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ABSTRACT Escherichia coli strains that produce Shiga
toxins/verotoxins are rare, but important, causes of human
disease. They are responsible for a spectrum of illnesses that
range from the asymptomatic to the life-threatening hemolytic-
uremic syndrome; diseases caused by E. coli belonging to
serotype O157:H7 are exceptionally severe. Each illness has a
fairly predictable trajectory, and good clinical practice at one
phase can be inappropriate at other phases. Early recognition,
rapid and definitive microbiology, and strategic selection of
tests increase the likelihood of good outcomes. The best
management of these infections consists of avoiding antibiotics,
antimotility agents, and narcotics and implementing aggressive
intravenous volume expansion, especially in the early phases
of illness.

INTRODUCTION
Shiga toxin (Stx)-producing Escherichia coli (STEC)
cause illness with a spectrum of severity ranging from
mild (even asymptomatic) carriage to life-threatening
disease (1–3). STEC infections are relatively uncommon;
in the United States, extrapolation of data from FoodNet
(4) to a nationwide population that exceeds 300,000,000
indicates there are fewer than 4,000 diagnosed cases of
E. coli O157:H7 infection per annum. E. coli O157:H7
remains the near-exclusive cause of hemolytic-uremic
syndrome (HUS) throughout most of the world, and the
single serotype on which most data have been generated.
Therefore, we emphasize this particular pathogen in this

article. The European Food Safety Authority and the
European Centre for Disease Prevention and Control
report similar epidemiology: 4,000 confirmed infections
caused by Stx-producingE. coli strains (mostly belonging
to the O157 serogroup) in 27 European Union member
states. The number of reported infections attributed to
E. coli strains that produce Shiga toxins has increased
since 2008 (5).

Despite their low overall incidence, human infections
are medically and epidemiologically actionable. The
rarity with which Shiga toxin-producing E. coli infec-
tions occur, barriers to timely microbial diagnosis, con-
sequences of missed diagnoses, and the many difficulties
in attempts to generate high-quality evidence on which
to justify treatments pose challenges for clinicians and
public health systems. In this review, we focus on clinical
aspects (i) early in illness; (ii) in the intermediate stage of
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illness as HUS evolves in the approximately 15 to 20%
of infected children in whom this complication occurs;
and (iii) during the HUS phase and its aftermath. When
data exist, we cite the appropriate literature, but in
other circumstances, we rely on our cumulative experi-
ence, as noted.

DEFINITIONS
This field of study has been vexed by multiple nomen-
clature issues. In this review and in our own papers and
practice, we describe the toxins produced by enteric
pathogens that cause HUS as Shiga toxins (Stxs). This
term is synonymous with verocytotoxins (VT), named
for the toxic effect of these proteins on Vero cells, as
originally described by Konawalchuk et al. (6) and iden-
tified as the key phenotype of these pathogens by Karmali
et al. (7). E. coli strains that produce Stx are termed
Stx-producing E. coli (STEC), which is synonymous with
VT-producing E. coli (VTEC). However, in this text we
use the term STEC/VTEC when describing bacteria that
produce Stx/VT. This combined term reflects our current
misgivings about the term Stx to refer to the cardinal
virulence trait of these pathogens. These misgivings are
rooted in a practical matter: many physicians, on learning
that their patient is infected with a Shiga toxin-producing
organism, assume erroneously that the laboratory is
describing an infection with Shigella sp. (4). Such mis-
conceptions are, in our experience, preludes to the inap-
propriate administration of antibiotics.

EnterohemorrhagicE. coli (EHEC) is another term for
STEC/VTEC strains that cause human disease. This term
is also problematic, because it implies that the diarrhea
stools contain visible blood, which is sometimes not the
case in E. coli O157:H7 infections, and frequently not
the case in infections caused by STEC/VTEC strains be-
longing to other serotypes. Furthermore, a small subset
of patients with HUS will have no diarrhea, but their
stool will nevertheless contain E. coli O157:H7 (8, 9).

We also have preferences for clinical descriptors
related to STEC/VTEC infection. In lieu of the time-
honored term hemorrhagic colitis (coined in the first
outbreak report) (10), we prefer the more encompass-
ing concept of “bloody diarrhea.” For HUS, we urge
a urinalysis-independent, stringent case definition, con-
sisting of the simultaneous presence of nonimmune he-
molytic anemia (hematocrit/packed cell volume <30%
with smear evidence of hemolysis and a negative Coombs
test), thrombocytopenia (platelet count <150,000 mm3),
and azotemia (creatinine > upper limit of normal for age)
(11). There is much hazard and little benefit to be gained

from using less stringent clinical definitions of this com-
plication of STEC/VTEC infections. For example, reli-
ance on an abnormal urinalysis to define HUS, especially
if the serum creatinine is normal, risks consideration of
incorrect diagnoses such as urinary tract infections, es-
pecially as the possibility of contamination with fecal
material is high in the setting of diarrhea. Moreover,
these widely available blood tests enable physicians to
relate their patient’s course to those described in many
other studies during the past 3 decades from multiple
countries (12–31).

