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Abstract: The convolution of the transmembrane current of an excitable cell and a weighting function generates a single fiber action 
potential (SFAP) model by using the volume conductor theory. Here, we propose an empirical muscle IAP model with multiple Erlang 
probability density functions (PDFs) based on a modified Newton method. In addition, we generate SFAPs based on our IAP model 
and referent sources, and use the peak-to-peak ratios (PPRs) of SFAPs for model verification. Through this verification, we find that 
the relation between an IAP profile and the PPR of its SFAP is consistent with some previous studies, and our IAP model shows close 
profiles to the referent sources. Moreover, we simulate and discuss some possible ionic activities by using the Erlang PDFs in our IAP 
model, which might present the underlying activities of ions or their channels during an IAP.
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Introduction
According to the volume conductor theory, a single 
fiber action potential (SFAP) is modeled by the con-
volution of the transmembrane current of an excitable 
cell and a weighting function, which represents the 
distance between the excitable cell and an electrode 
for measurement.1–3,5,6 Since an intracellular action 
potential (IAP) can be easily measured, the mathe-
matical relationship between the transmembrane cur-
rent and a muscle fiber IAP has been established based 
on the core conductor theory.5,7,8 Therefore, a muscle 
fiber IAP is used as a fundamental bioelectric source 
to model a single fiber action potential (SFAP). As 
many studies have emphasized, the selection of a pre-
cise IAP model is the most critical process in model-
ing a SFAP because the IAP profile directly affects 
its SFAP.1,6,12 For a realistic muscle IAP, various IAP 
models have been developed based on simple pattern 
adjustment,2 its modification5 or the combination of 
multiple functions.13–15 Simplicity and ease of imple-
mentation were the biggest advantages of their wide 
use, but these models contained mismatching prob-
lems in time duration and amplitude when compared 
with measured IAPs.2,5 Moreover, most widely used 
IAP models paid little attention to the underlying 
mechanisms of IAP generation by simply dividing 
phases of IAP.13–15 Due to these limitations in previous 
IAP models, a new IAP model that can show correct 
time duration, amplitude and physiological activities 
in IAP generation is necessary.

Like other excitable cells, a skeletal muscle fiber 
generates an IAP by ionic movements through ion 
channels, mainly voltage-dependent ion channels, 
on the cell membrane. Generally, three ions, sodium 
(Na+), potassium (K+) and chloride (Cl-) ions, gov-
ern the generation of a muscle IAP. During a rest-
ing state, there are excessive (typically, 10 times 
more) Na+ and Cl- concentrations at the exterior 
of muscle fibers and there is an excessive concen-
tration of K+ in the muscle fiber. However, Cl- is 
often passively distributed by the concentrations of 
other ion species19 and its channels are considered 
to always be open. Therefore, the sodium-potassium 
adenosine-triphosphate (ATP)-dependent pump 
(also called the sodium-potassium pump) maintains 
the net potential (generally, -90 to -65 mV) of dif-
ferent ion species during the resting state. At the 
early stage of an IAP, its potential rapidly increases 

because of fast-activated conductance (permeability) 
for Na+ (depolarization). The increased conductance 
for Na+ leads to more positive potential in the muscle 
fiber and it triggers an increase of K+ conductance 
to maintain its initial net potentials (repolarization). 
Neither depolarization nor repolarization is gener-
ated by only one ion species. Instead, the combina-
tion of multiple ion species generates each phase. For 
example, the initial increase in depolarization is lead 
by the rapid increase of Na+ conductance, and the 
increase of K+ conductance slows down the increas-
ing rates of IAP depolarization. On the other hand, 
the Na+ conductance rapidly decreases while the K+ 
conductance still increases by tens of microseconds 
during the repolarization. Therefore, the conduc-
tance (permeability) of Na+ and K+ simultaneously 
affects the IAP phases with different changing rates 
and ionic flowing directions. However, it is difficult 
to measure the ionic activities on muscle fiber and 
even muscle fiber IAP.6,12

