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Systems/Circuits

Vasoactive Intestinal Polypeptide Mediates Circadian
Rhythms in Mammalian Olfactory Bulb and Olfaction

Jae-eun Kang Miller,1,2* Daniel Granados-Fuentes,1* Thomas Wang,1 Luciano Marpegan,1 Timothy E. Holy,2

and Erik D. Herzog1

Departments of 1Biology and 2Anatomy and Neurobiology, Washington University, St. Louis, Missouri 63130

Accumulating evidence suggests that the olfactory bulbs (OBs) function as an independent circadian system regulating daily rhythms in
olfactoryperformance.However, thecellsandsignals intheolfactorysystemthatgenerateandcoordinatethesecircadianrhythmsareunknown.
Using real-time imaging of gene expression, we found that the isolated olfactory epithelium and OB, but not the piriform cortex, express similar,
sustained circadian rhythms in PERIOD2 (PER2). In vivo, PER2 expression in the OB of mice is circadian, approximately doubling with a peak
around subjective dusk. Furthermore, mice exhibit circadian rhythms in odor detection performance with a peak at approximately subjective
dusk. We also found that circadian rhythms in gene expression and odor detection performance require vasoactive intestinal polypeptide (VIP)
or its receptor VPAC2R. VIP is expressed, in a circadian manner, in interneurons in the external plexiform and periglomerular layers, whereas
VPAC2R is expressed in mitral and external tufted cells in the OB. Together, these results indicate that VIP signaling modulates the output from
the OB to maintain circadian rhythms in the mammalian olfactory system.

Key words: circadian; clock; olfaction; olfactory discrimination; rhythms; VIP

Introduction
Daily rhythms, including the sleep–wake and fasting–feeding cy-
cles, have, over the past 40 years, been attributed to a circadian
pacemaker in the mammalian suprachiasmatic nucleus (SCN).
Recent discoveries that other cell types also exhibit autonomous
circadian changes in gene expression highlighted the possibility
that many tissues may regulate circadian changes in specific phys-
iological and behavioral processes (Dibner et al., 2010; Welsh et
al., 2010). The olfactory bulb (OB), for example, may function as
an independent circadian system controlling daily changes in
olfaction. OB slices exhibit intrinsic circadian rhythms in firing
rate and PERIOD (PER) gene activity in vitro (Granados-Fuentes
et al., 2004b). Mice show circadian rhythms in odor detection
performance in the absence of time cues from the environment,
and this circadian rhythm in olfactory sensitivity depends on the
expression of canonical clock genes (Granados-Fuentes et al.,

2011). Furthermore, daily rhythms in the OB and olfactory dis-
crimination persist when circadian rhythms are eliminated in
the SCN (Abraham et al., 2005) or when the SCN are ablated
(Granados-Fuentes et al., 2004a). Thus, a circadian system that
parallels the canonical SCN-dependent system appears to regu-
late olfaction. However, we do not know how olfactory circuits
generate and coordinate daily rhythms in olfaction.

The neuropeptide vasoactive intestinal polypeptide (VIP) is
produced by neurons sparsely distributed throughout the retina,
neocortex, SCN, and OB (Shinohara et al., 1994, 1995; Crespo et
al., 2002; Gracia-Llanes et al., 2003; Brand et al., 2005; Vosko et
al., 2007; Hu et al., 2011; Nakamachi et al., 2012; Zou et al., 2014).
Coordinated circadian oscillations in locomotion depend on VIP
signaling among SCN cells. Loss of VIP or its cognate receptor
VPAC2R (encoded by the Vipr2 gene) results in a loss of daily
rhythms in running-wheel behavior and desynchronized rhythms in
spontaneous firing and gene expression among SCN neurons (Har-
mar et al., 2002; Colwell et al., 2003; Aton and Herzog, 2005; Brown
et al., 2005; Maywood et al., 2006). Here, we tested the hypothesis
that VIP is required for circadian rhythms in the OB and in
olfaction.

Materials and Methods
Animals and locomotor activity recordings. All procedures were in accor-
dance with the guidelines of the Washington University Institutional
Animal Care and Use Committee and National Institutes of Health. Male
mice ranging in age from 8 to 12 weeks were maintained on a C57BL/6
genetic background and selectively crossed to produce heterozygous or
homozygous alleles of the PER2::LUCIFERASE (LUC) knock-in gene
(founders generously provided by Dr. J. Takahasi, University of Texas
Southwestern, Dallas, TX), Vip gene deletion (founders generously pro-
vided by Drs. C. Colwell and J. Waschek, University of California, Los
Angeles, Los Angeles, CA), Protocadherin–Cre;Ai38 transgene (RIKEN
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BioResource Center and The Jackson Laboratory), and Gad65–EGFP
transgene (The Jackson Laboratory). Mice were maintained in a 12 h
light/dark (LD) cycle or constant darkness (DD) in the Danforth campus
or the medical campus animal facility at Washington University.

