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Neonatal Intravenous Injection of a Gammaretroviral Vector
Has a Low Incidence of Tumor Induction in Mice

Mindy Tittiger,1 Xiucui Ma,1 Lingfei Xu,1 and Katherine P. Ponder1,2

Abstract

Neonatal intravenous injection of gammaretroviral vectors (�-RVs) with an intact long terminal repeat (LTR)
and an internal liver promoter can result in long-term expression in liver cells and correction of mucopolysac-
charidosis. Some expression also occurs in blood cells and brain, which likely derives from the LTR, and may
contribute to clinical efficacy. The goal of this project was to determine whether neonatal gene therapy with an
LTR-intact �-RV would induce tumors in mice. Fifty-one normal newborn C57BL/6 mice were injected intra-
venously at 1010 transducing units/kg with a �-RV expressing canine �-glucuronidase (GUSB) cDNA. This re-
sulted in transduction of 23 � 9% of hepatocytes as determined by histochemical staining, and 0.24 � 0.20 copy
of �-RV DNA per cell in liver as determined by real-time polymerase chain reaction. Serum GUSB activity was
stable for 1.75 years after transduction at 705 � 119 units/ml. Ninety-six percent of mice survived for the du-
ration of evaluation, which was similar to the survival rate for 65 control mice that were not injected with 
�-RV. One �-RV-treated mouse (2%) developed a small (diameter, 2 mm) liver adenoma, which was similar to
the frequency of liver adenomas (2%) or hepatocellular carcinoma (2%) in untreated mice. Although 22% of 
�-RV-treated mice developed hematopoietic tumors, none contained high �-RV DNA copy numbers, and the
frequency was similar to that in the control group (22%). We conclude that neonatal intravenous injection of
an LTR-intact �-RV does not have a high risk of inducing cancer in mice.
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Introduction

INTRAVENOUS INJECTION of gammaretroviral vectors (�-RVs)
with an intact long terminal repeat (LTR) into newborn

mice and dogs has successfully treated mucopolysacchari-
dosis I (MPS I) and MPS VII in mice and dogs (Ponder et al.,
2002; Xu et al., 2002a,b; Liu et al., 2005; Sands and Davidson,
2006; Ponder and Haskins, 2007; Traas et al., 2007). This ap-
proach resulted in transduction of �20% (Xu et al., 2002b)
and �2% (Xu et al., 2002a) of hepatocytes in mice and dogs,
respectively, which expanded clonally as the animals un-
derwent normal growth (Ponder, 1996). In addition, �1% of
blood cells appeared to express the transgene in both mice
(Xu et al., 2002b; and L.X. and K.P.P., data not shown) and
dogs (Wang et al., 2006), and there was substantial expres-
sion from the �-RV in brain in dogs (Traas et al., 2007). Ex-
pression in brain could derive from migration of transduced
hematopoietic cells into brain, or from transduction of brain
cells at the time of intravenous injection of vector, and may
be important for reducing lysosomal storage in neurons
(Traas et al., 2007).

Although this gene therapy approach has been effective
in treating MPS long-term, there are concerns about the
risk of cancer or leukemia. Indeed, leukemia developed in
5 of 21 children with X-linked severe combined immuno-
deficiency (SCID; due to deficiency of the common � chain
of cytokine receptors) and who received hematopoietic
stem cell (HSC)-directed gene therapy with an LTR-intact
�-RV (Nienhuis et al., 2006; Baum, 2007a,b; Cole, 2008). In-
sertional mutagenesis into the LMO2 locus was clearly a
factor in some patients (Hacein-Bey-Abina et al., 2003), al-
though growth-promoting activity of the therapeutic gene,
selection for immortalizing mutations during in vitro cul-
ture, and extensive in vivo amplification of genetically
modified cells may have contributed (Calmels et al., 2005;
Du et al., 2005; Thrasher et al., 2006; Woods et al., 2006; Mé-
tais and Dunbar, 2008). In addition, a patient who received
gene therapy for chronic granulomatous disease had clonal
expansion of cells with insertions near immortalization
genes without leukemic transformation (Ott et al., 2006),
and a myeloid sarcoma developed in a rhesus macaque
that received HSC-directed transfer of a �-RV (Seggewiss
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et al., 2006). In contrast, leukemias and/or clonal expan-
sion have not occurred after gene therapy for adenosine
deaminase (ADA) deficiency (Aiuti et al., 2007; Bushman,
2007; Deichmann et al., 2007).

