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RESEARCH ARTICLE Open Access

Development and verification of the
PAM50-based Prosigna breast cancer gene
signature assay
Brett Wallden1*, James Storhoff1, Torsten Nielsen2, Naeem Dowidar1, Carl Schaper3, Sean Ferree1, Shuzhen Liu2,
Samuel Leung2, Gary Geiss1, Jacqueline Snider4, Tammi Vickery4, Sherri R. Davies4, Elaine R. Mardis4,
Michael Gnant5, Ivana Sestak6, Matthew J. Ellis7, Charles M. Perou8, Philip S. Bernard9 and Joel S. Parker8*

Abstract

Background: The four intrinsic subtypes of breast cancer, defined by differential expression of 50 genes (PAM50),
have been shown to be predictive of risk of recurrence and benefit of hormonal therapy and chemotherapy. Here
we describe the development of Prosigna™, a PAM50-based subtype classifier and risk model on the NanoString
nCounter Dx Analysis System intended for decentralized testing in clinical laboratories.

Methods: 514 formalin-fixed, paraffin-embedded (FFPE) breast cancer patient samples were used to train prototypical
centroids for each of the intrinsic subtypes of breast cancer on the NanoString platform. Hierarchical cluster analysis of
gene expression data was used to identify the prototypical centroids defined in previous PAM50 algorithm training
exercises. 304 FFPE patient samples from a well annotated clinical cohort in the absence of adjuvant systemic therapy
were then used to train a subtype-based risk model (i.e. Prosigna ROR score). 232 samples from a tamoxifen-treated
patient cohort were used to verify the prognostic accuracy of the algorithm prior to initiating clinical validation studies.

Results: The gene expression profiles of each of the four Prosigna subtype centroids were consistent with those
previously published using the PCR-based PAM50 method. Similar to previously published classifiers, tumor samples
classified as Luminal A by Prosigna had the best prognosis compared to samples classified as one of the three
higher-risk tumor subtypes. The Prosigna Risk of Recurrence (ROR) score model was verified to be significantly
associated with prognosis as a continuous variable and to add significant information over both commonly
available IHC markers and Adjuvant! Online.

Conclusions: The results from the training and verification data sets show that the FDA-cleared and CE marked
Prosigna test provides an accurate estimate of the risk of distant recurrence in hormone receptor positive breast
cancer and is also capable of identifying a tumor's intrinsic subtype that is consistent with the previously published
PCR-based PAM50 assay. Subsequent analytical and clinical validation studies confirm the clinical accuracy and
technical precision of the Prosigna PAM50 assay in a decentralized setting.
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Background
A significant body of evidence gathered over the course
of more than 10 years has repeatedly demonstrated the
prognostic significance and predictive ability of the four
intrinsic subtypes of breast cancer (Luminal A, Luminal
B, HER2-enriched, and Basal-like) [1–8], which were
first described in 2000 by Perou et al. [9]. These studies
began with genome-wide gene expression profiling from
microarray datasets and progressed to a PCR-based test
with a curated list of 50 genes (the “PAM50” gene signa-
ture) to classify breast tumors into one of these four
subtypes [10]. Recently, the NanoString nCounter Dx
Analysis System has been shown to provide more precise
and accurate measures of mRNA expression levels in
formalin-fixed, paraffin-embedded (FFPE) tissue when
compared to PCR [11]. Polymerase-based assays require
excessive optimization from FFPE tissues and can intro-
duce biases in amplification as mRNA from FFPE tissue
is highly fragmented and cross-links to protein during
fixation. The NanoString nCounter Dx Analysis System
provides a digital profile of up to 800 genes in a single
hybridization reaction using no enzymes and a simple
workflow [12]. Several research groups have recently
transitioned from profiling oncology biomarkers in fresh
frozen and FFPE tissue using enzyme chemistry-based
expression analysis platforms to profiling FFPE tissue on
the nCounter, while maintaining the clinical accuracy of
their signatures [13–16].
Rather than simply implementing the existing PCR-

based PAM50 signature on the NanoString platform, sci-
entific best practices dictate that a de novo retraining of
the PAM50 breast cancer intrinsic subtype classifier
should be performed on the nCounter in order to
develop the most accurate and robust classifier. The
primary aim of this study was to train a PAM50-based
subtype classifier and prognostic risk of recurrence
(ROR) model on the NanoString nCounter Dx Analysis
System that is consistent with the published qRT-PCR-
based PAM50 assay using FFPE breast cancer tissue
samples obtained specifically for this training. The second
aim was to verify that the clinical accuracy of the Nano-
String Prosigna algorithm is equivalent to the PCR-based
classifier and ROR model [10] using a test set of FFPE
breast cancer samples independent of the training set.