HISTORY
HUSwas first described in the mid-1950s by Gasser et al.
(32). In that series of 10 fatal illnesses, cases 3 and 4 had
“Brechdurchfall,” which is vomiting plus diarrhea (case
3 had these signs throughout the entire illness, while the
diarrhea of case 4 occurred only preterminally). None of
the other clinical courses suggested enteric illnesses, and
notably none of the reports used the terms bloody diar-
rhea or dysentery. However, we have found earlier
papers describing cases in which diarrhea or dysentery
preceded renal failure and death within a time frame that
closely resembles that of E. coli-related HUS (33–37).

E. coli O157:H7 and the closely related pathogen
E. coli O157:H– were estimated to have split from the
same progenitor about 7,000 years ago (38). This com-
mon ancestor acquired a gene encoding Stx2/VT2 before
that. However, it was not until the 1970s when E. coli
that had been isolated from foodwas reported to produce
Stx/VT (6). This phenotype preceded by several years the
first description of STEC/VTEC strains as causes of dis-
ease in 1983. In that year, near-simultaneous publications
introduced these pathogens to the medical community:
Riley et al. described a hamburger-associated outbreak of
E. coliO157:H7 infections (10), andKarmali et al. linked
fecal STEC/VTEC to HUS (7). Also in 1983, additional
investigators demonstrated the production of Stx/VT by
E. coli O157:H7 (39–42).

DISTINCTION BETWEEN STEC/VTEC
BELONGING TO SEROTYPE O157:H7
AND THOSE BELONGING TO
ALL OTHER SEROTYPES
There are important practical reasons to differentiate
STEC/VTEC strains that express the O (somatic) 157
and flagellar (H) 7 antigens from all other serotypes,
which we collectively term non-O157:H7 STEC/VTEC.
Most compellingly, E. coli O157:H7 is the STEC/VTEC
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that remains to this day the near-exclusive cause of
postdiarrheal HUS (8, 12, 16, 21, 43–49). This serotype
is also the one most strongly associated with outbreaks
(though most infections are sporadic). If stool specimens
are handled adroitly (i.e., immediately transported to the
laboratory and inoculated on sorbitol-MacConkey agar
on receipt), the microbiologist can often inform the
clinician of a presumptive positive or negative for this
serotype within 18 to 24 h. That simple piece of infor-
mation provides valuable clarity to the management of
patients with acute diarrhea. However, because a pro-
portion of STEC/VTEC infections are caused by non-
O157:H7 STEC/VTEC, there is considerable merit to
also determining their presence, but it is much more
imperative to exert the greatest effort to confirm or re-
fute the presence of E. coli O157:H7 in a stool culture.
One important exception to this statement exists:
sorbitol-fermenting E. coli O157:H– is as virulent, or
possibly more virulent, than E. coli O157:H7 (50), and
this clone remains endemic in Germany. These orga-
nisms, which are closely related to E. coliO157:H7 (38),
are not detected by sorbitol-MacConkey agar screening.

E. coli O157:H7 is best detected in stool by using
sorbitol-MacConkey agar with or without cefixime-
tellurite (51), because unlike most commensal E. coli
and non-O157:H7 STEC/VTEC strains, E. coli O157:
H7 does not ferment sorbitol after overnight incubation.
Hence, the presence of a colorless colony on sorbitol-
MacConkey agar that agglutinates with an appropriate
serologic reagent enables the microbiologist to make a
confident and timely presumptive diagnosis. For inex-
plicable reasons, E. coliO157:H7 is more easily detected
by sorbitol-MacConkey agar plating than by toxin
testing of broth cultures of stool (1, 16, 52–56). Because
of the greater sensitivity of agar plating, the critical
importance of making a diagnosis of E. coli O157:H7
infection as rapidly as possible, and the recognition
that a small subset of non-O157:H7 STEC/VTEC in-
fections can be severe, we agree with the guidance of
the Centers for Disease Control and Prevention that
advises the simultaneous testing for E. coliO157:H7 (on
agar plates) and non-O157:H7 STEC/VTEC (using, in
most cases, a toxin enzyme immunoassay [EIA]) (57).
We strongly disagree with detection algorithms that as-
sume that the EIA can be used as a screen with sorbitol-
MacConkey agar plating only for positives. Such
protocols underdetect E. coli O157:H7 and delay an-
swering an important question: is the patient infected
with E. coli O157:H7 or not?

Though non-O157:H7 STEC/VTEC can cause HUS,
the likelihood that any non-O157:H7 STEC/VTEC

infection will result in serious kidney injury is extremely
low. As noted above, E. coli O157:H7 is the over-
whelming cause of postdiarrheal HUS (8, 12, 16, 21,
43–49). If the stool of a patient with HUS does not
contain E. coli O157:H7, the most likely explanation
is that the specimen was first cultured for this organism
at a point in illness when the pathogen had been elimi-
nated (44).