Nevertheless, the core relationship between an IAP 
and its underlying ionic transference can be looked 
at indirectly through a neuronal IAP and its ionic 
activities. The difference between the neuronal and 
muscular IAPs is that a neuronal IAP has an additional 
phase, called hyper-polarization, while a muscle IAP 
has three phases, being depolarization, repolarization 
and resting phases. Because of the different number 
of phases in its profile, the neuronal IAP requires 
more complicated ionic transference through cell 
membranes. However, the basic mechanisms in gener-
ating IAP in nerve and muscle fiber are considered to 
be similar.19 The ionic activities in a neuronal IAP had 
been experimentally examined by Hodgkin and Hux-
ley (H-H) in 1950s. In their studies, H-H showed that 
more than two ions concurrently governed each phase 
in neuronal IAP and showed the relationship between 
neuronal IAP phases and their ionic conductance in 
a mathematical model.20 Through their experimental 
data and models, H-H had unveiled the core mecha-
nisms of IAP generation in neurons and represented 
the concurrent profiles of IAP and different ion species. 
In addition, their parallel electric circuit model20 pro-
posed that the summation of independent ionic profiles 
generated a neuronal IAP. The similar generations of 
the nerve and muscle fiber IAPs enabled construction 
of a muscle IAP through the creation of a serially sum-
mated function as shown in the neuronal IAP. Here, we 
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propose an empirical muscle IAP model with multiple 
Erlang probability density functions (PDFs) based on 
a modified Newton method. Through our IAP model, 
we attempt to show; (1) realistic IAP profiles and 
(2) a possible relationship between the Erlang PDF 
and the ionic activities in an IAP profile.

Muscle IAP Sources
We found 4 different sets of measured IAP data from 
several previous studies,1,21 shown in Figure  1. The 
experimentally-obtained data were from the extensor 
digitorum longus (EDL) and soleus muscle in the hind 
limb of anaesthetized rats.1 To reduce possible com-
putational complications in optimization, the IAP data 
were smoothed by the moving average method with 
span 5 in Matlab (version 7.8). After the smoothing 
procedure, there were approximately 1.01%–1.95% 
losses in the highest amplitudes. These errors might 
be observed in two measured datasets,21 and these 
small losses in data were accepted in our study.

User-defined Parametric Model
We used the Gamma or the Erlang PDFs to generate an 
IAP model because of its mathematical convenience 
and easiness in modeling various curves.22 In particu-
lar, the two parameters, α and β, in these PDFs allowed 
easy control of the shape of an IAP model. In addition, 
three Gamma or Erlang PDFs were used in our IAP 
model to represent the independent activities of differ-
ent ionic species, Na+, K+ and leakage. As explained 
in the Introduction, these ionic species dominantly 

govern the generation of IAP, and three Gamma or 
Erlang PDFs were implemented on purpose.

Our previous study showed that a measured neuron 
or muscle IAP was optimized when a proper number 
of the Gamma PDFs were employed.23 However, the 
final optimizing solution was irreproducible because 
the solution is affected by some optimizing factors, 
such as the fractional parameter, Marquardt param-
eter and iteration step size.23 The different values in 
a final solution could cause ambiguity in the gener-
ated model. To resolve this ambiguity in the final IAP 
model, the Gamma PDF was replaced by the Erlang 
PDF, which is a specialized Gamma PDF with the 
integer shape parameter, α, instead of a real value. By 
using the Erlang PDF in the user-defined parametric 
model, the final solution was expected to be more def-
inite than the model with Gamma PDFs. Therefore, 
the final muscle IAP model was composed of three 
Erlang PDFs instead of Gamma PDFs as follows:

F t emuscleIAP i
t

i

i i= -

=
∑γ α β

1

3

� (1)

where t is time and [α, β, γ] are the unknown param-
eters for each PDF.

