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Cyclotron Production of High–Specific Activity 55Co and
In Vivo Evaluation of the Stability of 55Co Metal-Chelate-
Peptide Complexes
Tara Mastren, Bernadette V. Marquez, Deborah E. Sultan, Elizabeth Bollinger, Paul Eisenbeis, Tom Voller, and Suzanne
E. Lapi

Abstract

This work describes the production of high–specific activity 55Co and the evaluation of the stability of 55Co-metal-chelate-peptide

complexes in vivo. 55Cowasproduced via the 58Ni(p,α)55Co reaction and purified using anion exchange chromatographywith an average

recovery of 92% and an average specific activity of 1.96 GBq/mmol. 55Co-DO3A and 55Co-NO2A peptide complexes were radiolabeled at

3.7 MBq/mg and injected into HCT-116 tumor xenografted mice. Positron emission tomography (PET) and biodistribution studies were

performedat 24 and 48 hours postinjection and compared to those of 55CoCl2. Both
55Co-metal-chelate complexes demonstrated good in

vivo stability by reducing the radiotracers’ uptake in the liver by sixfold at 24 hours with ~ 1% ID/g and at 48 hours with ~ 0.5% ID/g and

reducing uptake in the heart by fourfold at 24 hours with ~ 0.7% ID/g and sevenfold at 48 hours with ~ 0.35% ID/g. These results support

the use of 55Co as a promising new radiotracer for PET imaging of cancer and other diseases.

P OSITRON EMISSION TOMOGRAPHY (PET) is a
common imaging modality in nuclear medicine. Clinical

interest in positron-emitting metals has increased due to their
longer half-lives, which are more suitable for radiolabeling
macromolecules such as antibodies, peptides, and nanoparticles
over traditional PET isotopes such as 18F, 11C, and 15O.1,2

Currently, the most common radiometals used in PET imaging
are 64Cu, 68Ga, 89Zr, and 86Y, with 64Cu, 68Ga, and 89Zr being
used in clinical trials.3–5 The chemistry of each metal is different,
and chelates need to be optimized for the radiometal of interest
that will provide stable metal-chelate complexes in vivo.

55Co is another isotope of interest for PET imaging. It has
a half-life of 17.5 hours, a positron branching ratio of 77%,
and an average positron energy of 570 keV, qualities that
make it well suited for imaging with peptides, small molecules,
and antibodies.6–11 55CoCl2 has previously been used clinically
to image ischemia in stroke patients12–15 and in late-onset
epileptic seizures16 due to its ability to mimic calcium uptake.
However, it is important to study the preclinical pharmacologic

properties of this isotope when it will be incorporated into
targeting ligands as imaging agents to probe other diseases.
Thus, we investigated the biodistribution of free 55CoCl2 along
with the stability of 55Co-chelate-peptide complexes in vivo.

55Co can be produced via several nuclear reactions, such as
58Ni(p,�)55Co,17–20 56Fe(p,2n)55Co,21,22 and 54Fe(d,n)55Co.23,24

The 54Fe(d,n)55Co has the highest measured cross section at
low energies8,25; however, 54Fe has a low natural abundance.
Thus, this target may be cost prohibitive for routine production
in most laboratories. The 56Fe(p,2n)55Co reaction also creates
undesirable 56Co (via 56Fe(p,n)56Co), apositron-emitting isotope
with a half-life of 77 days that is chemically inseparable from
55Co. Additionally, the decay scheme for this isotope yields
many high-energy photons. The proton reaction on 58Ni has
a higher cross section at lower energies than the proton reaction
on 56Fe,19,20,22making itmoredesirable for low-energy (15MeV)
cyclotrons. This method also produces a small amount of an
inseparable side product, 57Co (t1/2 = 271.8 days) at higher
energies with a Q value of 8.17 MeV. 57Co decays 100% by
electron capture and has a low-energy gamma ray of 122 keV.
In addition to 57Co, this method also produces another side
product, 57Ni (t1/2=35.6hours),which canbeusedas away to
monitor the separation of 55Co from the starting nickel
material by tracking the characteristic gamma rays via gamma
spectroscopy.