Table 1 summarizes the E. coli O157:H7/non-O157:
H7 STEC/VTEC acuity pyramid derived from several
defined populations (the HUS studies are globally
distributed, but the non-HUS cohorts are from the
United States). As illness severity increases, inferred from
the setting of acquisition of culture (large geographic
region to emergency facility to cohorts with HUS), the
ratio of non-O157:H7 STEC/VTEC to E. coli O157:H7
diminishes. Findings from several of these studies are
particularly worth mentioning. Of 229 Connecticut
patients with infections caused by non-O157:H7 STEC/
VTEC who were studied over a decade-long interval
(48), HUS developed in only one, while HUS developed
in 45 of the 434 patients in this series who were infected
with E. coli O157. In a United States-wide study of 83
patients with HUS (12), 70 patients had stool cultures in
which bacteria grew. These specimens were obtained a
median of 8 days after illness onset. Of the 30 STEC/
VTEC strains identified in these 30 specimens, 25 were
E. coli O157. Of the five patients whose stools yielded
non-O157:H7 STEC/VTEC, four had serologic testing
in convalescence and three of them had antibody evi-
dence of recent exposure to the O157 lipopolysaccha-
ride antigen. Hence, an EIA (or, increasingly, PCR) (58,
59) to detect an STEC/VTEC strain, when added to
sorbitol MacConkey agar screening, is likely to lead
to the diagnosis of cases that are at much lower risk
of HUS developing. Nonetheless, making a diagnosis
in at least a subset of these cases is worthwhile, if for
no other reason than to provide etiologic clarity to an

TABLE 1 Acuity pyramid. Frequency of recovery of E. coli
O157:H7 and non-O157:H7 STEC/VTEC, according to
the setting of acquisition of specimen

Setting and
study years E. coli O157:H7

Non-O157:H7
STEC/VTEC

Wide geographic areas
(1998–2009) (48, 141)

Montana: 38%
Connecticut: 42%

Montana: 62%
Connecticut: 58%

Pediatric emergency
facilities (1991–2005)
(1, 16, 142)

71% 29%

HUS (1984–2010)
(8, 12, 16, 21, 43–49)

95–99% 1–5%
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illness that is usually of greater severity than most
gastroenteritides. However, data do not exist to calcu-
late the overall value or cost of such policies, but, again,
sorbitol-MacConkey agar screening is most crucial to
include when performing stool cultures for bacterial
pathogens.

CLINICAL MANAGEMENT OF STEC/VTEC
INFECTIONS: PRE-HUS PHASE
Our approach to STEC/VTEC infections is based on
three overarching principles:

1. Early detection is critical: time is not on your side
when treating STEC/VTEC infections.

2. Early and vigorous volume expansion is associated
with avoidance of the most severe renal injury.

3. Highly strategic test selection avoids generating
misleading and potentially harmful results.

Early identification (and hospitalization) of infected
patients is critical because it lowers the risk of secondary
cases (60), avoids diagnostic misadventures (for exam-
ple, we have seen patients started on steroids because
of presumed fulminant ulcerative colitis), and facilitates
the commencement of intravenous volume expansion.
Several lines of evidence suggest that renal perfusion
is threatened prior to and during HUS and that dimin-
ished kidney blood flow increases the likelihood of
severe renal injury. First, there is evidence of pro-
thrombotic abnormalities in the infected host before
HUS (and even if HUS does not ensue). Factor 1.2 (the
prothrombin activation peptide), D-dimers, plasmino-
gen activator inhibitor, and platelet-activating factor are
each elevated during E. coli O157:H7 infections, and
von Willebrand’s factor is also sheared (indicating flow-
related rheological stress, probably caused by nascent
thrombi) (13, 17, 61). These prothrombotic abnormal-
ities, which are demonstrated at a point in illness when
the blood counts are normal, probably produce some
degree of renal ischemia, even before there is smear ev-
idence of microangiopathy. Second, if HUS develops,
dehydration at presentation (manifest as elevated he-
moglobin) is associated with less favorable short-term
(62–64) and long-term (65) outcomes. Third, intrave-
nous volume expansion early in illness, starting as soon
as possible after presentation, is associated with less se-
vere (i.e., nonanuric) HUS, if HUS ensues (20, 21).

The details of our fluid management protocols are
provided in reference 66. We have slightly changed our
recommendations (articulated in reference 66) to now
suggest complete blood counts every 12 h until there is

assurance that the hemoglobin is falling with volume
expansion, because we have not found other indices of
circulating blood volume (BUN:creatinine ratio, skin
turgor, or vital signs) to be reliable in this setting
(authors’ personal experience). We aim for a decrement
in the hemoglobin of 0.5 g/dL per each 12-h period over
the first 1 or 2 days. It can be difficult to accurately assess
host volume status, and there is a risk of overload with
vigorous volume expansion, so we stress the importance
of assiduous monitoring of infected children in centers
that are adept at pediatric care (20, 66).

Antibiotics were first suggested as potentially in-
creasing the risk of HUS developing in the initial report
linking STEC/VTEC infection to this disorder (7). No
credible evidence has emerged since then that supports
the concept that antibiotics administered to children
or adults early in illness reduce the likelihood of HUS
subsequently developing. In fact, extensive data from
multiple studies, including more than 1,000 patients
infected in epidemics and sporadically, demonstrate
that antibiotics are at best neutral and quite likely in-
crease the risk of HUS developing (Table 2). Indeed, the
largest risk is demonstrated in the studies with the most
robust data: large cohorts, interviewed prospectively,
with extensive analysis of timing of administration of
antibiotics, and representing infections with multiple
different strains.