Methods
Feasibility: cross platform evaluation
Feasibility experiments were conducted to test the con-
cordance between gene expression measured on the
NanoString nCounter and qRT-PCR. NanoString probes
were designed to match the 50 classifier genes and 5
housekeeper genes defined by Parker et al. [10]. The
feasibility experiments on the NanoString nCounter were
carried out using NanoString’s standard life sciences

custom CodeSets, consumables, and assay procedures
[12]. The PCR-based PAM50 assays have been previ-
ously described [10].
Reproducibility of the NanoString versus qRT-PCR

gene expression measurements was assessed for all 50
target genes and 5 housekeeping genes using 113 sam-
ples from archived formalin-fixed tumor blocks that
were collected under an Institutional Review Board-
approved protocol from Washington University. Cores
from each tissue block were obtained using a disposable
sampling tool (Harris Unicore, 1.2 mm) and total RNA
was isolated using the Roche High-Pure RNA Paraffin kit
(Roche Applied Science, Indianapolis, IN) [10]. RNA input
for the FFPE samples ranged from 250 ng (nCounter) to
1.0 μg for qRT-PCR assays. High quality RNA isolated
from matched fresh-frozen blocks (previously described
in Parker et al. [10]) was also analyzed (at 100 ng per
NanoString reaction) from a subset of the cases to
assess the repeatability of the assay across the same
specimen with different post-processing handling pro-
cedures. The intraclass correlation (ICC) was used to
assess reproducibility by sample [17]. Accuracy of gene
expression estimates were determined relative to qRT-PCR
for a subset of 71 of the 113 FFPE samples. Additionally,
accuracy of both platforms was examined using the
published PCR-based classifier [10].

Training clinical specimen collection
The criteria used to select samples for training included
tissue amount and quality, along with each FFPE tissue
block representing a unique patient. The complete inclu-
sion criteria for algorithm training are described in
Additional file 1: Table S1. Prior clinical data were not
used to pre-select individual samples within each cohort
used for subtype training. Four sets of FFPE breast can-
cer patient samples were used for training the Prosigna
Algorithm (see Additional file 2: Table S2 for additional
details). A first set of breast tumor tissue specimens
(“BC no AST”) [18] with clinical outcome data was
collected at the Genetic Pathology Evaluation Centre
(University of British Columbia) and used for both
Prosigna ROR score and subtype centroid training.
These patients received no adjuvant systemic therapy
(no AST), based on provincial guidelines at that time for
clinically low risk women. A second set of breast tumor
tissue specimens for subtype centroid training was col-
lected at the University of North Carolina (UNC) from
patients seen at UNC hospital [10]. A third set of breast
tumors for subtype training was collected at Washington
University in St. Louis (Wash U) [10, 19] from patients
with invasive breast cancer after surgical excision. The
fourth set of patient specimens were 24 FFPE reduction
mammoplasty samples obtained from the Genetic
Pathology Evaluation Centre.
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The UNC and Wash U samples were included to en-
sure a broad demographic representation (e.g. approxi-
mately 30 % and 40 % African American women
respectively) as part of the prototypical subtype centroid
training exercise. The 24 FFPE reduction mammoplasty
samples were included to ensure the training exercise
recapitulated the experimental design of the training for
the published PCR-based PAM50 assay [10], which also
contained reduction mammoplasty samples as part of
centroid training.
An independent set of FFPE breast cancer patient

samples (BC TAM) with clinical outcome data were
used for verifying the prognostic value of the trained
Prosigna ROR score and subtype centroids. These speci-
mens were also collected from the Genetic Pathology
Evaluation Centre from estrogen receptor-positive (ER+),
node-negative patients treated with five years of adjuvant
tamoxifen [4]. A subset of the BC TAM samples consisted
of RNA previously isolated from FFPE tissue, as part of
Nielsen et al. [4]. These samples were included in the
algorithm verification to increase the number of samples
from the BC TAM study as not all patient blocks
contained sufficient tissue for re-isolation.

Prosigna tissue review, shipping and storage
Prior to performing a Prosigna assay, a certified patholo-
gist reviewed all FFPE tissue blocks to identify and circle
the area of viable invasive carcinoma. Two 1.0 mm
diameter tissue cores were taken from the identified area
of the block and shipped from the collection location to
NanoString. For a small subset of the training samples,
only one core was taken due to limited tumor within the
identified area of invasive carcinoma. For the normal tis-
sue samples, the certified pathologist reviewed the FFPE
block to confirm the absence of any tumor tissue. Since
the normal tissue samples contain a heterogeneous mix-
ture of stromal and epithelial tissue, normal samples
were assayed as FFPE tissue scrolls (10 um thickness)
rather than core punches.

NanoString Prosigna assay
RNA was isolated using a Roche column-based RNA ex-
traction kit manufactured to NanoString’s specifications
[20]. Briefly, paraffin was removed with D-limonene and
tissue cores were digested overnight with proteinase-k.
Digested samples were bound to a silica column, followed
by an on-column DNase treatment for the removal of
genomic DNA. Isolated RNA was eluted in a 30 μL
volume and tested using a spectrophotometer to ensure it
met the specifications for concentration (≥12.5 ng/μL)
and purity (OD 260/280 nm 1.7-2.5).
The RNA was analyzed on the NanoString nCounter