The production of 55Co using natNi and 58Ni has pre-
viously been reported.11,18,26,27 The specific activity of 55Co
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has been investigated using both ion chromatography of
productions using 58Ni26, and 4,7,10-tetraazacyclododecane-
1,4,7,10-tetraacetic acid (DOTA) and 1,4,7-triazacyclononane-
1,4,7-triacetic acid (NOTA) titration of productions using
natNi.27 High–effective specific activity (ESA) of radiometals is
important, as metal contaminants have negative impacts on
radiolabeling.28,29 For best radiolabeling results using 55Co,
ESA measurements must be performed and productions opti-
mized so that high–specific activity material can be obtained.

In this work, we discuss the production of 55Co via the 58Ni
(p,�)55Co reaction and report its ESA using both DOTA titra-
tions and ion chromatography.28 We also report the in vivo
biodistribution 55CoCl2 and compare it to its 55Co-chelate
complexes linked to a peptide up to 48 hours. The macrocyclic
chelates DOTA and NOTA were chosen because they meet the
coordination chemistry required to bind 55Co. DOTA and
NOTA are commonly attached to peptides via one of their
carboxylic acid arms, resulting in DO3A- and NO2A-peptide
conjugates, respectively.30,31 As amodel system, we applied 55Co
to a peptide ligand, L19K-FDNB, which has been shown to have
a long blood-clearance time.32 This property makes this peptide
an optimal system for studying the stability of 55Co-chelate
complexes as 55Co-DO3A-L19K-FDNB and 55Co-NO2A-
L19K-FDNB in vivo at time points up to 48 hours. The bio-
distribution data for 55CoCl2,

55Co-NO2A-L19K-FDNB, and
55Co-DO3A-L19K-FDNB were compared at 24 and 48 hours
postinjection to establish the in vivo stability of 55Co chelated
with NO2A- and DO3A-peptide conjugates in tumor-bearing
mice.

Materials and Methods

Materials

Trace metal grade reagents were purchased from Sigma-
Aldrich (St. Louis, MO) and used without purification, and
Milli-Q deionized water (18 M� cm�1) was used for all
dilutions unless stated otherwise. All glassware and vials were
acid washed in 8 M HNO3 for 24 hours prior to use. DOTA
was purchased fromMacrocyclics (Dallas, TX). Two versions
of the peptide L19K were synthesized by CPC Scientific
(Sunnyvale, CA) consisting of the sequence DO3A- or
NO2A-PEG4-GGNECDIARMWEWECFERK-CONH2, with
a Cys-Cys disulfide bridge and polyethylene glycol (PEG) as a
spacer between peptide and chelate. 58Ni was purchased from
Isoflex (San Francisco, CA) with 99.48% isotopic enrichment.

Targetry and Irradiation

Forty-five to 55 mg of 58Ni in powder form was plated onto a
gold disk by electrodeposition as previously described by

McCarthy and colleagues and Szelecsenyi and colleagues.33,34

The electroplating cell was 9 cm in height, with an inner
diameter of 1.8 cm. The bottom of the cell consisted of a
Teflon base that connected to the gold disk, exposing a 5 mm
circle. A graphite rod was used as the cathode and stirred
the solution slowly as a voltage of 2.5 V was applied for
~ 12 hours. The current remained between 8 and 20 mA
throughout the process. Targets were irradiated on a 15 MeV
cyclotron (CS-15) for 20 to 60 mAhr and were able to with-
stand currents up to 30 mA. Targets were allowed to sit for
2 hours prior to processing to allow short-lived contaminants
to decay.

Purification

For processing, targets were placed in 10 mL of 9 M HCl and
heated with reflux for approximately 1 hour to dissolve the
nickel from the gold disk. Once the solution cooled, it was
placed in a 1 cm � 10 cm glass column (Bio-Rad, Hercules,
CA) with 2.5 g AG1-X8 resin (Bio-Rad). To determine
separation conditions, the eluate and 10 to 40 mL of 9 M HCl
were collected, followed by another 10 mL of 0.5 M HCl to
elute the 55Co. Fractions of 1 mL were collected and analyzed
using a high-purity germanium (HPGe) detector (Canberra,
Meriden, CT), and the final 55Co fractions were evaporated
to dryness and reconstituted with 20 mL Milli-Q water. 55Co
productions were analyzed using ion chromatography28 for
transition metal contamination.

