents. Lower values of SBDPs in patients
whose GCS score improved in the first 24 h post-injury
support this conclusion.

Together, these findings suggest that the temporal pro-
file of biomarker changes is an important predictor of
clinical outcome. Equally important, these data indicate
that there may be a critical period following injury dur-
ing which these markers predict injury severity. We are

PINEDA ET AL.

360

FIG. 3. Comparison of levels of SBDPs in patients with a GCS score of 3–5 and GCS score of 6–8 in the first 24 h post-in-
jury. Mean (�SEM) arbitrary densitometric units (adu) for �II-spectrin 150-kDa, 145-kDa, and 120-kDa SBDPs. Mean 24-h lev-
els of SBDP150 and SBSP145 are significantly elevated in patients with GCS 3–5 compared to those with a GCS of 6–8 (n �
35; p � 0.031 and p � 0.029, respectively). This relationship was not seen for the 120-kDa SBDP (p � 0.182).



conducting kinetic studies of SBDPs in CSF to further
define optimal frequency and timing of sampling after
TBI in humans.

Caspase-3–related SBDP120 was consistently elevated
after injury but did not correlate with the initial severity
of injury or 6-month outcome. This study was limited to
the early changes in the biomarkers, while the activity of
the caspase-3 pathway may be more important at later
times. Also the activity of the caspase-3 pathway over
several days may be more related to outcome than the
values on any given day. Current studies of biomarker
kinetics will explore this possibility. Alternatively, cas-
pase-3 may not be as important as calpain in determin-
ing injury magnitude and outcome in humans after se-
vere TBI.

Our analysis revealed no correlation between post-re-
suscitation pupillary exam, an important clinical finding
with a 70% positive predictive power to prognosticate
outcome, and SBDPs (Narayan et al., 1981). This find-
ing can be explained by both the limited ability of pupil-
lary exam to predict outcome and the pathophysiology of
pupillary changes after TBI (Meyer et al., 1993; Ritter et
al., 1999).

The use of �-II-spectrin BDPs as a biomarker confers
a number of advantages over other biomarkers currently
being investigated. Because this protein is not found in
erythrocytes, blood contamination is not a confound (Pike
et al., 2001). Moreover, rapid appearance of a biomarker

in biological material is imperative, and SBDPs are de-
tected in CSF within 2 h of experimental TBI (Ringger
et al., 2004). Since we are examining CSF, contribution
from other non-CNS tissue is probably minimal. How-
ever, these studies cannot unequivocally exclude the po-
tential contribution to SBDP accumulation from injury to
peripheral organs. Future studies will need to rigorously
examine this issue with the appropriate poly-trauma con-
trol subjects.

Importantly, examination of �-II-spectrin proteolysis
provides insight into the underlying proteolytic mecha-
nisms at work after a head injury. Specifically, this tech-
nique allows concurrent examination of both calpain and
caspase-3 mediated proteolysis following injury and in
the present study, allowed confirmation of the role of cys-
teine proteases after TBI in humans and provides initial
insight into the time course after injury of these two im-
portant brain injury pathways. There is not a simple, bi-
nary relationship between phenotypic expression of apop-
tosis and necrosis, and activation of caspase-3 and
calpain. As reviewed in detail by Wang (2000), calpain
is the primary mediator of necrotic/oncotic cell death with
no measurable contribution of activation of caspase-3.
However, calpain can also contribute in some cases to
the phenotypic expression of apoptotic cell death (Wang,
2000). In fact, Newcomb-Fernandez et al. (2001) demon-
strated that calpain and caspase-3 activation is reliably
associated with expression of apoptotic cell death phe-
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FIG. 4. Comparison of levels of SBDPs measured within 12 h post-injury in patients with pre-ICU hypotension versus no pre-
ICU hypotension. Mean (�SEM) SBDP150 and SBDP145 in the first 12 h post-injury were significantly elevated in patients
with documented pre-hospital hypotension versus patients without hypotension (p � 0.03 and p � 0.034; n � 6 and 14, respec-
tively). This relationship was not significant for the 120-kDa SBDP (p � 0.484).



