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Brief Communications

An Anti-Neuroinflammatory That Targets Dysregulated Glia
Enhances the Efficacy of CNS-Directed Gene Therapy in
Murine Infantile Neuronal Ceroid Lipofuscinosis

X Shannon L. Macauley,1,2 Andrew M.S. Wong,5 X Charles Shyng,2 David P. Augner,5 Joshua T. Dearborn,2

Yewande Pearse,5 Marie S. Roberts,2 Stephen C. Fowler,4 Jonathan D. Cooper,5 D. Martin Watterson,6

and Mark S. Sands2,3

1Department of Neurology, 2Department of Internal Medicine, and 3Department of Genetics, Washington University School of Medicine, St. Louis, Missouri
63110, 4Departments of Pharmacology and Toxicology, University of Kansas, Lawrence, Kansas 66045, 5Department of Neuroscience, Centre for the
Cellular Basis of Behaviour, MRC Centre for Neurodegeneration Research, Institute of Psychiatry, King’s College London, London SE5 9NU, United
Kingdom, and 6Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611

Infantile neuronal ceroid lipofuscinosis (INCL) is an inherited neurodegenerative lysosomal storage disease (LSD) caused by a deficiency
in palmitoyl protein thioesterase-1 (PPT1). Studies in Ppt1 � / � mice demonstrate that glial activation is central to the pathogenesis of
INCL. Astrocyte activation precedes neuronal loss, while cytokine upregulation associated with microglial reactivity occurs before and
concurrent with neurodegeneration. Therefore, we hypothesized that cytokine cascades associated with neuroinflammation are impor-
tant therapeutic targets for the treatment of INCL. MW01–2-151SRM (MW151) is a blood– brain barrier penetrant, small-molecule
anti-neuroinflammatory that attenuates glial cytokine upregulation in models of neuroinflammation such as traumatic brain injury,
Alzheimer’s disease, and kainic acid toxicity. Thus, we used MW151, alone and in combination with CNS-directed, AAV-mediated gene
therapy, as a possible treatment for INCL. MW151 alone decreased seizure susceptibility. When combined with AAV-mediated gene
therapy, treated INCL mice had increased life spans, improved motor performance, and eradication of seizures. Combination-treated
INCL mice also had decreased brain atrophy, astrocytosis, and microglial activation, as well as intermediary effects on cytokine upregu-
lation. These data suggest that MW151 can attenuate seizure susceptibility but is most effective when used in conjunction with a therapy
that targets the primary genetic defect.

Key words: Batten disease; lysosomal storage disease; neurodegeneration; neuroinflammation; neuronal ceroid lipofuscinosis

Introduction
Infantile neuronal ceroid lipofuscinosis (INCL, or CLN1 disease)
is a rare, autosomal recessive lysosomal storage disease that
largely affects the CNS beginning in infancy or early childhood
(Vesa et al., 1995; Hofmann et al., 1999). INCL is caused by
mutations in the CLN1 gene leading to a deficiency in palmitoyl
protein thioesterase-1 (PPT1). Typically, patients are asymptom-
atic at birth and development proceeds normally. However, by 2
years of age, INCL patients suffer from blindness, seizures, cog-
nitive impairment, and motor dysfunction, ultimately leading to
death by 4 – 6 years of age.

Previous studies demonstrate that PPT1-deficient (Ppt1�/ �)
mice mimic the clinical features of INCL, such as cognitive, mo-
tor, and visual deficits, as well as spontaneous seizures. Interest-
ingly, focal areas of astrocyte activation were the first pathological
feature observed in the Ppt1�/ � brain (Kielar et al., 2007; Macau-
ley et al., 2009, 2011; Groh et al., 2013). Coincident with the onset
of astrocyte activation was a significant increase in pro-
inflammatory cytokines, microglial activation, and leukocyte re-
cruitment into the brain. Specific brain regions affected by early
astrocyte activation were the same regions prone to neurodegen-
eration and brain atrophy.