Effective Specific Activity

DOTA titrations were performed to determine the ESA of
55Co productions, and the method was adapted from the
1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetraacetic acid
(TETA) titration method reported previously by McCarthy
and colleagues.33 Then, 1.2 MBq (5 mL) of 55Co was added to
eight different amounts of DOTA in ammonium acetate
pH 5.5, ranging from 4.3 � 10�4 mmol to 6.3 � 10�2 mmol.
The final volume was brought to 50 mL using 0.5 M
ammonium acetate buffer pH 5.5. The solutions were placed
in an agitating incubator at 37ºC for 30 minutes. Solutions
were cooled to room temperature and then centrifuged.
A 1 mL aliquot from each DOTA concentration and 1 mL of
unbound 55Co, for use as a control, were spotted separately
onto a silica plate for thin-layer chromatography (TLC) using
a 1:1 mixture of 10% w/v ammonium acetate and methanol
as the eluent. Plates were analyzed using a Radio TLC Plate
Reader (Washington, DC) and analyzed for the percent 55Co
incorporated into DOTA. Data were plotted as the molar
concentration of DOTA versus percent 55Co incorporation.
The curve was fit using a sigmoid plot fit program in Prism
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(GraphPad Software, La Jolla, CA). The EC50 value, the con-
centration of 55Co that bound to 50% of the DOTAmolecules,
was determined from this fit. The ESA was calculated as two
times the EC50 value.

Animal Models

All animal care was performed as stated in the Guide for Care
and Use for Laboratory Animals by the National Institutes of
Health under a protocol approved by the Animal Studies
Committee at Washington University in St. Louis. Female
athymic Nu/Nu mice (National Cancer Institute, Bethesda,
MD) age 6 to 9 weeks were anesthetized with a ketamine/
xylazine cocktail (VEDCO, St, Joseph, MO). One hundred
microliters of approximately 2� 107 cell/mL HCT-116 colon
cancer cells suspended in saline was subcutaneously injected
into the shoulder. Tumors were allowed to grow for 2 weeks
before imaging and biodistribution studies.

Small Animal PET/CT imaging

Prior to imaging, animals were anesthetized with 2% iso-
flurane. One hundred microliters of 74 kBq/mL 55CoCl2 in
saline was injected into HCT-116 tumor–bearing mice (n = 4)
via tail vein injection and imaged using an Inveon MicroPET/
CT scanner (Siemens, Washington, DC) at 2, 24, and 48 hours
postinjection. Static PET images were acquired for 20 minutes.
PET data were reconstructed using standard methods with
the maximum a posteriori probability (MAP) algorithm and
coregistered with computed tomography (CT) using image
display software (Inveon Research Workplace Workstation,
Siemens). Volumes of interest (VOI) were drawn using CT
anatomic guidelines.

Biodistributions

55Co-NO2A-L19K-FDNB and 55Co-DO3A-L19K-FDNB were
prepared and radiolabeled similarly to the 64Cu analogues
described by Marquez and colleagues32 and with a final
specific activity of 3.7 MBq/mg. One hundred microliters
of 74 kBq/mL 55CoCl2, 37 kBq/mL 55Co-NO2A-FDNB, or
37 kBq/mL 55Co-DO3A-FDNB in saline was injected into
HCT-116 tumor–bearing mice. For each agent, three mice
were sacrificed at 24 and 48 hours postinjection followed by
removal of blood, lung, liver, spleen, kidney, muscle, fat,
heart, brain, bone, tumor, stomach, small intestine, upper
large intestine, and lower large intestine. Each organ was
weighed and measured for radioactivity using a gamma
counter. The radioactivity was background subtracted, decay
corrected to the time of injection, and reported as percent
injected dose/g tissue (% ID/g).

Statistical Analysis

All data were analyzed using Prism version 6 and reported
as mean ± standard deviation (SD). One-way analysis of
variance (ANOVA) was used to calculate p values in order
to compare more than two groups with one variable, and
p values with a 95% confidence interval (< .05) were con-
sidered significant.