Dx Analysis System which delivers direct, multiplexed
measurements of gene expression through digital readouts

of the abundance of mRNA transcripts [12, 20]. The
nCounter Dx Analysis System uses gene-specific probe
pairs that hybridize directly to the mRNA sample in solu-
tion eliminating any enzymatic reactions that might intro-
duce bias in the results. A Reporter Probe carries the
fluorescent signal; a Capture Probe allows the complex to
be immobilized for data collection. The Prosigna assay
simultaneously measures the expression levels of 50 target
genes [10] plus eight endogenous control (housekeeping)
genes [10, 21, 22] in a single hybridization reaction using
an nCounter CodeSet. Each assay also includes six positive
quality controls comprised of a linear titration of in vitro
transcribed RNA transcripts and corresponding probes,
and eight negative quality controls consisting of probes
with no sequence homology to human RNA sequences
[23]. Each Prosigna assay run includes a reference sample
consisting of in vitro transcribed RNAs of the 58 targets
that are used for normalization purposes.
Sample processing steps after hybridization are auto-

mated on the nCounter Prep Station. The excess probes
are removed followed by binding of the probe-target
complexes on the surface of the nCounter cartridge via a
streptavidin-biotin linkage. Probe-target complexes are
aligned and immobilized in the nCounter cartridge.
After sample processing has completed, cartridges are
placed in the nCounter Digital Analyzer for data collec-
tion. Each target molecule of interest is identified by the
target specific “color code” generated by six ordered
fluorescent spots present on the reporter probe. The
Reporter Probes on the surface of the cartridge are then
counted and tabulated for each target molecule.

Analysis methods
Hierarchical clustering was performed using Pearson’s
correlation as the distance metric and average linkage
clustering. The R package SigClust was used to assess
significance of each cluster in order to identify the
prototypical samples that were used to derive the cen-
troids. Prototypical subtype centroids were assigned
based on gene expression profiles concordant to previ-
ously published data [2, 3, 10] and subtype specific
characteristics described by Carey and Perou [24]. The
accuracy of the subtype assignments was assessed based
on the following two criteria:

1. a Luminal A centroid that classifies tumors with the
best prognosis as Luminal A relative to other
putative Luminal A centroids

2. similar hazard ratios between Luminal A subtype
and other high risk subtypes compared to previously
published data

A multivariable Cox model was fit using ridge regres-
sion [25] in the R package glmnet to learn the ROR
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coefficients. The endpoint for risk of recurrence calcula-
tions was recurrence-free survival (RFS), defined as the
interval from diagnosis until local, regional or distant recur-
rence or death due to breast cancer. Contralateral breast
cancer and death due to causes other than breast cancer
were treated as censoring events. Death due to breast
cancer where a recurrence was not recorded was treated
as an event with the event date being the date of death.
Using the BC TAM patient samples and following

procedures outlined in Parker et al. [10], the C-index
was used to assess the prognostic accuracy of the ROR
model [26]. Briefly, from a given patient population, the
C-index is calculated by first comparing ROR scores in
all pairs of subjects in the population. The ROR values
ranked for each pair are then compared to the differ-
ences in the rank ordered survival time to see if ROR
was accurately ordering the outcome of each pair. A C-
index of 0.5 indicates a classifier that does not estimate
outcome better than random choice. A higher C-Index
(up to a value of 1) indicates a model that more accur-
ately estimates the true risk of recurrence.

Results
Feasibility: Cross platform evaluation
The median block age of 113 FFPE tumor samples used
to compare NanoString and qRT-PCR repeatability was
10 years with a range of 7–13 years old. The gene ex-
pression of the 50 classifier genes for each sample was
independently normalized to the geometric mean of five
housekeeper genes. The median coefficient of variation
was used to summarize the reproducibility of the ex-
pression measurement of each gene (Additional file 3:
Figure S1A). These values ranged from 1.7 % to 6.7 %
with a mean of 3.6 %, which were similar to those ob-
served in the qRT-PCR replicates, and were not corre-
lated with sample block age. The intraclass correlation
(ICC) was used to assess reproducibility by sample [17].
Intraclass correlation values ranged from 0.964 to 0.999
with a mean of 0.993 (Additional file 3: Figure S1B).
The highly reproducible expression estimates resulted
in 98 % concordant subtype assignments and the ICC
of the risk of relapse score was 0.998 (Additional file 3:
Figure S1C). Similar results were demonstrated in all
cases for fresh frozen samples (not shown).
nCounter gene expression estimates were concordant

to qRT-PCR with a median ICC of 0.90 (mean = 0.85)
despite a slight decrease in sensitivity evident by a
mean slope between nCounter and qRT-PCR data of
0.88 across the 50 classifier genes (Additional file 4:
Table S3). As expected, those genes that exhibited the
lowest ICC and the lowest slopes were also the least
differentially expressed across all patients in this co-
hort. Accuracy estimates for all genes are shown in
Additional file 4: Table S3.

The published PCR-based classifier also generated
accurate calls by the NanoString nCounter Dx Analysis
System when compared to calls by PCR with 94 % con-
cordance in subtype calls and ICC values of 0.98 and
0.95 for the ROR-S and proliferation measures, respect-
ively (Additional file 5: Figure S2). Given its technical
and practical advantages and based on the high degree
of concordance in these feasibility experiments, the
NanoString nCounter was shown to be well suited to
develop an in vitro diagnostic assay.

Patient clinical characteristics for training and verification
Eight hundred and twenty (820) patient FFPE breast
tumor samples and 79 previously isolated RNA samples
were received at NanoString and met the predefined
sample inclusion criteria. After isolation of RNA from
the tumor samples and assessment of yield and quality,
854 of these samples were analyzed on the NanoString
nCounter Dx Analysis System. Gene expression data
from 746 patient samples were determined to be of high
quality and were used for algorithm training and verifi-
cation (samples with low gene expression signals were
excluded to minimize noise in algorithm training). A full
description of clinical characteristics by cohort is in-
cluded in Table 1 and the breakdown of sample process-
ing is included in Fig. 1. Twenty four (24) FFPE breast
reduction mammoplasty samples were received at Nano-
String and all yielded sufficient RNA with high quality
gene expression data to be used in training the breast
cancer normal samples centroids.

