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INVESTIGATION

Combinatorial Cis-regulation in
Saccharomyces Species
Aaron T. Spivak and Gary D. Stormo1

Department of Genetics, Center for Genome Sciences and Systems Biology, Washington University School of Medicine,
St Louis, Missouri 63108

ORCID ID: 0000-0001-6896-1850 (G.D.S.)

ABSTRACT Transcriptional control of gene expression requires interactions between the cis-regulatory
elements (CREs) controlling gene promoters. We developed a sensitive computational method to identify
CRE combinations with conserved spacing that does not require genome alignments. When applied to
seven sensu stricto and sensu lato Saccharomyces species, 80% of the predicted interactions displayed
some evidence of combinatorial transcriptional behavior in several existing datasets including: (1) chromatin
immunoprecipitation data for colocalization of transcription factors, (2) gene expression data for coexpres-
sion of predicted regulatory targets, and (3) gene ontology databases for common pathway membership of
predicted regulatory targets. We tested several predicted CRE interactions with chromatin immunoprecipita-
tion experiments in a wild-type strain and strains in which a predicted cofactor was deleted. Our experiments
confirmed that transcription factor (TF) occupancy at the promoters of the CRE combination target genes
depends on the predicted cofactor while occupancy of other promoters is independent of the predicted
cofactor. Our method has the additional advantage of identifying regulatory differences between species. By
analyzing the S. cerevisiae and S. bayanus genomes, we identified differences in combinatorial cis-regulation
between the species and showed that the predicted changes in gene regulation explain several of the
species-specific differences seen in gene expression datasets. In some instances, the same CRE combinations
appear to regulate genes involved in distinct biological processes in the two different species. The results of
this research demonstrate that (1) combinatorial cis-regulation can be inferred by multi-genome analysis and
(2) combinatorial cis-regulation can explain differences in gene expression between species.
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The combination of cis-regulatory elements (CREs) in a promoter is an
important determinant of gene expression patterns (Pilpel et al. 2001;
Balaji et al. 2006; Gertz and Cohen 2009; Kazemian et al. 2013; Nandi
et al. 2013;Wang et al. 2013), but we have only a limited understanding
of how interactions between regulatory elements affect gene expression.
There is clear evidence that certain combinations of CREs produce

nonadditive effects on gene expression (Pramila et al. 2002), but it
remains very challenging to discover which CREs interact on a genome
scale (Balaji et al. 2006; Aguilar and Oliva 2008; He et al. 2009; Girgis
andOvcharenko 2012; Ha et al. 2012; Kazemian et al. 2013; Nandi et al.
2013; Jiang and Singh 2014). Understanding eukaryotic gene expres-
sion requires identifying the CRE combinations that interact to produce
nonadditive effects on gene expression.

Gene regulation studies using synthetic promoters made from
random combinations of CREs have been successful in discovering
new synergistic combinations (Gertz and Cohen 2009). However, the
number of possible CRE combinations that could interact to regulate
gene expression is too large to explore comprehensively with existing
experimental techniques. There are approximately 200 transcription
factors (TFs) in Saccharomyces cerevisiae for which the DNA-binding
specificity is known (de Boer and Hughes 2012; Spivak and Stormo
2012; Hughes and de Boer 2013). If only pairwise interactions between
CREs are considered, there are nearly 20,000 possible CRE combina-
tions to evaluate. There is a clear need to efficiently and sensitively
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identify CRE combinations with nonadditive influence over gene
expression.

To address this need, several computational methods have been
developed to identify pairs of interacting CREs. When CREs interact to
control gene expression, previous evidence indicates that the CREs will
cluster near each other in the genome (Pilpel et al. 2001; Pramila et al.
2002). Efforts to identify combinatorial CRE pairs have exploited this
feature by scanning the genome for CRE co-occurrences (GuhaThakurta
and Stormo 2001; Chiang et al. 2003; Beer and Tavazoie 2004; Das
et al. 2004; Kato et al. 2004; Balaji et al. 2006; Krogan et al. 2006; Hu
et al. 2007; Girgis and Ovcharenko 2012; Ha et al. 2012; Guturu et al.
2013; Kazemian et al. 2013; Nandi et al. 2013; Jiang and Singh 2014) or
by examining ChIP data for TF colocalization (Aguilar and Oliva 2008).
However, TF colocalization alone is only a weak indicator of combina-
torial regulation (Badis et al. 2009) and chance cooccurrence of CREs
confound analyzes of single genome sequences. Separate methods have
been developed that reduce the number of chance co-occurrences be-
tween CREs and enrich for functional CRE interactions by limiting the
search space to conserved regions in multiple-species alignments
(Chiang et al. 2003; Kellis et al. 2003; Xie et al. 2008; Jiang and Singh
2014). However, aligning promoter sequences from multiple species
can eliminate functional binding sites if regulation is not conserved
between species or if regulation is conserved but there is turnover of
individual sites. This is not a trivial caveat, as comparative genomic
studies have revealed extensive gain and loss of CREs between Saccha-
romyces species (Doniger and Fay 2007).

Although individual CREs are often not conserved between species
(Hooper et al. 2007; Xie et al. 2010; Zheng et al. 2011; Shibata et al.
2012; Reece-Hoyes et al. 2013), functional interactions between CREs
are often conserved among distantly related species (Tuch et al. 2008a;
Gerke et al. 2009; Cherry et al. 2012; Jiang and Singh 2014). Further-
more, studies of gene regulatory evolution have found that interactions
between transcription factors are conserved even if the TFs regulate
different sets of genes between species (Tuch et al. 2008a). Therefore,
cooccurrence of cis-regulatory elements inmultiple unaligned genomes
can be used to identify interacting CREs. Incorporating this feature into
a prediction method avoids many of the limitations inherent to pre-
vious strategies.

We have developed a computational method for identifying co-
regulatory CREs and provide strong evidence that conservation of a
spacingbiasbetweenCREs, that isobserved inmultiple species, indicates
combinatorial gene regulation.Weuse this observation to identifymany
new instances of significantly co-occurring CREs and to predict com-
binatorial cis-regulation in the yeast genome. We tested the accuracy of
our predictions usingChIP-Seq to assayDNAoccupancy genome-wide
for a few TFs predicted to interact in our computational screen. We
made knockout strains of the predicted cofactor and assayed TF occu-
pancy in this cofactor deletion strain. These experiments show that TF
occupancy is dependent on the predicted cofactor at specific promoters,
but not genome-wide. Finally, we examined the role of CRE combinations
in predicting regulatory differences between species. Attempts to predict
regulatory divergence genome-wide have generally found little correlation
between CRE gain/loss and gene expression (Zhang et al. 2004; Tirosh
et al. 2008). However, gain/loss of CRE combinations can better explain
species-specific differences observed in gene expression data.