Results

Production and Purification of High–Specific
Activity 55Co

58Ni was plated onto a gold disk with an average efficiency
of 95 ± 3% and a thickness of ~ 300 mm. Irradiations
produced an average of 6 ± 1 MBq 55Co/mAhr, which is
consistent with yields predicted by Kaufman20 and about
30% lower than yields predicted by Reimer and Qaim.19
57Ni and 57Co were coproduced at rates of 16 ± 2 kBq/mAhr
and 11 ± 2 kBq/mAhr, respectively, and were approximately
25% and 20% lower than yields predicted by Reimer and
Qaim,19 respectively.

Due to the coproduction of 57Ni, separation could be
analyzed by measuring the characteristic gamma rays of
57Ni (E1 = 1.378 MeV, I1 = 81.7% and E2 = 0.127 MeV,
I2 = 16.7%) and 55Co (E1 = 0.931 MeV, I1 = 75%; E2 =
0.477 MeV, I2 = 20.2%; and E3 = 1.409 MeV, I3 = 16.9%) in
each fraction using an HPGe detector. Elution profiles for
57Ni and 55Co are shown in Figure 1. 57Co contamination
was determined by analyzing its characteristic gamma ray
0.122 MeV (85.6%) in each fraction. Washing the column
with an additional 10 to 40 mL 9 M HCl removed nickel
without significant loss of 55Co. The average recovery of
55Co with a 40 mL 9 M HCl column wash was 92 ± 3%.

Figure 1. Activity of 55Co and 57Ni in each fraction, as measured using
high-purity germanium detection of the characteristic gamma rays,
showing good separation.
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ESA measured via DOTA titration was found to be
259MBq/mmol DOTAwhen washing the column with 10 mL
9MHCl. Increasing the column wash to 40 mL resulted in an
increased ESA of 1.96 GBq/mmol DOTA (Figure 2). Ion
chromatography measured nickel concentrations to be
94.6 mmol/MBq and 757 nmol/MBq for 10 mL and 40 mL
column washes, respectively. The only radioactive impurity
found in the final 55Co fraction was 57Co at 0.2% of the total
55Co activity.

55CoCl2 Small Animal PET/CT Imaging and
Biodistribution

As an emerging radioisotope applicable in oncologic PET
imaging, very few data existed about the in vivo stability of
different 55Co-chelate complexes. HCT-116 tumor xenografts
were imaged (Figure 3A) and post-PET biodistribution studies
(Table 1) were performed at 2, 24, and 48 hours postinjection
to investigate the distribution of free 55CoCl2 in this model.
Interestingly, free 55CoCl2 was observed in the tumor at each of
these time points. Tumor to blood ratios at 2 and 48 hours
were 0.6 ± 0.1 and 1.9± 0.4, respectively (p = .006), exhibiting
a threefold increase due to fast blood clearance and relatively
slow tumor washout (see Figure 3B and Table 1). High uptake
in the heart at 2 hours postinjection could be due to the
potential of Co2+ to mimic calcium influx.12,15 Clearance of
free 55CoCl2 occurred through the liver and kidney as indicated
by the high uptake values at 2 hours postinjection followed by
about a twofold consecutive decrease in 55CoCl2 uptake at 24
and 48 hours postinjection (see Table 1).

Stability of 55Co-Chelate Complexes

The stability of radiometal-chelate combinations is crucial
when designing new PET imaging probes. Complexes that
are not stable in vivo can lead to the radiometal decom-
plexing from the chelate and accumulating in different
organs throughout the body, increasing background signal
and dose to nontarget organs. The longer blood clearance
associated with the L19K-FDNB peptide that we chose as our
model system to investigate 55Co allows for the potential
decomplexation of 55Co-chelate complexes to be measured at
clinically relevant time points to evaluate the in vivo stability
of these complexes. It has previously been established that
changing the radiometal on peptides can have a drastic effect
on the affinity of the peptide to its receptor.35 Using 55Co to
radiolabel the NO2A- or DO3A-peptides dramatically decre-
ased the affinity for their tumor-associated target, vascular
endothelial growth factor (VEGF),32 as shown by their
reduced tumor uptake compared to the 64Cu-labeled ana-
logue, which was radiolabeled at the same specific activity
(Figure S1, online version only).