Prototypical tumor centroid training
The four prototypical tumor subtype centroids (Basal-
Like, HER2-Enriched, Luminal A, and Luminal B) were
defined by identifying statistically significant (P < 0.001)
clusters from hierarchical clustering of the PAM50 genes
in 514 samples from the BC no AST, UNC, and WashU
cohorts and 24 reduction mammoplasty samples (Fig. 2).
The gene expression in the prototypical clusters for

each of the four tumor subtypes were similar to previ-
ously published results [2, 3, 10, 24, 27]. Examples of
some of the markers used to identify each prototype in-
clude a Basal-Like cluster with highly expressed cytoker-
atin (KRT 5, 14, 17) and cell proliferation genes and low
expression in genes associated with estrogen responsive-
ness and ERBB2. The HER2-Enriched cluster showed
low expression of estrogen-related genes; whereas cell
proliferation genes were highly expressed as well as
ERBB2, GRB7, and FGFR4. Genes associated with estro-
gen responsiveness were elevated in the both Luminal A
and Luminal B clusters though the Luminal B cluster
had much higher expression in cell proliferation genes
than the Luminal A cluster. Patient samples from each
of three training cohorts were represented in each of the
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four prototypical groups/centroids (Additional file 6:
Table S4). None of the reduction mammoplasty samples
were contained within any of the significant tumor sub-
type clusters used to define the centroids. Principal com-
ponent analysis was performed on the gene expression
data from the training cohorts to determine the primary
source of variability in these patient samples. The first
three out of fifty principal components separate the sam-
ples based on intrinsic tumor biology and are the major
source (63 %) of variability in the gene expression data

in the training samples. In contrast, the cohort (or insti-
tution the sample was collected at) was not a major
source of variation in the principle component analysis
(Additional file 7: Figure S3).
In order to standardize the distribution of gene expres-

sion across all 50 classifier genes, a Z-score transform-
ation (calculated from the training samples) was applied
to the normalized data. The transformed data were then
used to set 50 gene centroids for each of four tumor
subtypes. Subtypes were subsequently assigned for all
514 (BC no AST, WashU, and UNC) tumor samples
based on the maximum Pearson’s correlation between
the transformed gene expression for each sample and
the four tumor centroids (Additional file 8: Figure S4).
The distribution of subtypes from the BC no AST,
WashU, UNC cohorts are illustrated in Fig. 3.
The accuracy of the Prosigna subtype assignments was

assessed by examining the outcomes of the untreated
patients from the BC no AST cohort. Compared to alter-
nate approaches, patients assigned a Luminal A subtype
with the Prosigna centroids and Pearson’s distance
metric had the best prognosis (assessed by Kaplan-Meier
survival curves of the BC no AST cohort) compared to
the other three subtypes (Fig. 4) as observed previously
for the PCR-based PAM50 classifier [10]. Outcomes for
the higher risk subtype tumors in this no AST cohort
also mirror what was seen in a previous PAM50 analysis
with the basal and Her2-enriched subtype tumors show-
ing a higher risk of early recurrence while the luminal B
tumors have a chronic risk of recurrence. This chronic
risk of recurrence is evident in Fig. 4 where by 10 years
the luminal B patients have a similarly high risk of recur-
rence compared to the basal-like patients.
Subtype classifications from BC no AST patient sam-

ples were also compared to subtype classifications from
an untreated cohort of the Netherlands Cancer Institute
(NKI) [28]. Comparisons with NKI were carried out to
verify that the NanoString subtype classifier was predict-
ive of 10 year recurrence-free survival with hazard ratios
similar to those observed in previous PCR-based PAM50
training exercises [10]. The NKI gene expression data
were generated on microarrays and a platform correc-
tion was necessary for these comparisons. The subtype
assignments were fit using a Cox proportional hazard
model to estimate the hazard ratio of each subtype. This
was performed separately for each cohort (BC no AST
and NKI) using both the published PCR-based predictor
and the Prosigna predictor. This analysis was carried out
using 10 year recurrence free survival (RFS) as the end-
point. Table 2 illustrates that the calculated relative risk
of the three higher risk subtypes (relative to Luminal A)
is similar between the two classifiers, even when the data
were collected on two different platforms. As outlined
above, in British Columbia at the time of collection,

Table 1 Clinical characteristics by cohort for samples used for
algorithm training