Preclinical intervention studies for INCL reveal the promise
for enzyme replacement therapy (ERT) via CNS-directed, AAV-
mediated gene therapy (Griffey et al., 2004, 2006; Macauley et al.,
2012; Roberts et al., 2012). However, this approach has proven to
be only partially efficacious given the complexity of clinical fea-
tures associated with INCL. Therefore, isolating secondary dis-
ease mechanisms that are responsive to therapeutic intervention
is necessary for improved dosing and efficacy. Dosing includes a
therapeutic time window, based on pathophysiology progres-
sion; frequency of administration, based on how the body reacts
to the treatment; as well as the amount of drug administered,
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based on body weight or volume. Therefore, dosing of AAV-
mediated enzyme replacement to the CNS is a challenge and not
readily amenable to the optimization routinely accomplished
with small-molecule therapeutics. However, promising replace-
ment therapies can be combined with various complementary
treatments based on dosing considerations. Because the enzyme
deficiency in the Ppt1�/ � mice is accompanied by neuroinflam-
mation and increased cytokine production, a rational approach
would be to test the potential of an experimental therapeutic such
as MW151 as an adjunct therapy. MW151 is a glial-specific, small
molecule whose pharmacological mechanism of action is atten-
uation of injurious upregulation of pro-inflammatory cytokines,
which are associated with brain injury, progressive neurodegen-
eration, or increased pathology susceptibility due to CNS innate
immunity priming (Hu et al., 2007; Somera-Molina et al., 2007;
Karpus et al., 2008; Chrzaszcz et al., 2010; Bachstetter et al., 2012).

We hypothesized that simultaneous treatment with the
small-molecule drug MW151 would improve the outcome of
CNS-directed, AAV2/5-mediated gene therapy. In fact, this
cotreatment resulted in increased life span, improved motor
function, elimination of seizures, and decreased glial activation
and cytokine production. The outcomes demonstrate the poten-
tial utility of using drugs that attenuate pro-inflammatory cyto-
kine production as a cotherapy for gene-mediated replacement
therapy for INCL.

Materials and Methods
Ppt1�/� and wild-type mice. Congenic wild-type (�/�) or Ppt1 �/ �

(�/�) mice on the C57BL/6 background were generated at Washington
University School of Medicine. Genotype was determined by PCR-based
assay (Gupta et al., 2001). Male and female Ppt1 �/ � mice and normal
littermates were used. All procedures were performed in accordance with
an approved IACUC protocol from Washington University School of
Medicine.

Life span. Longevity was assessed in treated Ppt1 �/ � mice and sham-
treated controls (n � 10 –15 mice/group). End of life was designated by
death or a predetermined moribund condition. Kaplan–Meier analysis
was used to measure cumulative survival and establish significant differ-
ences in life span ( p � 0.05).

Recombinant AAV production. The rAAV2/5-PPT1 vector used in
these studies was generated at the University of Florida Vector Core
Laboratory as previously described (Griffey et al., 2004). Briefly, the vec-
tor contained the cytomegalovirus enhancer, chicken �-actin promoter;
first intron from the chicken �-actin gene; human PPT1 cDNA; rabbit
�-globin polyadenylation signal; and flanking inverted terminal repeats
from AAV2.

Intracranial injections. On P1, the viral vector was injected intracrani-
ally using a Hamilton syringe and 30 gauge needle. Two microliters of
virus (1 � 10 12 vg/ml) was bilaterally injected into the anterior cortex (1
mm rostral to bregma, 2 mm mediolateral of midline, and 2 mm ventral
to the surface of the skull), hippocampus/thalamus (3.5 mm rostral to
bregma, 2 mm mediolateral of midline, and 2 mm ventral to the surface
of the skull), and cerebellum (1 mm rostral to lambda, 1 mm mediolat-
eral of midline, and 2 mm ventral to the surface of the skull).

MW151 injections. A 1� MW151 solution was made daily in sterile
0.9% saline, filter sterilized, and immediately injected. Ppt1-deficient
mice received daily intraperitoneal injections of MW151 at a dose of 2.5
mg/kg. Dosing began at 28 d of age and continued for the remainder of
their life. Additionally, separate cohorts of Ppt1 �/ � and WT mice re-
ceived daily injections of saline and served as controls.

Treatment groups. Five treatment groups were used in this study: (1)
WT: WT mice receiving daily saline injections, (2) Ppt1�/ �: Ppt1�/ � mice
receiving daily saline injections, (3) MW151: Ppt1�/ � mice receiving daily
injections of MW151, (4) AAV: Ppt1�/ � mice receiving intracranial injec-
tions of AAV2/5-PPT1, and (5) AAV � MW151: Ppt1�/ � mice receiving

both intracranial injections of AAV2/5-PPT1 and daily MW151 injections.
Each group contained a total of 20 randomly assigned, mixed-sex mice.