Locomotor activity and olfactory performance were recorded from
mice housed individually in cages with ad libitum access to food, water,
and a running wheel. Light level and wheel revolutions in 1 min bins were
stored on a computer (Clocklab; Actimetrics). Animals were in LD
(lights on at 7:00 A.M.) for �3 weeks during the olfactory training ses-
sions and then tested for olfactory discrimination after 2 d in DD as
described previously (Granados-Fuentes et al., 2011). Zeitgeber times
(ZT) 0 and 12 refer to light onset and offset in LD, respectively. Circadian
time (CT) 12 refers to activity onset in DD when the mice began running
�15 revolutions per minute for at least 6 h each day (Clocklab). Other
CTs were calculated in circadian hours from CT 12 by dividing the free-
running period of locomotor activity by 24.

Surgery. To record Per2 gene expression in the OB in vivo, we created a
cranial window over the OB. Mice were anesthetized with isoflurane
(2.5% for induction and 1% for maintenance), warmed at 37°C on a
heating pad, and treated with an ophthalmic ointment to protect the
eyes. Sterile surgical procedures were used throughout. For the in vivo
PER2::LUC imaging experiments, a 2.5-mm-diameter craniotomy was
created over the OB using a dental drill (Abraham et al., 2005) during
subjective night. We fixed a glass coverslip (#1 thickness, 3 � 4 mm)
above the OB with dental acrylic and filled the space between the dura
and the coverslip with 2% agarose in artificial CSF (in mM: 126 NaCl, 26
NaHCO3, 3 KCl, 1 NaH2PO4, 2 MgSo4, 2 CaCl2, and 10 mM glucose). For
systemic luciferin delivery, a mini-osmotic pump (model 2001; Alzet,
Durect) filled with beetle D-luciferin (30 mg/ml in 0.1 M PBS, pH 7.2;
Promega) was implanted under the skin on the back. The pump released
luciferin at a constant rate (1 �l/h) for 1 week.

In vivo bioluminescence imaging. We recorded bioluminescence from
two genotypes of mice (Vip�/�;PER2::LUC and Vip�/�;PER2::LUC)
maintained in either LD or DD. Up to four mice were simultaneously
anesthetized and imaged (see Fig. 2A) with an ultrasensitive, intensified
charged coupled device camera (XR/Mega-10Z) using a custom-built
imaging system (Onyx Box; Stanford Photonics). Mice were returned to
their home cages after each imaging session so that wheel running could
be continuously monitored. We imaged each mouse for 10 min every
4 h for 60 h. During the dark phases of their light cycle, mice were
transferred under dim red illumination. After the imaging experiment,
mice were killed with CO2 and rapidly decapitated. We cultured a subset
of PER2::LUC OBs that had been imaged in vivo. All (n � 9 Vip�/� and 7
Vip�/�) showed bioluminescence signals above background for at least
6 d in vitro, indicating they were healthy.

Tissue culture and in vitro bioluminescence measurements. Briefly, male
PER2::LUC knock-in mice were killed with CO2 and decapitated. Their
brains were quickly collected in chilled HBSS, pH 7.2 (Sigma), supple-
mented with 0.01 M HEPES (Sigma), 100 U/ml penicillin, 0.1 mg/ml
streptomycin, and 4 mM NaHCO3 (Invitrogen). Coronal brain sections
(250 �m) were obtained with a vibratome slicer (OTS-4000; Electron
Microscopy Sciences). The olfactory epithelium (OE) was dissected from
inside the nasal cavity. The pieces of the OB, piriform cortex (PC), and
OE were cultured individually on a Millicell-CM membrane (Millipore)
in a Petri dish with 1 ml of DMEM (Sigma) supplemented with 10 mM

HEPES (Sigma), 2.2 mg/ml NaHCO3 (Invitrogen), and 0.1 mM beetle
luciferin (Promega). Petri dishes were sealed with grease and placed un-
der photomultiplier tubes (HC135-11MOD; Hamamatsu) at 37°C in the
dark. Bioluminescence was recorded in 6 min bins for at least 6 d.

