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Classification of Traumatic Brain Injury 
for Targeted Therapies
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ANDREW I.R. MAAS,4 ALEX VALADKA,5 and GEOFFREY T. MANLEY,6*

and WORKSHOP SCIENTIFIC TEAM AND ADVISORY PANEL MEMBERS*

ABSTRACT

The heterogeneity of traumatic brain injury (TBI) is considered one of the most significant barri-
ers to finding effective therapeutic interventions. In October, 2007, the National Institute of Neu-
rological Disorders and Stroke, with support from the Brain Injury Association of America, the De-
fense and Veterans Brain Injury Center, and the National Institute of Disability and Rehabilitation
Research, convened a workshop to outline the steps needed to develop a reliable, efficient and valid
classification system for TBI that could be used to link specific patterns of brain and neurovascu-
lar injury with appropriate therapeutic interventions. Currently, the Glasgow Coma Scale (GCS)
is the primary selection criterion for inclusion in most TBI clinical trials. While the GCS is extremely
useful in the clinical management and prognosis of TBI, it does not provide specific information
about the pathophysiologic mechanisms which are responsible for neurological deficits and targeted
by interventions. On the premise that brain injuries with similar pathoanatomic features are likely
to share common pathophysiologic mechanisms, participants proposed that a new, multidimensional
classification system should be developed for TBI clinical trials. It was agreed that preclinical mod-
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INTRODUCTION

TRAUMATIC BRAIN INJURY (TBI) remains a major cause
of death and disability. Although much has been

learned about the molecular and cellular mechanisms of
TBI in the past 20 years, these advances have failed to
translate into a successful clinical trial, and thus there has
been no significant improvement in treatment. Among
the numerous barriers to finding effective interventions
to improve outcomes after TBI, the heterogeneity of the
injury and identification and classification of patients
most likely to benefit from the treatment are considered
some of the most significant challenges (Doppenberg et
al., 2004; Marshall, 2000; Narayan et al., 2002).

The type of classification one develops depends on the
available data and the purpose of the classification sys-
tem. An etiological classification describes the factors to
change in order to prevent the condition. A symptom clas-
sification describes the clinical manifestation of the prob-
lem to be solved. A prognostic classification describes
the factors associated with outcome, and a pathoanatomic
classification describes the abnormality to be targeted by
the treatment. Most diseases were originally classified on
the basis of the clinical picture using a symptom-based
classification system. Beginning in the 18th century, au-
topsies became more routine, and an increasing number
of disease conditions were classified by their patho-
anatomic lesions. With improvement of diagnostic tools,
modern disease classification in most fields of medicine
uses a mixture of anatomically, physiologically, meta-
bolically, immunologically, and genetically defined pa-
rameters.

Currently, the primary selection criterion for inclusion
in a TBI clinical trial is the Glasgow Coma Scale (GCS),
a clinical scale that assesses the level of consciousness
after TBI. Patients are typically divided into the broad
categories of mild, moderate, and severe injury. While
the GCS has proved to be extremely useful in the clini-

cal management and prognosis of TBI, it does not pro-
vide specific information about the pathophysiologic
mechanisms responsible for the neurological deficits.
This is clearly demonstrated in Figure 1, in which all six
patients are classified as having a severe TBI. Given the
heterogeneity of the pathoanatomic features depicted in
these computed tomography (CT) scans, it is difficult to
see how a therapy targeted simply for severe TBI could
effectively treat all of these different types of injury.
Many tools such as CT scans and magnetic resonance
imaging (MRI) already exist to help differentiate the mul-
tiple types of brain injury and variety of host factors and
other confounders that might influence the yield of clin-
ical trials. In addition, newer advances in neuroimaging,
biomarkers, and bioinformatics may increase the effec-
tiveness of clinical trials by helping to classify patients
into groups most likely to benefit from specific treat-
ments.

In order to review what is known about the hetero-
geneity of TBI and to develop strategies to capture and
incorporate this information into research studies, the
National Institute of Neurological Disorders and Stroke
(NINDS) sponsored a workshop on Classification of
TBI for Targeted Therapies in October, 2007. Co-spon-
sors included the Brain Injury Association of America,
the Defense and Veterans Brain Injury Center, and the
National Institute on Disability and Rehabilitation Re-
search.

WORKSHOP FORMAT

The workshop organizing committee was co-chaired
by Geoffrey Manley and Ramona Hicks, and members
included Ronald Hayes, Linda Phillips, and Hilaire
Thompson. Using the “grand challenge” approach for ac-
celerating the advancement of science, three multidisci-
plinary teams were charged with proposing ways to (1)
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els were vital in establishing pathophysiologic mechanisms relevant to specific pathoanatomic types
of TBI and verifying that a given therapeutic approach improves outcome in these targeted TBI
types. In a clinical trial, patients with the targeted pathoanatomic injury type would be selected us-
ing an initial diagnostic entry criterion, including their severity of injury. Coexisting brain injury
types would be identified and multivariate prognostic modeling used for refinement of inclusion/ex-
clusion criteria and patient stratification. Outcome assessment would utilize endpoints relevant to
the targeted injury type. Advantages and disadvantages of currently available diagnostic, monitor-
ing, and assessment tools were discussed. Recommendations were made for enhancing the utility of
available or emerging tools in order to facilitate implementation of a pathoanatomic classification
approach for clinical trials.

Key words: clinical trial; head injury; intervention; outcome; therapy



use existing and emerging tools to detect the most com-
mon types and patterns of injury associated with TBI;
and (2) develop a classification scheme that would clus-
ter TBI patients into groups based on these major types
of injury (see Appendix for workshop agenda). The teams
had wide geographic representation across the USA and
Europe, and represented scientists at various stages of
their careers.

Prior to the workshop, each team was asked to prepare
a position paper to:

• Summarize the current classification systems for
TBI;

• List the most common forms of brain and neu-
rovascular injury associated with TBI and their fre-
quency;

• Identify currently available diagnostic tools and de-
scribe a protocol for using these tools to clearly de-
lineate these common forms of brain and neurovas-
cular injury and their severity;

• List data elements required for classifying TBI pa-
tients into groups based on the nature and severity
of their injury;

• Describe the steps needed to develop a reliable, ef-
ficient and valid classification system for TBI that
will be used to link specific patterns of brain and
neurovascular injury with appropriate medical inter-
ventions.

The position papers were forwarded to an advisory
panel before the workshop to allow them to prepare dis-
cussion questions. Information from the position papers
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FIG. 1. Heterogeneity of severe traumatic brain injury (TBI). Computed tomography (CT) scans of six different patients with
severe TBI, defined as a Glasgow Coma Scale score of �8, highlighting the significant heterogeneity of pathological findings.
CT scans represent patients with epidural hematomas (EDH), contusions and parenchymal hematomas (Contusion/Hematoma),
diffuse axonal injury (DAI), subdural hematoma (SDH), subarachnoid hemorrhage and intraventricular hemorrhage (SAH/IVH),
and diffuse brain swelling (Diffuse Swelling).



and from the discussions during the workshop provided
the basis for this manuscript.

OVERVIEW OF CURRENT
CLASSIFICATION SYSTEMS 

FOR TRAUMATIC BRAIN INJURY

Head injuries most often have been classified by one
of three main systems: (1) clinical indices of severity,
used most often in clinical research to compare patients
among centers; (2) pathoanatomic type, used most often
to describe injuries for acute management; and (3) phys-
ical mechanism (i.e., causative forces associated with the
injury), used most often in the biomechanics and pre-
vention fields. In addition, pathophysiology of injury and
evolution of injury cascades have been used to charac-
terize aspects of TBI, particularly in basic science and re-
search. Finally, multiple features can be combined, typ-
ically with the help of biostatisticians, to create
prognostic classification criteria. Many of these schemes
overlap with one another, and workers in different fields
may use terminology in different ways, adding to some
of the confusion in the head injury field and in clinical
trial efforts. In addition, classification schemes will likely
continue to evolve as new tools and concepts shed light
on the causes and consequences of the disease process.