The risk of cancer after gene therapy to other cell types
with genes that do not confer a selective advantage has not
been as well defined. Liver tumors were reported in one
study in 58% of mice that received fetal or neonatal transfer
with an equine infectious anemia virus (EIAV)-based lentivi-
ral vector, although tumors did not develop in animals that
received other lentiviral vectors or �-RV, suggesting that a
specific element in the EIAV lentiviral vector functioned as
an oncogene (Themis et al., 2005). The goal of this project was
to assess the risk of cancer in mice after neonatal intravenous
injection of an LTR-intact �-RV that has been highly effec-
tive at treating models of MPS.

Materials and Methods

Reagents were from Sigma-Aldrich (St. Louis, MO) unless
otherwise stated.

Animals

Animal studies were approved by the Institutional Re-
view Board of the Washington University School of Medi-
cine (St. Louis, MO). Normal C57BL/6 mice were pur-
chased from Jackson Laboratory (Bar Harbor, ME) and were
bred in a barrier facility. Newborn mice were injected in-
travenously with 1010 transducing units (TU)/kg of the
retroviral vector hAAT-cGUSB-WPRE (Xu et al., 2002a) 2 to
3 days after birth as described. Serum was tested periodi-
cally for �-glucuronidase (GUSB) activity as noted below.
Liver biopsies were obtained from some animals at 4
months of age, and frozen sections were stained for GUSB
activity. At the end point of �1.75 years, serum was col-
lected from the inferior vena cava. Liver and spleen were
sliced into �0.5-cm-thick pieces and evaluated for nodules,
and enlarged lymph nodes or lung masses were collected.
Normal pieces of liver, spleen, and lung were fixed in for-
malin. For abnormal-appearing regions that were �5 mm
in diameter, normal tissue was removed and half was fixed
in formalin; the other half was frozen for DNA analysis.
Six-micrometer-thick sections of paraffin-embedded speci-
mens were stained with hematoxylin and eosin and evalu-
ated by a murine pathologist.

Serum GUSB activity

Serum was tested for GUSB activity by mixing 5 �l of
serum with 95 �l of 2.5 mM 4-methylumbelliferyl-�-D-glu-
curonide in 0.1 M sodium acetate (pH 4.6) in a 96-well plate.
The fluorescence was determined every 10 min for 2 hr with
a Fluoroskan Ascent microplate fluorometer (Thermo Scien-
tific, Waltham, MA) with excitation at 355 nm and emission
at 460 nm. Standards of 4-methylumbelliferone in water were
protected from light and stored at 4°C, and 5 �l of each was
mixed with 95 �l of reaction buffer for the standard curve.
One unit of enzyme produces 1 nmol of product in 1 hr at
37°C. The activity obtained with this assay was �40% of the
activity obtained in our previous protocol, which was per-
formed in a test tube and involved termination of the reac-
tion with a high-pH buffer (Wolfe and Sands, 1996).

GUSB staining of liver

Organs were embedded in optimal cutting temperature
(O.C.T.) compound (Sakura Finetek USA, Torrance, CA) and 8-
�m-thick sections were stained for GUSB activity with 0.25 mM
naphthol AS-BI-glucuronide as described (Wolfe and Sands,
1996), except that the reactions were terminated after 1 hr.

Analysis of DNA copies

For real-time polymerase chain reaction (PCR) of DNA, a
portion of organ that weighed �300 mg was homogenized
in guanidinium, and DNA was extracted. To remove low
molecular weight nucleic acids, �20 �g of DNA was bound
to beads from a QIAEX II gel extraction kit (Qiagen, Valen-
cia, CA) and eluted according to the manufacturer’s in-
structions. DNA was used for real-time PCR with TaqMan
technology (Applied Biosystems, Foster City, CA) and
primers specific for the woodchuck hepatitis virus posttran-
scriptional regulatory element (WPRE) of the �-RV, with nor-
malization to the mouse �-actin sequence (Xu et al., 2002b).
Standards were DNA from the murine MPS VII fibroblast
cell line 3521, which was transduced with a single copy of
hAAT-cGUSB-WPRE (Xu et al., 2002b); the DNA was diluted
with DNA from liver of a nontransduced mouse.