notypes after oxygen-glucose deprivation in primary
septo-hippocampal cultures. Thus, although necrosis and
apoptosis have traditionally been defined by phenotype,
cell death processes may be more meaningfully described
by biochemical mechanisms than by phenotypic analysis
alone. In any case, our data suggests a significant con-
tribution of calpain and caspase-3 mediated proteolysis
to the pathobiology of human TBI. As shown by the sig-
nificant increases in both calpain and caspase-3 mediated
SBDPs, our preliminary data demonstrate that necrotic/
oncotic and apoptotic cell death mechanisms overlap but
appear to be activated at distinct time patterns in humans
after a severe TBI. More detailed studies will be required
to provide more definitive statements about the relevant
contribution of calpain and caspase-3 to injury and out-
come.

While other potential biomarkers distinguish between
injured patients and control subjects (Berger et al., 2002;
Ross et al., 1996; Varma et al., 2003; Zemlan et al., 2002),
they provide limited insight into the specific mechanisms
of brain damage following CNS injury. Though tau is
specific to the CNS, it provides no information about spe-

cific neurochemical events that have occurred in the in-
jured CNS since the specific protease potentially re-
sponsible for tau cleavage has not been identified. More-
over, many of these biomarkers have limited sensitivity
and specificity for detecting damage, and questionable
ability to predict clinical outcome after TBI, particularly
NSE (Raabe et al., 1998, 1999; Ross et al., 1996). Serum
assessments of c-tau have relatively low sensitivity in pa-
tients with TBI (Shaw et al., 2002). Elevated levels of S-
100� have also been detected in trauma patients not ex-
periencing a head injury (Anderson et al., 2001; Pelinka
et al., 2003). Current studies of patients with multitrauma
will help address the effect of extracranial injuries in
SBDP values. A recent study in our laboratory demon-
strated that severity of injury, lesion size, and behavioral
deficits were positively correlated with levels of SBDPs
in CSF from rats subjected to experimental TBI, sug-
gesting that this biomarker can predict the magnitude of
injury and resulting functional deficits. In contrast, lev-
els of S-100� in the CSF did not correlate with lesion
size in this model (Ringger et al., 2004).

While these data are encouraging, the authors rec-
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FIG. 5. Comparison of levels of SBDPs taken 12 h post-injury in patients with poor outcome versus good outcome at 6 months.
Patients with poor outcome had significantly higher values of the SBDP150 and SBDP145 at 12 h post-injury when compared
to patients with good outcome (p � 0.01 and p � 0.02). SBDP120 values were not significantly different between these two
groups (p � 0.07). †p � 0.05 versus good outcome.



ognize there are limitations to this study. �II-Spectrin 
can be cleaved to a 150-kDa SBDP by both calpain
(SBDP150) and caspase-3 (SBDP150i), though these
proteases act at different cleavage sites, producing frag-
ments with different amino acid sequences (Wang, 2000).
The techniques used in the current study were not capa-
ble of differentiating between the calpain-mediated and
caspase-3–mediated SBDP150. However, as shown in
Figure 1, the majority of SBDP150 was subsequently
processed to SBDP145 by calpain. Our laboratory is now
developing novel antibodies that specifically recognize
calpain- and caspase-3–mediated SBDP150 fragments. In
addition, the current study was performed in a limited co-
hort of patients with severe TBI, a disease that tends to
be heterogeneous in nature. Nevertheless, this work lays
the groundwork for future clinical studies examining the
utility of �II-spectrin as a biomarker in larger sample
sizes. Though increases in levels of the SBDP150 and
SBDP145 were significantly correlated with initial sever-
ity of injury and 6-month outcome, no such correlation
was demonstrated with the SBDP120 in this study. Fu-
ture studies with a larger sample may uncover a rela-
tionship between levels of this SBDP and patient out-
come. Such studies will also allow multivariate analysis
including relevant clinical variables that can influence
outcome.