To see how these three parameters, α, β, and γ, 
affect the shape, the rate and the amplitude of a PDF, 
respectively, we examined PDFs with different 
combinations of these parameters. The changing 
ranges for α, β and γ were limited based on the 
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IAP reference #1: rat EDL muscle in vivo
IAP reference #2: rat EDL/hind limb soleus
IAP reference #3: rat EDL/hind limb soleus
IAP reference #4: rat EDL/hind limb soleus
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Figure 1. Obtained muscle IAP references (sources) from some previous studies.2,8 
Notes: All IAP references were measured from the extensor digitorum longus (EDL) and soleus muscle in the hind limb of rats. The references had 
different rest membrane potentials: approximately, −77, −84, −76 and −72 (mV) for #1, #2, #3 and #4, respectively.
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results of our previous study23 and the ranges were 
1∼10, 0.1∼10 and 1∼100 for α, β and γ, respectively. 
Apparently, γ only affects the amplitude of a PDF 
with no changes in the shape and the rate of a PDF. 
However, as α decreases with constant values of β 
and γ, a PDF becomes a relatively more right-skewed 
in shape. On the other hand, β affects the changing 
rate of a PDF; as β decreases, a PDF increases and 
decreases faster. Through this empirical test, we con-
cluded that α, β and γ directly control the shape, the 
rate and the amplitude of a PDF, respectively.

Optimization and Generalization
By using the user-defined parametric function in 
equation (1), three different numerical optimizations, 
including a modified Newton, Steepest Descent and 
Conjugate Gradient methods, were applied to find a 
non-linear least square solution for [α1, α2, α3, β1, β2, 
β3, γ1, γ2, γ3]. Generally, the uniqueness of obtained 
solutions is one of the most challenging processes in 
an “inverse problem” during optimizations.24 We used 
different optimization methods on source #1 and the 
best performed method, the modified Newton method, 
was selected (Fig. 2). This optimization method was 
then applied on other sources (#2, #3 and #4) to find 
their unknown parameters for [α1, α2, α3, β1, β2, β3, γ1, 
γ2, γ3]. Initially, a measured IAP was set as a reference 
signal and the initial values for the parameters, [α1, 
α2, α3, β1, β2, β3, γ1, γ2, γ3], in equation (1) were given 
as [1, 5, 8, 0.35, 3, 6, 8, 580, 14000], respectively. By 
using this reference and the user-defined parametric 
function, the first residue was computed.

residue m reference m proposed m( ) ( ) ( )= - � (2)

	
SSR residue i

i

m

=
=
∑{ ( )}2

1 �
(3)

where m was the total number of data points. By 
using the calculated residue in equation (2), the 
sum of the square of the residual (SSR) was com-
puted using equation (3). The selected optimizing 
method, the modified Newton method, requires 
the first and the second derivative matrixes of the 
residue, called the Jacobian, J, and the Hessian, H, 
respectively. Based on the results by the modified 
Newton method, a high SSR, which was bigger than 
100, was maintained when the phases of repolariza-
tion and resting period in IAP profile were still under 
the optimizing process. Once the value of SSR was 
below 100, no significant difference was observed in 
overall IAP model fit to the reference IAP. However, 
each Erlang PDF in IAP model continued to change 
its profile by changing its amplitude and rate even 
under its small value, less than 50. Therefore, it 
was necessary to obtain the smallest value that the 
applied optimization method generated.
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Figure 2. Modeled IAP (in black dots) and its reference (in gray dashed 
line). 
Notes: The modified Newton method generated the IAP model with three 
Erlang PDFs. The solution for the given Erlang PDFs was [1, 5, 8, 0.33, 3.07, 
7.02, 9.68, 890.83, 21772] for [α1, α2, α3, β1, β2, β3, γ1, γ2, γ3], respectively.
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where, r is the residue. By using the computed 
Jacobian and Hessian matrices, the increment or 
decrement of the parameters, [α1, α2, α3, β1, β2, β3, 
γ1, γ2, γ3], was computed. Depending on optimiza-
tion methods, the increment or decrement was dif-
ferently computed. In the modified Newton method, 
the increment or decrement (∆Cn

Newton) was given as 
follows:

	 ∆ = ⋅ + ⋅-C H D Jn
Newton

n n nε µ( ) 1 � (6)

where, J and H are the Jacobian and the Hessian matrix 
of the residual matrix. D is the diagonal matrix of H, 
and µ is the Marquardt parameter. ε is the fractional 
parameter between 0 and 1 that controls the incremental 
size of the solution. n represents the iteration number. 
Unlike the modified Newton method, the Steepest 
Descent method utilized only the Jacobian matrix to 
update the increment or decrement (∆Cn

Steepest ).