Immunofluorescence. Animals were anesthetized with 2.5% tribromo-
ethanol (Avertin) and transcardially perfused with 0.9% saline, followed
by chilled 4% paraformaldehyde (PFA), pH 7.2. Brains were kept in PFA
for 24 h and then transferred to 30% sucrose in PBS, pH 7.2, for 3 d until
the brains sunk. Brains were quickly frozen with 2-methylbutane (Sigma)
and stored at �80°C. Coronal sections (30 �m thick) were obtained with
a cryostat (CM1850; Leica) and stored as six sets in Watson’s cryopro-
tectant solution, pH 7.2, at �20°C. For antibody staining, coronal sec-
tions were blocked in 10% bovine serum albumin (BSA) and 0.25%
Triton X-100 in PBS for 60 min at room temperature. Primary antibodies

to olfactory marker protein (OMP; goat, 1:2000; catalog #544-10001;
Wako), VIP (rabbit, 1:2000; Immunostar), GFP (chicken, 1:500; Ab-
cam), and VPAC2R (rabbit, 1:1000; Abcam) were applied in 3% BSA and
0.25% Triton X-100 in PBS for overnight at 4°C. Secondary antibodies
(1:200 in 3% BSA and 0.25% Triton X-100 in PBS, donkey antibody to
goat IgG conjugated with TRITC, donkey antibody to rabbit IgG conju-
gated with Cy2, or goat antibody to rabbit IgG conjugated with Cy3;
Jackson ImmunoResearch) were applied for 2 h at room temperature.
Cell nuclei were stained with DAPI. Images were taken with a confocal
microscope (A1 confocal laser microscope system; Nikon Instruments).

DAB immunohistochemistry. Mice were perfused at four CTs (CT 6, 12,
18, and 24; n � 3– 4 mice per time point), and the brains were processed
for immunolabeling of the OB. Briefly, coronal cryosections (30 �m
thick) of the OB were incubated with a VIP antibody (rabbit anti-VIP,
1:2000; Immunostar) and then processed according to the avidin– biotin
method (ABC kit, pk6101; Vector Laboratories). Digitized images (Re-
tiga 1350EX; QImaging) using QImaging Software were taken using
standardized illumination for all sections. The brightness and contrast of
all images were processed identically with NIH ImageJ (http://rsbweb.
nih.gov/ij). To quantify the intensity of expression, we averaged the pixel
intensity of VIP-immunoreactive cell bodies in the external plexiform
layer (EPL; 10 cell bodies per brain in two sections at a certain CT) of the
OB and subtracted the average background intensity in the granule cell
layer (GCL).

Olfactometry. We measured olfactory thresholds using previously
published methods (Granados-Fuentes et al., 2011). Briefly, mice were
trained in an olfactometer to sniff in a central nose cone and then poke
their noses into a left or right nose cone to indicate whether they detected
the presence of an odor. Mice worked for a reward (30 �l of tap water)
delivered to the lateral cones after correct responses. We tested olfactory
discrimination for five calibrated vanilla (Durkee)/water dilutions (1:
10 1, 1:10 2, 1:10 3, 1:10 4, and 1:10 5) as a function of CT. All dilutions of
vanilla were calibrated using a photoionization detector (ppbRAE3000;
RAE Systems). For analysis, we used the first 125 trials from each mouse
at each CT. Mice were tested under constant dim red light after 2 d and 2
weeks in DD. Time of testing was defined relative to the daily onset of
locomotor activity (CT 12) for WT mice or for arrhythmic Vip�/� and
Vipr2�/� mice as projected CT 12, which was defined as the time of lights
off (7:00 P.M.). Data were collected at 8 h intervals to ensure that mice
were thirsty so that it took 48 h to collect data for six CTs. At the end of
each testing session, mice returned to their home cages. Mice were tested
in three groups started at different CTs to avoid effects attributable to
testing sequence.

Data analysis. We fit each in vitro bioluminescence trace with a
damped sine function (Lumicycle software; Actimetrics) and defined
data with a goodness of fit �80 as rhythmic. The period of PER2 expres-
sion was calculated using Cosopt analysis. In vivo bioluminescence im-
ages were processed using NIH ImageJ. Image frames over 15 CT points
were aligned using an NIH ImageJ plug-in, and an ROI over the OB was
manually drawn for each mouse. To evaluate bioluminescence traces
over 2 d for rhythmicity, JTK-Cycle test (combination of Jonckheere–
Terpstra test for monotonic ordering and Kendall’s � test) was used
(Hughes et al., 2010). Briefly, this nonparametric test estimates the pe-
riod, amplitude, and phase of rhythmic data based on the order of the
data (e.g., monotonically increasing). We also used a one-way ANOVA
for repeated measures and a Tukey’s post hoc test for differences across
time (Origin 8.0; OriginLab).