MATERIALS AND METHODS

Multi-species analysis of CRE co-occurrence
Position weight matrices (PWMs), curated from 11 different literature
sources that describe the DNA-binding specificity of 196 S. cerevisiae

transcription factors (TFs), were obtained from the ScerTF database
(Spivak and Stormo 2012). PWMs were adjusted to account for the
genome composition for each species. We then predicted binding sites
(CREs) within the genomes of S. cerevisiae and six other sensu stricto
and sensu lato Saccharomyces species: S. bayanus, S. castellii, S. kluyveri,
S. kudriavzevii, S. mikatae, and S. paradoxus. The use of multiple
species increases the sample size and therefore makes it easier to detect
co-occurring CREs. This method is similar to that of Chiang et al.
(2003) but differs in two important ways. They used word (hexamer)
pairs whereas we use PWMs which should increase the sensitivity by
better modeling the specificities of TFs. In addition we do not use
alignments between species and are not requiring that the occurrences
are orthologous, although we expect that many of them are and that
such occurrences increase the signal-to-noise and allow us to find CRE
pairs that differ between species. CREs were predicted as DNA sites
within 25-fold of the consensus sequence predicted affinity, based on
the PWM. This is a conservative cutoff that will miss some functional
sites (Tanay 2006) but it reduces the false positive rate compared to
more relaxed cutoffs. For each pair of PWMs, we calculate the co-
occurrence of CREs within each promoter region, defined to be
600 bp upstream of each coding region, in each genome. The observed
pattern of CRE co-occurrence in a genome is recorded as a distribution
of spacings between CRE pairs in every promoter.

If two CREs interact, evidence indicates that the distribution of
spacings between CREs will be skewed toward shorter distances (Drazinic
et al. 1996; Krogan et al. 2006; Tirosh and Barkai 2007). In order to
take advantage of this observation, we developed a genome simulation
method to determine the expected distribution of CRE spacings while
maintaining the total occurrence for each CRE and the spatial locali-
zation of CREs within each promoter because those are not randomly
distributed (functional sites are more common near the promoter than
far away) (Sarafova and Siu 2000). We do this by using permutations
that shuffle the CRE annotation associated with each predicted binding
site to maintain the number of binding sites associated with each TF
and the number and locations of binding sites for every promoter. This
shuffling procedure is conducted 1000 times, and the resultant distri-
butions are combined to produce an average expectation.

As expected, the number of co-occurrences in the simulationswith a
motif spacing of d is closely approximated (see Supporting Information,
Figure S1) by:

SðdÞ ¼ 2 � NðB2 dÞ
B2

where N is the observed number of CRE co-occurrences in the ge-
nome and B is maximum possible distance between regulatory ele-
ments on a promoter (here defined as 600 bp, minus the combined
length of the two CREs being evaluated). Having shown that the
observed data are well modeled by the formula, we directly test the
likelihood of the observed data under a Poisson model with mean and
variance parameterized by S(d) to determine if the number of ob-
served co-occurrences for a CRE pair is significantly more than
expected. We use 25 bp as the limit between CREs to consider them
to be interacting. In this step, we apply a Bonferroni correction to
account for themultiple hypotheses tested. CRE combinations that do
not significantly co-occur (P. 0.01) in this step are removed from the
analysis.

The subset of CRE pairs that were found to significantly co-occur in
multiple Saccharomyces genomes when compared against the genome-
wide null model were then compared against a null model derived from
promoter-by-promoter simulations of CRE co-occurrence. These
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simulations are conducted similarly to the genome simulations de-
scribed above, with the exception that these simulations permute the
predicted binding sites at each promoter independently. In this way the
number of co-occurrences of each CRE pair within all of the promoters
is constant between the simulations and the observed data, and we can
examine explicitly the intermotif spacing distribution between CREs in
greater detail. Although the individual promoter simulations can be
time-intensive, most of the possible CRE combinations are removed
in the first step of the analysis, which dramatically reduced the search
space. The promoter simulations are necessary to distinguish CREs that
co-occur near each other from CREs that regulate a common set of
genes but are independently distributed at those genes.We compare the
observed distribution to the expected distribution derived from 1000
simulation experiments using a chi-square test. The genome-wide anal-
ysis examines bothCRE spacing and co-occurrence, while the promoter
simulations only examine the spacing between CREs. The promoter
simulations correct for a source of bias inherent in the genome-wide
analysis. Therefore, a multiple hypothesis correction was not applied in
this step.

Corroborating evidence

ChIP-chip analysis: That two predicted CREs occur near one another
more frequently than expected does not necessarily mean that they
interact to affect gene expression. Immunoprecipitation experiments
provide corroborating evidence that TFs are actually bound to the
predicted CREs. If two TFs coordinately regulate a set of genes, then
both factors need to bind the promoters of those genes. A notable
compilation of experiments was conducted by Harbison et al. (2004)
who collected data for over 100 yeast TFs under several different growth
conditions. We also analyzed an earlier ChIP-chip dataset (Arbeitman
et al. 2002) and amore recentChIP-chip dataset (Venters et al. 2011). A
hyper-geometric test was used to determine if a significant number of
probes are bound by both TFs for a candidate CRE pair. ChIP occu-
pancy data provides evidence that two TFs both bind to the same
promoters in the same environmental growth condition.

Target gene expression analysis: CRE combinations that functionally
interact to coordinately regulate target gene expression should generate
similar expression profiles among the genes they regulate (Pilpel et al.
2001). We calculate the similarity of expression profiles for predicted
coregulated genes and for genes predicted to be regulated by only one of
the CREs in a pair to assess a functional consequence from the CRE co-
occurrences.

Three expression datasets were used to determine if predicted target
genes of both CREs were coexpressed across multiple cell cycle time
points (Pramila et al. 2006), environmental conditions (Gasch et al.
2000) or gene deletion conditions (Hughes et al. 2000). For each data-
set, a Pearson’s correlation coefficient (PCC) was calculated between
gene expression profiles for all pairs of predicted target genes, which
produced a distribution of PCC values describing the expression profile
similarities of the target genes. This distribution of PCC values for
predicted targets of the CRE combination was compared with the
distribution of PCC values calculated for expression profiles of the
targets in which each CRE was predicted to act in isolation. The dis-
tribution of PCC values for predicted target genes of both CREs is
compared to the two distributions of PCC values for predicted targets
of only one CRE using a one-sided Mann–Whitney–Wilcoxin test.

An alternative way to employ gene expression data to identify
relationships between TFs is to ask whether a similar set of target genes
is significantly up/downregulated in deletion mutants for each of the

TFs. Reimand et al. (2010) undertook an analysis to identify differen-
tially expressed genes in TF perturbation experiments (Alon 2007).
This provides data of potential regulatory target genes for each TF in
our analysis. For each CRE combination with a conserved spacing bias,
we determined whether there was a significant overlap between target
gene sets in TF perturbation experiments using a hyper-geometric test.

Target gene pathway analysis: Previous analyzes of coexpressed genes
have found that when a set of genes is coregulated by a combination of
TFs, the genes are often involved in a common process or even share a
common protein complex (Pilpel et al. 2001; Breitkreutz et al. 2008).
Therefore, one way to corroborate a CRE pair identified from the co-
occurrence screen is to determine if the combination regulates a set of
genes with a common biological process. The target genes identified in
the co-occurrence screen are used here to define a set of genes with
binding sites for both TFs in a potential CRE pair. These predicted
target genes are examined to determine whether the genes share a
common biological pathway. The GO process (Ashburner et al.
2000) and KEGG pathway (Kanehisa and Goto 2000) databases are
queried with the target gene set to retrieve all the processes associated
with each target gene. A hyper-geometric test is used to determine
whether the target genes share a common pathway or process. Target
genes may have multiple annotations, so a Bonferroni correction is
applied for all of the annotations associated with the target gene set.