Rotarod testing. Treated and sham-treated mice (n � 10 –13 mice/
group) were tested on the constant-speed rotarod beginning at 4 months
of age, each month thereafter as previously described (Macauley et al.,
2012). Statistical significance was determined using one-way ANOVAs at
each time point followed by post hoc tests.

Seizure monitoring via force plate actometer. A force plate actometer
was teamed with simultaneous video monitoring to assess seizure activity
within treated and untreated mice at 7.5 months of age. Briefly, a custom-
made actometer was generated as previously described (Reddy et al.,
2011). Simultaneous video monitoring and force plate actometry were
gathered for 8 consecutive hours. Detection of a seizure with the actom-
eter was confirmed by visually observing a seizure (“popcorn” seizure
followed by freezing) on the video recording during the same time frame.
Significant differences in seizure activity between untreated PPT1 �/�

mice and treated animals were determined using a � 2 test.
PPT1 activity. At 7.5 months of age, treated and sham-treated mice

(n � 3– 6) were killed via lethal injection, the brains bisected sagittally,
and the left hemisphere flash frozen in liquid nitrogen. PPT1 assays were
performed on brains as previously described (Macauley et al., 2012). The
values were normalized to total protein measured using a Coomassie
dye-binding assay (Bio-Rad Laboratories). One-way ANOVA and
Tukey’s multiple-comparison tests were used to determine significance.

Brain atrophy. At 7.5 months, treated and sham-treated mice (n �
3–9) were killed and the brains dissected by a researcher blinded to both
age and genotype as previously described (Macauley et al., 2011). Each
brain was weighed and differences in brain weights were analyzed with
one-way ANOVAs followed by Bonferroni correction post hoc tests.

Brain processing, Nissl staining, and regional volume measurements. At
7.5 months of age, brains from treated and sham-treated mice (n � 4
mice/group) were removed and fixed for 48 h in 4% paraformaldehyde in
PBS followed by cryoprotection in a 30% sucrose solution. One hemi-
sphere of each forebrain and the cerebellum were sectioned on a freezing
microtome at 40 �m. For Nissl staining, sections were mounted onto
coated SuperFrost microscope slides, allowed to air dry overnight, and
stained with a 0.05% cresyl fast violet solution. Unbiased estimates of the
volumes of cortex, hippocampus, striatum, and thalamus were obtained
via the Cavalieri method as previously described. Statistical differences
were determined using one-way ANOVAs followed by Bonferroni cor-
rection post hoc tests.

Immunohistochemistry for glial markers. Immunostaining and quanti-
fication for GFAP and CD68 were performed in regions of interest as
previously reported (Macauley et al., 2012). One-way ANOVAs with
Bonferroni correction post hoc tests were used to determine statistical
significance.

Analysis of cytokine profiles. To quantify the concentration of chemo-
kines and cytokines within the brain (n � 3– 4 mice per group), a 14-
biomarker Multi-Analyte Profile was generated for 7.5-month-old
treated and sham-treated mice by Rules Based Medicine using standard
Luminex Technology (Luminex ) for 14 separate analytes as previously
described (Macauley et al., 2011). One-way ANOVA followed by Bonfer-
roni post hoc tests was used to determine significant changes.

Results
Life span
One measure of therapeutic efficacy is longevity. Ppt1�/ � mice
die at �34.9 weeks compared with normal littermates (Fig. 1A).
Daily injections of MW151 alone did not significantly increase
life span compared with sham-treated Ppt1�/ � mice (35.4 vs 34.9
weeks, respectively). However, treatment with AAV alone or
AAV � MW151 injections led to significant increases in median
survival. Moreover, AAV � MW151 treatment resulted in a sig-
nificant increase in life span compared with AAV alone (47 vs
45.4 weeks, respectively).
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Constant speed rotarod
We investigated the combined effect of AAV-mediated gene ther-
apy and daily MW151 injections on motor deficits in the Ppt1�/ �

mouse (Fig. 1B). At 4 months, all treated and sham-treated mice
mastered the constant speed paradigm and performed similar to
WT. Beginning at 6 months, motor function in sham-treated and
MW151-only Ppt1�/ � mice deteriorated when compared with
AAV-only, AAV � MW151, and WT mice. The performance of
Ppt1�/ � or MW151-only mice continued to decline until their
death at 7 and 8 months., respectively. In contrast, mice treated
with AAV only or AAV � MW151 performed comparably to
normal littermates through 7 months. At 8 months, the AAV �
MW151 group performed significantly (p � 0.05) better than the
AAV-only group. The performance of AAV-only and AAV �
MW151-treated mice continued to deteriorate at 9 months, cul-
minating in a nadir in performance at 10 months.