Statistical evaluations

Averages � the standard deviation (SD) were calculated
for all values. The program SigmaStat 3.1 (Systat Software,
San Jose, CA) was used to determine the statistical signifi-
cance of differences between groups.

Results

Transduction of newborn mice with an LTR-intact �-RV

We have previously demonstrated that neonatal injection
of a �-RV with an internal liver-specific human �1-antit-
rypsin (hAAT) promoter and an intact LTR resulted in sta-
ble expression from liver for up to 1.5 years in mice and up
to 7 years in dogs. However, it is possible that this vector
could induce cancer by activating an oncogene close to an
integration site. We therefore initiated this study to assess
the carcinogenicity of an LTR-intact �-RV in mice after
neonatal administration. Fifty-one normal C57BL/6 mice
were injected intravenously with 1010 TU/kg of the �-RV
hAAT-cGUSB-WPRE 2–3 days after birth, and 65 uninjected
mice of the same breeding colony were set aside as controls.
C57BL/6 mice were chosen for analysis, as they have a de-
tectable but relatively low risk of liver adenoma or carci-
noma, 2.3 to 13.9% after �2 years of observation (Frith et al.,
1993; Volk et al., 1994; Ward et al., 2000), which might allow
a single mutation that results in increased proliferative po-
tential to have a carcinogenic effect. Normal mice were cho-
sen for analysis, as the short life span (less than 1 year) of
untreated MPS VII mice would make it impossible to com-
pare the frequency of tumor development at late times in un-
treated mice with that in treated mice.

GUSB activity in serum can be used to assess the stability
and the level of expression, as some of the enzyme that is
produced by hepatocytes or other cells is secreted. All �-RV-
treated mice had high levels of serum GUSB activity at 1.5
months after transduction, as shown in Fig. 1A. Expression
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was stable for the duration of evaluation, and averaged
705 � 119 [standard deviation (SD)] U/ml at the end point
of 1.75 years, which was 28-fold the value of 26 � 2 U/ml in
normal mice (p � 0.001) (Table 1). Liver biopsy was per-
formed on 5 mice whose serum GUSB activity was near the
mean for the group at 4 months after transduction, and his-
tochemical staining was used to determine the percentage of
cells that expressed GUSB, as shown in Fig. 1 and summa-
rized in Table 1. A short period (1 hr) of staining was used,
which allowed the transduced hepatocytes with high GUSB
activity to be identified over the endogenous GUSB activity
in the nontransduced normal hepatocytes. This demon-
strated that 23 � 9% of hepatocytes expressed the transgene.
No large clusters of GUSB-positive or GUSB-negative cells
were observed in any of the livers that were evaluated, mak-
ing it unlikely that there was extensive expansion of an in-
dividual transduced cell that did or did not express the trans-

gene, respectively. In addition, DNA analysis was performed
on livers collected from transduced mice at �1.75 years af-
ter transduction. Real-time PCR demonstrated that the �-RV
DNA copy number was 0.24 � 0.20 copy per cell in liver (n �
8; Table 1), while �-RV DNA was undetectable in nontrans-
duced controls (n � 2; p � 0.001). These data demonstrate
that a relatively high transduction efficiency was achieved.