Experimental tests of interactions

Yeast strains and growth conditions: Yeast strains with c-myc epi-
topes fused to the C-terminus of the TFs assayed in this study were
obtained from the Young Lab (Harbison et al. 2004). For each of the
assayed TFs, a knockout strain was generated in which the predicted
cofactor was replaced with a kanamycin resistance marker obtained
from the yeast deletion collection (Giaever et al. 2002). Alleles in the
knockout strain were replaced using the yeast gene deletion collection
strains as a template with the PCR-based recombination strategy de-
tailed by Giaever et al. (Giaever et al. 2002).

NRG1-myc, SUT1-myc, and SWI4-myc strains were grown at
30� in yeast, peptone, dextrose(YPD)-richmedia to exponential midlog
phase (OD600�0.8). GCN4-myc and RTG3-myc strains were grown in
YPD-rich media to OD600 �0.7, after which rapamycin was added to
the media to a final concentration of 100 nM and the cultures were
harvested after 20 min (Harbison et al. 2004). Strains were grown in 1
l volumes and subsequently split into three equal volumes for chroma-
tin immunoprecipitation. These strains, which harbor both an epitope-
tagged transcription factor and a deletion mutant, were assayed in
biological triplicate and grown separately in 330 ml culture volumes.

Chromatin immunoprecipitation: Chromatin immunoprecipitations
were performed essentially as described previously in the literature
(Aparicio et al. 2004). However, slight modifications were made to
the existing protocol to improve yield and reproducibility. Cell cultures
were grown to midlog phase (OD600 �0.8) and cross-linked in a final
concentration of 1% formaldehyde for 15 min. The reaction was
quenched with 150 ml 2.5 M glycine (50 ml for the 330 ml cultures)
and incubated at room temperature for 10 min. The cell cultures were
centrifuged at 2000 · g at 4� for 10 min in a Sorvall RC58 centrifuge.
This pellet was washed twice with deionized, distilled H2O and recen-
trifuged. The final pellet was frozen at 280� overnight.

A cell extract was prepared by first adding lysis buffer (Tachibana
et al. 2005) with protease inhibitor to the frozen pellet and transferring
the cell suspension to a 2-ml flat-bottomed screw-cap tube. Zirconia
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beads (0.5 mm diameter) were added to each tube, and cells were lysed
in a beadbeater (BioSpec) set to maximum power for 6 · 5 min cycles
with a 2 min rest on ice between cycles. This lysate was transferred to a
15ml conical tube using the hot-needle transfer method (Aparicio et al.
2004) and the volume of the lysate was increased to 5 ml with lysis
buffer. The lysate was then sonicated with a Branson Sonifier 250 tip
sonicator set tomaximumoutput for 8 · 30 sec cycles with 2min rest in
an ice/ethanol bath between cycles. The lysate was preclarified by cen-
trifugation for 3 min at 3000 · g, and then transferred to microcen-
trifuge tubes and clarified by centrifugation for 7 min at 10,000 · g. The
supernatant was collected (approximately 4 ml) and used for immu-
noprecipitation. At this step, a 250 ml sample was removed and labeled
as the INPUT sample.

Immunoprecipitations (IPs) were performed using anti-c-myc resin
(anti-MycEZiewaffinitygel; Sigma-Aldrich).Each4ml samplewas split
into 4 · 1.7 ml microcentrifuge tubes and 50 ml resin was prepared for
each microcentrifuge tube (200 ml total for each IP). Resin was washed
three times with lysis buffer before use. Samples were incubated by
inverting for 14216 hr at 4�. Samples were then centrifuged for
30 sec at 400 · g. Each sample was washed six times with 1 ml of the
following buffers: one lysis buffer wash, one high-salt buffer wash, two
wash buffer washes, and two TE (pH 8.0) washes. Finally, samples were
eluted by adding 250ml elution buffer and incubating at 70� for 15min.
From this sample, 200ml was removed and an additional 100ml elution
buffer was added to the resin. The samples were incubated at 70� for an
additional 15min and 100ml was removed from the sample and pooled
with the first elution. Eluates from the four microcentrifuge tubes per
sample were pooled for a final volume of 1.2 ml ChIP elution. This was
labeled as the IP sample and incubated overnight at 70� to reverse
cross-links. For the INPUT sample, 250 ml elution buffer was added
to the aliquot saved earlier and this sample was also incubated over-
night at 70�.

After cross-link reversal, the IP sample was concentrated to approx-
imately 500ml with a vacuummicrocentrifuge. Both the IP and INPUT
samples were RNAse treated by adding 1 ml 20 mg/ml RNAse and
incubating at 40� for 30 min. DNA was then isolated by phenol: chlo-
roform extraction. This DNA was precipitated with 1 ml 100% isopro-
panol and stored overnight at 4�. The samples were then centrifuged for
1 hr at max at 4�, washed with 75% ethanol, and then recentrifuged for
an additional hour at max 4�. The supernatant was discarded and the
pellet was resuspended in H2O.

These samples were then prepared as libraries for Illumina sequenc-
ing (Lefrancois et al. 2009). After an end-repair reaction, an adenosine
nucleotide was added to the 39 end of each strand and sequencing
adapters were ligated to the DNA fragments. Fragments were size
selected (2002600 bp) and amplified with 15 cycles of PCR. Libraries
were sequenced using the Illumina HiSeq-2000 in 42 bp single-read
runs (data available in NCBI GEO database: GSE60281).

Chip-Seq peak analysis: The multiplexed sequencing data were then
deconvolutedusing the indexingbarcodeandaligned to theyeast genome
with Novoalign (Novocraft Technologies). If a sequenced fragment did
not uniquely align to the genome it was discarded. Gene promoters were
defined as the 600 bp immediately upstream of the translational start site
of each gene defined in the Saccharomyces Genome Database. The
number of fragments that aligned to these annotated promoters was
recorded for each INPUT and IP sample. This converted the data from
read alignments to a table of read counts per promoter.

Transcription factor regulatory targets were determined from the
wild-type ChIP-Seq experiments. Regulatory targets were determined
separately for each of the biological triplicates using the MACS peak-

finding algorithm (Thurman et al. 2012). MACS uses a simple sliding
window strategy to compare INPUT and IP samples at each position
along a chromosome. The algorithm assumes that the number of reads
aligned to any particular window is a Poisson process, so the null
hypothesis is that the number of reads that align to the current window
in the IP sample can be modeled by a Poisson distribution parameter-
ized using the number of reads that align to that same window in the
INPUT sample. Regions with a significantly greater number of reads
than expected from the INPUT sample are called ‘peaks’ and denote
regions of the genome that are bound by the assayed DNA-binding
protein. The peaks identified by MACS were used to annotate target
genes of the assayed transcription factor; if the MACS peak overlapped
with the promoter of a gene, that gene is assumed to be a target of the
assayed transcription factor.

Although peak identification was conducted separately for each
replicate, annotation of target genes relied on consistency between
replicates. Target genes were sorted by support from the peak-finding
results for the individual replicates; genes with support from at least two
replicateswereused to identify joint targets of theTF combination.Gene
promoters that were significantly bound in both wild-type strains for a
CREpairweredefinedasTFcombination target genes. In thedifferential
occupancy analysis described below, the statistical test employed is
sensitive to sample size. Therefore, the target gene sets defined for each
TF binding DNA in isolation were restricted to be the size of the
combination target gene set. As such, only the most significant in-
dependent target genes from the peak-finding analysis were used to
definethegenes included in the singleTFtargetgenesets.This analysisof
wild-type ChIP data analysis yields, for each TF pair, three equal size
gene sets: TF1+TF2 targets, TF1 only targets, and TF2 only targets.