For olfactometry, we calculated the percentage of correct responses.
The number of trials in which a mouse correctly discriminated the pre-
sentation of odor (hits) or air (correct rejections) divided by the total
number of trials as calculated previously (Slotnick and Restrepo, 2005).
We used a two-way ANOVA for repeated measures and a Tukey’s post hoc
test for differences across time (Origin 8.0; OriginLab).

Results
Intrinsic circadian rhythmicity in PER2 expression at early
stages of the olfactory circuit
To determine how olfactory circuits generate and coordinate
daily rhythms in olfaction, we first examined which parts of the
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olfactory circuit exhibit intrinsic circa-
dian rhythms in PER2 expression. We re-
corded bioluminescence from isolated
tissues for 6 d and found that both the OE
(Fig. 1; period of 19.1 � 0.3 h; goodness of
fit, 92.7 � 2.5, mean � SEM; n � 6 slices)
and OB (period of 23.9 � 1.8 h; goodness
of fit, 94.1 � 3.4; n � 6) exhibited intrinsic
circadian rhythms in PER2 expression,
but the PC did not (goodness of fit, 60.9 �
16; n � 7). The OE cultures had signifi-
cantly shorter circadian periods than the
OB cultures (p 	 0.05, Student’s t test). This finding suggests that
circadian rhythms are intrinsic to the first two stages of olfactory
processing.

The OB exhibits a circadian rhythm in PER2 expression
in vivo
We next determined whether the mouse OB exhibits circadian
oscillations in vivo. For this, we recorded bioluminescence every
4 h for 60 h through a cranial window from homozygous
PER2::LUC knock-in mice maintained in DD for 2 weeks. The
mice were briefly anesthetized during imaging (�20 min) and
then returned to their home cages (Fig. 2A). The OB exhibited
reliable, high-amplitude circadian changes in bioluminescence
with a twofold to fivefold increase each night, peaking at approx-
imately CT 20 and with a period of 22.9 � 0.5 h (mean � SEM).
These circadian rhythms were statistically significant in all im-
aged mice (Fig. 2B; JTK-Cycle test; n � 7 mice). Pooling the data
from all mice, we found that average PER2 expression in the OB
differed between peaks and troughs (Fig. 2D; F(14,99) � 7.1, *p 	
0.05 and **p 	 0.005, one-way ANOVA with a Tukey’s post hoc
test; n � 7 mice). This in vivo finding supports our in vitro find-
ings and suggests that an intrinsic circadian rhythm arises at early
stages of the olfactory circuit.

Localization of VIPergic neurons and VPAC2 receptors in
the OB
Previous studies demonstrated that bilateral lesions in the SCN
do not disrupt circadian rhythms of PER1 expression of the OB in
rats or odor detection performance in mice (Granados-Fuentes et
al., 2006). However, it is unknown how cells of the OB maintain
coordinated circadian rhythms independent of the SCN. VIP,
expressed by neurons in the SCN and OB (Sanides-Kohlrausch
and Wahle, 1990; Gracia-Llanes et al., 2003), was shown to be
required for synchronized circadian oscillations among cells in
the SCN (Aton and Herzog, 2005; Aton et al., 2005). However,
whether VIP serves a similar function in the OB has not been
explored. Because boutons of VIP-expressing cells in the OB have
been reported to appose mitral (MT)/external (ET) tufted cell
bodies (Gracia-Llanes et al., 2003), we postulated that VIP mod-
ulates the output of the OB to regulate daily rhythms in olfaction.
To examine this, we first examined expression patterns of VIP
and its receptor VPAC2R in the mouse OB.