Characteristic BC no AST WashU UNC BC TAM

Median Follow Up (Years) 11.9 NA NA 12.1

Patient Age

Mean 59.9 59.3 56.5 66.3

Stdev 13.8 15.2 15.9 9.6

Premenopausal

Yes 81 0 0 10

No 214 0 0 219

Unknown 9 118 92 3

ER Status

Positive 203 65 47 232

Negative 99 48 30 0

Unknown 2 5 15 0

Node Status

Positive 18 57 41 0

Negative 276 58 35 232

Unknown 10 3 16 0

HER2 Status

Positive 44 31 21 19

Negative 253 59 51 210

Unknown 7 28 20 3

PR Status

Positive 138 50 34 130

Negative 139 63 38 86

Unknown 27 5 20 16

Tumor Size

≤2 193 87 24 149

>2 111 29 49 83

Unknown 0 2 19 0

Grade

1 26 5 10 15

2 127 32 20 103

3 145 78 43 108

Unknown 6 3 19 6

Any missing values were not available or not collected and therefore not reportable
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provincial guidelines called for no adjuvant systemic ther-
apy (no AST) for clinically low risk patients. In contrast,
the population in the NKI cohort was quite heterogeneous
and included a significant number of patients with high
risk clinical characteristics (pre-menopausal, node-positive,
and large tumors). Due to this variation in clinical risk fac-
tors, the BC no AST and the NKI patient populations
showed significant differences in absolute risk (Additional
file 9: Figure S5); however, despite these differences, the
Prosigna predictor provides similar proportional hazard
estimates to the published predictor in both cohorts.

ROR Score Training
A 50-gene ROR score model and simplified 46-gene
ROR model (removing BIRC5, CCNB1, GRB7, and
MYBL2) were developed using multivariable Cox model-
ing with ridge regression to learn the ROR score coeffi-
cients. These 4 genes were removed and the 46 gene
model compared to the 50 gene model as they did not
seem to add prognostic accuracy to the predicted risk of
recurrence. The ROR score incorporate the biology of
the intrinsic subtypes by including the Pearson’s

coefficients to the four tumor centroids as factors in the
model in addition to a proliferation score and primary
tumor size as additive terms to predict risk of recur-
rence. A number of PAM50 based ROR models have
been previously reported [4, 10] which incorporate dif-
ferent variables including a subtype only model (ROR-S),
a subtype and tumor size model (ROR-T or ROR-C),
and a subtype and a proliferation score model (ROR-P).
The variables included in the Prosigna ROR model are
consistent with those included in the PCR-based ROR-
PT model first reported by Nielsen et al. [4]. The prolif-
eration score was calculated using the arithmetic mean
(average) of the normalized and transformed expression
of a subset of the 50 classifier genes (Additional file 10:
Table S5) that are associated with cell cycle progression
and which were shown to be co-regulated in the gene-
associated dendrogram from the training set hierarchical
cluster (Fig. 2). The Prosigna proliferation score is highly
correlated to the published proliferation score described
by Nielsen et al. [4] (Fig. 5).
The resulting Prosigna ROR score is calculated using

weighted coefficients to the four subtypes, a proliferation

BA
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BC no AST (n=396)
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RNA Tested
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WashU (n=15)
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Fig. 1 CONSORT diagram describing the breakdown for sample processing. Diagrams for (a) subtype and ROR training and (b) subtype
and ROR verification
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Fig. 2 Hierarchical clustering of all subtype training samples. Clustering analysis (using a Pearson’s distance metric and average linkage) was performed
on the median centered normalized, Log2 transformed data. The centroid color bars below the sample dendrogram represent the significant clusters
that were chosen to establish each tumor centroid. The subtype color bars represent the subtype calls using the final algorithm. Since the reduction
mammoplasty normal tissue samples do not contain tumor, they were not assigned a subtype and are represented as blanks in the subtype color bars
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score, and tumor size. Tumor size was calculated by
assigning a binary classification value to primary tumors
measuring 2.0 cm or less in the greatest dimension ver-
sus those measuring greater than 2.0 cm. The calculated
Prosigna ROR scores were adjusted to a 0–100 scale.
Scaling factors were generated using the entire range of
Prosigna ROR scores from all tumor samples from algo-
rithm training and verification (UNC, WashU, BC no
AST, and BC TAM) where tumor sizes were available.
The similarity of the 46 gene ROR and 50 gene ROR

scores was evaluated. Data were generated from all the
training samples (UNC, WashU, and BC no AST) using
both models. When the paired data for each model were
plotted against each other the removal of 4 genes had an
insignificant impact on the reported ROR score with an
R-squared value equal to 0.997 (Fig. 6) indicating they
are functionally the same score.

Verification of prototypical centroids and Prosigna ROR
score
The accuracy of the Prosigna classifier was verified in
the independent BC TAM cohort by comparing the

outcomes of the patients with a Luminal A subtype with
the other subtypes. Similar to what was reported for the
published PCR-based PAM50 classifier [4], patients
assigned a Luminal A subtype had superior outcome
(assessed by Kaplan-Meier survival curves of the BC
TAM cohort) compared to the other two subtypes
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Fig. 4 DRFS Kaplan–Meier plot for subtypes for ROR training cohort.
Subtype colors and numbers of patients are included in the plot along
with the results from the Log Rank test