Classification by Injury Severity

In the head injury field, symptom classification gen-
erally has been based on clinical indices of injury sever-
ity at presentation. To date, the majority of clinical treat-
ment trials for TBI have classified and entered patients
based on neurologic injury severity criteria (Narayan et
al., 2002). The 15-point GCS (Teasdale et al., 1974) is
the most commonly used neurologic injury severity scale
for adults, because of its high inter-observer reliability
and generally good prognostic capabilities (Narayan et
al., 2002). Patients with severe TBI, defined typically as
GCS of 8 or less, have most often been enrolled in clin-
ical trials. This group has the highest mortality and mor-
bidity and was presumed to have the best chance of
demonstrating a treatment effect. In addition, hundreds
of preclinical trials, mostly using rodent models, have tar-
geted animals with clinically and/or histologically sig-
nificant injuries. 

Other neurological severity scales include the Brus-
sells Coma Grades, Grady Coma Grades, Innsbruck
Coma Scale, and the FOUR score scale (Brihaye et al.,
1978; Fleischer et al., 1976; Gerstenbrand et al., 1970;
Wijdicks et al., 2005). A number of scales are also avail-
able to assess extracranial injury and physiologic insta-
bility which can influence outcome, including the Ab-

breviated Injury Scale (AIS) (Medicine AftAoA., 1976;
Medicine AftAoA., 1990) and the Injury Severity Score
(ISS) (Baker et al., 1974). The AIS is a detailed injury
scoring system for each of six body regions; the ISS is
designed to quantify the severity of multiple body region
injuries. The Trauma Score is a simplified scale which
includes the GCS, respiratory rate, respiratory expansion,
systolic blood pressure, and capillary refill in order to
give an overall score (1–16) to assess injury severity
(Champion et al., 1981). It has the advantage of being
rapidly applied in the emergency setting.

Several problems arise from utilizing clinical injury
severity indices as entry criteria into clinical trials for
head injury. Factors such as patient age, extracranial in-
juries, and physiologic instability influence outcome
(Marmarou et al., 2007; Murray et al., 2007). Thus, when
trials are analyzed without taking these variables into ac-
count, confounding prognostic factors may override po-
tential treatment effects. Furthermore, improvements in
prehospital care and routine transfer of patients from
community facilities to trauma centers mean that the ma-
jority of patients with more significant-appearing injuries
now receive intervention prior to arrival at the study cen-
ter. Intubation, sedation, pharmacologic paralysis, and in-
toxication complicate and often preclude the accurate as-
sessment of neurologic injury severity on clinical grounds
(Balestreri et al., 2004; Gabbe et al., 2003; Stocchetti et
al., 2004). Specific populations of patients are difficult
to assess with the GCS, including infants, young children
and patients with pre-existing neurologic impairment.
The GCS is also a poor discriminator for less severe TBI,
which account for 80–90% of all cases.

A more fundamental issue surrounding trial entry
solely based on clinical indices is whether this is really
the most scientifically appropriate way to match specific
treatments to specific patients. Clearly, patients who have
in common a “severe” injury phenotype may vary widely
in other injury classification schemes, such as those based
on pathoanatomic or pathophysiological features (Fig. 1),
which may be more relevant to the neuroprotectant ac-
tion of a particular intervention.

Pathoanatomic Classification

A pathoanatomic classification describes the location
or anatomical features of the abnormality to be targeted
by a treatment, and generally falls into the scheme of
“where and what” terminology. The majority of patients
with more severe injuries have more than one injury type
when classified in this way. Going from the outside of
the head and working inwards, injury types include scalp
laceration and contusion, skull fracture, epidural hemor-
rhage, subdural hemorrhage, subarachnoid hemorrhage
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(SAH), brain contusion and laceration, intraparenchymal
hemorrhage, intraventricular hemorrhage, and focal and
diffuse patterns of axonal injury. Each of these entities
can be further described by their extent, location, multi-
plicity, and distribution. Other radiologically and/or
pathologically visible entities do not fit a strict
“pathoanatomic” classification, but overlap with patho-
physiologic classifications (e.g., ischemia, diffuse brain
swelling) or mechanistic classifications (e.g., gunshot
wounds, blast injuries).

That pathoanatomic type of injury influences outcome
has long been recognized, particularly once imaging of
patients with neurotrauma became routine (Gennarelli et
al., 1982a). A number of classification schemes of these
entities have been used for pathoanatomic description in
many acute head injury studies, including the Marshall
score for CT findings (Marshall et al., 1992) and the Rot-
terdam score (Maas et al., 2005). When applied to CT
scans in early severe and moderate TBI, the Marshall
score, an ordinal numbering score with 6 categories, has
been shown to be powerful in predicting both the risk of
increased intracranial pressure (ICP) and outcome in
adults. The Marshall classification is widely used and
pragmatic, but has many recognized and accepted limi-
tations, including difficulties in classifying patients with
multiple injury types and standardization of certain fea-
tures of the CT scan. The Rotterdam score is a more re-
cent and standardized CT-based classification system,
which uses combinations of findings to predict outcome.
This system has not been fully validated, and requires
more study, but overcomes some of the limitations of the
Marshall score.

Classification by Physical Mechanism

Etiological classification of head injuries by physical
mechanism of injury has certain advantages in under-
standing how specific forces at specific magnitudes re-
sult in predictable patterns of injury. Thus, injuries can
be classified according to whether the head is struck or
strikes an object (contact or “impact” loading) and/or the
brain moves within the skull (noncontact or “inertial”
loading). The magnitude and direction of each type or
combination of loading forces may predict type and
severity of injury (Gennarelli et al., 1985). There is con-
siderable, but not perfect, correlation between physical
mechanism of injury and pathoanatomic injury type. For
instance, most focal injuries, such as skull fracture, brain
contusion, and epidural hematoma, result from impact
loading, whereas inertial loading generally causes more
diffuse injuries such as concussion, subdural hematoma
and diffuse axonal injury (DAI). Recently there has been
increased interest in blast mechanisms of brain injury,

which are at present incompletely understood. Mecha-
nistic classification has great utility in modeling injuries
and in prevention. However, in clinical practice most of-
ten the loading conditions must be estimated from in-
complete details of the traumatic event, and inferred in
combination with the pathoanatomic findings and the
clinical severity of injury.

Classification by Pathophysiology

Alternatively, pathophysiologic mechanisms may form
the basis of an etiologic classification and/or characteri-
zation of targets for treatment. In head injury, these can
include processes which are set in motion by the injury
event and take time to evolve, as well as events which
compound or complicate the brain injury such as sys-
temic insults. One widely used scheme in head injury re-
lating to pathophysiologic processes is that which differ-
entiates “primary” versus “secondary” damage (Adams
et al., 1994). While authors vary in exactly how these
terms are used, in general, primary injury refers to the
unavoidable, immediate parenchymal damage occurring
at the time of injury, while secondary injury refers to po-
tentially avoidable damage that occurs at variable times
after injury. The importance of secondary insults, such
as hypoxia, hypertension, hypercarbia, hyponatremia,
and seizures, has gained widespread recognition. How-
ever, pathophysiologic classification schemes have not
been commonly used in treatment trials. This may be due,
in part, to challenges associated with capturing a spa-
tiotemporal profile of the patient’s injury, limited avail-
ability and usage of sophisticated monitoring techniques
needed for measurement of physiologic parameters, and
difficulties in distinguishing inevitable but progressive
cell damage from potentially reversible injury cascades.

Classification by Prognostic Modeling

In early clinical research in head injury, investigators
found that it was difficult to establish confident predic-
tions of outcome after TBI on admission or to compare
outcomes among centers. Thus, the GCS was designed
as an early injury severity assessment tool and proved to
have prognostic value (Jennett et al., 1975). However, the
GCS provides information only in one knowledge do-
main (clinical severity) and may be difficult to measure
on admission, as discussed earlier. Recent work from the
International Mission for Prognosis and Clinical Trial
(IMPACT) studies (Murray et al., 2007) has shown that
predictions can be made on admission and has resulted
in the development of three valid prognostic models of
increasing complexity. This work is particularly relevant
to mitigating the effects of prognostic variability in Phase
III trials rather than specifically identifying subgroups of
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patients likely to benefit from a given targeted interven-
tion.