Ongoing studies in our laboratories are focused on de-
veloping a serum-based assay sensitive enough to detect
these SBDPs in blood. This minimally invasive assay will
allow assessment of these biomarkers in injured patients
not requiring ICP monitoring (e.g., patients with mild or
moderate head injuries). Blood-based assays will also fa-
cilitate the development of appropriate normative data for
calculations of sensitivity and specificity, and will help
eliminate limitations posed by the nature of our control
samples, such as the absence of multiple time point mea-
surements in control patients. Control samples were ob-
tained intraoperatively and therefore no meaningful in-
creases in biomarker levels due to procedures such a
ventriculostomy placement were anticipated. The effect
of ventriculostomy placement on biomarker levels in TBI
patients is not known. A blood based assay will avoid
this potential limitation.

Because we do not have a solid cutoff for normal sub-
jects, sensitivity and specificity analysis, as well as pre-
dictive power calculations were not done in this group of
patients. Additionally, as shown by this work and others
(Berger et al., 2002; Herrmann et al., 1999; Raabe et al.,
1999; Zemlan et al., 2002), the temporal profile of
changes in biomarker levels is an important factor in de-
termining clinical outcome. Biomarker kinetic studies
with more frequent sampling early after injury and lo-
gistic regression analysis in a larger sample size will fur-

ther define the clinical utility of SBDPs as a clinical bio-
marker. Larger subsequent studies will address clinical
variables—such as gender and age—that are known to
influence clinical outcome and the biochemical response
to TBI (Roof, 2000; Hukkelhoven, 2003; Campbell,
2004). Such studies will be crucial to our understanding
of the relationship between this biomarker and clinical
outcome, particularly in patients experiencing different
severities of head injury (spectrum of mild to severe
trauma) and in deciphering how the temporal profile of
biomarker changes relates to clinical outcome.

ACKNOWLEDGMENTS

Funding was provided by DAMD17-0-3-1-0066 to
R.L.H. and by NIH R01 NS052831 to R.L.H. In addi-
tion, support was provided by funding from Banyan Bio-
markers, Inc. to S.B.L. Kevin Wang and Ron Hayes have
equity ownership in Banyan Biomarkers Inc.; as such,
they may benefit financially as a result of the outcomes
of this research or work reported in this publication.

REFERENCES

ANDERSON, R.E., HANSSON, L.O., NILSSON, O., DIJLAI-
MERZOUG, R., and SETTERGREN, G. (2001). High serum
S100B levels for trauma patients without head injuries. Neu-
rosurgery 48, 1255–1260.

AZOUVI, P. (2000). Neuroimaging correlates of cognitive and
functional outcome after traumatic brain injury. Curr. Opin.
Neurol. 13, 665–669.

BEER, R., FRANZ, G., SRINIVASAN, A., et al. (2000). Tem-
poral profile and cell subtype distribution of activated cas-
pase-3 following experimental traumatic brain injury. J. Neu-
rochem. 75, 1264–1273.

BERGER, R.P., PIERCE, M.C., WISNIEWSKI, S.R., et al.
(2002). Neuron-specific enolase and S100B in cerebrospinal
fluid after severe traumatic brain injury in infants and chil-
dren. Pediatrics 109, E31.

BINDER, S., CORRIGAN, J.D., and LANGLOIS, J.A. (2005).
The public health approach to traumatic brain injury: an
overview of CDC’s research and programs. J. Head Trauma
Rehabil. 20, 189–195.

BRAIN TRAUMA FOUNDATION. American Association of
Neurological Surgeons. Joint Section on Neurotrauma and
Critical Care (2000a). Hypotension. J. Neurotrauma 17,
591–595.

BRAIN TRAUMA FOUNDATION. American Association of
Neurological Surgeons. Joint Section on Neurotrauma and
Critical Care (2000b). Pupillary diameter and light reflex. J.
Neurotrauma 17, 583–590.

�II-SPECTRIN AFTER SEVERE TBI

363



BUKI, A., SIMAN, R., TROJANOWSKI, J.Q., and POVLI-
SHOCK, J.T. (1999). The role of calpain-mediated spectrin
proteolysis in traumatically induced axonal injury. J. Neuro-
pathol. Exp. Neurol. 58, 365–375.