We found that VIP immunolabeling colocalized with fluores-
cence in Vip– cre/�;floxed-tdtomato/� knock-in mice. There-
fore, we used the fluorescent reporter to characterize the
distribution of VIP cells in the OB. Consistent with previous
studies in other species (Crespo et al., 2002; Gracia-Llanes et al.,
2003), VIP was expressed within the somata of cells in the exter-
nal plexiform layer (EPL; Fig. 3, Table 1; 50.1 � 0.08% of total
VIP-positive cells in the field of view, mean � SEM; n � 5 sec-
tions from 4 mice), the periglomerular layer (PGL; Table 1,

48.5 � 0.1% of total VIP-positive cells in the field of view), and
sparsely within the granule cell layer (GCL; Table 1; 1.4 � 0.004%
of total VIP-positive cells in the field of view). Most VIP-positive
cells within the EPL were GAD65 positive (Table 2; 76.1 � 5.9%),
whereas only small fractions were GAD65 positive within the
PGL and GCL (Table 2; 9.8 � 3.9 and 16.7 � 16.7%, respec-
tively). As a control, we examined VIP staining in the OB of
Vip�/� mice and found no staining in the EPL or GCL and a few
positive cells (2.5 � 0.5) per slice in the PGL (n � 2 Vip�/� mice),
indicating that a subset of neurons in the EPL, PGL, and GCL
produce VIP in the OB.

VPAC2R was strongly expressed within the MT/ET cell layer,
the principal projection cells in the OB (Fig. 3, Table 1; 87.7 �
2.5% of total VPAC2R-positive MT/ET cells in the field of view;
n � 6 slices from 4 mice). VPAC2R staining colocalized with a
subset of protocadherin–GFP-expressing MT/ET cells and was
not found in cell bodies in other layers of the OB. Because immu-
noreactivity for VPAC2R in the OB of Vipr2�/� mice was negli-
gible (n � 2 mice; 10 � 3 VPAC2R-positive cells per OB; 7.3 �
2.2% of all VPAC2R-positive cells found in WT OB), we con-
clude the staining was specific to VPAC2R. VPAC2R expression
was most intense in the cell bodies of MT/ET cells but also was
present in their processes especially within the glomeruli. These
findings suggest that local VIP signaling from a subset of neurons
in the EPL and PGL primarily targets the dendrites and cell bodies
of MT/ET cells, the output from the OB.

A circadian rhythm of VIP expression in the OB
We next explored whether VIP levels in the OB change with CT.
We quantified the intensity of VIP immunolabeling in the somata
of neurons of the EPL from mice killed at one of four times of day
in DD. VIP expression in the cell bodies of EPL neurons approx-
imately doubled from a minimum at approximately midday (CT
6) to a peak at approximately midnight (CT 18; Fig. 3; F(3,66) �
3.3; p 	 0.05, one-way ANOVA with a Tukey’s post hoc test).
These results suggest that VIP is synthesized and/or released from
EPL neurons in a circadian manner with a peak in expression
during the middle of the night.

VIP is required for a circadian rhythm in PER2 expression of
the OB in the absence of external timing cues
To test whether VIP is required for the circadian rhythm in PER2
expression in the OB, we monitored in vivo circadian changes in
the bioluminescence from the OB in VIP-deficient, PER2::LUC
mice. In contrast to Vip�/� mice, Vip�/� mice exhibited weak or
no circadian changes in PER2 after 2 weeks in DD (Fig. 4; n � 6 of
7 mice failed the JTK-Cycle test for rhythmicity) and a modest
reduction in the peak-to-trough amplitude in PER2 expression
(2.9 � 0.3-fold for Vip�/� vs 2.2 � 0.1-fold for Vip�/�, mean �
SEM; p 	 0.05, Wilcoxon’s rank-sum test). Pooling data from the
VIP-deficient mice, we found that PER2 bioluminescence did not

Figure 1. Representative recordings of PER2::LUC expression in cultured tissues from the mouse olfactory system reveal intrinsic
circadian rhythms in the isolated OE and OB but not in the PC.
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differ with CT (Fig. 4B; F(14,84) � 2.8; p � 0.5, one-way ANOVA
with a Tukey’s post hoc test; n � 7 mice). Thus, loss of VIP re-
sulted in arrhythmic PER2 expression of the OB in 86% of the
mice tested.