Seizure activity
Using a force plate actometer combined with video monitoring,
seizure activity was examined in treated and sham-treated mice
(Fig. 1C). At 7.5 months, 43.8% of Ppt1�/� mice had at least one
spontaneous seizure during the 8 h monitoring session. In con-
trast, no spontaneous seizure activity was observed in WT mice.
Ppt1-deficient mice treated with MW151 alone displayed de-
creased seizure activity, where only 1 of 6 mice tested had sei-
zures. Treatment with AAV only or AAV � MW151 eradicated
the seizure phenotype.

PPT1 activity
PPT1 activity in the normal brain is �393.2 nmol/mg/h (Fig.
1D). In contrast, PPT1 activity was significantly decreased in the
brains of untreated Ppt1�/ � and MW151-treated mice (10.8 and

8.5 nmol/mg/h, respectively). Following AAV-only or AAV �
MW151 treatment, there is a significant increase in PPT1 activity
to 504.1 and 640.3 nmol/mg/h, respectively.

Overall brain atrophy
Brain weight measurements were used as a simple means to de-
termine overall brain atrophy in treated and untreated mice (Fig.
2A). In the Ppt1�/ � brain, there was a significant decrease in
brain weight, by �20%, at 7.5 months compared with WT mice
(p � 0.001). Treatment with MW151 alone had no effect on
overall brain atrophy. In contrast, the brain weights from AAV-
only and AAV � MW151 groups were significantly increased
compared with untreated Ppt1�/ � controls and were compara-
ble to WT.

Regional atrophy and neuronal loss
There was a significant reduction in regional volume within the
cortex, hippocampus, thalamus, and cerebellum of Ppt1�/ �

mice compared with WT (Fig. 2B–E). Daily injections of MW151
did not alter regional atrophy in any of the regions assayed. In
contrast, treatments including intracranial delivery of AAV or
AAV � MW151 resulted in significant increases in cortical and
thalamic volume. Interestingly, the combination of AAV �
MW151 significantly increased hippocampal volume (p � 0.05)
while treatment with AAV alone did not. There was a significant
decrease in calbindin-positive Purkinje cells within the cerebel-
lum of Ppt1�/ � mice. Treatment with MW151 alone did not
decrease neuronal loss within the cerebellum. Although treat-
ment with AAV or AAV � MW151 did not significantly increase
Purkinje cell number, there appeared to be an increase in Pur-
kinje cell number in the AAV � MW151 group that did not reach
significance.

Figure 1. A, Increased median life span was observed with treatment of AAV only or AAV � MW151 in Ppt1 �/ � mice. No improvement in life span was seen with MW151 alone. B, AAV alone
significantly improved performance on the constant-speed rotarod test. AAV � MW151 provided a further increase in motor performance at 8 months of age. C, Treatment with MW151 alone, AAV
alone, or the combination, decreased seizure frequency in Ppt1 �/ � mice. Untreated Ppt1 �/ � mice (n � 16) had a total of 11 seizures during the monitoring period, while no WT mice (n � 20)
had seizures. Ppt1 �/ � mice treated with MW151 only (n � 6) had a single seizure during the same monitoring period. Moreover, AAV only (n � 24), or AAV in combination with MW151 (n � 6),
eradicated this seizure phenotype. D, Compared withPpt1 �/ � brains, there is a significant increase in PPT1 activity following treatment with AAV only or AAV � MW151. Daily injections of MW151
did not increase PPT1 activity (*p � 0.05; **p � 0.01; ***p � 0.001). Error bars represent � SEM.