Once the target gene sets were defined for the TF pair and each TF
acting in isolation,we examined thedifference inoccupancybetween the
wild-type and cofactor deletion strains for each of the three different
target gene sets. For each target promoter, we calculated the number of
reads that uniquely aligned to that promoter in the INPUT and IP
samples andnormalized these sums by the total number ofmillion reads
in each sample. This calculation transforms the raw read counts to reads
perpromoter permillionmapped.The enrichment ratio for eachgene in
each IP sample is expressed as the ratio of the IP reads per million
mappeddividedby the INPUTreads permillionmapped. For eachgene,
weaveraged the enrichment ratio across replicates.Thecofactordeletion
mutant can be considered a “treatment” applied to the target genes for
each of the three different gene sets. We would like to determine
whether the treatment has an effect on the enrichment ratio (IP/INPUT)
for genes within the three different target gene sets. We used a
paired T-test to compare the enrichment ratios between wild-type and
deletion strains for each gene set. If occupancy of the assayed transcrip-
tion factor depends on the presence of the predicted cofactor, then the
enrichment ratios should be significantly different between the wild-
type and deletion strains for the joint targets of the TF combination. If
deletion of the cofactor has a more universal effect on the ability of the
assayed TF to bind its target promoters, then the enrichment ratios
would also be significantly different between treatments for the gene set
in which the assayed factor binds promoters without the predicted
cofactor.

Identification of species-specific coregulated genes
Directly comparing gene expression profiles between different species
has proven to be a difficult task (Badis et al. 2009). Therefore, we took an
alternative approach to identify regulatory differences between species.
We selected the subset of the significant CRE combinations that predict
coherent gene expression patterns in both S. cerevisiae and S. bayanus
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to determine if the CRE combinations regulate different sets of genes
between the two Saccharomyces species.

For each candidate CRE combination, the method identifies poten-
tial regulatory targets by scanning each genome separately for instances
of the CRE combination within 25 bp of each other using the previously
described PWMs (Spivak and Stormo 2012). This produces two sets of
potential target genes for each CRE combination; one set contains the
predicted targets in S. cerevisiae while the other set contains predicted
targets in S. bayanus. In general, there is substantial overlap between
these two sets; predicted target genes in S. cerevisiae often have ortho-
logs in S. bayanus that are also predicted to be target genes of the CRE
combination using the ortholog mapping from Kellis et al. (Kellis et al.
2003; Harbison et al. 2004) to assign a unique ortholog to each gene.
The overlap in predicted targets produces three sets of genes: target
genes predicted in S. cerevisiae but not S. bayanus; target genes pre-
dicted for S. bayanus but not S. cerevisiae; and target genes predicted to
be regulated by the CRE combination in both species.

Initial target gene expression analysis within each species: In order
to assess regulatory rewiring between the two species, we first test
whether the CRE combination can be associated with a coherent gene
expression pattern within each species. Therefore, as an initial verifica-
tion that the CRE combination is functional in each of the species, we
calculate the similarity of expression profiles for predicted coregulated
genes and for genes regulated by only one of the CREs in a pair to infer a
functional consequence from the CRE co-occurrences. If a CRE com-
bination regulates a coherent set of genes inone speciesbutnot theother,
it ispossible that this combination isonly functional inoneof the species.
Alternatively, it is possible that the CRE combination is functional in
both species but the appropriate conditions were not assayed in one of
the two expression datasets.

A CRE combinationmay not actively regulate gene expression in all
or evenmost of the conditions assayed by the two datasets considered in
this study (Gasch et al. 2000; Guan et al. 2010). Incorporating irrelevant
growth conditions into the initial assessment of a CRE combination will
obfuscate corroboration of the CRE combination and complicate
downstream analyzes. Therefore, it is important to compare the expres-
sion profiles of CRE combination target genes to genes regulated by
only one of the CREs in a pair using only the appropriate conditions in
which the CREs are most likely to be active. We identify the relevant
growth conditions for each TF in a regulatory pair by analyzing a
collection of expression profiles published for S. cerevisiae (Gasch
et al. 2000) and S. bayanus (Guan et al. 2010). For each CRE, the
relevant growth conditions are identified by determining whether the
CRE target genes are significantly differentially expressed in a condi-
tion. A CRE target gene is defined as a gene with a PWMmatch for that
TF above specified cutoff. In each condition, the expression ratios
reported for every gene are converted to Z-scores, and we use a Z-test
to determine whether the CRE target genes are significantly differen-
tially regulated compared to the expression of all genes in that
condition.

Once the relevant conditions were selected, we could evaluate each
CRE combination in both S. cerevisiae and S. bayanus. For each dataset,
a PCC was calculated between gene expression profiles for all pairs of
predicted target genes in each species, which produced a distribution of
PCC values describing the expression profile similarities of the target
genes. This distribution of PCC values for predicted targets of the CRE
combination was compared with the distribution of PCC values calcu-
lated for expression profiles of the targets in which each CRE was
predicted to act in isolation. The distribution of PCC values for pre-
dicted target genes of bothCREs is compared to the two distributions of

PCC values for predicted targets of only one CRE using a one-sided
Mann–Whitney–Wilcoxin test.

Comparison of species-specific gene expression profiles: The search
for transcriptional rewiring is a search to identify species-specific gene
regulation. In the first part of the analysis, we identified CRE combi-
nations that coordinately regulate target gene expression in each species
separately and then predicted species-specific targets of the CRE com-
bination.Afterward, thealgorithmtests thehypothesis that thepredicted
species-specific target genes are coherently expressed in the appropriate
specieswhile theorthologsof these targetswithout theCREcombination
are not coherently expressed in the partner species.

This procedure generates three sets of genes predicted tobe regulated
by the CRE combination under consideration: S. cerevisiae-specific
target genes (set A), S. bayanus-specific target genes (set C), and
species-independent target genes (set B) (see Figure 5 for a graphical
description). The species-independent target genes should be regulated
by the CRE combination in both S. cerevisiae and S. bayanus. This set of
genes provides a benchmark against which we can evaluate the species-
specific target genes for S. cerevisiae and S. bayanus. Within S. cerevisiae,
the S. cerevisiae-specific target genes should have a similar expression
pattern to the shared target genes, while the S. bayanus-specific target
genes should not have a similar expression pattern because those genes
are not predicted to be regulated by the CRE combination in S. cerevisiae.
The opposite pattern should emerge when analyzing the S. bayanus-
specific target genes using the S. bayanus gene expression dataset.

The null hypothesis is that there is no transcriptional rewiring
between S. cerevisiae and S. bayanus, in which case there should not
be any species-specific target genes regulated by this CRE combination.
If the null hypothesis is true, then the gene sets designated as A and C
are simply false predictions. Either the “species-specific” target genes
are not regulated by the CRE combination or they are actually shared
target genes regulated by the CRE combination in both species. If either
scenario is true, thenwithin each species, the expression profiles of both
A and C will be equally similar to the expression profile of B. If the
expression profiles of A and C are equally similar to the expression
profile observed for B, then we can combine A and C and randomly
sample from this pool to generate simulated “species-specific” gene sets,
A� and C�. The simulated gene sets A� and C� are each the same size as
A and C, respectively; only the composition of the gene sets has been
shuffled. We compare the expression profiles of the simulated gene set
to B by calculating PCC between each gene in the simulated set and
every gene in B. This generates a distribution of PCC that compares the
simulated gene set to B. If the null hypothesis is true, then the corre-
lation of A� vs. B should be similar to the correlation of A vs. B in S.
cerevisiae, and the correlation of C� vs. B should be similar to the
correlation of C vs. B in S. bayanus.