Interestingly, PER2 activity exhibited a daily rhythm in the OB
of both control and Vip�/� mice in LD (Fig. 5; p 	 0.05 for
Vip�/� and p 	 0.05 for Vip�/�, JTK-Cycle test; n � 7 mice for
both groups). Together, these results suggest that VIP is required

Figure 2. Circadian rhythms in PER2 expression from the OB in vivo. A, A drawing of the in
vivo bioluminescence imaging setup. At 4 h intervals over 56 h, Vip�/�;PER2::LUC mice were
briefly anesthetized and transferred to a light-tight imaging box in which bioluminescence
from the bilateral OBs was imaged through a cranial window in DD. B, A drawing of a mouse
positioned in the imaging box with a cranial window (left) and a pseudocolored image of its
bioluminescent signal from 10 min exposures (right). C, Pseudocolored images of biolumines-
cence recorded every 4 h from the OB of mouse 1 after 2 weeks in DD and bioluminescence levels
show a daily rhythm peaking in the late subjective night (CT 20; top). PER2 expression was
circadian in all seven mice with a twofold to fivefold increase from day to night. D, Biolumines-
cence from each mouse was normalized (minimum is 0 and maximum is 1) and then averaged
in 2 h bins across mice maintained in DD for 2 weeks. PER2 levels significantly differed from
peak-to-trough (*p 	 0.05 for CT 17 and CT 1 on the first imaging day and CT 17 on the second
day vs CT 5 and CT 9 on the first day and CT 5 on the second day; *p 	 0.05 for CT 21 on the
second day vs CT 5 and CT 9 on the first day; **p 	 0.005 for CT 21 on the first day vs CT 13, CT
5, and CT 9 on the first day and CT 5, CT 9, and CT 13 on the second day; n � 7 mice). CT 24
denotes the daily offset of locomotion (subjective dawn), and CT 12 denotes the daily onset of
locomotion (subjective dusk). Gray and black bars denote subjective light and dark times, re-
spectively. Counts are the mean number of photons integrated over 10 min.

Figure 3. Both VIP and VPAC2R are expressed in the mouse OB. Representative confocal
images of OB sections stained with antibodies against VPAC2R (magenta) and OMP (green; A),
and Vip;tdtomato (magenta) and OMP (green; C). VPAC2R staining was intense in the ET and MT
cells (magenta, A, B, F; green, E). VIP staining or Vip;tdtomato expression was present mainly in
the PGL and EPL (magenta, C–E). OB sections of Gad65–EGFP mice stained with antibodies
against VPAC2R (magenta) or VIP (magenta) revealed that a large fraction of VIP-positive
neurons was GABAergic (D), whereas none of VPAC2R-positive neurons were GABAergic (B).
Protocadherin-21 (Pcadh21) labeling for MT/ET cells (F ) shows that VAPC2R staining was spe-
cific to a subset of these neurons. Arrows in D and F indicate examples of cell bodies with both
VIP staining and Gad65–EGFP expression and examples of MT/ET cells expressing VPAC2R,
respectively. Representative neurons located mainly in the EPL immunolabeled for VIP (G,
arrows) at four CTs. The quantification of the integrated intensity of immunolabeled somata in
the OB shows a circadian rhythm with a peak in VIP expression at CT 18. *p 	 0.05, CT 18 versus
CT6. Mean � SEM. GL, Glomerular layer.
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for sustained circadian rhythms in the OB in the absence of ex-
ternal timing cues.

VIP is required for a circadian rhythm in odor
detection performance
To test whether VIP is also required for circadian rhythms in
olfactory-dependent behavior, we tested olfactory perception of
VIP-deficient, VIP-receptor deficient, and WT mice. Mice were
trained to sniff and indicate if they detected vanilla odor. After

reaching a criterion of 85% correct responses at approximately
17 d after training started, mice were switched to DD for 2 d and
tested every 8 h over 2 consecutive days. We found no differences
in the number of days required to reach the criterion between
three genotypes, suggesting that learning was not impaired in
Vip�/� and Vipr2�/� mice (F(2,17) � 0.3; p � 0.7, one-way
ANOVA with a Tukey’s post hoc test). Compared with WT mice,
Vipr2�/� and Vip�/� mice spent more time sniffing the odorant
port at all times of day (F(3,1468) � 92.4; p 	 0.01 for all CTs,
one-way ANOVA with a Tukey’s post hoc test).

WT mice showed statistically significant daily variations in
their odor detection performance, peaking at approximately CT
16 –CT 20 (Fig. 6; F(5,71) � 2.7; p 	 0.05, 0.001, 0.05, 0.005, and
0.01 for 1:10 1 through 1:10 5 dilutions, respectively, two-way
ANOVA with a Tukey’s post hoc test), whereas Vip�/� or
Vipr2�/� mice did not show daily variations in their odor detec-
tion performance (F(5,71) � 0.7; p � 0.07, two-way ANOVA with
a Tukey’s post hoc test). Interestingly, compared with WT mice,
Vip�/� mice performed better during the subjective day at all
vanilla dilutions (F(2,25) � 2; p 	 0.01, one-way ANOVA with a
Tukey’s post hoc test), whereas Vipr2�/� mice performed, on
average, similarly as WT mice at all times for all vanilla dilutions
(F(2,25) � 1.9; p � 0.06, one-way ANOVA with a Tukey’s post hoc
test; see Discussion). Although there was a statistically significant
difference in the performance during the subjective day between
WT and Vip�/� mice, Vip�/� and Vipr2�/� mice performed, on
average, in a similar manner (F(2,25) � 1.9; p � 0.06, one-way
ANOVA with a Tukey’s post hoc test). These results indicate that
VIP or its receptor is required for daily regulation of olfactory
sensitivity.