We also urge against the use of narcotics and anti-
diarrheal agents in patients with infections that could be
caused by STEC/VTEC because of their association with
higher rates of HUS or neurological sequelae (67, 68).
We also do not endorse nonsteroidal anti-inflammatory
agents, because, in our experience, they have no value
and because of their nephrotoxic potential (69), which
might be exacerbated in the dehydrated state (70).

Early in HUS Prognostic Factors
HUS occurs in 15 to 20% of children who are culture
positive for E. coli O157:H7. Several indicators appar-
ent early in the course of HUS are associated with a
severe course of HUS. A combination of hypocalcemia
(≤2mmol/L) plus oliguria (urine output <0.4mL kg−1 h−1

for 24 h) within 48 h of hospitalization had the highest
predictive value for negative outcomes (death, need
for dialysis, hypertension requiring therapy, or central
nervous system sequelae at discharge) (71). Multi-
ple seizures, coma, retinal hemorrhages, hyperkalemia
(>7.5 mmol/L), acidosis (bicarbonate <8 mmol/L), or a
diastolic blood pressure >90 mm Hg are also suggested
to be early indicators of poor outcome in HUS (72).
An elevated polymorphonuclear leukocyte count in
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diarrhea-associated HUS is also a risk factor for poor
outcome (73, 74). Unfortunately, these risk factors and
biomarkers were measured at different points of illness,
often after poor outcomes are becoming self-evident.
Nonetheless, the greatest determinant of short- (75) and
long-term (62, 76–87) outcome of E. coli-related acute
kidney injury remains oligoanuria.

HUS with and without Oligoanuria
There are two categories of HUS: oligoanuric and non-
oligoanuric. We emphasize the importance of averting
oligoanuria to the extent possible, because of the re-
peated associations between chronic renal sequelae and
presence and duration of oligoanuria during HUS (62,
76–87). In reality, oligoanuric HUS is equivalent to an-
uric HUS (though there can be a day of oliguria before
renal shutdown is complete). Anuria probably reflects
acute tubular necrosis. The mechanism of acute tubular
necrosis in STEC/VTEC HUS is not completely estab-
lished but could represent either the effect of Shiga toxin
on renal tubules (88–91) or ischemia secondary to
thrombotic occlusion of the renal vasculature (92).
In view of the abundant evidence of prothrombotic
activation before azotemia ensues, and in consideration
of examples of diminished renal blood flow preceding
anuric renal response in many other clinical situations,
we have tended to favor the occlusive/ischemic mecha-
nism as the cause of anuria in HUS. As noted above,
oligoanuric HUS has categorically worse short- and
long-term implications for patients.

HUS that requires dialysis occurs in up to 71% of
patients, according to a summary of HUS series over the
past 4 years (Table 3). The median length of stay after
the case definition of HUS is attained is 12 days for
patients with oligoanuria versus 6 days for patients with
nonoligoanuric renal failure (20). Dialysis should be
instituted soon after anuria onset to prevent cardiopul-
monary overload, avoid electrolyte disturbances, and
treat hypertension. Early initiation of dialysis if anuria
develops allows the provision of nutrition without ex-
acerbating the above complications.

In our institutions, peritoneal dialysis is the most
commonly used modality although intermittent hemo-
dialysis and continuous renal replacement therapies are
equally effective. From our perspective, there several
reasons to use peritoneal dialysis in HUS, including
avoiding unnecessary care in the intensive care unit
(decreasing cost) and allowing direct access to peritoneal
fluid, which is helpful if the possibility of bowel perfo-
ration is raised. If necessary, home renal replacement can
be used in the event of delayed recovery.

Renal replacement therapies, i.e., peritoneal and
hemodialysis, are the chief supportive modalities in
oligoanuric HUS. A review of these interventions is
beyond the scope of this chapter. However, some
complications of dialysis seem to be relatively frequent
during HUS. First, as we recently reviewed (93), infec-
tious complications of peritoneal dialysis are common.
Catheter malfunction, probably related to bowel wall
and mesenteric edema, also complicates peritoneal di-
alysis during HUS. Catheter failure typically presents
when a catheter infuses dialysate but does not drain.
Catheter malfunction often obligates surgical replace-
ment or conversion to hemodialysis. For hemodialysis,
we recommend a dual-lumen catheter of age-appropriate
size, preferably in the internal jugular vein. The authors
generally use regional citrate anticoagulation of the
extracorporeal circuit, but systemic heparin anticoagu-
lation can also be used. Invasive procedures, such as
peritoneal dialysis catheter and central vascular line
placements, can be performed safely without excessive
bleeding during the thrombocytopenia of HUS; platelet
transfusions are rarely necessary (94, 95).

Fluid and Electrolyte Abnormalities during HUS
There are numerous electrolyte disturbances associated
with acute HUS. Hyponatremia, hyperkalemia or hy-
pokalemia, hypocalcemia, and hypoalbuminemia are
common. Notably, however, these abnormalities usually
by themselves do not obligate dialysis if urine is still
being produced (96). Fatalities in the absence of anuria
are exceptionally rare, and recent retrospective data
suggesting the value of early renal replacement therapy
if children are >10% overloaded probably do not apply
to the still urinating child with HUS (97). Hyperuricemia
is common, as is elevated lactate, and could be related
to diminished renal flow, impaired clearance, and in-
creased production (98).