Figure 2. A, Brain weight, a marker of CNS atrophy, increased in Ppt1 �/ � mice following therapeutic intervention with AAV only or AAV � MW151 compared with untreated Ppt1 �/ � mice.
B, Cortical and thalamic volumes (C) increased significantly following AAV-only or AAV � MW151 therapy. D, Hippocampal volume was significantly increased following AAV � MW151 therapy.
E, There was no significant increase in cerebellar volume after therapeutic intervention (*p � 0.05; **p � 0.01; ***p � 0.001). Error bars represent � SEM.
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Regional neuroinflammation
Astrocyte activation (increased GFAP expression; Fig. 3A,B) and
microglial reactivity (increased CD68 expression; Fig. 3C,D) are
key components of INCL neuropathology. There is a significant
increase in astrocyte activation at 7.5 months in the cortex, thal-
amus, hippocampus, and cerebellum of Ppt1�/ � mice compared
with WT controls (Fig. 3B). Treatment with MW151 alone did
not decrease astrocyte activation in any of the brain regions as-
sayed. However, treatment with AAV or AAV � MW151 signif-
icantly decreased astrocyte activation within cortex, thalamus,
and hippocampus. Interestingly, there was no effect observed
with either treatment in the cerebellum.

Profound microglial reactivity is observed within the Ppt1�/ �

cortex, thalamus, hippocampus, and cerebellum at 7.5 months
(Fig. 3C,D). Following treatment with MW151 only, there ap-
peared to be a decrease in CD68 staining within the cortex, al-
though this was not significant. Treatment with AAV and AAV �
MW151 resulted in a significant decrease (p � 0.01) in microglial
activation within the cortex and hippocampus. Similarly, CD68

immunostaining appeared to decrease in the thalamus of mice
treated with MW151 alone, AAV only, or AAV � MW151, but
this effect did not reach significance. Also, combination therapy
with AAV � MW151 resulted in a significant decrease in micro-
glial activation in Ppt1�/� cerebellum (p � 0.05), while AAV
alone had little effect.

Cytokine production
Previous reports describe a significant increase in cytokine
expression in Ppt1 �/ � brains as disease progresses (Qiao et al.,
2007; Kielar et al., 2009; Macauley et al., 2011). Therefore, we
sought to measure the levels of various pro-inflammatory
markers such as IFN-� and TNF-� (Fig. 4A); lymphocyte/
monocyte mediators, such as Oncostatin M and IP-10 (Fig.
4B); and monocyte mediators, such as MIP-1�, MIP-2, and
MCP-1 (Fig. 4C). At 7.5 months, pro-inflammatory cytokines
as well as monocyte and lymphocyte mediators are elevated in
Ppt1 �/� mice compared with littermate controls. Although no
significant effects on cytokine levels were observed with any

Figure 3. Astrocyte (GFAP) and microglial (CD68) activation in the Ppt1 �/ � brain following therapeutic intervention. There were significant increases in astrocyte (A, B) and microglia (C, D)
staining in the S1BF cortex, the ventral posteromedial (VPM)/ventral posterolateral (VPL) region of the thalamus, CA1 field of the hippocampus, and lobe VIII of the cerebellum in Ppt1 �/ � mice.
B, Following AAV alone or AAV � MW151 treatment, there was a significant decrease in GFAP staining within the cortex, thalamus, and hippocampus, but not in the cerebellum. Treatment with
MW151 alone had little effect on GFAP immunoreactivity. C, There was a significant decrease in microglial activation in the cortex and hippocampus of Ppt1 �/ � mice following AAV or AAV �
MW151 therapy. The combination of AAV � MW151 also significantly decreased CD68 staining in the cerebellum. There was a trend toward a decrease in CD68 staining in the MW151-only group
in the cortex and thalamus, but this did not reach significance (*p � 0.05; **p � 0.01; ***p � 0.001). Error bars represent � SEM.
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treatment, all treatments appeared to decrease levels within
the brain. Specifically, AAV-only and AAV � MW151 groups
appeared to have more robust effects on all cytokine assays.
However, the MW151-alone appeared to decrease several
monocyte (MIP-2 and MCP-1) and monocyte/leukocyte (On-
costatin M) mediators; however, this did not result in statisti-
cal significance.

