

The Drosophila pro-secretory transcription factor dimmed is dynamically regulated in adult enteroendocrine cells and protects against Gram-negative infection

Katherine Beebe*, Dongkook Park §, Paul H. Taghert §, & Craig A. Micchelli*,1

* Department of Developmental Biology, [§] Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, 63110, United States of America

¹Corresponding author: Washington University School of Medicine, Department of Developmental Biology, 660 South Euclid Avenue, McDonnell Science Building, St. Louis, Missouri, 63110. E-mail: micchelli@wustl.edu

DOI: 10.1534/g3.115.019117

Figure S1 Analysis of dimm mutants.

(A-A') Confocal micrograph of the adult midgut epithelium of a *dimm* mutant midgut exposed to *Pe* (DAPI, blue; anti-Dimm, red; anti-Pros, green). Arrows reference example enteroendocrine nuclear locations to compare A to A'. Scale bar: 50 μ m. (B) qPCR analysis of *dimm* mRNA in whole body tissue of wild type and *dimm* mutants (wild type, black bars; *dimm* mutant, grey bars). Fold change represents *Pe* compared to mock using the 2^{- $\Delta\Delta C_T$} method (n=3 trials, 30 flies). *Pe* dose was OD5 and time of collection 24h in A-B. (C-E) Analysis of *dimm* mutants 3 days following eclosion under RF conditions (wild type, black bars; *dimm* mutant, grey bars). (C) Body mass of wild type and *dimm* mutants (n=3 trials, 70-90 females). (D) Midgut area of wild type and *dimm* mutants (n=2 trials, 14-19 midguts). (E) Density of Pros⁺ cells per unit area in wild type and *dimm* mutant midguts (n=2 trials, 16 midguts). Bars indicate mean values ± SEM.

Figure S2 Ablation of *esg* cells does not induce Dimm under baseline conditions.

Confocal micrographs of adult midguts expressing either GFP (A-A') or the pro-apoptotic genes *rpr* and *hid* (B-B') using the *esg*^{TS} conditional system (DAPI, blue; anti-Pros, red; anti-GFP, green; anti-Dimm, white). Flies were temperature shifted to initiate transgene expression 4 days prior to dissection and were maintained on regular food (RF). Scale bar: 50 µm.

Figure S3 upd3 and Dpt mRNA induction increase with Pe dose.

(A) Raw C_T values for *RpL32* transcript from whole body tissue. Tissue was collected in 3 separate trials, each point represents cDNA pooled from 10 whole bodies. (B) qPCR analysis of *upd3* mRNA from midgut tissue of wild type flies exposed to increasing dose of *Pe* (n=3 trials, 60 midguts). (B) qPCR analysis of *Dpt* mRNA from whole body tissue of wild type flies exposed to increasing dose of *Pe* (n=3 trials, 30 flies). Fold change represents *Pe* compared to mock using the $2^{-\Delta\Delta C_{T}}$ method. Tissue was collected following 24h of *Pe* exposure. Bars indicate mean values ± SEM.

Figure S4 Expression of RNAi targeting *dimm* or *Phm* reduces survival following *Pe*.

(A) Survival following exposure to *Pe* of tub^{TS} flies expressing GFP (control, *w*) or an RNAi targeting *dimm* or *Phm* (n=3 trials, 30 flies). The conditional tubGal4, tubGal80^{TS} genotype was used to initiate RNAi expression 3 days prior to *Pe* exposure. Flies were exposed to *Pe* at OD 10 for 24h. (B-E') Validation of RNAi knockdown by antibody staining following *Pe*. (B-B') Anti-Dimm staining in tub^{TS} control flies. (C-C') Anti-Dimm staining in tub^{TS} flies driving expression of RNAi targeting *dimm*. (D-D') Anti-Phm staining in tub^{TS} flies driving expression of RNAi targeting *Phm*. Flies were exposed to *Pe* at OD 5 for 24h.

Table S1Primers used in this study.

Flybase ID	Gene name	Symbol	Forward Primer	Reverse Primer	Reference
CG7939	Ribosomal Protein L32	RpL32	GACGCTTCAAGGGACAGTATCTG	AAACGCGGTTCTGCATGAG	Neyen et al., 2014
CG8667	dimmed	dimm	AGACGAACTTCACAGCTAAGCA	GTCATCGCTTTGCGAACTGG	This study
CG8667	dimmed ^a	dimm	GATGCACAGCCTAAACGA	TTTGGCCAGTGTGAGTGT	Gauthier and Hewes, 2006
CG12763	Diptericin	Dpt	GCTGCGCAATCGCTTCTACT	TGGTGGAGTGGGCTTCATG	Neyen et al., 2014
CG10816	drosocin	dro	CCATCGTTTTCCTGCT	CTTGAGTCAGGTGATCC	Neyen et al., 2014
CG10146	Attacin A	AttA	CCCGGAGTGAAGGATG	GTTGCTGTGCGTCAAG	Neyen et al., 2014

^{*a*} The *dimm* primers from Gauthier and Hewes, 2006 were used to verify results.

Fold change results examining *dimm* were consistent across *dimm* primer sets.

Table S2Statistical analysis of survival of wild type adult females exposed to different doses of *Pe* (n=4 trials, 80 females).Table accompanies Figure 1G.

Dose (OD ₆₀₀)	p value for Mantel-Cox test (compared to mock)
0.001	ns, 0.3205
1	*, 0.0159
5	***, <0.0001
10	***, <0.0001
20	***, <0.0001

Table S3Statistical analysis of survival of wild type and *dimm* mutant adult females exposed to mock or *Pe* treatment (n=3trials, 60 females).Table accompanies Figure 5A.

Statistical Comparison	p value for Mantel-Cox test
wt, Pe compared to mock	***, <0.0001
dimm -/-, Pe compared to mock	***, <0.0001
dimm-/- Pe compared to wt Pe	*, 0.0462

Table S4 Estimated number of *Pe* CFUs per 0.5mL applied to each experimental vial.

Dose (OD ₆₀₀)	CFUs/0.5mL	
0.001	4.53E+05	
1	4.53E+08	
5	2.27E+09	
10	4.53E+09	
20	9.06E+09	