In an ideal world, a TBI classification system would
be able to select out patients with the potential to bene-
fit from the intervention under investigation, from
pathoanatomic, pathophysiologic, and prognostic per-
spectives. It is crucial to differentiate between the con-
cepts of prognostic factors and factors which relate to a
patient’s potential to benefit from an intervention.
Whereas certain prognostic factors are also markers of
potential benefit (e.g., CT evidence of the nature of the
brain injury), other factors such as age and impairment
of consciousness are primarily prognostic factors. More
direct, diagnostic measures of the underlying pathophys-
iology (e.g., ICP, lesion volume, microdialysis, blood
flow, tissue oxygenation, coagulation status) are likely to
have greater potential to identify patients who will ben-
efit from a given intervention. Therefore, the intent and
focus of this workshop was on developing an improved
classification system for TBI that incorporates both di-
agnostic and prognostic perspectives with the goal of en-
hancing the success of future clinical trials.

COMMON PATHOANATOMICAL 
AND PATHOPHYSIOLOGICAL SEQUELAE

OF TRAUMATIC BRAIN INJURY

Numerous postmortem studies and imaging studies
have shown that there are four main pathoanatomical se-
quelae of TBI: contusions; SAH; hematomas, including
epidural, subdural, and intraparenchymal lesions; and
DAI (Fig. 2). While there is general consensus regarding
the definition for most of these lesions, DAI is defined
differently by different specialties, and the definition has
evolved over time. Initially, the term was coined to de-
scribe the neuropathologic pattern created from pure in-
ertial (noncontact) loading in a large animal model
(Gennarelli et al., 1982b) which was developed to ex-
plain the clinical and pathologic findings seen in human
patients with severe head injuries who died or had poor
outcomes without mass lesions (Adams et al., 1977,
1982; Strich, 1956, 1961). Patients with this traditional
definition of DAI are in profound coma from the onset
of injury and usually have a poor outcome. As MRI tech-
niques and sensitivity have improved, the radiologic pat-
tern associated with DAI is now seen in patients with
much milder injuries. Because some animal models and
human patients have more restricted patterns of axonal
injury than that seen in the classic descriptions, the term
“traumatic axonal injury” (TAI) has been used for these
more limited injuries. For these reasons, the term “DAI”
needs to be carefully defined in clinical studies of TBI.

Ischemic brain injury, cerebral edema and other patho-
physiologic sequelae, in some cases, might be included
in a “pathoanatomic” classification scheme, but in other
instances would be more accurately described as patho-
physiologic cascades or secondary insults. Depending on
the specific entity and etiology, such processes could be
viewed as therapeutic targets—-that is, processes set in
motion by the initial injury event which might be reme-
diable. Alternatively, these could be viewed as con-
founding or prognostic variables which occur in some pa-
tients with a primary pathoanatomic injury type (for
instance, subdural hematoma with an episode of delayed
hypotension and ischemia). Many pathophysiologic se-
quelae have been extensively described in fatal TBI us-
ing autopsy specimens (Graham et al., 2005). Insights
into the etiology and temporal evolution of these events,
which may vary from patient to patient, have been pro-
vided by newer diagnostic modalities, such as CT an-
giography, cerebral blood flow measurement, transcra-
nial Doppler (TCD), and angiography. These tools have
also revealed additional pathophysiologic sequelae. For
example, TCD data suggest that posttraumatic vasospasm
may occur in up to 25% of patients with severe head in-
jury (Oertel et al., 2005), often when severe basal SAH
is present. Recent reports on blast injury suggest that va-
sospasm is especially important in modern military TBI
(Armonda et al., 2006). Many of the above sequelae of-
ten coexist in patients with severe and fatal injuries as
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FIG. 2. Common pathoanatomic sequelae of traumatic brain
injury (TBI). The Venn diagram represents the four main
pathoanatomic sequelae of TBI: hematomas, including epidural,
subdural, and parenchymal lesions; diffuse axonal injury; sub-
arachnoid hemorrhage (SAH); and contusions.



well as patients with moderate and mild injuries as clas-
sified by GCS (Fig. 2).

Although the incidence of isolated, specific types of
injury is known for fatal cases of TBI, the incidence, pat-
terns and magnitude of overlapping injuries across a spec-
trum of injury severity have not been clearly described.
To better understand these complex relationships, more
information about common patterns of injury across the
spectrum of TBI is critical for developing an improved
classification system for targeted therapies.

SUMMARY OF KEY 
WORKSHOP RECOMMENDATIONS

The initial response of the workshop participants to de-
veloping a new classification system for TBI ranged from
enthusiasm for improving the approach used for clinical
trials by exploring the use of existing and new technolo-
gies to skepticism about what could realistically be
achieved. Others believed that the workshop was “rein-
venting the wheel” because similar discussions had taken
place decades ago. In retrospect, the varying perspectives
in terms of enthusiasm for the concept, scientific and
medical disciplines, years in the field, and geographic lo-
calities all contributed greatly to the workshop discus-
sions and recommendations. In the end, there was wide-
spread agreement that patient selection based on the
pathoanatomic features of the individual’s brain injury
should be the cornerstone for a new TBI classification
approach for clinical trials.

A central tenet of this approach is that brain injuries
with similar pathoanatomic features are likely to share
common pathophysiologic mechanisms of cell and tissue
injury. In this manner, patients with the greatest poten-
tial to benefit from a given intervention, based on the
mechanisms of action of the therapy, would be selected
for study. The number of nonresponders should also be
reduced, thereby increasing effect size.

The conceptual framework of a multidimensional,
pathoanatomic classification approach for clinical trials
is as follows:

• Use preclinical models to: (1) Evaluate pathophysi-
ologic mechanisms and identify those pathoanatomic
types of TBI for which the mechanisms are relevant.
This would establish the “targeted injury type.” Al-
though certain brain injury pathologies such as dif-
fuse brain swelling, hypoxia, and ischemia do not fit
cleanly into pathoanatomic classification categories,
mechanisms underlying these TBI-associated
pathologies also represent important targets for
study. (2) Establish that an intervention strategy de-

signed to affect one or more of these mechanisms
mitigates cellular damage and functional impairment
in the relevant targeted injury type(s). (3) Guide se-
lection of patient populations likely to benefit (i.e.,
those with the targeted injury type).

• Determine which patients have the targeted injury
type(s) using an initial diagnostic entry criterion
(e.g., based on CT or MRI).

• Measure or grade injury severity, and include or ex-
clude patients according to predetermined selection
parameters. The approach for assessment of sever-
ity may vary with injury type but would ideally de-
scribe distribution (e.g., extent and location of injury
measured using a radiologic grading scheme), clin-
ical effects (e.g., GCS and neurologic exam) and pos-
sibly physiologic effects (e.g., microdialysis, bio-
markers).

• Identify and characterize additional brain injury
types that may be present because these may influ-
ence outcome.

• Use multivariate prognostic modeling to further re-
fine inclusion/exclusion criteria and to permit strat-
ification. These models can incorporate varying 
degrees of complexity, as desired, including demo-
graphic data (e.g., age, gender, education, cause of
injury, ethnicity, genotype), physiological data (e.g.,
extracranial injuries, hypoxia, hypo/hypertension,
temperature, elevated ICP, apnea, acidosis, cerebral
blood flow, biomarkers), and data related to clinical
status (e.g., GCS, level of alertness, pupillary status,
neurologic exam, neuropsychologic exam). The in-
clusion of GCS and an assessment of extracranial in-
juries (e.g., ISS/AIS) was felt to be of particular im-
portance.

• Select endpoints for outcome assessment which are
relevant to the targeted injury type and utilize tools
optimal for detection of the targeted pathophysiol-
ogy. Outcomes may include radiologic endpoints
(e.g., MRI, MR spectroscopy, diffusion tensor imag-
ing (DTI), CT perfusion), physiologic endpoints
(e.g., microdialysis, electroencephalogram (EEG),
ICP, biomarkers, brain pO2, cerebral blood flow), or
clinical endpoints (e.g., Glasgow Outcome Scale
(GOS), health-related quality of life measures, focal
neurologic deficits, neuropsychologic exam). The
times at which endpoints are measured may vary
with scientific question.