If there is support for regulatory rewiring between S. bayanus and S.
cerevisiae, then the species-specific designations are meaningful. As a
consequence, the profile comparison between A and B in S. cerevisiae
should have a highermean than the profile comparison betweenA� and
B. Similarly, in S. bayanus, setC should bemore similar toB than setC�.

We conduct this simulation 1,000 times to estimate the probability
that the predicted species-specific gene sets have the observed expression
coherencewith theshared targetgenesbychance.Asimulation is counted
as successful if the correlation ofA� vs. B is greater than the correlation of
A vs. B using the S. cerevisiae expression dataset and the correlation ofC�

vs. B is greater than the correlation ofC vs. B in the S. bayanus expression
dataset. We estimate the probability that the observed expression profile
similarities occurred by chance as the number of successful simulations
divided by the total number of simulations.
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Biological pathway analysis: A CRE combination that regulates
different sets of genes between related species might regulate different
biological processes. To investigate this possibility, we assessed the
biological pathway enrichment of the three different sets of target genes
defined for each CRE combination. An overrepresentation of genes
associatedwith a specific pathway inA but not B andC suggests that the
CRE combination regulates that pathway only in S. cerevisiae. Similarly,
pathway enrichment apparent inC but notA andB indicates S. bayanus-
specific regulation of that pathway.

Wedeterminedpathwayenrichment for eachgenesetusing theGene
Ontology database of biological processes (Ashburner et al. 2000) and
KEGG database of biological pathways (Kanehisa and Goto 2000) to
retrieve all the processes associated with each target gene. A hyper-
geometric test is used to determine whether the target genes share a
common pathway or process. Target genes may have multiple annota-
tions, so a Bonferroni correction is applied for all of the annotations
associated with the target gene set.

Data availability
ChIP-seq data accessible from NCBI GEO database: GSE60281.

RESULTS AND DISCUSSION

Multiple-species spacing bias predicts combinatorial
function of CRE pairs
PWMs curated from the literature (Spivak and Stormo 2012) were used
to identify potential binding sites for 196 TFs in the genomes of S.
cerevisiae, S. bayanus, S. castelli, S. kluyveri, S. kudriavzevii, S. mikatae,
and S. paradoxus. For each pair of PWMs, we calculated the distribu-
tion of nucleotide spacings between the predicted binding sites and
identified pairs for which the observed distribution deviated signifi-
cantly from random expectation (see Materials and Methods). The
co-occurrence screen identified 1399 CRE combinations, 7.3% of the
19,110 possible, that exhibit a conserved spacing bias across multiple

Saccharomyces genomes (P , 0.01 after correction for multiple tests).
This collection includes many known examples of combinatorial cis-
regulation, demonstrating that the screen can successfully identify gen-
uinely functional TF interactions (Table S1). Furthermore, although the
screen did not require that the CRE combinations occur in every spe-
cies, in almost all cases they are observed in each of the seven species
and usually with similar frequencies (Table S2).

One example of a known case is the highly significant interaction
identified between PAC and RRPE elements in ribosomal genes, which
are recognized by the TFs Pbf2 and Stb3 (Pilpel et al. 2001; Liko et al.
2007; Zhu et al. 2009). Our analysis also found that the STB3 motif
significantly co-occurs with several other motifs involved in the cell
cycle (MBP1, SWI4), metabolism (GCN4), and stress response (XBP1).
Previous studies have identified a role for STB3 in the transcriptional
regulation of both cell cycle (Tavazoie et al. 1999) and stress response
(Gasch et al. 2000) genes, indicating that the co-occurrence screen has
likely identified functionally relevant CRE interactions.

Corroborating evidence

Eighty per cent of predictions have corroborating experimental
support: There are three main features that distinguish CRE combina-
tions from independentCREs. First, whenTFs coordinately regulate a set
of genes, both factors bind the promoters of those genes (Harbison et al.
2004). Second, interactions between CREs often produce nonadditive
changes in gene expression (Shea and Ackers 1985; Pilpel et al. 2001).
Third, genes that are coordinately regulated by a particular combination
of TFs often share a common biological process (Pilpel et al. 2001;
Banerjee and Zhang 2003).We analyzed existing ChIP-chip (Arbeitman
et al. 2002; Harbison et al. 2004; Venters et al. 2011), gene expression
(Gasch et al. 2000; Hughes et al. 2000; Pramila et al. 2006; Reimand et al.
2010), and biological pathway data (Ashburner et al. 2000; Kanehisa and
Goto 2000) to identify corroborating experimental evidence supporting
the computational predictions from our phylogenetic analysis (see

Figure 1 Expression profiles of
predicted CRE combination tar-
get genes are more correlated
than predicted target genes of
either CRE acting alone. The yel-
low line in each graph depicts
the distribution of correlation co-
efficients calculated between
gene expression profiles for each
pair of target genes predicted
to be regulated by the CRE com-
bination indicated. The black and
purple lines relate the distribution
of correlations for target genes
predicted to be regulated by
each CRE acting alone. “Op-
posite” refers to a correlation of
21 and “Identical” refers to a cor-
relation of +1.
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Materials and Methods). Of the 1399 pairs of CREs that co-occur in
multiple yeast species, 1121 CRE pairs, representing approximately 80%
of the computational predictions, have at least one type of experimental
evidence supporting the prediction (P , 0.01 in at least one corrobo-
rative analysis). Approximately 36% of the predictions are supported by
at least two different types of experimental evidence and 8% of the
predictions are corroborated by all three experimental methods (Table
S1). The number of examples for each type of supporting experimental
data depends on the specific thresholds used. But given those sets we can
ask whether the specific combinations are significantly overrepresented.
In fact all of the combinations are significant at P , 0.05, and for the
combination of Chip-chip colocalization and pathway enrichment, and
for the combination of all three types of data, the significance is P ,
1023. Figure 1 shows four examples with gene expression corroborating
evidence. In those examples the genes that have both of the CREs show
much more coherent expression than genes that have either of the two
CREs alone.

Most known examples of combinatorial cis-regulation come
from a handful of thoroughly studied biological processes (e.g., cell
cycle, starvation, etc.) or have been inferred from high-throughput ge-
netic screens (Krogan et al. 2006; Fordyce et al. 2010). To identify
condition-specific CRE pairs, we analyzed target gene expression co-
herence in three different gene expression datasets: a cell cycle time
course experiment (Pramila et al. 2006), a series of growth experiments
in multiple environmental stress conditions (Gasch et al. 2000), and a
compendium of gene deletion mutants (Hughes et al. 2000). Many of
the most significant interactions discovered from the cell cycle time
course experiments are well known interactions involving the cell cycle
regulators SWI4, SWI6, and MBP1 and are listed in the Saccharomyces
Genome Database (SGD) (Boyle et al. 2012) (Table 1). Our analysis of
the environmental and genetic perturbation data, however, mostly
identified unknown CRE combinations whose target genes are signif-
icantly coexpressed across conditions (Table 2). That most of these
interactions have not been documented previously suggests that, unlike
the well-studied cell cycle transcriptional network, gene regulation in
response to environmental changes remains largely open for new
discoveries.