Figure 2. 55Co-DOTA titration curves demonstrating a sevenfold
increase in ESA (259 MBq/mmol to 1.96 GBq/mmol) when washing the
column with an additional 40 mL 9 M HCl acid versus a 10 mL column
wash.

Figure 3. A, Twenty-four- and 48-hour PET images of 55CoCl2
showing uptake in the tumor and clearance through the liver, kidney,
and intestines. B, The tumor to blood ratio exhibits a threefold increase
from 2 to 48 hours.
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The 24- and 48-hour biodistribution studies of 55Co-
NO2A-L19K-FDNB and 55Co-DO3A-L19K-FDNB were
compared to free 55CoCl2 (see Table 1). These data show that
both NO2A and DO3A chelates radiolabeled with 55Co
exhibit good in vivo stability, as shown by their low uptake in
the liver, lung, heart, bone, stomach, and small intestine
compared to the high uptake of free 55CoCl2 in these organs.
The difference in uptake is most notable in the liver, where
the 55Co-labeled peptides had a sixfold lower uptake than
free 55CoCl2 at 24 and 48 hours. 55Co-labeled peptides had
a fourfold lower uptake than free 55CoCl2 in the heart at
24 hours and a sevenfold lower uptake at 48 hours. Although
the affinity of this particular peptide was negatively affected
by radiolabeling with 55Co, this study shows that DOTA- and
NOTA-derived chelates form stable complexes with 55Co in
vivo and may be used to investigate other probes that are
insensitive to changes in radiometals.

Discussion

The 58Ni(p,�)55Co reaction is an effective route for producing
high–specific activity 55Co. Previously, this method was
reported using a copper disk18 as opposed to gold; however,
using copper as the target backing material could have a
negative effect on the ESA as copper has a high affinity to both
NOTA and DOTA chelators and would compete with 55Co for
binding. The downside to this reaction is that it has a lower

cross section when compared to other radiometals, such as
64Cu and 89Zr, which may limit the availability of this isotope
to facilities that have solid target cyclotron capabilities.

The biodistribution of 55CoCl2 is comparable to that
previously observed for 64CuCl2, as both metals are divalent
cations and may have similar interactions with transport
proteins in vivo.36–40 The tumor uptake of 55Co is interesting

and warrants further investigation. It is possible that its
uptake is due to the overexpression of calcium ion channels
often found in cancer cells.41 Several studies have shown the
uptake of 55CoCl2 in ischemic cells, and this is believed to be
due to 55Co partially mirroring calcium influx.12,15

The in vivo stability of the NOTA and DOTA analogues,

NO2A and DO3A, complexed with 55Co provides the

foundation for developing 55Co-labeled peptides, antibodies,
nanoparticles, and small molecules. 55Co-NOTA and 55Co-

DOTA complexes have significantly lower liver uptake when
compared to 64Cu-NOTA and 64Cu-DOTA complexes (see

Table 1),7,42 which could be beneficial in cases where

reduced background signal is desired; that is, liver metastases.
The lower liver uptake observed with the 55Co complexes

implies that the transchelation problem that exists with
64Cu42–44 is greatly reduced with the use of 55Co. This

reduction in transchelation for the cobalt complexes is in

agreement with the transfer half-life of 800 hours for Co
from Co(DOTATOC) in human blood serum measured by

Heppeler and colleagues.7 Additionally, the high positron

Table 1. Biodistribution Data for 55CoCl2,
55Co-NO2A-L19K-FDNB, and 55Co-DO3A-L19K-FDNB Postinjection

Postinjection Time

2 hr (%ID/g ± SD) 24 hr (%ID/g ± SD) 48 hr (%ID/g ± SD)

Organ A A B C A B C

Blood 4.5 ± 0.6 1.40 ± 0.04 1.57 ± 0.09 1.4 ± 0.2 0.46 ± 0.05 0.63 ± 0.09 0.68 ± 0.04

Lung 4.0 ± 0.3 1.9 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 0.98 ± 0.09 0.46 ± 0.06 0.56 ± 0.03

Liver 15.7 ± 0.4 6.2 ± 0.8 1.0 ± 0.1 1.1 ± 0.2 2.7 ± 0.7 0.44 ± 0.03 0.7 ± 0.1

Spleen 1.9 ± 0.4 0.82 ± 0.05 0.6 ± 0.1 0.56 ± 0.08 0.46 ± 0.04 0.37 ± 0.04 0.35 ± 0.03