	 ∆ = ⋅C Jn
Steepest

n nκ � (7)

where, κ is the step size or step length, and J is the 
Jacobian matrix. Generally, the step size can be com-
puted as follows:

	 κ κn n n nf P J= + -arg min ( )1 � (8)

where arg min means the argument of the minimum 
for the user-defined parametric function, f. P repre-
sents the unknown parameter matrix. In the Conju-
gate Gradient method, there was one more step, the 
computation of the direction vector, to find the incre-
ment or decrement (∆Cn

Conjugate). Its computation was 
as follows:

	 ∆ = ⋅C Sn
Conjugate

n nκ � (9)

	 S J Sn n n n= - + - -δ 1 1
� (10)

where S represents the direction vector and δ is the 
conjugate gradient parameter, which was updated by 
using the Polak-Ribiere (PR) algorithm as follows:

	
δ n

n n

n

J d

J
= -

-

1

1

2
� (11)

where dn−1 is the difference between two successive 
Jocobian matrices, Jn and Jn−1.

In every updating of the parameter matrix, the 
newly computed parameter matrix was compared 
with the previous parameter matrix by computing a 
new residue. This new residue was again used for cal-
culating a new SSR. Through this iterative procedure, 
the initial parameter matrix was updated and gener-
ated a new temporal IAP model. If a new SSR was 
smaller than the previous one, the Marquardt param-
eter, µ, was divided by a specific factor, which was 
generally pi (π), and it generated a new value for µ 
for next iteration. In the opposite case, µ was mul-
tiplied by pi (π) for next iteration. This core process 
was shown in equation (12).

	

SSR SSR

SSR SSR

new old new
old

new old new old

< =

≥ = ×

:

:

µ
µ
π

µ π µ
� (12)

where SSRold and µold were a previous SSR and 
Marquardt parameter, and SSRnew and µnew were a 
new SSR and Marquardt parameter, respectively. Due 
to the limits in finding a complete zero (0) error solu-
tion, the iterative process was terminated when there 
was no additional decrease in newly computed SSR 
values.

Results
Parametric model optimization  
and generalization
Different optimization methods were applied on IAP 
reference #1 with the user-defined parametric model 
shown in equation (1). The performance of each 
method was measured by SSR values and the modi-
fied Newton method showed the best performance, 
as shown in Table 1. A smaller value in SSR meant a 
closer model to the source. Figure 2 shows the result 
of the modified Newton method on the parametric 
model with the Erlang PDFs. The computed param-
eters were [1, 5, 8, 0.3, 2.9, 6.6, 8.7, 599.7, 20373] 
for [α1, α2, α3, β1, β2, β3, γ1, γ2, γ3], respectively. The 
modified Newton method was again applied on the 
other IAP references in Figure 1, and the unknown 
parameters were determined in specific numbers for 
α and ranges for β. As shown in Table 2, the values 
of α were consistent with [1, 5, 8] for [α1, α2, α3] and 
those of β ranged from 0.23–0.49 for β1, 2.90–3.25 
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Table 1. Summary of computed parameters on the source #1.