CAMPBELL, C.G., KUEHN, S.M., RICHARDS, P.M., VEN-
TUREYRA, E., and HUTCHISON, J.S. (2004). Medical and
cognitive outcome in children with traumatic brain injury.
Can. J. Neurol. Sci. 31, 213–219.

CHATFIELD, D.A., ZEMLAN, F.P., DAY, D.J. and MENON,
D.K. (2002). Discordant temporal patterns of S100beta and
cleaved tau protein elevation after head injury: a pilot study.
Br. J. Neurosurg. 16, 471–476.

CHOI, D.W. (2002). Exploratory clinical testing of neuro-
science drugs. Nat. Neurosci. 5, Suppl, 1023–1025.

CHOI, S.C., CLIFTON, G.L., MARMAROU, A., and
MILLER, E.R. (2002). Misclassification and treatment effect
on primary outcome measures in clinical trials of severe neu-
rotrauma. J. Neurotrauma 19, 17–22.

COOPER, E. (1994). Neuron-specific enolase. Int. J. Biol.
Markers 9, 205–210.

FARKAS, O., POLGAR, B., SZEKERES-BARTHO, J.,
DOCZI, T., POVLISHOCK, J.T., and BUKI, A. (2005).
Spectrin breakdown products in the cerebrospinal fluid in se-
vere head injury—preliminary observations. Acta Neurochir.
(Wien) 147, 855–861.

FRIDRIKSSON, T., KINI, N., WALSH-KELLY, C., and
HENNES, H. (2000). Serum neuron-specific enolase as a pre-
dictor of intracranial lesions in children with head trauma: a
pilot study. Acad. Emerg. Med. 7, 816–820.

GOODMAN, S.R., ZIMMER, W.E., CLARK, M.B., ZAGON,
I.S., BARKER, J.E., and BLOOM, M.L. (1995). Brain spec-
trin: of mice and men. Brain Res. Bull. 36, 593–606.

GUAN, W., YANG, Y.L., XIA, W.M., LI, L., and GONG, D.S.
(2003). Significance of serum neuron-specific enolase in pa-
tients with acute traumatic brain injury. Chin. J. Traumatol.
6, 218–221.

HALL, E.D., SULLIVAN, P.G., GIBSON, T.R., PAVEL,
K.M., THOMPSON, B.M., and SCHEFF, S.W. (2005). Spa-
tial and temporal characteristics of neurodegeneration after
controlled cortical impact in mice: more than a focal brain
injury. J. Neurotrauma 22, 252–265.

HANLON, R.E., DEMERY, J.A., MARTINOVICH, Z., and
KELLY, J.P. (1999). Effects of acute injury characteristics
on neurophysical status and vocational outcome following
mild traumatic brain injury. Brain Inj. 13, 873–887.

HAYES, N.V., PHILLIPS, G.W., CARDEN, M.J., and
BARNES, A.J. (1997). Definition of a sequence unique in
beta II spectrin required for its axon-specific interaction with
fodaxin (A60). J. Neurochem. 68, 1686–1695.

HERRMANN, M., CURIO, N., JOST, S., WUNDERLICH,
M.T., SYNOWITZ, H., and WALLESCH, C.W. (1999). Pro-
tein S-100B and neuron-specific enolase as early neurobio-

chemical markers of the severity of traumatic brain injury.
Restor. Neurol. Neurosci. 14, 109–114.

HUKKELHOVEN, C.W., STEYERBERG, E.W., RAMPEN,
A.J. et al. (2003). Patient age and outcome following severe
traumatic brain injury: an analysis of 5600 patients. J. Neu-
rosurg. 99, 666–673.

INGEBRIGTSEN, T., and ROMNER, B. (2002). Biochemical
serum markers of TBI. J. Trauma 52, 798–808.

JENNETT, B., and BOND, M. (1975). Assessment of outcome
after severe brain damage. Lancet 1, 480–484.

JOHNSSON, P. (1996). Markers of cerebral ischemia after car-
diac surgery. J. Cardiothorac. Vasc. Anesthesia 10, 120–126.