Hypertension
Hypertension during and after acute HUS is common,
with up to 70% of patients affected (99). The mecha-
nism of HUS-induced hypertension is multifactorial and
likely related to volume overload and to endothelial and
vascular injury. Renovascular hypertension has been
suggested to play a role, but plasma renin activity during
HUS is below age-appropriate norms (100) (but renal
vein renin concentrations have not been determined in
this situation). We have had excellent success using
calcium channel blockers in acute HUS. If hypertension
is present at discharge, we use angiotensin-converting
enzyme inhibition even if the creatinine has not yet
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TABLE 2 Summary of antibiotic experience in multiple case control studies of children and adultsa

Study
Year performed,
setting

Ages
of patients

Predominant
antibiotics given

Details provided regarding day
of illness on which antibiotics
were administered (timing),
and comments

HUS rate in
group receiving
antibiotics

HUS rate in
group not
receiving
antibiotic

Carter (143) 1985
Outbreak analysis,
Canada

16–67 yr old Amoxicillin,
tetracycline

Timing not specified. Outbreak
characterized by two phases:
primary, contaminate food;
secondary, person-to-person
transmission. Antibiotic therapy
within the 2 days before food
exposure (primary phase) did not
have increased risk of HUS
developing. However, those on
antibiotics during the outbreak
(secondary phase) had a 10.3
relative risk of HUS developing.

Does not
specifyb

Does not
specifyb

Pavia et al. (144) 1988
Outbreak, case-control
study, Utah

6–39 yr old Predominantly
trimethoprim-
sulfamethoxazole

Timing not specified.Comment:
All antimicrobial agents were begun
with 72 h after onset of diarrhea.

5/8 (63%) 0/7 (0%)

Proulx (145) 1989–1990
Randomized controlled
trial, Canada, antibiotics
administered late in illness

5 ± 4 yr
(average)

Trimethoprim-
sulfamethoxazole (1)

Yes 2/22 (8%) 4/25 (16%)

Bell et al. (67) 1993
Outbreak, retrospective
cohort, Washington State

<16 yr old Trimethoprim-
sulfamethoxazole (62%),
ampicillin or amoxicillin
(26%), cephalosporins (12%),
metronidazole (8%)

Yes 8/50 (16%) 28/218 (13%)

Wong et al. (146)
(superseded by
reference 31
described below)

1997–1999
Multistrain, prospective
cohort study, four states

<10 yr old Trimethoprim-
sulfamethoxazole (2/5),
β-lactams (3/5)

Yes 5/9 (56%) 5/62 (8%)
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Dundas et al. (147) 1996
Outbreak, retrospective
cohort study, Scotland

18 mo to
94 yr old
Mean = 63

Ciprofloxacin Timing not specified.
Comment: HUS developed in 8 (57%)
of the 14 patients who received any
antibiotic in the 4 wk prior to the
outbreak.
HUS developed in 7 (47%) of 15 cases
treated with ciprofloxacin ≤4 days
after symptom onset compared to
25% of the 104 cases that did not
receive antibiotic treatment
(the difference was not statistically
significant).

8/14 (57%) treated
with antibiotics in
the 4 wk before
illness onset
7/15 (47%) treated
with antibiotics
within 4 days after
illness onset

26/104 (25%)

Wong et al. (31)
(extended cohort
analysis of reference
146 described above)

1997–2006
Multistrain, prospective
cohort study, five states

<10 yr old Trimethoprim-
sulfamethoxazole (9/25),
β-lactams (9/25),
metronidazole (3/25),
azithromycin (4/25)

Yes 9/25 (36%) 27/234 (12%)

Smith et al. (148). 1996–2002
Multistrain, age matched,
case-case comparison

<20 yr old β-lactams (22% case,
4% control), sulfonamides
(14% case, 24% control),
metronidazole (6% case,
2% control)

Timing partly specified. Subjects
received antibiotics in two specific
periods: within the first 3 days after
diarrhea onset and in the first 7 days
after diarrhea onset.

27/63c (43%) 38/125 (30%)c

Cimolai et al. (68) 1984–1989
Multistrain, sporadic cases,
retrospective cohort study,
British Columbia, Canada

Age range not
reported.
HUS cohort:
mean = 49 mo
Gastroenteritis
cohort:
mean = 83 mo

Agents not specified, but
were characterized as
“appropriate” if antimicrobial
was recognized to be
effective in the treatment of
shigellosis and if isolate was
susceptible in vitro testing.

Timing not specified.
Duration of antibiotic use termed
“short” if ≤24 h or prolonged if >24 h.

14.3%d 4.4%d

aModified from reference 93 with permission.
bRisk ratio in lieu of HUS rate was provided, and was 8.5 (95% confidence interval 2.7–27.5) in favor of antibiotics associated with HUS development.
cResults report the exposure of antibiotics within the first 7 days.
dResults limited to “appropriate” antibiotics administered for short terms.
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normalized, provided the serum creatinine concentra-
tion is falling and the patient is not on dialysis.