The workshop participants acknowledged that there are
substantial hurdles to overcome before implementation
of a new classification system could take place. How-
ever, an atmosphere of optimism persisted, based in large
part on the firm belief that many of the tools needed to
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implement such a system are already in hand. We have
learned a great deal about injury mechanisms and the pri-
mary pathologies unique to various subtypes of brain in-
juries through animal and human studies. Our clinical as-
sessment tools are useful and, in many cases, are widely
available and well validated. We have learned important
lessons from previous clinical trials (Narayan et al.,
2002), and multivariate prognostic models have been de-
veloped (Murray et al., 2007). Nonetheless, there were
several recommendations regarding the refinement of
tools used for the assessment of TBI and for data col-
lection and dissemination:

• Establish a patient database to: (1) Characterize com-
mon pathoanatomic patterns of injury across the en-
tire spectrum of injury severities and across the 
lifespan. (2) Identify correlations between demo-
graphics, injury severity, physical mechanisms and
pathoanatomic patterns of injury to enable rapid di-
agnosis and treatment of common patterns of injury.
(3) Share clinical data across TBI research centers
for the purpose of developing a pathoanatomic clas-
sification system.

• Trial inclusion criteria should be broadened to in-
clude less severely injured TBI patients. Many ex-
pressed concern that patients classified as having
mild TBI based solely on GCS are excluded from
clinical trials, despite debilitating and persistent
symptoms.

• Neuroimaging modalities such as CT are likely to be
used as the primary tool to identify the features of a
TBI, thereby enabling pathoanatomic classification.
Existing CT grading schemes are useful; however,
they should be modified to include additional detail,
such as information on lesion location, and further
validated.

• More widespread use of acute MRI will be impor-
tant to provide additional detail necessary for accu-
rate pathoanatomic classification, particularly of the
TAI/DAI spectrum. Efforts should be coordinated to
identify and eliminate barriers to the implementation
of acute MRI for TBI clinical trials and to stan-
dardize and validate MRI grading schemes.

• Incorporating endpoints related to the specific, tar-
geted pathophysiology will be especially critical for
evaluating the success of Phase II trials, and should
increase sensitivity of effect detection.

• Additional functional outcome measures that simulate
real-life tasks or functions with ecological validity
should be developed, validated, and incorporated in a
standardized fashion into future clinical trials.

• More complex statistical and bioinformatics tech-
niques (e.g., covariate adjustment, ordinal outcome

modeling) are necessary to increase sensitivity of tri-
als and allow classification utilizing multiple vec-
tors.

• Additional education/instruction is needed to im-
prove standardization and reliability in the use of ex-
isting tools, such as grading and classification
schemes.

• A mutually agreed upon set of common data ele-
ments for TBI for all levels of severity should be es-
tablished, in cooperation with NINDS initiative on
common data elements (www.nindscommondataele-
ments.org/CommonForms.aspx).

• Appropriate elements and tools for special popula-
tions (e.g., pediatric TBI, geriatric TBI, blast TBI)
should be developed.

• Possibilities should be explored for expanding the
Traumatic Coma Data Bank or establishing a new
databank as a basis for developing a classification
system for targeted therapies. In addition, state-of-
the-science platforms for data sharing and analysis
should be explored.

ROUNDTABLE DISCUSSIONS

Roundtable Discussion: Pathoanatomic
Heterogeneity and Laboratory Models

This roundtable group focused on the heterogeneity of
TBI pathology and its implications for animal models and
preclinical studies. Goals for the discussion were to (1)
identify in vivo, in vitro, and computational models that
might be useful in the validation of tools that detect and
discriminate between the various types of TBI, (2) com-
pare the advantages and disadvantages of these models
for this purpose, and (3) recommend ways to address any
limitations and gaps in the models.

Preclinical animal models of focal and diffuse insults
(Povlishock et al., 1994; Thompson et al., 2005) were
discussed. Traditionally, focal insult models have em-
phasized production of targeted contusion and local is-
chemia, whereas the most commonly used diffuse injury
models aim to create DAI or diffuse ischemia. Contusion
can be produced by controlled cortical impact and by the
generation of either local hematoma or hemorrhagic le-
sions. Focal ischemia is commonly produced with con-
trolled vascular occlusion. Models producing inertial 
acceleration-deceleration or acceleration through a dis-
tributed impact are typically used for generating DAI.
Manipulations of cerebral perfusion and oxygenation to
generate diffuse ischemia may be useful to differentiate
neuropathologic profiles of global ischemia from DAI
(Povlishock et al., 2005) aiding in the design of targeted
therapies. Other variants of head injury, including pene-

SAATMAN ET AL.

726



trating missile and blast injury, are of increased impor-
tance in the military arena (Warden, 2006). The devel-
opment and evaluation of models for these other forms
of TBI are challenged by the paucity of information re-
garding their pathobiology and the fact that recovery as-
sessment may be seriously confounded by complex post-
traumatic stress disorder (Kennedy et al., 2007; Kim et
al., 2007).

While in vitro TBI models provide elegant ways to test
detailed aspects of trauma pathophysiology, they gener-
ally have not been exploited for discriminating between
the different types of TBI for the purposes of clinical in-
tervention. Computational models of relationships be-
tween applied physical forces and tissue damage have
been utilized primarily for injury prevention research
rather than for guiding treatment strategies. However,
prediction of anatomical location of injury, vulnerable tis-
sue or cell types, or the severity or progression of a le-
sion could have important applications to a
pathoanatomic classification system and may represent
an opportunity for the future.

In summary, in vivo modeling will continue to provide
critical insights into the pathobiology of specific types of
TBI and the efficacy of candidate therapeutics. Although
a sound roster of animal models exists for evaluating ma-
jor brain injury types, the roundtable participants ac-
knowledged certain limitations and made the following
recommendations:

• Thorough pharmacokinetic studies of investigational
drugs should be done in a standardized, well-con-
trolled fashion.

• Rodent models predominate in the field of TBI, lead-
ing to challenges with respect to scale and anatomy
when translating to humans. Differences in brain
size, organization and maturation may affect, for ex-
ample, the biomechanical response of the brain, the
delivery of a therapeutic, and the functional or phys-
iologic consequences of “comparable” injuries
across species. Therefore, a significant change in
large areas of the lissencephalic rodent brain may
only translate into small effects in the gyrencephalic
human, or vice versa (Manley et al., 2006;
Povlishock et al., 1995; Statler et al., 2001). The
group recommended moving some of the injury par-
adigms into larger, gyrencephalic species. This was
felt to be particularly important for validating imag-
ing modalities through postmortem assessment of
brain pathology.

• The majority of preclinical studies have focused on
acute interventions and outcomes. In contrast, the
success of human trials has been judged using long-
term outcome, assessed months after TBI. The

chronic posttraumatic interval is characterized by the
activation of a secondary adaptive recovery, which
is not generally considered in acute or subacute an-
imal assessments. Preclinical model analysis should
be extended to include periods of recovery and brain
plasticity. In addition to the assessment of motor and
sensory recovery, other tests should be developed to
dissect complex brain recovery mechanisms (e.g.,
cognitive integration, emotion) which occur with
long-term survival.

• Variability in pre-existing physiological status and
in extracranial injuries and complications resulting
from traumatic injury in humans is not represented
in animal models. Real world patient heterogeneity
requires a variety of interventions applied across the
phases of injury and recovery. Well-monitored ani-
mals subjected to standardized models of TBI have
less variability and, therefore, a much lower risk-to-
benefit ratio for a given treatment. The group rec-
ommended that laboratory modeling of TBI should
always consider the ‘bedside to bench’ strategy, us-
ing human brain pathology to identify the specific
biological variables most affected by injury. Such
variables should exhibit the most significant effects
in animal models and better replicate the human con-
dition. In addition, the fact that controls for systemic
effects associated with TBI are not in place for hu-
mans should be considered when translating the ef-
ficacy of interventions from rodent models. Given
that we have good rodent models in place, choosing
therapeutic manipulations which result in larger,
measurable signals may increase the likelihood that
experimental treatment effects will be detectable
above the expected variability of outcomes in hu-
mans.