Table 2 Proportional hazard ratios for N0 patients in BC no AST
and NKI cohorts

Cohort NKI BC no AST

Predictor PCR-based Prosigna PCR-based Prosigna

Luminal B 4.19 3.37 3.47 3.18

HER2-enriched 5.19 4.88 4.78 5.02

Basal-like 2.41 2.45 3.17 2.96

Results generated using the published classifier and the Prosigna classifier
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slope, and Y-intercept of the comparison are shown in the top left
of the plot
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(Fig. 7) with similar calculated hazard ratios (Luminal B
3.87 and Her2 Enriched 2.86 versus Luminal B 3.67 and
Her2 Enriched 2.80 for published versus Prosigna re-
spectively). Two out of the 232 BC TAM patient
samples were classified as Basal-Like and these were
excluded from the Kaplan-Meier analysis due to insuffi-
cient sample size to make any meaningful conclusions.
The distribution of the ROR scores for BC TAM pa-

tient tumors from each of these three subtypes show
that the model appropriately characterizes the risk asso-
ciated with PAM50 intrinsic subtype. Only Luminal A
tumors were classified as low risk with ROR scores less
than 40. Other than a single Luminal A tumor with an
ROR score of 63, only Luminal B or HER2-enriched tu-
mors were classified as high risk with ROR scores
greater than 60 (Fig. 8). The distribution for these three
subtypes was confirmed in the two subsequent validation
studies [29, 30] where in over 2000 patient samples
Luminal A subtype tumors represented less than 0.3 %
of samples with ROR > 60 and were the only subtype
with ROR < 40 (Additional file 11: Figure S6). Nielsen et
al. [4] describes the BC TAM cohort as biased towards
higher risk breast cancers due to Provincial treatment
guidelines in place at the time when these patient sam-
ples were collected, which consequently biases the co-
hort toward higher risk subtypes and higher average
ROR scores. This cohort bias is further illustrated in the
overall risk of the BC TAM patients who received tamoxi-
fen treatment having outcomes similar to the BC no AST
cohort (described herein as low risk) who received no
adjuvant systemic therapy (Additional file 9: Figure S5). In
the subsequent validation studies of Prosigna, which are

likely more representative of the general ER+ patient
population than the BC TAM cohort, a broader distribu-
tion of ROR scores was observed, including many more
patients with very low ROR scores (<20).
The accuracy of the 46 and 50-gene ROR models were

then assessed. Predictions of the C-index for each model
were generated from 1,000 bootstrap samples of the risk
assignments from the BC TAM verification data using
the R package Hmisc. There was no difference in accur-
acy between the 46 or 50-gene ROR scores (Fig. 9). The
fact that there is no clinical (Fig. 9) or functional (Fig. 6)
difference between the two ROR models verifies that the
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four genes do not add prognostic accuracy to the pre-
dicted risk of recurrence. As the two models are equiva-
lent, the 46 gene ROR model was chosen for NanoString’s
PAM50-based Prosigna assay and subsequently validated
in two previously published clinical studies [29, 30].
Consistent with analysis performed by Nielsen et al.

[4], the accuracy of the final continuous Prosigna ROR
score model was verified using the Prosigna assay on
node negative patients from the BC TAM series. Briefly,
C-index was used to compare the accuracy of the
Prosigna model to a model based on clinical variables
(Adjuvant! Online), and a Ki67 and HER2 IHC based
model that includes tumor size (IHC-T). BC TAM pa-
tients were all confirmed as ER+ by dextran-charcoal–
coated ligand-binding assay so ER was not included in
the IHC-T model. All models were evaluated for accur-
acy using distant recurrence-free survival (DRFS) as well
as disease specific survival (DSS) as an alternate clinical
endpoint (Fig. 10). The Prosigna model showed signifi-
cant improvement over both IHC and Adjuvant! Online
when either DRFS or DSS were used as the clinical end-
point. The Prosigna ROR score was determined to be a
robust estimate of risk relative to the other models
tested similar to what was previously reported in the
published PCR-based PAM50 assay [4].

Discussion
The four breast cancer intrinsic subtypes were first
described by Perou et al. [9] and originally defined by
differential gene expression of 1,753 genes. Subsequent
studies confirmed the existence of these subtypes and

further demonstrated that they were predictive of overall
and relapse-free survival [1, 2]. The gene list was re-
duced to the 50 classifier genes in the PAM50 assay,
while maintaining the biological classification and prog-
nostic accuracy inherent to the intrinsic subtype predic-
tion [10, 31]. The PCR-based PAM50 subtype classifier
and ROR score are prognostic in estrogen receptor posi-
tive, post-menopausal women treated with endocrine
therapy alone [4] and prognostic and predictive of hor-
monal therapy benefit in pre-menopausal women treated
with adjuvant hormonal therapy [5]. PAM50 subtypes
and PAM50 proliferation have also been shown to be
predictive of benefit of chemotherapy [6, 7, 32] and of
pathologic complete response in neoadjuvant chemo-
therapy studies [8, 10]. Additionally, these studies have
shown that PAM50 provides a better estimate of prog-
nosis and of prediction of treatment benefit than IHC-
based surrogates [4–6].
Breast cancer subtypes, as defined using available IHC