Parameter Initial Modified Newton Steepest Descent Conjugate Gradient Standard 
error

Variation
Gamma Erlang Gamma Erlang Gamma Erlang

α1 
α2  
α3  
β1  
β2  
β3 
γ1 
γ2 
γ3

1 
5 
8 
0.35 
3 
6 
8 
580 
14000

1.02 
4.95 
7.198 
0.302 
2.818 
5.782 
7.589 
465.032 
10984

1 
5 
8 
0.316 
2.924 
6.562 
8.711 
599.694 
20373

1.142 
4.712 
7.741 
0.336 
2.803 
6.263 
7.565 
579.951 
14000

1 
5 
8 
0.3696 
2.9518 
6.2497 
12.0237 
580.0019 
14000

1.117 
4.775 
7.695 
0.335 
2.829 
6.238 
7.873 
579.989 
14000

1 
5 
8 
0.374 
2.954 
6.252 
12.328 
580.605 
14000

0.0266 
0.0527 
0.1281 
0.0117 
0.0288 
0.1021 
0.9109 
20.0917 
1262.7

0.0623 
0.0263 
0.0404 
0.0844 
0.0245 
0.0402 
0.2387 
0.0872 
0.2124

SSR – 13.3005 16.3538 14.8248 42.1556 14.8954 41.912 – –

Notes: The computed parameters, [α1, α2, α3, β1, β2, β3, γ1, γ2, γ3], under different optimization methods, the modified Newton, the Steepest Descent, and 
the Conjugate Gradient with model function using the Gamma PDFs or Erlang PDFs. All values under each optimization method are the final with specific 
SSRs. The standard errors were computed by using all values from different optimization methods with Gamma and Erlang PDFs for each parameter and 
the variations were computed based on their means and standard deviations.

Table 2. Computed parameters on the source #2, #3, and #4.

Parameter Initial Source #2 Source #3 Source #4 Standard error Variation

α1  
α2  
α3  
β1  
β2  
β3 
γ1 
γ2 
γ3

1 
5 
8 
0.316 
2.924 
6.562 
8.711 
599.694 
20373

1 
5 
8 
0.23 
2.90 
6.47 
11.09 
582.61 
18784.9

1 
5 
8 
0.33 
3.19 
8.04 
11.52 
1121.4 
48822.7

1 
5 
8 
0.49 
3.25 
13.07 
20.12 
1268.2 
1066583.8

0 
0 
0 
0.0443 
0.0734 
1.2686 
2.0392 
144.3976 
211800

0 
0 
0 
0.3175 
0.0586 
0.3641 
0.3884 
0.3961 
1.7974

SSR – 36.48 40.37 27.19 – –

Notes: The computed parameters, [α1, α2, α3, β1, β2, β3, γ1, γ2, γ3], were optimized by the modified Newton method with the Erlang PDFs. All values 
under each optimization method are final with specific SSR. The initial parameters were from those of source #1 based on the modified Newton method. 
The standard errors were computed by using all values from different optimization methods with Gamma and Erlang PDFs for each parameter and the 
variations were computed based on their means and standard deviations. Due to the same values in the parameters, α1, α2, and α3, their standard errors 
and variations were zeros (0).

for β2, and 6.47–13.07 for β3. Once the values of α 
and β were determined, the values of γ were finally 
selected to adjust the overall IAP model amplitude. 
To generate a general muscle IAP, the values in α, β, 
and γ were replaced by the mean values of their result 
ranges. Figure 3 and Table 3 represent our generated 
muscle IAP model and its final parameters.

Model verification: peak-to-peak ratio 
(PPR)
An IAP is a fundamental unit in generating SFAP and 
each phase of the IAP profile affects the changes of 
the peak-to-peak ratio (PPR), which is the ratio of the 
maximum and minimum in SFAP, its positive first 
and negative second amplitude, respectively.12,25,26 

According to some previous studies, the PPR of a 
SFAP is an independent parameter from electrode 
positions within 0.3 mm.12,25,27,28 It implies that an IAP 
is the main factor to affect its SFAP as long as the 
radial distance of an electrode from a muscle fiber 
is limited to 0.3 mm. Therefore, we verified our IAP 
model by comparing the PPR of its SFAP with those 
of the given reference IAP sources.