• Models do not capture the full spectrum of injury
severity. This is especially true for milder forms of
injury, for which new models should be validated
and fully characterized.

• Models of blast injury need further development and
validation for studies on both military and civilian
populations.

• Animal models of posttraumatic stress should be de-
veloped and tested for interaction with TBI. This
combination is emerging more frequently, particu-
larly in association with blast injury.

Roundtable Discussion: 
Acute Clinical Monitoring

The goals of this roundtable discussion were to com-
pare the advantages and disadvantages of acute clinical
monitoring tools, to make recommendations for which
tools to use and when, and to recommend ways to ad-
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dress limitations in the current tools. By tools, here, we
refer to indices of patient condition that might be used
for management decisions, severity assessment, or sur-
rogate outcome measures in some clinical trials. These
tools might include various ways to more fully charac-
terize (a) specific pathoanatomic type or extent of injury,
(b) severity of neurologic or neuropsychologic deficits,
(c) pathophysiology of injury-initiated cascades or sec-
ondary insults, or (d) evolution of injury. In clinical tri-
als, each of these features might be used to standardize
entry criteria or to follow a specific target for interven-
tion.

The primary initial evaluation of a patient with a TBI
currently includes the GCS, complemented by CT and a
detailed neurologic exam to the extent feasible and dic-
tated by patient clinical status. The initial clinical evalu-
ation, however, is frequently unreliable and further
clouded by use of sedative and neuromuscular blockade
medications in the emergency setting. These difficulties
with the early clinical evaluation run counter to the need
for rapid assessment, recruitment, and enrollment of pa-
tients in clinical trials addressing early therapeutic inter-
ventions. Therefore, additional concrete and valid as-
sessments tools are needed in the early phase.

• In the acute phase (0–4 h), there is consensus that
despite the limitations noted, the GCS score remains
the standard and most well-validated index of over-
all neurologic injury severity. However, it is most
helpful on the more severe end of the injury spec-
trum. Protocols are clearly needed to better charac-
terize injury type and severity in patients on the less
severe end of the spectrum. This may be in the form
of early MRI, serum biomarkers, rapid neuropsy-
chologic tests, or innovative techniques such as mag-
netoencephalography attempting to quantify the ex-
tent of neurologic/physiologic disturbance as a result
of a more minor or moderate TBI.

• Moving beyond the acute phase evaluation and into
the “Intensive Care Unit phase” (approximately 4—
12 h postinjury), additional parameters may be in-
corporated into the early clinical evaluation and
characterization of injury. Appropriate tools might
serve to better define specific injury type, extent,
pathophysiology, and evolution of injury over time.
Where appropriate, ICP monitoring, microdialysis
sampling, brain tissue pO2 measurements, and EEG
may have a role.

• Age-appropriate measurement techniques are needed
to distinguish specific injury types, pathophysiology,
and evolution of injury in pediatric patients, the aged,
or other populations in which these features may be
distinctive.

• More widespread use and validation of existing
tools, such as CT perfusion scans, electrophysiology,
and DTI, is clearly needed. Additional functional and
feasible acute measures (e.g., biomarkers, CT per-
fusion, early neuropsychologic batteries) must be de-
veloped, validated, and related to delayed modalities
with known prognostic significance.

• Our current armamentarium is insufficient, and there
is a need for better, more sophisticated tools to mea-
sure extent of injury and occurrence of specific
pathophysiologic mechanisms as summarized in
Table 1.

• In order to reduce multicenter variance, clinical mon-
itoring in the acute phase should be performed with
uniformity across participating centers and in such a
manner that common data elements are populated
and sample sizes for clinical studies controlled.

Roundtable Discussion: Neuroimaging

The goals of this roundtable discussion were to com-
pare the advantages and disadvantages of neuroimaging
tools, to make recommendations for which tools to use
and when, and recommend ways to address limitations
and gaps in the current tools. The discussion began by
acknowledging the distinction between the use of imag-
ing for acute classification of pathoanatomic injury type
and the use of neuroimaging tools to answer specific re-
search questions about pathophysiology, extent of injury,
secondary injury, evolution of pathology, and treatment
effects.

With respect to use of imaging for acute classification,
it is widely accepted that for most injury types, especially
at higher levels of injury severity, CT scan is the initial
test of choice (Table 2). This arises from its wide avail-
ability and its high reliability in identifying the presence
of hemorrhages, contusions, and mass effect, which guides
acute management and has proven prognostic significance.
However, more complex classification schemes, such as
the Rotterdam scale and others, are needed to handle het-
erogeneity in the size, location, and multiplicity of lesions,
as well as findings such as swelling, loss of grey-white dif-
ferentiation, presence or absence of cisterns and sulci, tis-
sue shifts, and herniation effects. Thus, it was felt that
within most of the common pathoanatomic categories, data
are available from tools already at hand to help stratify pa-
tients and predict outcome using current neuroimaging
techniques. It was also recognized that development of
computer-aided diagnostic tools is needed for more ob-
jective and quantitative image analysis and to improve
workflow for clinical trials.

For some diagnoses, MRI has higher sensitivity and
specificity for detection and classification, particularly
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TABLE 1. TOOLS FOR PATHOANATOMIC AND PATHOPHYSIOLOGIC SEQUELAE

Common pathoanatomic 
and pathophysiologic sequelae Available Additional validation needed

Hematoma, contusion, subarachnoid Imaging,a clinical exam Biomarkers of coagulopathy,
hemorrhage assessment of ischemia/perfusion

(Xenon CT, CT perfusion), risk for
hemorrhage expansion, risk for
malignant intracranial hypertension

Diffuse axonal injury Imaging,a clinical exam Biomarkers, imaging (susceptibility
weighted imaging, diffusion tensor
imaging)

Intracranial hypertension ICP monitoring, clinical exam Non-invasive ICP monitoring
Cerebral hypoxia/ischemiab PET, clinical exam, Xenon CT Continuous bedside measurements

(PbtO2, SjvO2, near-infrared
Spectroscopy, TCD), microdialysis

Cerebral swellingc Imaging,a clinical exam Continuous bedside measurements
(CBF, brain compliance, tissue
water content)

aSee Table 2.
bIncludes post-traumatic vasospasm.
cCerebral swelling due to increased blood volume or edema.
CBF, cerebral blood flow; CT, computed tomography; ICP, intracranial pressure; PET, positron emission tomography; PbtO2,

brain tissue oxygen tension; SjVO2, jugular venous oxygen tension; TCD, transcranial Doppler.

Acute monitoring and diagnostic tools

TABLE 2. IMAGING MODALITIES FOR PATHOANATOMIC AND PATHOPHYSIOLOGIC SEQUELAE

Modality Hematoma Contusion SAH DAI Ischemia Vasospasm

CT ��� �� ��� �/0 �/0 0
CTA 0 0 � 0 � ���
CTP � � 0 0 �� ��
T2 FLAIR � ��� ��� � � 0
1.5T T2* GRE � � ��� � 0 0
3T T2* GRE � � ��� �� 0 0
SWI ��� �� �� ��� 0 0
DTI � � 0 ��� ��� 0
PWI � � 0 � �� ��
MRSI 0 0 0 �� � 0
MRA 0 0 � 0 �� ���
fMRI 0 0 0 ? 0 0
PET 0 � 0 ? ��� 0

Scoring: little/no data, ?; insensitive, 0; minimally sensitive, �/0; mildly sensitive, �; moderately sensitive ��; highly sensitive,
���.