KNOBLACH, S.M., NIKOLAEVA, M., HUANG, X., et al.
(2002). Multiple caspases are activated after traumatic brain
injury: evidence for involvement in functional outcome. J.
Neurotrauma 19, 1155–1170.

KURTH, S.M., BIGLER, E.D., and BLATTER, D.D. (1994).
Neuropsychological outcome and quantitative image analy-
sis of acute haemorrhage in traumatic brain injury: prelimi-
nary findings. Brain Inj. 8, 489–500.

LANGLOIS, J.A., MARR, A., MITCHKO, J., and JOHNSON,
R.L. (2005). Tracking the silent epidemic and educating the
public: CDC’s traumatic brain injury–associated activities
under the TBI Act of 1996 and the Children’s Health Act of
2000. J. Head Trauma Rehabil. 20, 196–204.

MARSHALL, L.F., MARSHALL, S.B., KLAUBER, M.R., et
al. (1992). The diagnosis of head injury requires a classifi-
cation based on computed axial tomography. J. Neurotrauma
9, Suppl 1, S287–S292.

MEYER, S., GIBB, T., and JURKOVICH, G.J. (1993). Eval-
uation and significance of the pupillary light reflex in trauma
patients. Ann. Emerg. Med. 22, 1052–1057.

MICHETTI, F., and GAZZOLO, D. (2002). S100B protein in
biological fluids: a tool for perinatal medicine. Clin. Chem.
48, 2097–2104.

NARAYAN, R.K., GREENBERG, R.P., MILLER, J.D., et al.
(1981). Improved confidence of outcome prediction in se-
vere head injury. A comparative analysis of the clinical ex-
amination, multimodality evoked potentials, CT scanning,
and intracranial pressure. J. Neurosurg. 54, 751–762.

NEWCOMB, J.K., KAMPFL, A., POSMANTUR, R.M., et al.
(1997). Immunohistochemical study of calpain-mediated
breakdown products to alpha-spectrin following controlled
cortical impact injury in the rat. J. Neurotrauma 14, 369–383.

NEWCOMB-FERNANDEZ, J.K., ZHAO, Y., PIKE, B.R., et
al. (2001). Concurrent assessement of calpain and caspase-3
activation after oxygen-glucose deprivation in primary septo-
hippocampal cultures. J. Cereb. Blood Flow Metab. 21,
1281–1294.

PELINKA, L.E., TOEGEL, E., MAURITZ, W., and REDL, H.
(2003). Serum S 100 B: a marker of brain damage in trau-

PINEDA ET AL.

364



matic brain injury with and without multiple trauma. Shock
19, 195–200.

PHUENPATHOM, N., CHOOMUANG, M., and RAT-
ANALERT, S. (1993). Outcome and outcome prediction in
acute subdural hematona. Surg. Neurol. 40, 22–25.

PIKE, B.R., FLINT, J., DAVE, J.R., et al. (2004). Accumula-
tion of calpain and caspase-3 proteolytic fragments of brain-
derived alphaII-spectrin in cerebral spinal fluid after middle
cerebral artery occlusion in rats. J. Cereb. Blood Flow Metab.
24, 98–106.

PIKE, B.R., FLINT, J., DUTTA, S., JOHNSON, E., WANG,
K.K., and HAYES, R.L. (2001). Accumulation of non-
erythroid alpha II–spectrin and calpain-cleaved alpha II–
spectrin breakdown products in cerebrospinal fluid after trau-
matic brain injury in rats. J. Neurochem. 78, 1297–1306.

PIKE, B.R., ZHAO, X., NEWCOMB, J.K., POSMANTUR,
R.M., WANG, K.K., and HAYES, R.L. (1998). Regional cal-
pain and caspase-3 proteolysis of alpha-spectrin after trau-
matic brain injury. Neuroreport 9, 2437–2442.

PINEDA, J.A., WANG, K.K., and HAYES, R.L. (2004). Bio-
markers of proteolytic damage following traumatic brain in-
jury. Brain Pathol. 14, 202–209.