Kidney 10.5 ± 1.4 4.4 ± 0.4 12.6 ± 4.1 16.0 ± 3.8 1.9 ± 0.2 2.3 ± 1.0 5.8 ± 1.2

Muscle 0.6 ± 0.1 0.37 ± 0.08 0.31 ± 0.04 0.32 ± 0.09 0.17 ± 0.03 0.15 ± 0.02 0.19 ± 0.04

Fat 1.5 ± 0.9 0.7 ± 0.4 0.8 ± 0.4 0.4 ± 0.1 0.23 ± 0.05 0.3 ± 0.1 0.30 ± 0.03

Heart 4.8 ± 0.4 2.8 ± 0.7 0.7 ± 0.1 0.63 ± 0.06 1.4 ± 0.2 0.33 ± 0.04 0.39 ± 0.03

Brain 0.31 ± 0.02 0.17 ± 0.03 0.08 ± 0.06 0.05 ± 0.01 0.11 ± 0.01 0.02 ± 0.01 0.02 ± 0.01

Bone 1.3 ± 0.2 0.8 ± 0.1 0.28 ± 0.04 0.30 ± 0.04 0.5 ± 0.1 0.14 ± 0.02 0.26 ± 0.05

Tumor 2.8 ± 0.6 1.6 ± 0.2 0.9 ± 0.1 1.1 ± 0.2 0.86 ± 0.08 0.49 ± 0.09 0.71 ± 0.03

Stomach 1.1 ± 0.1 1.0 ± 0.2 0.14 ± 0.05 0.22 ± 0.03 0.5 ± 0.1 0.09 ± 0.04 0.12 ± 0.03

Small intestine 3.6 ± 0.6 1.1 ± 0.2 0.26 ± 0.01 0.31 ± 0.04 0.50 ± 0.04 0.14 ± 0.04 0.19 ± 0.03

Upper large intestine 4.3 ± 0.8 1.5 ± 0.1 0.9 ± 0.1 0.8 ± 0.1 0.7 ± 0.1 0.46 ± 0.06 0.56 ± 0.03

Lower large intestine 1.9 ± 1.0 2.2 ± 0.3 1.0 ± 0.1 1.1 ± 0.2 1.2 ± 0.2 0.44 ± 0.03 0.7 ± 0.1

A = 55CoCl2; B = 55Co-NO2A-L19K-FDNB; C = 55Co-DO3A-L19K-FDNB.
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branching ratio (four times that of 64Cu and three times that of
89Zr) leads to similar images with a lower amount of radio-
activity administered. One drawback, however, is the higher

dose to nontarget tissue from the additional gamma rays pre-
sent from the decay of 55Co.

Since the affinity of some peptides is dependent on the
attached radiometal, it would be interesting to examine this
effect on different peptide models. The anti-VEGF peptide
used in this work exhibited lower tumor uptake than pre-
viously measured with 64Cu (see Figure S1, online version
only); however, in work done by Heppeler and colleagues,
55Co-DOTATOC showed higher affinity for the somatostatin
type 2 receptor than any other radiometals measured.7 These
different studies imply that 55Co may also coordinate with
the peptide probe concurrently with the chelate to elicit a
change in the peptide’s affinity for its target. Therefore,
determining the structure-activity relationship of these
peptide-chelate-metal complexes would be significant for
designing superior PET imaging probes.

Conclusions

55Co can be made with high specific activity via the
58Ni(p,�)55Co reaction. The in vivo stability of 55Co-labeled
NOTA and DOTA derivatives makes this radioisotope a
promising isotope for many different applications. Future
work should compare the affinity of 55Co-labeled peptides to
other radiometals to optimize the best metal-chelate-peptide
combination for the application.
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Figure S1. 64Cu-NO2A-FDNB, 55Co-NO2A-FDNB, and 55Co-DO3A-FDNB biodistribution at 24 hours showing significantly higher tumor uptake
when using 64Cu over 55Co. ID = injected dose; l lg int = lower large intestine; sm int = small intestine; u lg int = upper large intestine.
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