Physical constraints of CRE combinations: TFs that bind coopera-
tively toDNAsometimes exhibit a strongbias in the relativepositionand
orientation of their binding sites (Pramila et al. 2002). Previous studies
have found that positional constraints on CREs can be important de-
terminants of gene expression patterns (Sudarsanam et al. 2002).
Therefore, a CRE combination with a conserved pattern of binding site
arrangements may indicate that the orientation or order of these bind-
ing sites influences gene regulation. After identifying CRE combina-

tions that co-occur more than expected by chance, we further analyzed
the results from our co-occurrence screen to detect biases in the phys-
ical arrangement of CREs for co-occurring CRE pairs. Specifically, we
looked for CRE combinations in which one particular orientation or
order of binding sites occurred more than expectation and then com-
pared the expression coherence between regulatory targets with the
preferred arrangement of binding sites and targets with a different
binding site arrangement.

HAP4 and SUT1 is an example of previously undescribed interac-
tion with a preferred orientation (Figure 2A). Interestingly, this CRE
combination may only be active in certain environmental conditions.
There is no significant overlap between ChIP-chip experiments for
HAP4 and SUT1when cultured in optimal growth conditions (Harbison
et al. 2004). However, both the expression coherence analysis and
the biological pathway analysis support a functional role for the pre-
dicted interaction between HAP4 and SUT1. Additionally, the target
genes of the HAP4 · SUT1 combination are significantly differentially
expressed in oxidative stress conditions and growth on suboptimal
carbon sources. After identifying this combination from the co-
occurrence screen, we further divided the co-occurrences into each of
the four possible orientations and found a significant overrepresentation
of one particular orientation among the Saccharomyces genomes. We
partitioned the target genes of the HAP4 · SUT1 combination into a
set with the overrepresented orientation and a set with the three
remaining orientations and determined that the set of target genes with
the preferred HAP4 · SUT1 orientation were significantly more co-
herently expressed across environmental conditions than the set of
target genes without the preferred binding site arrangement.

Several known examples of combinations of CREs with known
positional constraints were identified by our method, including
MCM1 · YOX1 (Pramila et al. 2002), MCM1 · FKH2 (Pramila
et al. 2006; Tuch et al. 2008b), and PBF2 · STB3 (Sudarsanam et al.
2002; Liko et al. 2007).We also identified the pair FKH2 · SWI4 which
was previously reported to interact to control expression of S phase
genes in the cell cycle (Sudarsanam et al. 2002) but for which a posi-
tional bias had not been reported. Figure 2B shows that one orientation
is much more common than the other three and also that the genes
with that position bias are expressed much more coherently than the
genes with alternative orientations.

Experimental tests of interactions

ChIP-Seq reveals asymmetry in TF combinatorial interactions: As a
preliminary assessment of the experimental strategy we immunopreci-
pitated Swi6p in a wild-type and swi4D strain. Swi4p and Swi6p are the
two components of the SBF regulatory complex that control G1 to S

n Table 1 Most significant CRE combinations from cell cycle time
course expression coherence analysis

Pair Simulation Cell Cycle Environment SGD

MBP1 · SWI6 1.1084E-280 ,1e-300 4.49728E-69 Yes
PBF2 · STB3 0 5.4172E-270 ,1e-300 No
MBP1 · SWI4 4.40017E-73 3.0837E-266 1.0856E-111 Yes
MBP1 · STB1 4.14077E-89 3.0406E-188 7.03385E-78 Yes
SWI4 · SWI6 5.21369E-93 1.3756E-175 1.1981E-154 Yes
STB2 · STB3 1.1218E-82 2.23188E-95 1.77025E-50 No
PBF1 · STB3 0 6.29925E-89 ,1e-300 No
STB1 · SWI6 2.1118E-97 4.00616E-87 5.4427E-121 Yes
REB1 · STB3 8.5209E-128 2.09431E-76 1.83331E-43 No

n Table 2 Most significant CRE combinations from environmental
stress expression coherence analysis

Pair Simulation Cell Cycle Environment SGD

PBF2 · STB3 0 5.4172E-270 ,1e-300 No
MIG3 · RGM1 3.00368E-18 2.24847E-19 ,1e-300 No
GIS1 · MIG3 1.5942E-17 2.24847E-19 ,1e-300 No
MIG3 · YPL230W 3.87555E-17 2.24847E-19 ,1e-300 No
GIS1 · SUT1 4.89402E-16 1.06326E-10 ,1e-300 No
RGM1 · SUT1 6.23916E-16 1.06326E-10 ,1e-300 No
SUT1 · YPL230W 3.34119E-14 1.06326E-10 ,1e-300 No
MSN4 · SUT1 6.48628E-10 1.31691E-36 ,1e-300 No
MIG3 · MSN4 1.7635E-09 6.40281E-29 ,1e-300 No
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phase transition during the cell cycle (Koch et al. 1993). Swi6p is not
believed to have the ability to bind DNA directly, and its association
with DNA is mediated by its various cofactors, which include Swi4p,
Mbp1p, and Stb1p (Koch et al. 1993; Conlan et al. 1999). Therefore, we
assayed the SWI4· SWI6 combination to determine if ChIP-Seq can be
used to quantitatively measure occupancy differences between wild-
type and cofactor deletion strains. Using the wild-type SWI6::myc18
and SWI4::myc18 strains, we could define the combinatorial targets
and independent targets for the TF pair. In the SWI6::myc18/swi4D
strain, Swi6p should not be able to bind the combinatorial targets of
SWI4 · SWI6 because the interaction between Swi4p and Swi6p has
been disrupted. However, the individual targets defined for Swi6p, in
which a ChIP-Seq peak for Swi6p did not overlap with any ChIP-Seq
peaks for Swi4p, should be relatively unaffected by the loss of SWI4. If
Swi6p occupancy of these target genes is significantly affected by the
deletion of SWI4, then there is a genetic interaction between SWI6 and
SWI4 in which SWI4 globally affects the activity of SWI6. In this
scenario, a physical dependency cannot be inferred because the results
do not divorce physical interactions from genetic interactions.