Long-term survival of mice

Mice were evaluated approximately twice per month for
their general health and for the presence of abdominal or
other masses. Two animals in each group died before the
end point of 1.75 years, for a mortality of 4 and 3% for the
�-RV-treated and the control group, respectively, as shown
in Fig. 2A. Although the cause of death was unclear and
pathology was not performed, as the bodies were in a poor
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FIG. 1. Serum GUSB activity and histochemical stain of liver for GUSB activity. Some normal C57BL/6 mice received
neonatal intravenous injection of LTR-intact �-RV, designated hAAT-cGUSB-WPRE, at 1010 TU/kg 2 or 3 days after birth.
Other normal C57BL/6 mice were not treated. (A) Serum GUSB activity. Average serum GUSB activity � SD was deter-
mined for all surviving mice at the indicated age after transduction. The average serum GUSB activity � 2 SD in non-
transduced normal mice (22 to 31 U/ml) is indicated by the shaded region. (B–E) Histochemical assay for liver GUSB ac-
tivity. Liver biopsies were obtained 4 months after birth and stained for 1 hr for GUSB activity, which results in a red color
in the cytoplasm. Nuclei were counterstained with hematoxylin, which results in a blue color. Samples from nontransduced
normal C57BL/6 mice (B and C) have a low level of endogenous GUSB activity. Neonatal �-RV-transduced normal mice
(D and E) have several clusters of hepatocytes with high enzyme activity, as indicated by the arrows.

A



condition when found in the cage, none had gross evidence
of tumors.

Frequency and type of tumors

The remaining animals were killed at �1.75 years of age
as detailed in Table 1, and the abdomens and chests were
evaluated for overt abnormalities. Histopathological analy-
sis was performed on liver, spleen, and lung from all ani-
mals, and on any abnormal-appearing regions. As shown in
Fig. 2B, 1 of 49 (2%) of the �-RV-treated mice that survived
to the end point of 1.75 years had a small (2 mm) liver nod-
ule, 1 untreated control of 63 that were evaluated had a liver
nodule (2%), and 1 untreated control had a hepatocellular
carcinoma (2%). Eleven �-RV-treated mice (22%) had a he-
matopoietic tumor in the spleen and/or lymph nodes, the
phenotype of which was classified as lymphoma (9 total or
18% of all mice) or histiocytic sarcoma (2 total or 4% of all
mice). For the control group that did not receive �-RV, 14 of
63 that were evaluated had hematopoietic tumors (22%), of
which 10 were lymphomas (16%) and 4 were histiocytic sar-
comas (6%). Two �-RV-treated mice (4%) had small (�2 mm)
lung nodules, and one normal control had a lung adenoma
(2%). The incidence of tumors, according to the Fisher exact
test, was not different between the groups for any tumor
type.

Hematopoietic tumors from �-RV-treated mice were eval-
uated to determine the �-RV DNA copy number. Although
livers of �-RV-treated mice had an average of 0.24 � 0.20
copy of �-RV per cell (n � 8), the tumors had only 0.04 �
0.05 copy of �-RV per cell (n � 8). The presence of low num-
bers of �-RV sequences in the tumors is likely due to conta-
mination with normal transduced blood cells, as discussed
in the next section.

Discussion

The goal of this study was to determine the risk of devel-
opment of malignancy in mice after neonatal intravenous in-
jection of an LTR-intact �-RV with an internal liver-specific
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TABLE 1. NEONATAL GENE THERAPY IN MICE: RESULTSa

No gene transfer Neonatal �-RV

Dose of �-RV None 1010 TU/kg
Number of mice at start 65 51
Number of mice that survived 1.75 years (%) 63 (97%) 49 (96%) (NS)
Average age (months) at sacrifice 21.0 � 2.6; p � 0. 21.9 � 1.6 (NS); p � 0.001)000.
Average serum GUSB activityb (U/ml) 26 � 2 (n � 4) 705 � 119 (n � 49; p � 0.001)
Percent liver cells strongly positive for GUSBc 0 � 0 (n � 2) 23 � 9% (n � 5; p � 0.001).
�-RV DNA copies/cell in liverd 0 � 0 (n � 2) 0.24 � 0.20 (n � 8; p � 0.001)0
Frequency of all neoplasms 26% 24% (NS)
�-RV DNA copies/cell in hematopoietic tumors Not tested 0.04 � 0.05 (n � 8)

Abbreviations: �-RV, gammaretroviral vector; GUSB, �-glucuronidase; NS, not significant; TU, transducing units.
aThe dose of the LTR-intact �-RV designated hAAT-cGUSB-WPRE that was given intravenously to newborn normal C57BL/6 mice in

transducing units (TU) per kilogram is shown. Control mice did not receive �-RV.
bAverage serum GUSB activity was determined at 1.75 years of age.
cThe percentage of hepatocytes with high GUSB activity was determined in liver biopsy samples obtained 4 months after transduction.
dThe number of �-RV DNA copies per cell was determined in liver, spleen, or lymph node samples obtained 1.75 years after transduction.