Hematologic Complications during HUS
Almost all patients with HUS require erythrocyte trans-
fusions because of hemolysis. The basis for the hemoly-
sis is presumably physical shearing as red cells course
through small vessels in which fibrin thrombi are abun-
dant. Transfusion requirements appear independent of
the severity of the renal injury (authors’ personal ob-
servations). We use cardiopulmonary compromise or
tachycardia as an indication for transfusion, rather than
an arbitrary hemoglobin concentration, though in real-
ity it is common to factor in the rate of hemolysis, time of
day, vascular access, and point in illness. The transfusion
requirement can continue several days beyond resolu-
tion of thrombocytopenia and return of creatinine to
normal (authors’ personal observations).

Several additional elements should be considered
when pondering the need for erythrocyte transfusion.
First, erythrocyte life span is short in HUS, ranging
between 8 and 24 days (101), and the fibrin debris
presumably recedes on a day-by-day basis. Hence,
transfused red cells might last longer if transfusion can
be delayed until needed. Second, we try to use an entire

unit at each transfusion. Third, we have frequently
noted hypertension immediately following transfusion,
so antihypertensive medications should be readily avail-
able. After transfusion needs abate, we usually do not
provide iron to correct the residual anemia because the
total body iron is not low; reticulocyte counts might be
helpful in this situation.

We also rarely transfuse platelets because the under-
lying process leading to thrombocytopenia is most likely
entrapment of platelets in thrombi, and thrombocytes
have short circulating half-lives in HUS (101). Also,
HUS is a thrombotic process, which is not well served
by platelet transfusions. It is also concerning that most
HUS-related strokes are thrombotic and not hemor-
rhagic (102, 103). Fibrinogen turnover is not increased
in HUS as it is in classic consumptive coagulopathies
(101). We therefore recommend against requesting dis-
seminated intravascular coagulation laboratory tests as
they are not likely to provide relevant information.

Neurologic Complications during HUS
HUS can be associated with a variety of bona fide neu-
rologic lesions, and signs and symptoms of central ner-
vous system dysfunction have been reported in 20 to
50% of cases. HUS has an apparent predilection for

TABLE 3 Severity of HUS in series identified in PubMed published between 2009 and 2013, using search terms hemolytic-
uremic syndrome AND children, on September 4, 2013a

Year of cases,
reference Site Age group

Dialysis
rate Fatalities Comments

1997–2006 (31) Washington, Oregon,
Idaho, Wyoming, and
Missouri

N = 36,
<10 yr

31% 0 Many of these patients were well hydrated
(i.e., a subset were among those in a single center
series [20] at the onset of HUS, which could
account for the low dialysis rate).

2007–2008 (21) California, Washington,
Missouri, Ohio, Wisconsin,
Arkansas, Indiana,
Glasgow, New Mexico,
Tennessee

N = 50
<18 yr

68% 0

1994–2010 (149) Alberta, Canada N = 124
<18 yr

43% 2% This case series employed a case definition of HUS
that did not obligate azotemia. Hence, the low
dialysis rate might reflect patients who would not
have been considered to have had HUS in other
series, and demonstrates another reason to avoid
urinalysis-dependent definitions of HUS.

1998–2008 (150) Buenos Aires, Argentina N = 365
Ages not
reported

43% (Not reported) 94% of patients underwent peritoneal dialysis;
24% peritonitis rate

1995–2011 (62) Buenos Aires, Argentina N = 137
Ages not
reported

52% (Not reported) Better hydration during the prodromal phase was
associated with lower frequencies of oligoanuria
and need for dialysis.

2011 (30) Hamburg, Germany N = 90
<18 yr

71% 1.1% Outbreak of HUS caused by E. coli O104:H4.
Outcomes and severity resembled those of E. coli
O157:H7 HUS.

aOnly articles with diarrhea associated HUS and dialysis rates are included.
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causing basal ganglia lesions (104), but every structure
of the brain can be affected (105, 106). The most com-
mon serious neurologic complications of HUS are coma,
convulsions, and strokes. These complications are usu-
ally poor prognostic signs but are rarely by themselves
lethal. Possible mechanisms for these complications in-
clude endothelial injury with microthrombotic forma-
tion and hypoxia. Neurological dysfunction may be
further exacerbated by hyponatremia, hypertension, and
uremia. Although involvement of the central nervous
system might portend a poor prognosis, it must be
appreciated that neurologic recovery can be delayed
for weeks or months, even after exceptionally severe
HUS (107–110). Indeed, in comprehensive studies of
survivors of HUS who were infected during the 2011
outbreak of E. coli O104:H4 infections, children and
adults usually made complete neurologic recoveries
even after exceptionally severe neurologic abnormalities
during the acute phase (30, 111, 112).

Patients infected with STEC/VTEC often are irritable,
lethargic, and jittery, and we do not treat these signs.
It is possible that the around-the-clock defecations
during the pre-HUS phase contribute to their occurrence.

The use of sedatives to prevent patient movement is
not recommended, because the mental status of patients
with HUS is often altered and such sedation might
confound clinical assessment. Acetaminophen and, if
necessary, fentanyl are our preferred analgesics. Mor-
phine should be avoided because of the neurotoxic effects
of its metabolites, which are cleared by the kidneys (113,
114).

Additional nonnephrologic complications of HUS are
summarized in Table 4.