The results of this initial experiment confirm the utility of ChIP-
Seq as a method capable of quantitatively measuring the dependence

between two TFs at combinatorial target genes and Swi6p-only target
genes. In the wild-type SWI6::myc18 experiments, the IP samples are
highly enriched for combinatorial target genes with greater than eight-
fold enrichment observed for some target genes. However, in the
SWI6::myc18/swi4D strain, these target genes are no longer enriched
in the IP sample, indicating that Swi6p occupancy of these target genes
is dependent on SWI4 (Figure S2). A paired-sample Wilcoxin Signed
Rank Test comparing the wild-type and deletion experiments reports a
significant difference in Swi6p occupancy between the conditions (P,
1025). In contrast, the difference between the wild-type and swi4D
strains was not significant when examining the Swi6p-only targets
reported by MACS (P = 0.27; Figure S2). It is interesting to note that
although most genes do not appear different between the two condi-
tions, Swi6p occupancy of some of these target genes does appear to
change between conditions. Of these nine target genes with an occu-
pancy difference between the wild-type and swi4D strains, six have a
match to the SWI4 binding site in their promoter sequences. One
possibility is that these six genes are, in fact, combinatorial genes but
were not categorized as such by theMACS peak-finding algorithm.We
also examined differences in Swi4p occupancy between wild-type
SWI4::myc18 and SWI4::myc18/swi6D strains. In general there are only

Figure 2 Orientation biases for CRE combinations.
The pattern of occurrences in multiple species for
HAP4 and SUT1 CREs (A) and for FKH2 and SWI4
CREs (B) indicates an overrepresentation of Orien-
tation 1 (depicted in orange). The horizontal line
crossing the bar graph represents the expected
number of occurrences for each orientation if
orientation is random. The expression profile plot
depicts the distribution of correlation coefficients
calculated between gene expression profiles for
target genes with the overrepresented orientation
(orange) and all other orientations (black).
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small differences between wild-type and deletion conditions for the
combinatorial target genes and the Swi4p-only target genes, as expected
(Figure S2).

Interaction between NRG1 and SUT1: The co-occurrence screen
identified a significant spacing bias between NRG1 and SUT1 CREs
(P, 1025). Additionally, predicted target genes of the NRG1 · SUT1
CRE combination were significantly more coherently expressed than
expected by chance (P, 10227). Based on this data, we investigated the
interaction between NRG1 and SUT1 using ChIP-Seq to measure oc-
cupancy of Nrg1p in wild-type and sut1D strains as well as the re-
ciprocal experiment for Sut1p. As depicted in Balaji et al. (2006),
Kazemian et al. (2013), and Nandi et al. (2013), Nrg1p occupancy of

NRG1 · SUT1 combinatorial targets depends on the presence of SUT1
(P, 1026), while Nrg1p occupancy of Nrg1p-only targets is much less
dependent on SUT1 (P = 0.011). There is an observable difference in
occupancy between the wild-type and sut1D strains for approximately
five genes in the Nrg1p-only target set; interestingly two of those five
genes, snR63 and YDR039C, have a match to the SUT1 binding site but
were not identified as bound regions by MACS in the Sut1p ChIP-Seq.
Removing these two genes from the Nrg1p-only target set increases the
P-value for the comparison between wild-type and sut1D strains from
0.011 to 0.032.

In contrast to the results for the Nrg1, the ChIP-Seq data for Sut1p
shows that Sut1p occupancy increases in the nrg1D strain (Figure 3B).
This trend is significant for both the combinatorial and Sut1p-only

Figure 3 Enrichment ratios from ChIP-seq ex-
periments. Target genes for each genotype (see
Materials and Methods for details of peak iden-
tification). Each of individual experiments from
the triplicates is shown (labeled with #). (A) Nrg1
ChIP-seq in NRG1::myc strain (top) and NRG1::
myc/sut1D strain (bottom). (B) Sut1 ChIP-seq in
SUT1::myc strain (top) and SUT1::myc/nrg1D
strain (bottom). Gene names are provided in
Table S3.
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target gene sets (P, 1026 and, 1025, respectively). In this case, it is
impossible to determine if Sut1p physically depends on Nrg1p for pro-
moter occupancy because there is a genetic interaction between SUT1
and NRG1 in which deletion of NRG1 increases the DNA-binding
activity of Sut1p. It is unclear how deletion of NRG1 exerts a global
effect on Sut1p activity. In both this study and previous studies, Nrg1p
does not appear to associate with the promoter of SUT1 under the
conditions of our experiment (Harbison et al. 2004), and deletion of
NRG1 does not significantly affect the expression of SUT1 (Reimand
et al. 2010). However, the SUT1 promoter is significantly bound by
Adr1p in cell cultures shifted to low glucose conditions (Tachibana
et al. 2005). ADR1 activates expression of genes required for nonopti-
mal carbon source metabolism in response to glucose starvation (Kim
et al. 2003). Similarly, NRG1 negatively regulates genes required for

nonoptimal carbon source metabolism when glucose is present in the
growth media (Mertin et al. 1999). One possibility is that direct regu-
lation of SUT1 by ADR1 indirectly links SUT1 and NRG1 through the
glucose sensing network.

Interaction between GCN4 and RTG3: Several of the CRE combina-
tions identified in the co-occurrence screen integrate distinct physio-
logical processes of the cell. For one such CRE combination, GCN4 ·
RTG3, we used the differential ChIP-Seq assay to investigate depen-
dencies between the TFs involved in regulation. GCN4 is a transcrip-
tional activator that induces expression of amino acid biosynthesis
genes in response to nutrient starvation (Natarajan et al. 2001).
RTG3 serves to activate expression of genes involved in the retrograde
and TOR (Target Of Rapamycin) pathways (Butow and Avadhani

Figure 4 Enrichment ratios from ChIP-seq ex-
periments. (A)Gcn4 ChIP-seq inGCN4::myc strain
(top) and GCN4::myc/rtg3D strain (bottom).
(B) Rtg3 ChIP-seq in RTG3::myc (top) and
RTG3::myc/gcn4D (bottom). Gene names are
provided in Table S4.
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2004). The retrograde response signals mitochondrial dysfunction to
the nucleus and induces changes in carbohydrate and nitrogen metab-
olism. The TOR pathway couples nutrient sensing to protein synthesis/
degradation (Raught et al. 2001). Thus, GCN4 and RTG3 regulation
should converge in nutrient starvation growth conditions. Indeed, anal-
ysis of data from a previous ChIP-chip study (Harbison et al. 2004)
reveals that the regulatory targets bound by Gcn4p and Rtg3p signifi-
cantly overlap (hyper-geometric test, P, 10212) upon treatment with
rapamycin. Rapamycin is an antifungal drug that inactivates TOR sig-
naling in S. cerevisiae, which elicits a nutrient starvation response
(Loewith and Hall 2011).

Following the method of Harbison et al. (Harbison et al. 2004) we
treated cell cultures with rapamycin and measured Gcn4p and Rtg3p
occupancy in wild-type and cofactor deletion strains. The differential
ChIP-Seq experiments show that Gcn4p occupancy of combinatorial
target genes is significantly greater in the wild-type yeast strain com-
pared to the GCN4::myc9/rtg3D strain (P = 0.001) (Figure 4A). The
occupancy difference observed for the combinatorial targets is not due
to global changes in Gcn4p activity; occupancy of Gcn4p-only targets
was not significantly different between the two strains (P = 0.6). In
contrast, ChIP-Seq analysis of Rtg3p indicates that Rtg3p binding
is independent of Gcn4p (P = 0.46) (Figure 4B). These data suggest
that Gcn4p depends on Rtg3p for occupancy of the GCN4 · RTG3
combinatorial target promoters, but Rtg3p binding is independent
of Gcn4p. Similar results have been observed previously for

GCN4-mediated gene regulation (Devlin et al. 1991). Rap1p binds
the HIS4 promoter independently of Gcn4p, but Rap1p binding is
required for Gcn4p activation of HIS4 (Devlin et al. 1991). In a later
study, it was concluded that Rap1p overcomes a repressive chromatin
structure at the HIS4 promoter and increases promoter accessibility for
Gcn4p (Sierro et al. 2008). RTG3may act in a similar fashion; although
Rtg3p can act as a transcriptional activator, components of the SAGA
chromatin remodeling complex, Ada2p and Gcn5p, are required for
Rtg3p activity (Pray-Grant et al. 2002). Rtg3p is also known to physically
interact with other chromatin remodeling complexes including SLIK
(Pray-Grant et al. 2002) and the Tup1-Cyc8 repressor complex (Conlan
et al. 1999). Additionally, Rtg3p may recruit the RSC nucleosome-
remodeling complex (Ng et al. 2002). One possible model that accounts
for the observed results and is consistent with previous studies involves
Rtg3p altering the chromatin state of the CRE combination target genes
to permit GCN4 occupancy.