Statistical comparisons used the Student t test (age at sacrifice, serum GUSB activity, percent liver cells strongly positive for GUSB, and �-RV
DNA copies in liver) or the Fisher exact test (the percentage of mice that survived to 1.75 years and the frequency of tumor development).

FIG. 2. Survival and tumor incidence in mice. (A) Survival
curve. The survival of all mice from birth until the age of
sacrifice at 1.75 years is shown for �-RV-transduced mice
and for nontransduced controls. There was no significant
difference in the survival rate between the two groups. (B)
Incidence of tumors. Autopsy was performed, and slides of 
organs were evaluated by a murine pathologist. The per-
centage of animals with hepatocellular carcinomas, liver
adenomas, hematopoietic neoplasms (lymphoma or histio-
cytic sarcoma), or lung adenomas relative to the total num-
ber of mice in the group that were evaluated histochemi-
cally was determined. There were no significant differences
in the incidence of tumors of specific types, using the Fisher
exact test.



hAAT promoter. This vector has been extremely successful
at preventing the clinical manifestations of MPS I and MPS
VII in mice and dogs. The LTR may contribute to the thera-
peutic effect for MPS, as 1% of blood cells in mice (Xu et al.,
2002b; and L.X. and K.P.P., unpublished data) and dogs
(Wang et al., 2006) were strongly positive for GUSB activity
on the basis of histochemical staining, and blood cells could
migrate into other tissues and secrete enzyme locally. In ad-
dition, an undetermined cell type in brain expressed �-L-
iduronidase RNA from an LTR-intact �-RV in MPS I dogs
(Traas et al., 2007). Expression in nonhepatic cells likely de-
rives from the LTR and not the hAAT promoter, and thus
elimination of the enhancer region of the LTR may reduce
the clinical efficacy of this gene therapy approach if expres-
sion in these sites is important. In addition, other organs such
as spleen, kidney, and thymus had detectable copies of �-RV
after neonatal administration of this vector in a previous
study and could possibly develop tumors, although the lev-
els of �-RV were low in these other organs, at �14% of that
found in liver (Xu et al., 2002b).

This study demonstrates that neonatal intravenous injec-
tion of 1010 TU/kg of this �-RV, which was sufficient to re-
sult in expression in 23 � 9% of hepatocytes and 0.24 � 0.20
copy of �-RV DNA per cell in liver, did not increase the risk
of malignancy at 1.75 years over that observed in control
mice of the same strain that did not receive the �-RV. Al-
though the hematopoietic tumors that developed in �-RV-
treated mice had 0.04 copy of �-RV per cell, this was likely
due to contamination of the tumor with normal hematopoi-
etic cells, as this value was lower than the value of 0.10 copy
per cell that we previously observed in peripheral blood and
spleen after neonatal intravenous injection of a similar �-RV
into mice (Xu et al., 2004). If integration adjacent to an onco-
gene were driving the development of the tumor, the �-RV
DNA copy number should be �0.5 copy per cell, as histo-
logical evaluation of these tumors suggests that �50% of the
cells were abnormal (data not shown). In addition, we have
analyzed �50 additional mice that received neonatal injec-
tion of various �-RVs expressing other transgenes 0.5 to 2
years after transduction, and none developed liver tumors.
We therefore conclude that the risk of insertional mutagen-
esis resulting in malignancy with this gene therapy approach
is low in mice. In addition, we have not seen tumors or other
adverse effects in any of four MPS VII dogs (Ponder et al.,
2002) that have now been monitored for 7.5 years after
neonatal gene therapy (M. Haskins and K.P.P., unpublished
data), or in any of �30 MPS I, hemophilia A, or hemophilia
B dogs (Ponder, 2006; Traas et al., 2007) that were monitored
for 0.5 to 3 years after transduction. Although the number of
animals and the time of evaluation are not sufficient to rule
out a small carcinogenic effect, these data suggest that this risk
is low. The low incidence of tumors in mice that received a
replication-incompetent �-RV in this study is in contrast to the
high frequency of leukemia or lymphoma in newborn mice
that received a replication-competent gammaretrovirus (Ott
et al., 1992), and in rhesus macaques that received a replica-
tion-competent gammaretrovirus during hematopoietic stem
cell-directed gene therapy (Vanin et al., 1994). This study does
not examine �-RV integration sites in the liver, which are of
interest and will be evaluated in future.