Chronic Renal-Related Sequelae of HUS
The precise risk of long-term consequences of HUS is
difficult to gauge. Ameta-analysis of 49 papers including
3,476 patients from 18 countries estimated incidences of
death at 9% and end-stage renal disease at 3%, but most
of these two outcomes occurred during acute HUS (86).
In the same paper, a meta-analysis of 2,372 patients with
a minimum of 1 year follow-up estimated 8%, 6%, and
1.8% of patients who have recovered from HUS will
have a glomerular filtration rate (per 1.73 m2) of 60–80,
30–59, and 5–29 ml min−1. In this same group, 10% had
hypertension and 15% had proteinuria.Meta-regression

TABLE 4 Selected nonnephrologic, nonhematologic complications of HUS

Complication Comments References

Pancreatitis Do not pursue mild (“chemical”) pancreatitis by extensive investigation or
withholding oral intake. Hyperlipasemia and hyperamylasemia could be related to
intestinal and not biliary injury, emesis, and diminished renal clearance.

151

Diabetes mellitus Insulin dependence can be transient during acute HUS, or persist following renal
improvement, or rarely present in the convalescent phase.

152–157

Intestinal perforation and necrosis These complications are often difficult to identify. Acidosis that fails to resolve with
dialysis suggests a severe intestinal complication warranting a laparotomy.

158

Biliary lithiasis This is usually apparent in the several weeks after HUS resolves and is manifest as
right upper quadrant pain and rarely biliary obstruction. This is probably caused by
massive hemolysis and subsequent pigment load in the biliary system during HUS.

152, 153

Irritable bowel syndrome This can occur after STEC/VTEC infections, as with other bacterial enteric infections.
Its prognosis is good, often resolving within a year.

159

Elevated transaminases These might reflect liver injury or, possibly, arise from hemolysis. There is rarely
actionable liver injury during HUS.

160

Bowel obstruction Post-HUS strictures can occur in the small or large bowel. One of the authors is
aware of a postinfectious stricture occurring in an adult in whom HUS did not
develop, but this complication usually is manifest in the several weeks or months
after HUS resolves. These are best detected by contrast studies (small bowel
follow-through or barium enema studies).

161, 162

Cardiac ischemia and/or myocarditis This complication is unusual but can complicate HUS. Troponin determination and
cardiac ultrasound might be helpful. We have noted late in illness, i.e., as HUS
resolves, complications in elderly patients with HUS.

9, 163

Retinal hemorrhages Ocular abnormalities are rarely sought in young children, so frequency might be
higher than has been appreciated. Long-term complications included decreased
visual acuity and optic nerve atrophy.

164, 165

Acute respiratory distress syndrome
and pulmonary hemorrhage

Pulmonary hemorrhage is a poor prognostic factor. 9, 64

Sudden death This complication is rare. Case reports occurring during the acute phase of illness. 163, 166, 167
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analysis indicated the severity of illness and the presence
of central nervous system symptoms were associated
with worse outcomes. Full renal recovery was not
achieved if dialysis exceeded 4 weeks, but we have seen
patients who have made nearly complete recoveries after
such prolonged anuria. There are profound selection
biases in computing chronic sequelae rates if the cohorts
are limited to those patients who are still returning to
follow-up years after HUS. It is also important to note
that it is not clear how clinically relevant many of these
sequelae (such as microalbuminuria) are, and in our
experience, chronic renal failure later in life after nor-
malization of the serum creatinine is exceedingly un-
usual. However, it is important to note that a recurring
set of data suggests that presence and duration of
oligoanuria are major predictors of chronic renal se-
quelae (62, 76–87), reinforcing the need to avoid this
complication during acute HUS, if at all possible.

Use of Plasmapheresis and Eculizumab
Eculizumab administration and therapeutic plasma ex-
change during the large German outbreak in 2011
ignited debate about using these modalities in E. coli-
related HUS. Eculizumab prevents formation of the
membrane attack complex by inhibiting C5 function,
and its use has been prompted by a letter to the New
England Journal of Medicine (115). However, HUS in
each of the patients described in that letter was already
resolving (decreasing lactate dehydrogenase and/or
rising platelet counts) when eculizumab was started.
Several in vitro and animal experiments suggest activa-
tion of complement after exposure to Stx/VT (116–118),
but these experiments employed STEC/VTEC concen-
trations several orders of magnitude higher than the
levels that have ever been documented in humans
(119). In contrast, a primate model of lethal STEC/
VTEC challenge demonstrated no evidence of comple-
ment activation (120). Finding evidence of alternate
complement pathway activation in children with HUS is
not evidence of a pathogenic role for this branch of the
innate immune system (121), as complement is often
activated in multisystem organ injury, such as trauma
(122). Finally, there are potentially deleterious effects of
inhibiting complement during HUS, most notably sepsis
(123).