CRE combinations can identify species-specific gene
expression patterns
Studies of interspecies Saccharomyces hybrids indicate that expression
divergence between species is largely a consequence of differences in
cis-regulation (Tirosh et al. 2009; Bullard et al. 2010). The term “rewiring”
refers to differences in gene regulatory connections between species that
result from variations in cis-regulatory content (Tuch et al. 2008a; Xie
et al. 2010; Reece-Hoyes et al. 2013). However, despite divergence in

Figure 5 Graphical representation of expression analysis between S. cerevisiae and S. bayanus. In section I CRE combination target genes are
predicted in each species and the overlap defines three target gene sets (A, B, C). Section II shows the average correlation coefficient observed
when comparing expression profiles of each gene set with gene set B for the two different gene expression datasets. Section III shows a decrease
in the average correlation between target gene sets and gene set B when genes are randomly assigned to either set A or C in simulation
experiments.
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promoter sequences between species, orthologous genes often display
relatively conserved expression patterns (Weirauch and Hughes 2010).
Similarly, gain and loss of CREs between species is only poorly correlated
with expression divergence (Tirosh et al. 2008). However, most previous
studies have only focused on individual CREs.

Expression coherence corresponds to co-occurrences of CREs, not
individual CREs: Using the CRE combinations identified in our co-
occurrence screen,we searched for examples of rewiringbetweenboth S.
cerevisiae and S. bayanus using two criteria. First, there had to be sets of

genes containing the predicted CRE combination in both species, and
also sets of genes with the predicted CRE combination that were unique
to each species; we are specifically looking for gain and loss of genes
regulated by the CRE combination in both species. Second, there must
be conditions for which gene expression assays demonstrate that the
genes with the CRE combination are coherently expressed in both
species. Using expression data from several different environmental
conditions for both S. cerevisiae (Gasch et al. 2000) and S. bayanus
(Guan et al. 20102013), 275 CRE combinations met both criteria. We
then measured the expression coherence in three sets of genes defined

Figure 6 Expression profile similarity between gene
sets for each species. Predicted genes regulated
by MBP1 and STB3 CREs (top) for both species
and all three gene sets (A, B, C), for MBP1-only
predicted genes (middle) and for STB3-only pre-
dicted genes (bottom).
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by the occurrence of the CRE combination: set A are the genes with the
CRE combination only in S. cerevisiae; set B are the genes with the CRE
combination in both S. cerevisiae and S. bayanus; set C are the genes
with the CRE combination only in S. bayanus (Figure 5).

Of the 275CREcombinations considered,we identified81CREpairs
(P , 0.05; Table S5) for which the expression profiles of A and B, but
notC, were significantly similar in S. cerevisiaewhileC andB, but notA,
were significantly similar in S. bayanus. This result indicates that the
CRE combinations we identified have species-specific regulatory targets
in both S. cerevisiae and S. bayanus. These regulatory targets have
similar expression profiles to the species-independent target genes in
the appropriate species, while the remaining genes which lack the CRE
combination do not display a similar expression profile. In these cases,
gain and loss of a combination of CREs between species accurately
predicts gain and loss of expression coherence.

Figure 6 shows the results for the CRE combination MBP1 · STB3.
In S. cerevisiae there is much higher expression coherence between the
genes in sets A and B than in C, whereas in S. bayanus the much higher
expression coherence is between genes in sets B and C rather than A.

A comparable analysis using individual CREs to predict species-
specific gene regulation in S. bayanus and S. cerevisiae to determine if
gain/loss of individual CREs can predict differences in expression pat-
terns between species shows no such difference in expression coherence
(Figure 6). These results mirror the findings of previous attempts to
predict genome-wide transcriptional rewiring between species using
individual CREs (Zhang et al. 2004; Tirosh et al. 2008). Figure S3 shows
an additional set of 18 pairs that show significant rewiring between S.
cerevisiae and S. bayanus.

Species-specific target gene pathway enrichment: An interesting
hypothesis is that the CRE combinations with species-specific targets
are responsible for regulating different biological processes within each
species. The alternative is that there is no enrichment among the
different gene sets for distinct biological processes and the species-
specific targets have been acquired at random. We examined the
different gene sets defined for each CRE combination to determine if
any of the gene sets exhibited enrichment for a particular biological
process that was exclusive to that gene set. In fact, for several of the CRE
combinations with species-specific regulatory targets, at least one of the
gene sets (A,BorC) is significantly enriched for a biological pathwaynot
associated with any of the genes in the other two gene sets (Table S6).

For several of the combinations,more thanoneof the genesetshas an
exclusive biological pathway enrichment. As an example, the CRE
combination ARG80 · GCN4 regulates genes associated with arginine
biosynthesis (GO term 6526) in both S. cerevisiae and S. bayanus (P,
1024), but in S. bayanus the combination is also associated with regu-
lation of lysine metabolism (GO term 9085; P , 1023). GCN4 is a
master regulator of amino acid biosynthesis (Natarajan et al. 2001) and
ARG80 is responsible for arginine biosynthesis (Dubois et al. 1987), so
the association with the GO category for arginine biosynthesis is not
surprising. However ARG80 is not known to be associated with lysine
biosynthesis, so this S. bayanus-specific pathway association could in-
dicate that the regulatory role of ARG80 has expanded in S. bayanus.

Conclusions
The combination of CREs in a promoter is an important determinant of
gene expression patterns but we have only a limited understanding of
which TFs interact. We have developed a computational approach to
determine if a conserved pattern of CRE spacing in multiple, unaligned
genomes can predict combinatorial regulation. The ability of this
method to recover known CRE combinations indicates that conserved

patterns of CRE clustering can be used to infer modular regulatory
function, and extensive supporting evidence also indicates the reliability
of the method. Experimental tests of two new interacting TF pairs
verified the predictions but also showed asymmetry in the binding
requirements. Previousmethods to infer combinatorial regulation from
CRE proximity often only considered a single genome or use multiple-
species alignments as a filter to reduce the size of the genome before
assessing CRE co-occurrence. By using multiple species but not re-
quiring aligned orthologous promoters we use more extensive data to
identify co-occurring TF pairs and can include examples of rewiring of
the regulatory network. TF motif degeneracy complicates the detection
of functional cis-regulatory modules for all methods because many
nonfunctional CRE co-occurrences will be observed by chance. This
effect could be reduced by using DNA accessibility information, but
that is often not available. However, if two CREs cluster together in the
genome to coordinately regulate gene expression, these observations
occur in addition to the random co-occurrences of any two CREs.With
enough observations, a nonrandom pattern of CRE clustering can be
more easily distinguished from a random pattern. Differences in the
gene sets containing significant TF pairs can indicate evolutionary
rewiring events, something that is often difficult to predict reliably
using only single TF binding site predictions.
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