CT, computed tomography; CTA, computed tomography angiography; CTP, computed tomography perfusion; DAI, diffuse ax-
onal injury; DTI, diffusion tensor imaging; fMRI, blood oxygenation level dependent (BOLD) functional magnetic resonance imag-
ing; MRA, 3D time-of-flight MR angiography; MRSI, MR spectroscopic imaging; PET, positron emission tomography; PWI, dy-
namic susceptibility contrast perfusion-weighted imaging; SAH, subarachnoid hemorrhage; SWI, susceptibility-weighted imaging;
T2 FLAIR, T2-weighted fluid attenuated inversion recovery; T2*GRE, T2*-weighted gradient echo.



for DAI and more subtle imaging manifestations found
in “concussive” type head injury. Therefore, for purposes
of some study questions, MRI would be a preferable ini-
tial imaging modality. In the spectrum of diffuse white
matter injuries, fluid-attenuated inversion recovery
(FLAIR) and T2 sequences are sensitive for non-hemor-
rhagic white matter lesions, and gradient echo and sus-
ceptibility-weighted imaging for blood products. Diffu-
sion-weighted imaging is also very sensitive for DAI but,
as is the case with ischemia, its sensitivity is limited to
the acute setting. It is not yet clear whether DTI or other
emerging techniques will demonstrate even greater sen-
sitivity in recognizing axonal injury or will be able to
track or predict functional recovery or response to inter-
vention, though significant progress has been made (Gal-
lagher et al., 2007).

Both MRI and specialized CT techniques provide
unique information about some pathophysiologic
processes involving ischemia and blood flow abnormal-
ities (Table 2). These techniques include CT and MR per-
fusion, diffusion-weighted imaging, and CT and MR an-
giography. With some MR techniques, the presence of
blood products creates artifacts which can distort the im-
ages, making these applications less robust in the setting
of TBI than they have proven to date in nontraumatic is-
chemic pathologies such as stroke. Currently, perfusion-
CT techniques do not offer whole-brain coverage, a draw-
back that will be eliminated with the advent of large
coverage (256- or 320-slice) CT scanners. Isotope or
metabolite-based techniques such as xenon CT, single
photon emission CT or positron emission tomography
(PET) are useful at present for patients with TBI mostly
in the research setting, but have given insight into the
complex relationship between brain perfusion and me-
tabolism While neuroimaging techniques have the sig-
nificant disadvantage of reflecting only one point in time,
imaging has the major advantage of providing region-
specific information. In contrast, the majority of bedside
cerebral monitoring techniques concerned with cerebral
blood flow, oxygen tension, and other physiologic vari-
ables can provide continuous measurements, but they re-
flect only one geographic point in a very large and often
heterogeneous intracranial compartment. For this reason,
it was felt that neuroimaging would continue to play an
increasing role in research questions involving cerebral
hemodynamics and metabolism.

Other neuroimaging techniques may be useful for
tracking specific aspects of pathophysiology or recovery.
MRI volumetric analyses have been used by several
groups to follow head-injured patients over time and to
correlate patterns and extent of tissue loss in specific 
regions with neuropsychologic outcomes. MR spec-
troscopy has been used in severe injuries to show major

loss of metabolic integrity, but at present is less well stud-
ied for distinguishing among patients or predicting out-
come in those with milder injuries. There has been some
hope that specialized MR spectroscopic or PET tech-
niques which can localize and quantify neurotransmitters
or other molecules may prove useful in tracking response
to treatment with various neuroprotective or psychoac-
tive medications. Although functional MRI has been used
to track recovery in some acquired conditions such as
surgery for tumors or epilepsy, its use in trauma depends
in part on the location of the damage and specific func-
tions impaired. Magnetoencephalography, used largely in
studying epilepsy, is still in the early stages of use in
head-injured patients, and as yet little is known about
what information it may provide in this setting. Most of
these advanced imaging techniques currently suffer from
the lack of normative databases and protocol standard-
ization.

Overall, the imaging roundtable group concluded that
current imaging techniques provide an excellent start on
injury classification, especially with schemes which rec-
ognize the varying severity and multiplicity of injuries.
In addition, the wide variety and continuous refinement
of emerging imaging techniques should be watched
closely and kept in mind as TBI research moves ahead.
These techniques will become increasingly important for
improved injury classification, pathophysiology charac-
terization, prognostication, and treatment effects analy-
sis.

Roundtable Discussion: Biomarkers

The goals of this roundtable discussion were to eval-
uate the status of biomarkers as a tool for TBI classifi-
cation and to recommend ways to facilitate research in
this area. A number of putative serum, cerebrospinal fluid
(CSF), or microdialysate biomarkers have been evaluated
in animal models and clinical studies of TBI, with S100
and neuron-specific enolase being among the most
widely investigated. However, many of these candidate
biomarkers have failed to exhibit adequate sensitivity and
specificity for central nervous system (CNS) injury or
yield significant prognostic value. Therefore, the discus-
sion of a role for biomarkers in clinical trials for TBI was
infused with an air of caution. As with any newly de-
veloped tool, biomarkers should demonstrate diagnostic
or prognostic value above that available with existing
tools. In general, biomarkers were felt to be insufficiently
characterized to serve as a classification tool, a prognos-
tic factor, or a surrogate outcome marker in clinical tri-
als in the immediate future. However, there was enthu-
siasm for the continued development and validation of
biomarkers. 
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The development of biomarkers generally progresses
from detection and characterization in the brain to mea-
surement and validation in CSF and then in serum. The
roundtable group discussed a number of challenges that
arise during this process, and the implications for the use
of biomarkers in TBI clinical trials. With respect to a po-
tential pathoanatomic classification approach for TBI pa-
tients, the most important question is whether current bio-
markers are useful for differentiating injury type. That is,
do we have biomarkers specific for contusion versus sub-
dural hematoma? Workshop participants agreed that we
do not currently have this capability and felt this repre-
sented an important, but long-term, goal of biomarker de-
velopment.

In the initial classification of injury, biomarkers might
be used in an alternative fashion, to grade injury sever-
ity. Levels of certain biomarkers may correlate with in-
jury severity, as assessed by other clinical indicators such
as GCS (Pineda et al., 2007). The use of a biomarker to
assess injury severity could avoid problems with unreli-
able GCS assessments in patients who are intoxicated or
intubated. While CSF biomarkers that reflect injury
severity might be available for widespread use in the near
future, more skepticism was expressed regarding the like-
lihood that serum biomarkers would possess adequate
sensitivity to differentiate injury severity. Additionally,
the loss of spatial information in CSF or serum biomarker
data raised concerns about the ability of biomarkers to
differentiate between a mild injury encompassing a large
brain area and a severe injury involving a small region
of brain, for example, or between two equivalent-size le-
sions in different parts of the brain that result in greatly
different clinical presentations. Local biomarker levels
assessed through microdialysis may provide critical in-
formation in these types of cases. Nonetheless, biomark-
ers likely represent a tool which will supplement, rather
than replace, existing approaches such as neuroimaging
and GCS in classification of patients for trials.

In addition to aiding in the initial assessment of injury
type and severity, biomarkers may serve as a prognostic
indicator for TBI. The utility of biomarkers in improv-
ing prognostic capabilities lies in the sensitivity and
specificity of the biomarker. There was particular enthu-
siasm for the development of biomarkers that would aid
in the prognosis of mild TBI. In a patient with a normal
CT scan or MRI, a biomarker that could predict worsen-
ing neurological status would have great clinical utility.
Similarly, biomarkers that could predict the likelihood of
secondary injuries such as ischemia or hypoxia would be
valuable.

In summary, the roundtable participants encouraged
the continued exploration and validation of biomarkers
for TBI. Biomarkers will likely supplement existing tools

such as GCS and neuroimaging for the initial classifica-
tion of brain injury in the near future. The use of bio-
markers to identify at-risk patients with mild TBI or to
differentiate injury pathology types were felt to be im-
portant, but long-range, goals.

Roundtable Discussion: 
Clinical Outcome Measures

The goal of this roundtable discussion was to describe
the role of outcome measurements in developing a
pathoanatomic classification system for targeted thera-
pies. To this end it was agreed that the choice of an out-
come measure determines the degree to which the effi-
cacy of any clinical trial is, at minimum, documented and,
at maximum, comprehensively defined. This is relevant
to the issue of classification, because with greater clarity
in defining the focus of the intervention, ramifications for
outcome measurement may emerge. For example, does
greater specificity in defining the type of brain injury or
the nature, etiology and type of neuropathology lead to
different expectations with respect to outcome and, there-
fore, different measurement needs?