Discussion
Previous studies in the Ppt1�/ � mice demonstrated that neuro-
inflammation is central to the pathogenesis of INCL (Kielar et al.,
2007; Macauley et al., 2009, 2011). Widespread astrocytosis and
microglial activation accompany this frank neurodegenerative
disorder. Before the onset of neurodegeneration, astrocyte activation
occurs in specific brain regions that ultimately suffer neuronal loss
and brain atrophy. In addition to astrocytosis, microglial activa-
tion occurs before and during neuronal cell loss. Concurrent with
glial activation, the Ppt1�/ � brain displays elevated levels of
chemokines and cytokines, which are responsible for the recruit-
ment of monocytes and leukocytes into the CNS. Recent studies
also demonstrated that inactivation of the adaptive immune
system in Ppt1�/� mice spared axonal damage and neuronal
loss (Groh et al., 2013). Therefore, increased expression of cyto-
kines within the CNS and the infiltration of peripheral immune
cells are closely associated with the neuronal pathology and func-
tional decline. Given the evidence implicating pro-inflammatory
cytokine-mediated neuroinflammation in Ppt1�/ � mice, we in-
vestigated the therapeutic value of MW151, a small molecule
capable of mitigating glial activation and cytokine production, as
a cotherapeutic approach with CNS-directed, AAV-mediated
gene therapy in the mouse model of INCL (Macauley et al., 2012;
Roberts et al., 2012).

AAV-mediated gene therapy alone resulted in significant bio-
chemical, histological, and behavioral improvements in PPT1-
deficient mice. The unexpected main positive finding of MW151
treatment alone was the significant decrease in seizure incidence
in the Ppt1�/ � mice compared with untreated controls. This is an
important finding given the severity of the seizure phenotype in
INCL. In addition, this suggests that seizures associated with

INCL might be related to the neuroinflammatory response asso-
ciated with neuronal dysfunction. However, MW151 did not de-
crease histopathological markers of disease. This is not entirely
surprising since MW151 does not target the primary defect in
Ppt1�/ � mice, an enzyme deficiency which results in accumula-
tion of undegraded material. Long-term treatment (every day for
nearly 1 year) with MW151 at 2.5 mg/kg was well tolerated but
might not be sufficient given the severity of disease progression. It
is possible that chronic treatment with even higher doses would
be well tolerated and perhaps result in greater benefit alone or in
combination with gene therapy. A dose-ranging study showed
that chronic administration of MW151 at doses 	100-fold
higher than those reported here were well tolerated and re-
sulted in little or no toxicity (D.M. Watterson, personal
communication).

In previous studies (Macauley et al., 2011; Hu et al., 2012;
Roberts et al., 2012) that target the primary defect such as
CNS-directed gene therapy or ERT, clinical improvement was
modest but improved with use of adjunct therapies. This is
likely due to the aggressive and complex nature of this disease.
INCL is a chronic disease with a rapid clinical course, affecting
the brain in its entirety. This poses a unique set of challenges
for replacement therapy. Only addressing the enzymatic defi-
cit in INCL patients will likely yield partial results. However,
when used in combination with drugs such as MW151, there is
the additional benefit of targeting a secondary pathogenic
mechanism in conjunction with the appeal of less invasive
dosing. Beyond INCL, this has implications for treating other
forms of Batten disease, such as late-infantile and juvenile
NCL, given that glial activation and seizure deficits are prom-
inent features of these diseases as well (Oswald et al., 2005;
Chang et al., 2008; Chen et al., 2009; Weimer et al., 2009). The
concept of combining replacement therapy with small-
molecule cotherapy is also gaining acceptance in other areas of
neurotherapeutics (Glover et al., 2012). Overall, the results
reported here demonstrate the potential of using AAV-mediated
enzyme replacement therapy combined with mechanism-based,
small-molecule drug treatment for INCL

Figure 4. Therapeutic intervention decreases cytokine production in the Ppt1 �/ � brains. Luminex assays were performed for (A) pro-inflammatory markers, (B) lymphocyte/monocyte
activators, and (C) monocyte activators. Elevations in the cytokines, IFN-�, TNF-�, MIP-1B, MIP-2, MCP-1, Oncostatin M, and IP-10, were observed in Ppt1 �/ � mice. Treatment with AAV only and
AAV � MW151 produced a trend toward a decrease in IFN-�, TNF-�, MIP-1B, MIP-2, MCP-1, Oncostatin M, and IP-10, although the change was not statistically significant. Error bars represent �
SEM.
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