Neuroimaging evidence of deficient axon myelination in Wolfram syndrome

Heather M. Lugar, M.A. ${ }^{1}$, Jonathan M. Koller, BSBME, BSEE ${ }^{1}$, Jerrel Rutlin, B. ${ }^{1}$, Bess A. Marshall, M.D. ${ }^{4,6}$, Kohsuke Kanekura, M.D., Ph.D. ${ }^{5}$, Fumihiko Urano, M.D., Ph.D. ${ }^{5}$, Allison Bischoff, BA ${ }^{1}$, Joshua S. Shimony, M.D., Ph.D. ${ }^{3}$, *Tamara Hershey Ph.D ${ }^{1,2,3}$ and the Washington University Wolfram Syndrome Study Group

Departments of Psychiatry ${ }^{1}$, Neurology ${ }^{2}$, Radiology ${ }^{3}$, Pediatrics ${ }^{4}$, Medicine ${ }^{5}$, Washington University School of Medicine and St. Louis Children's Hospital ${ }^{6}$, St. Louis, MO 63110, USA

*Corresponding Author:

Tamara Hershey, Ph.D.
Campus Box 8134
4525 Scott Avenue
Washington University School of Medicine
St. Louis, Missouri 63110
Phone: (314) 362-5593
Fax: (314) 362-0168

Email: tammy@npg.wustl.edu

Supplementary Figure S1. Correlations between brain and behavioral measures within the

Wolfram group. Within the Wolfram group, significant Pearson's correlations coefficients are shown between brain and behavioral measures which had significant group effects or were abnormal compared to clinical norms. Significance was set at $\mathrm{p}<0.05$, after controlling for age and gender. Abbreviations: eTIV, estimated intracranial volume; FA, fractional anisotropy; RD, radial diffusivity; AD, axial diffusivity; WURS, Wolfram Syndrome Rating Scale; PANESS, Physical and Neurological Examination for Subtle Signs; Mini-BESTest, mini-Balance Evaluation Systems Test; TUG, Timed Get Up and Go; UPSIT, University of Pennsylvania's Smell Identification Test. *Behavioral measures in which higher scores are better.

Supplementary Table S1. Study age (SA) and age at diagnosis (in years) of optic atrophy (OA), diabetes mellitus (DM), diabetes insipidus (DI), and hearing loss (HL) in each Wolfram patient, as well as their genetic mutations. \#, unknown. Superscripts a , b , and c represent sets of siblings from four different families; fifteen families, in total, participated. *Patients who have data from a different time point represented in Hershey et al., 2012.

Patient	SA	OA	DM	DI	HL	Allele 1	Allele 2
*WOLF02	14	9	6	7	NA	c.2648del4; p.F883fs	None identified
*WOLF03	20	6	5	6	6	c.1230_1233del; p.Val412Serfs*29	c.1243_1245del; p.Val415del
WOLF07	10	7	2	7	NA	c. $2002 \mathrm{C}>\mathrm{T}$; p.Gln668	c. $2002 \mathrm{C}>\mathrm{T}$; p.Gln668*
WOLF09 ${ }^{\text {a }}$	16	11	10	14	NA	c. $376 \mathrm{G}>\mathrm{A}$; p.Ala126Thr	c. $1838 \mathrm{G}>\mathrm{A}$; p.Trp613
WOLF10 ${ }^{\text {a }}$	14	8	7	11	NA	c. $376 \mathrm{G}>\mathrm{A}$; p.Ala126Thr	c. $1838 \mathrm{G}>\mathrm{A}$; p. Trp613
WOLF11 ${ }^{\text {a }}$	11	7	7	8	9	c. $376 \mathrm{G}>\mathrm{A}$; p.Ala126Thr	c. $1838 \mathrm{G}>\mathrm{A}$; p. Trp613
*WOLF12	25	17	7	17	7	c. $320 \mathrm{G}>\mathrm{A}$; p.Gly107Glu	c. $1885 \mathrm{C}>\mathrm{T}$; p.Arg629Trp
*WOLF13	8	5	5	7	NA	c.599delT; p.Leu200Argfs*87	$\begin{aligned} & \text { c. } 2254 \mathrm{G}>\mathrm{T} ; \\ & \text { pGlu752* } \end{aligned}$
WOLF14	14	7	6	11	10	$\begin{aligned} & \text { c.817G>T; } \\ & \text { p.Glu273 } \end{aligned}$	$\begin{aligned} & \text { c.1839G>A; } \\ & \text { p.Trp613* } \end{aligned}$
WOLF15	11	7	3	10	9	$\begin{aligned} & \text { c. } 439 \mathrm{delC} \\ & \text { Arg147fs*163 } \end{aligned}$	$\begin{aligned} & \text { c. } 1620 \mathrm{G}>\mathrm{A} ; \\ & \mathrm{p} \operatorname{Tr} 540^{*} \end{aligned}$

*WOLF16	27	13	13	14	NA	c.1240_1242del; p.Phe414del	c.1689_1694del; p.Phe564del;p.Leu565del
*WOLF17 ${ }^{\text {b }}$	19	15	5	NA	15	c. $599 \mathrm{~T}>\mathrm{C}$; p. Leu200Pro	$\begin{aligned} & \text { c.695G>C, } \\ & \text { p.Arg232Pro } \end{aligned}$
WOLF18	12	10	5	10	NA	c.1251_1252delinsG; p.Phe417Leufs*25	$\begin{aligned} & \text { c. } 1885 \mathrm{C}>\mathrm{T} ; \\ & \text { p. } \operatorname{Arg} 629 \mathrm{Trp} \end{aligned}$
WOLF22	16	12	14	NA	NA	c. $605 \mathrm{~A}>\mathrm{G}$; p.Glu202Gly	c. $631 \mathrm{G}>\mathrm{A}$; p.Asp211Asn
WOLF23 ${ }^{\text {c }}$	17	17	5	NA	17	c.739_740del, p.Phe247fs*5	c.1243_1245del, p.Val415del
WOLF24 ${ }^{\text {c }}$	16	10	4	5	14	c.739_740del, p.Phe247fs*5	c.1243_1245del, p.Val415del
WOLF25 ${ }^{\text {c }}$	7	\#	5	NA	NA	$\begin{aligned} & \text { c.739_740del, } \\ & \text { p.Phe247fs*5 } \end{aligned}$	c.1243_1245del, p.Val415del
WOLF27 ${ }^{\text {d }}$	10	8	3	9	NA	c.1230_1233del; p.Val412Serfs*29	c.1243_1245del, p.Val415del
WOLF28 ${ }^{\text {d }}$	7	5	5	NA	NA	c.1230_1233del: p.Val412Serfs*29	c.1243_1245del, p.Val415del
WOLF29 ${ }^{\text {b }}$	5	\#	NA	NA	3	c. $599 \mathrm{~T}>\mathrm{C}$, p.Leu200Pro	$\begin{aligned} & \text { c. } 695 \mathrm{G}>\mathrm{C} \text {, } \\ & \text { p. } \mathrm{Arg} 232 \text { Pro } \end{aligned}$
WOLF31	10	7	5	NA	10	c.2140_2163dup24 p.Asn714_Asn721dup	c.2140_2163dup24 p.Asn714_Asn721dup