A clear view of the range of points at which “success”
can be measured is needed prior to choosing one or more
appropriate measures to describe the impact of an inter-
vention. For example, the impact of an intervention de-
signed to reduce mortality or secondary complications
during the acute stages of care may require assessing both
short-term and long-term functioning within different In-
ternational Classification of Functioning domains (World
Health Organization, 2001). This intervention will re-
quire a different type of outcome assessment than one
that is seeking solely to improve functioning in the com-
munity. Thus, the GOS (Jennett et al., 1975, 1981) or
Disability Rating Scale (Rappaport et al., 1982) might be
appropriate for use as global measures of immediate out-
come in an acute trial. In contrast, measures that assess
in more detail constructs such as participation and health-
related quality of life, for example, the Mayo-Portland
Adaptability Inventory (Lezak et al., 2003), the Neu-
robehavioral Rating Scale (Levin et al., 1987), the Par-
ticipation Objective, Participation Subjective (Brown et
al., 2004), or the Satisfaction with Life Scale (Diener et
al., 1985), might be useful when examining the more dis-
tal impact of residual impairments or disability on the
person’s functioning within activity and participation do-
mains.

Consideration must be given to the appropriate level
of outcome analysis when examining specific questions
with regard to the effectiveness of an intervention. For
example, while neuropsychological tests are sometimes
viewed as useful outcome measures for clinical trials, the
utility of test scores in defining outcomes depends on the
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purpose of the trial. Thus, if a pharmaceutical is hypoth-
esized to improve memory function, it is appropriate to
use a neuropsychological test of memory function to doc-
ument outcome. However, neuropsychological tests have
been criticized for their lack of “ecological validity”
(Burgess et al., 2006); that is, performance on a test of-
ten bears little relationship to the person’s day-to-day
function. In response, Alderman et al. (2003) have de-
veloped the “Multiple Errands Test” to describe the level
of executive deficits of individuals with brain injury in
the context of carrying out everyday tasks. This test ex-
amines the performance of the individual in standardized
situations (e.g., purchase of a greeting card, locating a
business in a building) and has been found to be sensi-
tive in discriminating between different types of deficits
in executive function. Further research examining the va-
lidity of this approach is needed prior to recommending
that it be applied as an outcome measure in a clinical
trial. Another alternative to neuropsychological tests is
the Assessment of Motor and Process Skills (AMPS)
(Merritt et al., 2003). This measure must be administered
by an AMPS-certified occupational therapist and consists
of groups of functional tasks of graded difficulty, for ex-
ample, cooking and other homemaking activities. It has
been found to be moderately correlated with cognitive
function (Bouwens et al., 2008) and to be sensitive to the
effects of rehabilitation (Waehrens et al., 2007). Thus,
while the AMPS has promise as an outcome measure, its
widespread application is limited by restrictions placed
on its use. Considerable development research is needed
before ecologically valid measures are appropriate for
consideration as outcome measures in clinical trials.

Roundtable Discussion: Data Collection 
and Management

The goals of this roundtable discussion group were to
identify and discuss available databases and to make rec-
ommendations for which, if any, of these resources might
be useful for developing a pathoanatomic classification
system for TBI. While a well-designed and well-con-
ducted (RCT) remains the gold standard, data analyses
of disease registries and cohorts have contributed signif-
icantly to the development of current guidelines for the
management of severe TBI (Guidelines, 2007) and to the
formulation of research hypotheses. Historically, two
databases have made major contributions to the current
management of TBI. The CNS Trauma Database in-
cluded all severities of head injury and preceded the Trau-
matic Coma Data Bank, which was primarily limited to
severe brain injuries. Recently, the IMPACT team in Eu-
rope created a large database by combining information
from 9205 patients collected in eight RCTs and three ob-
servational studies (Marmarou et al., 2007). However, the

IMPACT database includes data from nearly 20 years
ago, which do not necessarily reflect current relationships
between classifiers and outcome. In addition, as with
many databases, datasets were not collected in a uniform
manner, leading to large amounts of missing data for
some items (Van Beek et al., 2007).

Thus, current databases are not optimal for achieving
the purpose described by this workshop, which is to de-
velop a classification system by which to better separate
patients who will respond to a treatment from those who
will not. While one of the underlying tenets of a RCT is
the presumption of clinical equipoise, the notion of per-
forming a trial amongst those who have a good chance
of responding to a particular form of treatment is very
generally accepted (Friedman et al., 1998). The problem
this sets for classification is that each treatment may re-
quire a different classifier; alternatively, the classifier
may be able to finely divide the patients into small sub-
groups which are then collapsed into treatment-specific
groups. Regardless, the classifier must be designed to fit
a specific purpose.

Considerations and suggestions for data collection and
management follow.

• A new database should be created with uniform
data collection criteria on a well-defined set of pos-
sible classifiers. This dataset could then be used 
to validate current classifiers and create new clas-
sifiers.

• One form of this database may grow from the
NINDS effort to define a common set of data ele-
ments (www.nindscommondataelements.org/Com-
monForms.aspx) with additional TBI-specific ele-
ments added using a critical evaluation of existing
core datasets and the recently established BrainIT
group (Chambers et al., 2006; Piper et al., 2003). If
these items were to be collected from every future
clinical trial in TBI and placed in a common data
repository, a contemporaneous equivalent to the IM-
PACT database could be created. The multisite phase
III proTECT trial could serve as a model to begin
such data collection.

• Common data elements for inclusion in a TBI data-
base may be arranged into a manageable number of
modules: demographic, physiologic, clinical, and
imaging. Much of the groundwork in this area has
been begun by the IMPACT team and should be in-
cluded in the design of a new database. Each data
element could be further grouped as a classifier
based on whether it is experimental or experiential
(Table 3).

• Any newly created database would need to be open
to the entire TBI research community.
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• Any new database must carefully define the refer-
ence population, which will define the inclusion and
exclusion criteria and the population to which the in-
formation derived is to be generalized. For example,
if the database is to include all severities of brain in-
jury, are the data items which apply to a patient with
a GCS of 4 likely to be of interest in a patient with
a GCS of 15? These definitions will then determine
the number and kind of clinical sites from which to
collect information. Even if a perfect set of data

items is selected at a given time, it is likely that this
set will need modification as knowledge grows.

• The manner in which data are collected is also a
substantial issue for the utility of such databases.
Collecting data without a clear reason is difficult,
as witnessed by the amount of missing data in ex-
isting databases. Any new database will require us-
ing all possible technical means to automate data
collection to reduce the burden on the individual
sites.
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TABLE 3. COMMON DATA ELEMENTS FOR INCLUSION IN A TBI DATABASE

Status of classifier

Common data cluster Evidence-based Experimental

Demographic Age, education, cause of Gender, genotype
injury (e.g., MVC, fall)

Clinical GCS, systemic injuries, Inflammation, oxidative stress
ethanol, serum glucose

Physiologic Temperature, ICP, CPP, Biomarkers, microdialysis
MAP, CBF, PbtO2, SjvO2,
neurophysiologic testing

Imaging Extra-axial hematoma, intra- Perfusion MRI, DTI, NMR
axial hematoma, DAI, spectroscopy, PET
fracture

CBF, cerebral blood flow; CPP, cerebral perfusion pressure; DAI, diffuse axonal injury; DTI, dif-
fusion tensor imaging; GCS, Glasgow Coma Scale; ICP, intracranial pressure; MAP, mean arterial
pressure; MR, magnetic resonance; MRI, magnetic resonance imaging; MVC, motor vehicle crash;
NMR, nuclear magnetic resonance; PbtO2, brain tissue oxygen tension; PET, positron emission 
tomography; SjVO2, jugular venous oxygen tension; TBI, traumatic brain injury.

FIG. 3. Multiple vector-based analytical scheme. Tensor representations of the high dimensional data associated with traumatic
brain injury (TBI) may enhance classification, as has been demonstrated with other fields such as cancer and image recognition.
However, the correct internal consistency or normalization of these vector components will be required to allow appropriate com-
parison of the patient groupings or classification scheme.