Discussion
A circadian rhythm in the OB correlates with changes in
olfactory performance
Previous work showed that a circadian rhythm in olfaction de-
pends on canonical clock genes (Granados-Fuentes et al., 2011),
but the underlying cells and circuits are essentially unknown.
Here, we demonstrated intrinsic circadian rhythmicity in the iso-
lated OE and OB but not in the isolated PC, suggesting that the
early stages in the olfactory circuit may contribute a circadian
rhythmicity in olfaction. This is consistent with previous evi-
dence that circadian rhythms in olfaction do not require the SCN
(Granados-Fuentes et al., 2011) and that circadian rhythms of the

Table 1. Distributions of VIP and VPAC2R expression in different regions of OB

MT ET GCL EPL PGL

VPAC2R 40.7 � 2.0% 47.0 � 2.5% 7.0 � 1.3% 0% 5.2 � 0.9%
VIP 0% 0% 1.4 � 0.004% 50.1 � 0.1% 48.5 � 0.1%

The fraction of DAPI-positive cells that labeled for VIP or VPAC2R are reported. n � 3 sections from each of two
C57BL/6 mice and n � 4 sections from two Gad65–EGFP mice for VIP staining; n � 3 sections from two C57BL/6
mice and n � 3 sections from two Gad65–EGFP mice for VPAC2R staining.

Table 2. The fraction (mean number of the coexpressing cells inside the
parentheses) of VIP- or VPAC2R-positive neurons that coexpressed Gad65–EGFP in
the OB

MT ET GCL EPL PGL

VPAC2R 0% 0% 0% 0% 0%
VIP 0% 0% 16.7 � 16.7% (0.6) 76.1 � 5.9% (11.5) 9.8 � 3.9% (0.9)

Figure 4. Circadian rhythmicity in the OB requires VIP. A, After 2 weeks in DD, PER2::LUC
bioluminescence from the OB (pseudocolored for mouse 1) was arrhythmic in six of seven
Vip�/� mice. B, Bioluminescence was normalized in individual mice and then averaged across
mice. Mice were maintained under DD for 2 weeks so they were on different CTs during imaging
sessions. Each time point was pooled within a 2 h window. Mean bioluminescence did not
significantly differ across CT (n � 7 mice). Gray and black bars denote subjective day (CT 0 –CT
12) and night (CT 12–CT 24), respectively. Counts are the mean number of photons integrated
over 10 min.

Figure 5. Both Vip�/� and Vip�/� mice exhibited a circadian rhythm in PER2::LUC biolu-
minescence in vivo in a light/dark cycle. Gray bars denote the times of lights on and black bars
the times of darkness. Bioluminescence was normalized (minimum is 0 and maximum is 1) in
individual mice and then averaged across mice of the same genotype. ZT 0 and ZT 24 denote
7:00 A.M., and ZT 12 denotes 7:00 P.M. in a light/dark cycle. Mean � SEM.
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odor-evoked c-fos expression in the PC do require input from
the ipsilateral OB (Granados-Fuentes et al., 2006). Furthermore,
the times of peak PER2 expression in the OB (CT 18 –CT 22)
correlate with the nighttime peak in olfactory performance (CT
16 –CT 20). Interestingly, the circadian period of the isolated OE
was, on average, 5 h shorter than that of the OB. It will be inter-
esting to test whether this in vitro difference in circadian period of
the OE and OB have any effect on their in vivo phase relationships
as has been found for the different times of peak activity in the OB
and SCN (Granados-Fuentes et al., 2004a). These results impli-
cate circadian pacemaking cells in the OB in daily modulation of
odor detection.