assessments of ER, PR, and HER2 biomarkers, have been
included in treatment guidelines for breast cancer pa-
tients as a surrogate for molecular subtyping using
PAM50 [33]. These biomarkers are critical in the initial
diagnosis of breast cancer and for determining whether
endocrine therapy or HER2-targeted therapy is necessary;
however, studies have shown that subtypes derived from
these 3 biomarkers are sub-optimal surrogates for the
PAM50-based breast cancer intrinsic subtypes [5, 7, 34].
The addition of a fourth marker for cell proliferation
(Ki-67) still does not accurately characterize the intrin-
sic biology needed to classify tumors into one of the
four PAM50 subtypes. A combination of these four
IHC markers can achieve approximately 70-80 % sensi-
tivity and specificity when compared to gene expression
classification [18]. Even a comparison of proliferation
assessed by IHC-based Ki-67 was less accurate with
respect to clinical outcome when compared to prolifer-
ation assessed by the RNA-based PAM50 proliferation
score [6]. Additionally, recent studies have demon-
strated that inter-laboratory reproducibility of IHC
measurement of Ki-67 is insufficient for routine clinical
practice [35]. Efforts are ongoing to improve the perform-
ance of IHC-based biomarker testing by standardizing
quality control, training, methods and cutoffs, particularly
with ER [36], Her2 [37] and Ki-67 [38].
Currently, the laboratory-developed BluePrint® test

[39] is the only other marketed gene expression-based
test that outputs breast cancer molecular subtypes.
However, the 80 genes profiled in that assay were se-
lected using fresh frozen tissue to classify tumors as
Luminal-type, HER2-type, or Basal-type based on their
concordance to ER, PR and HER2 IHC values. Addition-
ally, the BluePrint test does not include genes that
distinguish Luminal A and B intrinsic subtypes. The
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compared to other models. Different histogram colors represent
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to test each model
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accuracy of this test when compared to the canonical
gene expression-based intrinsic subtypes should be simi-
lar to subtyping by IHC which has demonstrated limita-
tions [5, 7, 34].
There are several other gene expression based tests

currently available that output a breast cancer risk classi-
fication [28, 40, 41]. The Endopredict score and Onco-
type DX® Recurrence Score® were originally trained,
tested and validated using FFPE derived RNA, where the
MammaPrint® score was trained, tested and validated
using RNA isolated from fresh frozen tissue. All three of
these gene expression signatures were defined based on
the ability to predict distant recurrence whereas the
PAM50 genes were defined based on the ability to iden-
tify the underlying biology defined by the four intrinsic
breast cancer subtypes, which are themselves predictive
of distant recurrence. The Oncotype DX Recurrence
Score is considered by some to be predictive of chemo-
therapy benefit [42]; however, some controversy exists
regarding the bioinformatics approach used to make this
claim [43] and the relevance of the chemotherapy regi-
mens and patient population used within the clinical
trials tested [44]. There are ongoing clinical trials to
assess the clinical utility of the MammaPrint RS [45],
Oncotype DX® Recurrence Score® [46] and Prosigna
ROR [47] within the ER-positive, Her2-negative intended
use population using modern chemotherapy regimens.
The feasibility experiments described herein showed

highly concordant results between the NanoString nCoun-
ter platform and qRT-PCR. Across 113 FFPE breast cancer
specimens, expression of the PAM50 genes, subtypes and
ROR scores were highly concordant between qRT-PCR
and nCounter using the PCR-based classifier. Additionally,
in repeated measures from 71 FFPE tumor specimens, the
published classifier on nCounter data gave highly concord-
ant results for ROR and subtype. The similarity of results
in the cross platform evaluation and within tissue repeat-
ability was instrumental in the selection of the NanoString
nCounter Dx Analysis System as the platform for develop-
ment and training of the in vitro diagnostic version of the
PAM50 classifier.
The subtype centroid and ROR model training for the

Prosigna algorithm were designed to parallel the training
of the published PCR-based PAM50 classifier and ROR
model. This retraining was executed using an independ-
ent set of FFPE breast tissue samples, with RNA isolated
using a GMP-manufactured kit, and using data solely
collected on the NanoString nCounter Dx Analysis Sys-
tem. The gene expression profiles of the Prosigna intrin-
sic breast cancer subtype centroids are similar to the
published PAM50 classifier centroids. Additionally, pa-
tients assigned a Luminal A subtype were significantly
lower risk compared to the Luminal B, HER2-enriched,
and Basal-like subtypes in the training population with

no adjuvant systemic therapy as previously observed in
the published PCR-based PAM50 classifier [10]. The re-
sults from this independent verification study further
demonstrate that both Luminal B and HER2-enriched
breast cancer are predictive of poorer distant recurrence
free survival compared to Luminal A breast cancer in an
ER+ node-negative tamoxifen-treated early-stage breast
cancer population (a set containing very few basal-like
subtype patients). The Prosigna ROR score training pro-
duced a model that predicts the risk of distant recur-
rence in the same ER+ node-negative tamoxifen-treated
population. These results recapitulate the findings in the
same patient population using the published PCR-based
PAM50 classifier and ROR model [4] and provide add-
itional evidence to the already dense landscape of pub-
lished results showing that the four intrinsic subtypes
defined by the PAM50 genes contain significant prog-
nostic information.
The results from both the BC no AST patient popula-

tion used for Prosigna training and the NKI data used to
train the published PCR-based PAM50 classifier [10]
show that the Luminal A and the low ROR patient pop-
ulations have a low risk of recurrence for 10 years fol-
lowing surgery with no adjuvant therapy. This would
suggest that there may be patients that are identified by
the PAM50 genes with low enough risk to be spared ad-
juvant chemotherapy, or potentially even hormonal ther-
apy. However, the lower risk profile of the Luminal A
patients in the BC no AST population compared to the
NKI population, suggests this gene expression-based in-
formation should be used in concert with other clinical
covariates such as age, node status, and tumor size to
most accurately identify such very low risk breast cancers.
It should be noted that both of these data sets are derived
from populations originally diagnosed in the 1980s or
1990s with relapse and survival rates that are poorer,
overall, than for more contemporary sets of patients.
In contrast to the published PCR-based PAM50 classi-