RAABE, A., GROLMS, C., KELLER, M., DOHNERT, J.,
SORGE, O., and SEIFERT, V. (1998). Correlation of com-
puted tomography findings and serum brain damage mark-
ers following severe head injury. Acta Neurochir. (Wien)
140, 787–792.

RAABE, A., GROLMS, C., and SEIFERT, V. (1999). Serum
markers of brain damage and outcome prediction in patients
after severe head injury. Br. J. Neurosurg. 13, 56–59.

RAABE, A., KOPETSCH, O., WOSZCZYK, A., et al. (2003).
Serum S-100B protein as a molecular marker in severe trau-
matic brain injury. Restor. Neurol. Neurosci. 21, 159–169.

RIEDERER, B.M., ZAGON, I.S., and GOODMAN, S.R.
(1986). Brain spectrin (240/235) and brain spectrin
(240/235E): two distinct spectrin subtypes with different lo-
cations within mammalian nueral cells. J. Cell Biol. 102,
2088–2097.

RIEDERER, B.M., ZAGON, I.S., and GOODMAN, S.R.
(1987). Brain spectrin(240/235) and brain spec-
trin(240/235E): differential expression during mouse brain
development. J. Neurosci. 7, 864–874.

RINGGER, N.C., O’STEEN, B.E., BRABHAM, J.G., et al.
(2004). A novel marker for traumatic brain injury: CSF al-
phaII-spectrin breakdown product levels. J. Neurotrauma 21,
1443–1456.

RITTER, A.M., MUIZELAAR, J.P., BARNES, T., et al.
(1999). Brain stem blood flow, pupillary response, and out-
come in patients with severe head injuries. Neurosurgery 44,
941–948.

ROBERTS-LEWIS, J.M., and SIMAN, R. (1993). Spectrin pro-
teolysis in the hippocampus: a biochemical marker for neu-

ronal injury and neuroprotection. Ann. N.Y. Acad. Sci. 679,
78–86.

ROOF, R.L., and HALL, E.D. (2000). Gender differences in
acute CNS trauma and stroke: neuroprotective effects of es-
trogen and progesterone. J. Neurotrauma 17, 367–388.

ROSS, S.A., CUNNINGHAM, R.T., JOHNSTON, C.F., and
ROWLANDS, B.J. (1996). Neuron-specific enolase as an aid
to outcome prediction in head injury. Br. J. Neurosurg. 10,
471–476.

SAATMAN, K.E., BOZYCZKO-COYNE, D., MARCY, V.,
SIMAN, R., and MCINTOSH, T.K. (1996). Prolonged cal-
pain-mediated spectrin breakdown occurs regionally follow-
ing experimental brain injury in the rat. J. Neuropathol. Exp.
Neurol. 55, 850–860.

SEUBERT, P., LARSON, J., OLIVER, M., JUNG, M.W.,
BAUDRY, M., and LYNCH, G. (1988). Stimulation of
NMDA receptors induces proteolysis of spectrin in hip-
pocampus. Brain Res. 460, 189–194.

SHAW, G.J., JAUCH, E.C., and ZEMLAN, F.P. (2002). Serum
cleaved tau protein levels and clinical outcome in adult pa-
tients with closed head injury. Ann. Emerg. Med. 39,
254–257.

SIMAN, R., and NOSZEK, J.C. (1988). Excitatory amino acids
activate calpain I and induce structural protein breakdown in
vivo. Neuron 1, 279–287.

SIMAN, R., NOSZEK, J.C., and KEGERISE, C. (1989). Calpain
I activation is specifically related to excitatory amino acid in-
duction of hippocampal damage. J. Neurosci. 9, 1579–1590.

SIMAN, R., MCINTOSH, T.K., SOLTESZ, K.M., CHEN, Z.,
NEUMAR, R.W., and ROBERTS, V.L. (2004). Proteins re-
leased from degenerating neurons are surrogate markers for
acute brain damage. Neurobiol. Dis. 16, 311–320.

SIMAN, R., ZHANG, C., ROBERTS, V.L., PITTS-KIEFER,
A., and NEUMAR, R.W. (2005). Novel surrogate markers
for acute brain damage: cerebrospinal fluid levels corrrelate
with severity of ischemic neurodegeneration in the rat. J.
Cereb. Blood Flow Metab. 25, 1433–1444.