• There is a clear need for multivariable prognostic
models which are validated and sensitive to thera-
peutic interventions. The IMPACT team has created
the most recent, and perhaps the most comprehen-
sive, of these models. They have largely limited
themselves to models based on logistic regression
which are meant to predict a global outcome mea-
sure, the GOS. These results provide an excellent ba-
sis for choosing classifiers (Maas et al., 2007; Mur-
ray et al., 2007). Older multivariable classifiers have
included other logistic regression models (Narayan
et al., 1981) and a classification tree model (Choi et
al., 1988, 1991).

• It may be informative to apply regression models to
examine the data for effect modifiers (interactions)
and to determine the shape of the relationship of pre-
dictor to response. Other classification techniques
which have not been tried, such as classification and
regression tree, nearest neighbor clustering, or neural
networks (Peto et al., 1976), may offer advantages
over regression-based methods.

• The long-term solution will require application of
techniques from statistics and bioinformatics. The
resulting classification scheme can be both qualita-
tive and quantitative. An example of a multiple vec-
tor-based analytical scheme is illustrated in Figure
3. Vectors might include clinical exam, imaging
studies, demographics, clinical course, genomics,
and serum markers.

One additional area of interest raised at the work-
shop was that of misclassification at randomization due
to delay in presentation of information. For example,
a trial may be designed to exclude patients with an in-
traparenchymal hematoma. These hematomas can de-
velop over time, so that a patient may have only a mild
contusion at randomization but have a consolidated
hematoma three days later. Although it might seem de-
sirable to remove the patient from the study at this
time, this is not acceptable for three reasons. First, in
good trial design, only data that is collected prior to
enrollment in the RCT should be used in the with-
drawal decision-making process due to violations of
entry criteria (Peto et al., 1976). Second, removing pa-
tients from a study following randomization is not ac-
ceptable to most regulatory agencies (Guidelines,
1988). Third and most importantly, there is no way to
determine whether the treatment had any effect on the
development of the hematoma. A better solution would
be to develop classification models which predict the
development of a delayed hematoma, and use this in-
formation at the time of randomization for patient clas-

sification. Depending on the strength of the model, this
approach will reduce the incidence of misclassification
and can be taken for any condition which results in de-
layed presentation.

In conclusion, the development of tools to classify TBI
will likely follow the classic “learn and confirm” para-
digm found in most of science. The tools will initially be
tried on an existing set of data, modifications will be
made until the tool seems satisfactory, and then the tool
will be applied to a new set of data and its utility as-
sessed. To fully verify a new tool, advanced statistical
methods, contemporary datasets, and well-constructed
validation studies need to be available to and used by the
TBI community.

CONCLUSION

As we have seen with other diseases such as cancer,
improved classification systems have led to a better un-
derstanding of the mechanisms of disease and helped to
refine treatments and improve outcome. The major con-
clusion from the workshop was that there is a need for a
pathoanatomically based classification system for TBI if
we are to successfully translate targeted therapies from
the bench to the bedside. This does not diminish the im-
portance of prognostic, etiologic, and symptom-based
classification systems, which remain important for pre-
vention, clinical management, and prediction of outcome
in patients with TBI. The evaluation of targeted therapies
for specific pathoanatomic lesions will likely require in-
clusion of less severely injured patients with more ho-
mogeneous injuries. Although this is a departure from
traditional TBI clinical trial design, lessons learned from
the study of these less complicated and more easily mod-
eled injuries could then be applied to more severely in-
jured patients.

A new TBI classification system for targeted thera-
pies can be achieved within the next five years, but to
do so will take a sustained and coordinated effort.
Short-term efforts (12–18 months) that need to be un-
dertaken include establishing several small, multidis-
ciplinary working groups to review the literature and
propose protocols for optimizing and standardizing
TBI patient assessment. The working groups should be
formed around the following topics: acute clinical as-
sessment, neuroradiologic assessment, biomarkers,
and functional outcomes assessment. An additional
working group should be formed to identify resources
and tools available for the development of a large, mul-
tidimensional database, including common data ele-
ments, data sharing, data mining, and bioinformatics.
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Review papers from these working groups would form
the basis for the next step, which is to create a TBI
data warehouse to facilitate multi-institutional collab-
oration and knowledge discovery. The database should
be prospective, multidimensional, and inclusive of all
severities of TBI and all ages. Given the very large
numbers of people who sustain a TBI, it should be pos-
sible to enroll the necessary number of patients for the
purpose of developing a new TBI classification sys-
tem for targeted therapies within two years. These are
not small tasks, and can only be achieved by a con-
certed, international effort. This workshop served pri-
marily to start the process:

“Make no little plans; they have no magic to stir
men’s blood. . . . Make big plans . . . aim high in
hope and work.” (Daniel Burnham)

APPENDIX: TBI CLASSIFICATION
WORKSHOP AGENDA AND 

PARTICIPANT LIST

Day 1—October 16, 2007

Background and Goals of the Workshop: Geoff Manley

Overview of Scientific Team Proposals for an Im-
proved TBI Classification System

Moderator: David Hovda*32

Team Leaders: Alex Valadka, Andrew Maas, Ross
Bullock

What is known about the heterogeneity of TBI and
what are the major gaps in our knowledge?

Moderator: Geoff Ling*33

Panelists: Clay Goodman, Ross Bullock, Ewout
Steyerberg

Which “tools” are recommended for discriminating
between the heterogeneous TBI pathologies? What
are the gaps and/or limitations?

Moderator: Douglas Smith*34

Panelists: David Wright, Juan Sahuquillo, Ramon
Diaz-Arrastia

Round Table Discussions by Topic and Expertise

Pathoanatomical Heterogeneity & Animal Models
Moderator: David Hovda
Discussants: Tony Marmarou, Nikolous Plesnila,
Pramod Dash, Linda Phillips, Frank Tortella*35, Leslie

Shupenko*16, Graham Teasdale, Ed Hall*1, John
Povlishock*15

Clinical Monitoring: Acute Phase
Moderator: Walter Koroshetz*11

Discussants: David Wright, Daryl Gress*36, Neeraj
Badjatia*37, Rob Silbergleit, Courtney Robertson,
Nino Stocchetti, David Okonkwo, Gregory O’Shan-
ick*38, Jam Ghajar*39

Neuroimaging Tools
Moderator: Debra Babcock*11

Discussants: Larry Latour*9, Dave Brody, Alisa Gean,
Geoff Manley, Doug Smith, Tina Duhaime, Juan
Sahuquillo

Biomarkers
Moderator: Joe Pancrazio*11

Discussants: Ron Hayes, Ramon Diaz-Arrastia, Kathy
Saatman, Stephanie Fertig, Andrew Maas, Lawrence
Marshall*40

Clinical Monitoring: Outcomes
Moderator: Ramona Hicks
Discussants: Lindsay Wilson, Wayne Gordon, Gordon
Murray, Sandra Salan*41, Kathy Helmick*16, Louis
French*42, Emmeline Edwards*11, Rebecca
Desrocher*11, Ross Bullock, Alex Valadka, Nancy
Temkin, Mark Ashley*43

Data Management 
Moderator: Peter Gilbert*11

Discussants: Linda Papa, David Moore, Jean Langlois,
Ewout Steyerberg, Hilaire Thompson, Charlie Contant,
Clay Goodman

Round Table Summary & Recommendations
Moderator: Doug Smith
Presentors: Walter Koroshetz, Debra Babcock, Joe
Pancrazio, Wayne Gordon, Peter Gilbert, David Hovda
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Day 2—October 17, 2007

What are the critical data elements and how should
they be collected and analyzed to develop a TBI clas-
sification system for targeted interventions?

Moderator: David Hovda
Panelists: Lindsay Wilson, Linda Papa, Clay 
Goodman

Advisory Panel Summary and Recommendations
Moderator: Doug Smith
Panelists: Kathy Saatman and Members of Advisory
Panel

Action Plan – Geoff Manley and Ron Hayes
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