fier [10], which was developed to be a flexible research
tool applicable across platforms and datasets, the Pro-
signa PAM50 assay is intended to be used as a clinical
assay on a fixed platform with a fixed statistical model.
One important necessary difference in the two algo-
rithms is that Prosigna uses fixed values for Z-score
transformation, while the PCR-based PAM50 algorithm
should be platform and cohort adjusted for each new
data set. Prosigna used the 212 UNC and WashU train-
ing samples to generate a static control as all four sub-
types were well represented in this population with gene
expression values generated on the same platform using
the same clinical grade reagents, procedures, and the
same normalization scheme. The Prosigna algorithm
therefore requires no additional cohort or platform
normalization, providing a stable and unchanging subtyping
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algorithm that can be applied to a single patient sample or
to a biased patient population (such as all hormone recep-
tor positive) with both accurate and stable results [29, 30].
In contrast, the PAM50 research version algorithm relies
on each researcher to select an appropriate population and
method to do the gene centering in order to normalize the
population being tested back to the original training popu-
lation of the published PCR-based PAM50 classifier [10].
Failing to do so correctly will result in biased subtype classi-
fications that may be inconsistent with the clinicopathologi-
cal features of the patient samples being tested [48].
However, for research studies using the PCR-based PAM50
classifier such as Nielsen et al. [4] where the normalization
was performed correctly, the subtype distribution and asso-
ciated clinical outcomes will be representative of each se-
lected patient population and has been shown here to have
very similar performance to Prosigna. Recently, the research
version PAM50 centroid classification method has been
criticized for these features, namely adjustment through
normalization to each data set [49]; however, these criti-
cisms are not germane to the Prosigna assay because it is
all run on a single technology platform with a standardized
technical normalization procedure, thereby providing a
stable and robust subtyping assay that can be applied to
samples at decentralized testing sites.
Of note, unlike the published classifier of Parker et al.

[10], the Prosigna assay does not have a trained Normal-
like centroid as a control to identify inclusion of con-
taminating non-tumor tissue. For the Prosigna assay a
pathologist performs a tissue review on an H&E stained
section to identify the area of viable invasive carcinoma
on the FFPE breast tumor block which is appropriate for
inclusion in to the assay. The assay procedure requires
macrodissection to exclude adjacent non-tumor tissue
from unstained slide-mounted sections using a matched
H&E slide. The results from the subsequent analytical
validation of Prosigna show that assay procedures and
results are robust, with negligible impact on the assay of
small-to-moderate amounts of remnant adjacent non-
tumor tissue [50]. An interferents study performed by
Elloumi et al. [51] tested the effect of RNA isolated from
adjacent normal breast titrated into RNA from paired
tumor. The PAM50 result with the published algorithm
were systematically biased towards a lower ROR whereas
research-based versions of MammaPrint and Oncotype
Dx results from the same samples were generally biased
towards lower risk, they also were sometimes biased
towards higher risk scores. However, even when the
titrated tumor RNA to adjacent normal RNA ratio was
around 50 % only about half of the samples were called
Normal-like [51]. This is likely due to the fact that the
gene expression profiles of surrounding non-tumor tis-
sue do not resemble distant uninvolved normal breast
tissue [52, 53]. These observations further suggest a

Normal-like control lacks the sensitivity and specificity
required for inclusion in the Prosigna in vitro diagnostic
test, but is suitable for identifying samples with substan-
tial normal RNA contamination in a research setting
where pathology review and macrodissection may not
always be feasible.
The analytical [50] and clinical validation studies [29, 30]

of the Prosigna assay were performed in an HR+
endocrine-treated early-stage breast cancer population
using the previously defined and locked Prosigna algo-
rithm derived from this training set on RNA derived
from FFPE tissue. These studies demonstrated both
analytical reproducibility and Level I evidence for clinical
validity using archived specimens [54]. The analytical
validation showed that the Prosigna ROR and subtype
result was highly reproducible across multiple labora-
tory sites, users, and reagent lots supporting the decen-
tralized use of the assay. The clinical studies showed
Luminal B breast cancers are predictive of poorer DRFS
compared to Luminal A breast cancer and the Prosigna
ROR provides significant prognostic information over
and above standard clinical variables. These results
are consistent with the Prosigna verification study
described herein. Results from the two clinical valid-
ation studies also show that the ROR score is pre-
dictive of risk of late distant recurrence after 5 years
of hormonal therapy [55, 56].

Conclusion
The Prosigna assay is the only genomic assay that is CE-
marked and FDA-cleared that was trained, verified and
validated to provide an accurate estimate of the risk of
distant recurrence in hormone receptor positive breast
cancer using RNA from FFPE breast cancer patient
samples. Additionally, Prosigna is the only assay that is
capable of classifying patients into one of the four breast
cancer intrinsic subtypes using a classifier that was
trained and verified to be consistent with the published
PAM50 classifier.
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