There is similarly no justification for therapeutic plas-
ma exchange in E. coli-related HUS. There is no credible
evidence of deficiency in functional ADAMTS13, the
enzyme that catalyzes shearing of von Willebrand’s
factor into less thrombogenic forms, inhibitors of this
enzyme (i.e., an antibody), or circulating ultra-large

von Willebrand’s factor multimers, which suggests a
lesion that might be treated with plasma therapies
(124–126). Analyses of the E. coli O104:H4 outbreak
provided no evidence of the value of eculizumab and
plasma exchange (127–129). Risks of plasma exchange
include complications of catheter insertion, hypocalce-
mia, and exposure to blood products (130). It is im-
portant to remember that patients with HUS often
deteriorate after they are initially diagnosed, that the
median number of days of anuria (among those whose
urine output ceases) is 8 (20), and that gradual spon-
taneous resolution of the microangiopathy and recov-
ery of renal and neurologic function are the rule and
not the exceptions. Creative treatments offer no benefit
to standard, assiduous, intensive care monitoring but
do carry risks of adverse events. Such interventions
should not be conducted outside the context of con-
trolled trials, and only if sufficient data exist to suggest
a state of clinical equipoise as to their potential value.
Therapeutic plasma exchange and anticomplement
therapies do not meet this standard in E. coli-related
HUS.

Clinical Pitfalls in HUS
Postdiarrheal HUS overwhelmingly occurs on a tightly
choreographed trajectory (131): diarrhea (usually pain-
ful) evolves into grossly bloody diarrhea (80 to 85%
of the time). All three criteria for HUS are usually
met between the 5th and 13th day of illness, with
the first day of diarrhea assigned to be the first day of
illness. However, opportunities for Type 1 and 2 diag-
nostic errors arise because many different microangi-
opathic disorders have at least some laboratory and
historic elements in common with E. coli-related HUS,
and microbial diagnosis of E. coli-related HUS is often
elusive.

Type 1 diagnostic errors (i.e., falsely assuming a pa-
tient has E. coli-related HUS when the patient’s micro-
angiopathy is caused by another process) generally occur
in patients with aberrant prodromes to renal failure
(minimal or no diarrhea, or chronic diarrhea), or labo-
ratory values that are inconsistent with a diagnosis of
E. coli-related HUS. This problem is compounded by
look-alike disorders that do not have highly stereotypi-
cal presentations so are more difficult to recognize. Type
2 diagnostic errors (i.e., incorrectly assuming a patient
does not have E. coli-related HUS) generally relate to
lost microbiologic diagnostic opportunities. To avoid
Type 1 errors, we search for other etiologies of micro-
angiopathy if there is a persistent documented fever in
a health care setting; exceptionally long (>10 days)
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or short (<5 days) prodromal illnesses; prominent res-
piratory symptoms or findings; hypotension/shock;
family history (especially of distant past episodes) (132);
the patient is under 6 months of age, uses specific
medications (e.g., oral contraceptives, cyclosporine),
is pregnant; or there are discordances between renal
injury (severe) and hematologic abnormalities (mini-
mal anemia or thrombocytopenia). The gastrointestinal
symptoms that accompany thrombotic thrombocytope-
nic purpura (133) or atypical HUS caused by comple-
ment regulatory proteins (134, 135) rarely resemble
those of the enteric prodrome of STEC/VTEC-related
HUS, and for this reason, we do not routinely seek other
disorders if the presentation is typical. Adjunctive tests,
which should be requested and interpreted with cir-
cumspection, include chest X rays, blood and urine
cultures (and testing for Shiga toxin production if an
E. coli bacterium is isolated), assays for ADAMTS13
activity, and complement regulatory protein gene se-
quencing (135–137). Tests that are not helpful diag-
nostically and often misleading include serum C3, C4,
and total hemolytic complement. In our experience with
HUS, Type 2 diagnostic errors are more common than
Type 1 errors, and are often based on the misconception
that failing to find evidence of an STEC/VTEC infection
proves that such an etiologic agent is absent. It is im-
portant to note that microbiology testing early in illness
has the highest yield for STEC/VTEC and that many
children with HUS are culture negative at the time of
presentation with HUS (44). We strive to increase the
microbiologic yield by performing a rectal swab culture
on admission of all children with HUS, attempting
to take possession of specimens the earliest in illness
(usually agar plates), and seeking STEC/VTEC in these
specimens in our own centers’ microbiology laborato-
ries. Serology, i.e., seeking evidence of circulating im-
munoglobulins to the O157 lipopolysaccharide (or to
the lipopolysaccharide of several other serogroups),
can also be used to assign etiology to cases of HUS in
patients in whom a pathogen has not been recovered
from the stool (138, 139). Antibodies to VT/Stx are less
frequently sought, but newer enzyme immunoassays
might offer greater ease of performance (140). However,
serologic testing is not widely available. Also, absence
of diarrhea does not exclude the possibility of an
STEC/VTEC infection (8, 9), and finding such a patho-
gen can avert a much more extensive evaluation and
therapeutic misadventures. Therefore, in any atypical
presentation of a microangiopathic disorder we never-
theless exclude, to the best our ability, an etiologic agent
by either culture or serologic investigation.

SUMMARY
E. coliO157:H7 remains the most exceptional pathogen
among the STEC/VTEC group, in view of its enduring
association with HUS worldwide, its leading frequency
in case series of STEC/VTEC infections (compared to
any other serotype), and its ability to cause epidemics as
well as sporadic cases. Agar plating of all incoming
stools is the best way to detect this pathogen. Early in
illness, aggressive volume expansion is associated with
reduced renal injury. Specific therapies directed at this
pathogen or its products are either harmful (antibiotics)
or unlikely to work (the toxemia is short lived). Thera-
peutic plasma exchange and complement inhibition are
not justified by credible data.
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