Despite these data suggesting that the risk of cancer in-
duction is low with an LTR-intact �-RV after neonatal intra-

venous injection, it has been shown that an LTR-intact �-RV
has increased oncogenic potential in HSCs as compared with
a self-inactivating (SIN) vector that has a deletion in the 3�
LTR that is copied to the 5� end after transduction (Modlich
et al., 2006; Schambach et al., 2006; Zychlinski et al., 2008). It
therefore remains possible that the LTR of the �-RV could
enhance expression of a nearby oncogene, and that this could
serve as one step in the multistep process (Vogelstein and
Kinzler, 1993) toward the development of malignancy. We
are currently testing the efficacy of an SIN �-RV for treating
MPS I and MPS VII. If an SIN vector is as effective as an
LTR-intact �-RV, it would be preferred for translation into
humans, as it should be safer.

Another issue concerns whether or not lentiviral vectors
are safer than �-RV because of reductions in their propen-
sity to integrate close to promoters (Nienhuis et al., 2006;
Beard et al., 2007a,b; Bushman, 2007; Deichmann et al., 2007;
Schwarzwaelder et al., 2007). However, these differences are
modest, and the biological significance is unclear, as en-
hancers by definition can activate promoters from a distance.
Although lentiviral vectors had a reduced incidence of leu-
kemia in one study as compared with �-RV (Montini et al.,
2006), differences in the strength of the promoter and the use
of an intact LTR in the �-RV complicate comparisons. There
are potential advantages to using a �-RV for in vivo delivery,
as the requirement for division for transduction by �-RV
(Miller et al., 1990) but not lentiviral vectors (Naldini et al.,
1996) should reduce promiscuous transduction of cells that
will not contribute to a therapeutic effect, and eliminate the
risk of transduction of the nonreplicating germ cells in new-
borns.

Implications for gene therapy

These data suggest that the risk of cancer induction with
neonatal intravenous injection of an LTR-intact �-RV ex-
pressing a transgene that does not confer a selective ad-
vantage is low in mice. Nevertheless, if an SIN vector were
to be as effective as an LTR-intact vector, the SIN vector
would be preferred because of its reduced risk of carcino-
genesis in HSCs. However, if an LTR-intact vector proves
to be more effective than an SIN vector in some sites, such
as brain, the decision as to whether or not to go forward
with an LTR-intact vector would be complicated, and
would need to consider these data showing a low risk of
cancer with this LTR-intact �-RV, and the fact that alter-
native treatments for MPS have substantial toxicity. For ex-
ample, HSC transplantation, an established treatment for
MPS, has a 15% short-term mortality rate (Boelens et al.,
2007). In addition, HSC transplantation has a 7% incidence
of malignancy within 10 years that may be due to the mu-
tagenic effect of radiation and DNA-damaging agents
(Ferry et al., 2007). We will continue to evaluate large an-
imals long-term for the development of malignancy after
neonatal gene therapy with an LTR-intact vector and with
the SIN vectors that we are currently developing. In addi-
tion, others are testing SIN lentiviral vectors for efficacy in
MPS (Kobayashi et al., 2005; Di Domenico et al., 2006). The
results of these studies should further define the efficacy
and the risks of various vectors, and may lead to using the
vector with the greatest benefit-to-risk ratio to treat pa-
tients with MPS.
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