First, we generated the SFAPs of our IAP model 
and the obtained IAP references, assuming a cylindri-
cal shape of the muscle fiber and a centrally located 
neuromuscular endplate.29 As indicated in the previ-
ous studies,12,25,27,28 the radial distance of the elec-
trode from a muscle fiber was changed from 0.047 
to 0.3  mm, which was the recommended range of 
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its 2 local sensitivities were 0.036 (radial distance 
(r) , 0.2 mm) and 0.073 (r . 0.2 mm). Three IAP 
references showed sensitivities overall (0.044–0.063) 
and in the 2 local linear regressions (r  ,  0.2  mm: 
0.031–0.044; r . 0.2 mm: 0.066–0.091). However, 
the reference #4  showed a relatively large differ-
ence in the sensitivity overall (0.141) and in the 2 
local sensitivities (r  ,  0.2  mm: 0.1; r  .  0.2  mm: 
0.204). This result occurred because the IAP source 
#4 had a longer duration between depolarization and 
repolarization, unlike our IAP model and other IAP 
sources.

Discussion
A SFAP represents the general profile of electromus-
cular activities. Therefore, it is critical to appreciate 
its underlying mechanism. Generally, the waveform 
of a SFAP is dominantly affected by that of its IAP 
and the distance from an active muscle fiber to the 
recording position.1–3,5,6,12 In the aspect of modeling 
and simulations, the distance for measurement can 
vary and depend on initial modeling assumptions. 
Therefore, the generation of the SFAP is mainly 
affected by the profile of the IAP.6 Notably, some pre-
vious studies indicated that the dependence of SFAP 
on IAP becomes stronger when the radial distance of 
the measuring electrode is properly positioned; for 
instance, when it is limited to 0.3  mm.12,25,27,28 Our 
previous study hypothesized that a muscle IAP can 
be expressed in the summation of three independent 
Gamma PDFs by using a modified Newton optimi-
zation with a Levenberg-Marquardt algorithm.23 
However, the Gamma PDFs increased the ambiguity 
of the user-defined parametric model inconsistently 
within the model parameters, [α1, α2, α3, β1, β2, β3, 
γ1, γ2, γ3]. To reduce this modeling uncertainty, we 
replaced Gamma PDFs with Erlang PDFs by provid-
ing a further restricted form of the shape parameter, 
α, as an integer. This restriction in the shape param-
eter of an Erlang PDF increased the repeatable mod-
eling constancy.

Our IAP model was verified by how closely it was 
to the given IAP referent sources by comparing the 
PPR of its SFAP with those of referent IAPs in the 
limited radial distance of the electrode. The computed 
sensitivities in Table 4 showed the closeness between 
the modeled IAP and the given IAP sources. Based on 
the computed sensitivities, the IAP model was closer 

Table 3. Final parameters for a muscle IAP model.

Parameter Final parameters

α1 1
α2 5
α3 8
β1 0.33
β2 3.07
β3 7.02
γ1 9.68
γ2 890.83
γ3 21772
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Figure 3. Modeled IAP (in black line) and IAP references (in gray lines). 
Note: The presented IAP model has three independent Erlang PDFs 
composed of nine parameters and its solution is shown in Table 3.

the radial distance to maintain the PPR of a SFAP 
as an independent parameter from the factor of the 
distance between an electrode and a muscle fiber.12,25 
Except for the radial distance, most parameters for 
the SFAP model were the same as those from our 
previous SFAP modeling study.29 Using the obtained 
SFAPs, their PPRs were plotted based on the given 
radial distance. All computed PPRs showed a simi-
lar changing pattern; a curved shape up to the dis-
tance of 0.2  mm and a linear relation between 0.2 
and 0.3 mm (Fig. 4). Therefore, 3 linear regressions 
were applied on the plotted PPRs; one overall and 
2 local linear regressions. Due to the curved shape 
in PPR, we examined 2 local linear regressions in 
addition to the overall linear regression. The dividing 
point for 2 local linear regressions was 0.2 mm of the 
radial distance, at which the curved portion of PPR 
ended. Figure 4 and Table 4 represent the sensitivi-
ties (slopes of linear regressions) of the PPRs of the 
modeled SFAPs from our IAP model and the 4 differ-
ent sources. The PPR based on our IAP model had a 
sensitivity of 0.05 in the overall linear regression and 
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Table 4. The sensitivity of peak-to-peak ratio (PPR) based on the radial distance.