SKOGSEID, I.M., NORDBY, H.K., URDAL, P., PAUS, E.,
and LILLEAAS, F. (1992). Increased serum creatine kinase
BB and neuron specific enolase following head injury indi-
cates brain damage. Acta Neurochir. (Wien) 115, 106–111.

STOCCHETTI, N., PAGAN, F., CALAPPI, E., et al. (2004).
Inaccurate early assessment of neurological severity in head
injury. J. Neurotrauma 21, 1131–1140.

TEASDALE, G., and JENNETT, B. (1976). Assessment and
prognosis of coma after head injury. Acta Neurochir. (Wien)
34, 45–55.

VARMA, S., JANESKO, K.L., WISNIEWSKI, S.R., et al.
(2003). F2-isoprostane and neuron-specific enolase in cere-
brospinal fluid after severe traumatic brain injury in infants
and children. J. Neurotrauma 20, 781–786.

�II-SPECTRIN AFTER SEVERE TBI

365



WANG, K.K. (2000). Calpain and caspase: can you tell the dif-
ference? Trends Neurosci. 23, 20–26.

WANG, K.K., POSMANTUR, R., NATH, R., et al. (1998). Si-
multaneous degradation of alphaII- and betaII-spectrin by
caspase 3 (CPP32) in apoptotic cells. J. Biol. Chem. 273,
22490–22497.

WILSON, J.T., HADLEY, D.M., WIEDMANN, K.D., and
TEASDALE, G.M. (1995). Neuropsychological conse-
quences of two patterns of brain damage shown by MRI in
survivors of severe head injury. J. Neurol. Neurosurg. Psy-
chiatry 59, 328–331.

WILSON, J.T., PETTIGREW, L.E., and TEASDALE, G.M.
(1998). Structured interviews for the Glasgow Outcome Scale
and the extended Glasgow Outcome Scale: guidelines for
their use. J. Neurotrauma 15, 573–585.

WOERTGEN, C., ROTHOERL, R.D., HOLZSCHUH, M.,
METZ, C., and BRAWANSKI, A. (1997). Comparison of
serial S-100 and NSE serum measurements after severe head
injury. Acta Neurochir. (Wien) 139, 1161–1165.

YAKOVLEV, A.G., KNOBLACH, S.M., FAN, L., FOX, G.B.,
GOODNIGHT, R., and FADEN, A.I. (1997). Activation of
CPP32-like caspases contributes to neuronal apoptosis and
neurological dysfunction after traumatic brain injury. J. Neu-
rosci. 17, 7415–7424.

YAMAZAKI, Y., YADA, K., MORII, S., KITAHARA, T.,
and OHWADA, T. (1995). Diagnostic significance of
serum neuron-specific enolase and myelin basic protein as-
say in patients with acute head injury. Surg. Neurol. 43,
267–271.

ZEMLAN, F.P., JAUCH, E.C., MULCHAHEY, J.J., et al.
(2002). C-tau biomarker of neuronal damage in severe
brain injured patients: association with elevated intracra-
nial pressure and clinical outcome. Brain Res. 947,
131–139.

ZEMLAN, F.P., ROSENBERG, W.S., LUEBBE, P.A., et al.
(1999). Quantification of axonal damage in traumatic brain
injury: affinity purification and characterization of cere-
brospinal fluid tau proteins. J. Neurochem. 72, 741–750.

Address reprint requests to:
Jose A. Pineda, M.D.

Washington University School of Medicine
Division of Critical Care Medicine

Campus Box 8116
One Children’s Place, Suite 5S20

St. Louis, MO 63110

E-mail: Pineda_J@kids.wustl.edu

PINEDA ET AL.

366


	Washington University School of Medicine
	Digital Commons@Becker
	2007

	Clinical significance of αII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury
	Jose A. Pineda
	Stephen B. Lewis
	Alex B. Valadka
	Linda Papa
	H. Julia Hannay
	See next page for additional authors
	Recommended Citation
	Authors


	