VIP plays a conserved role in coordinating circadian rhythms
in the SCN and OB
VIP is expressed in neurons of the SCN and OB, and loss of VIP
signaling diminishes synchronized circadian oscillations among

SCN cells and coordinated circadian locomotor behavior (Aton
and Herzog, 2005; Aton et al., 2005). Therefore, we postulated
that VIP signaling may play a similar role in the OB and in olfac-
tion. We found that VIP is required for synchronizing the circa-
dian rhythm in PER2 expression of the OB in vivo and in odor
detection performance. Furthermore, olfactory performance and
PER2 expression in the OB, like locomotor activity, of VIP-
deficient mice remain rhythmic in a light/dark cycle and gradu-
ally becomes arrhythmic in constant conditions.

In addition to the loss of the circadian rhythm in odor detec-
tion performance, Vip�/� mice performed better than WT mice
during the subjective day at all concentrations of the odor,
whereas Vipr2�/� mice were similar to the average daily perfor-
mance of WT mice. Although both VIP and VPAC2R are strongly
expressed in the OB, VIP and VPAC2R are also differentially
expressed in the other brain areas (www.gensat.org; www.
brain-map.org). Therefore, we cannot rule out the possibility
that loss of VIP versus VPAC2R in the other brain areas could
differentially influence the behavioral performance in Vip�/�

versus Vipr2�/� mice. For example, it is possible that loss of VIP
in the VIP-expressing interneurons of the PC could influence
odor-evoked activity of pyramidal neurons and thereby affect
olfactory perception. However, the fact that Vip�/� mice exhibit
arrhythmicity in PER2 expression in the OB and both Vip�/� and
Vipr2�/� mice exhibit arrhythmicity in odor detection perfor-
mance suggests that the loss of Vip or Vipr2 in the OB results in
the loss of the circadian rhythm in olfactory-dependent behavior.

We also found evidence that VIP abundance in the OB peaks
during the night. This could reflect a daily rhythm in release
and/or synthesis of VIP. VIP release from the SCN is circadian in
vitro and peaks early in the day in vivo (Laemle et al., 1995; Shi-
nohara et al., 1995, 1998; Honma et al., 1998; Francl et al., 2010).
Together, these results suggest that VIP plays a conserved role in
maintaining and synchronizing circadian rhythms in both the
SCN and OB.

A proposed circuit for circadian modulation of
olfactory processing
VIPergic interneurons in the OB appear to be well positioned to
modulate the output of the OB. We found that VIPergic in-

Figure 6. Circadian rhythms in odor detection were blunted in Vip�/� and Vipr2�/� com-
pared with WT mice after 48 h in DD. WT mice showed a peak during the subjective night in
performance at all five concentrations of vanilla tested (A). Representative mice in each group
showing odor detection performance at 1:10 1 vanilla dilution (B). The gray and black bars
indicate subjective day and night, respectively. Mean � SEM. n is number of mice per group.

Figure 7. Proposed circuit for circadian modulation of olfactory sensitivity. Within the OB,
circadian variations in VIP release from a subset of interneurons regulate excitability of MT and
ET cells by acting on VPAC2R expressed on their dendrites and cell bodies. EPC, external plexi-
form layer cell; GC, granular cell; GL, glomerular layer; GRL, granular layer; ML, mitral cell layer;
ORN, olfactory receptor neuron; PG, periglomerular cell; SA, short axon cell. Arrowhead with �,
Inhibitory; arrowhead with �, excitatory.
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terneurons are concentrated in the PGL and EPL. The processes
of these VIPergic interneurons cover the entire EPL and regions
of the glomerular layer. Consistent with the distribution of VI-
Pergic terminals, we found that VPAC2Rs are expressed in most,
if not all, cell bodies and dendritic fields of MT/ET cells. Further-
more, VIP levels in the EPL interneurons peak during the eve-
ning, suggesting daily variation in VIP release. Therefore, we
postulate that daily rhythms in VIP release from a subset of EPL
cells and probably also PGL cells modulate the activity of MT/ET
cells, the projection neurons of the OB (Fig. 7).

The OB, but not the PC, was shown to be intrinsically circa-
dian in vitro (Granados-Fuentes et al., 2006), and yet both MT/ET
cells and cells of the PC exhibit greater odor-evoked c-fos expres-
sion during the night in vivo (Granados-Fuentes et al., 2006).
Therefore, we postulate that VIP signaling onto MT/ET cells
likely augments the sensitivity of MT/ET cells at night and, indi-
rectly, their targets in the PC and other higher brain areas pro-
cessing olfactory information. This daily rhythm may ensure
sufficient sensitivity at night when mice forage for food and are
vulnerable to predators.
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