Radial distance Modeled IAP Source #1 Source #2 Source #3 Source #4
Overall 
r , 0.2 mm  
r . 0.2 mm

0.05 
0.036 
0.073

0.044 
0.031 
0.066

0.052 
0.037 
0.076

0.063 
0.044 
0.091

0.141 
0.1 
0.204

Notes: The sensitivities for the modeled IAP and four IAP sources were represented in three different ranges of radial distances; one overall range and 
two local ranges. The local range was divided at the point where the curved shape in sensitivity ended.
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Figure 4. IAPs and peak-to-peak ratio (PPR) with their sensitivities. 
Notes: The PPR was the ratio of the maximum and minimum of single fiber action potentials (SFAP), which were generated based on IAP model and the 
obtained references, and PPR was presented based on the radial distance of a recording electrode. The PPR sensitivities were computed in separated 
values: one overall and two local sensitivities. Because of the curved increase of PPR up to 0.2 mm in radial distance, the local sensitivities was divided 
at that point. The left figures represent the IAP model and references while the right figures show PPR and its sensitivities.

to sources 1, 2 and 3 than to source 4. The IAP model 
had a similar profile to sources 1, 2 and 3 while source 
4 had an apparent longer time interval between the 
phases of depolarization and repolarization, which 
directly affected the PPR sensitivity.12

Because our IAP model was optimized based on 
experimental results, our IAP model was free from 
issues, such as mismatching time durations and ampli-
tudes reported in previous models.3,12 Moreover, one 
noticeable advantage of our IAP model was that three 
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independent Erlang PDFs generated an IAP profile by 
combining the effects of these PDFs in each phase of 
the IAP. The combination of these PDFs in generat-
ing an IAP phase might easily explain the underlying 
ionic activities in a real IAP generation. As explained, 
each phase of the IAP is not generated by only one 
ionic species but the concurrent various ionic move-
ments through the cell membrane generate each 
phase in an IAP. Unfortunately, there have been few 
studies that reveal the concurrent ionic activities in a 
muscle IAP, and it hardly proved that each PDF was 
directly related, considering the changes of ionic con-
ductance or ionic voltage by Na+, K+ and leakage (or 
Cl-). However, these PDFs are possibly related to the 
ionic profiles during IAP generation when they are 
compared with those of a neuronal IAP (Fig. 5).

Conclusion
The objective of this paper was to develop a muscle fiber 
IAP model, which has a reliable and realistic profile. 

Because of its fundamental function in generating 
a SFAP, we verified our IAP model by generating 
its SFAP and those of measured muscle IAPs. 
Specifically, the PPR of the SFAP based on our IAP 
model indicated that our IAP model had a close profile 
to other measured IAP referents. Our verification also 
showed that the relation between the IAP profile and 
the PPR of its SFAP was consistent with the results 
of some previous studies. Furthermore, we observed 
the possibility that the Erlang PDFs in our IAP model 
might have a relation with the underlying activities 
of ions or their channels when their profiles are com-
pared with the neuronal ionic activities. Because of 
the limitations in measuring the activities of ions and 
their channels on a muscle fiber, this observation was 
unable to be clearly validated. Finally, we success-
fully generated a true and dependable IAP model in 
multiple functional combinations for each phase of an 
IAP. Our future studies will focus on the validation of 
ionic profiles in a muscle IAP model based on mea-
sured activities of ions and their channels.
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Figure 5. Models of Sodium (Na+) and potassium (K+) conductance dur-
ing a neuronal (top) and a muscle (bottom). 
Notes: The ionic conductance of a neuron was reproduced based on 
H-H conductance model. The ionic conductance models for a muscle 
fiber was generated based on the Erlang PDFs used in our muscle IAP 
model and the maximum amplitude for each conductance was obtained 
from a previous study.4 The maximum values for Na+ and K+ conductance 
during a muscle IAP were 289.3 and 82.7 (m.mho/cm2), respectively.
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