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Abstract

Because PML-RARA-induced acute promyelocytic leukemia (APL) is a morphologically differentiated leukemia, many groups
have speculated about whether its leukemic cell of origin is a committed myeloid precursor (e.g. a promyelocyte) versus an
hematopoietic stem/progenitor cell (HSPC). We originally targeted PML-RARA expression with CTSG regulatory elements,
based on the early observation that this gene was maximally expressed in cells with promyelocyte morphology. Here, we
show that both Ctsg, and PML-RARA targeted to the Ctsg locus (in Ctsg-PML-RARA mice), are expressed in the purified KLS
cells of these mice (KLS = Kit+Lin2Sca+, which are highly enriched for HSPCs), and this expression results in biological effects
in multi-lineage competitive repopulation assays. Further, we demonstrate the transcriptional consequences of PML-RARA
expression in Ctsg-PML-RARA mice in early myeloid development in other myeloid progenitor compartments [common
myeloid progenitors (CMPs) and granulocyte/monocyte progenitors (GMPs)], which have a distinct gene expression
signature compared to wild-type (WT) mice. Although PML-RARA is indeed expressed at high levels in the promyelocytes of
Ctsg-PML-RARA mice and alters the transcriptional signature of these cells, it does not induce their self-renewal. In sum,
these results demonstrate that in the Ctsg-PML-RARA mouse model of APL, PML-RARA is expressed in and affects the
function of multipotent progenitor cells. Finally, since PML/Pml is normally expressed in the HSPCs of both humans and
mice, and since some human APL samples contain TCR rearrangements and express T lineage genes, we suggest that the
very early hematopoietic expression of PML-RARA in this mouse model may closely mimic the physiologic expression
pattern of PML-RARA in human APL patients.
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Introduction

The fusion gene PML-RARA is produced by t(15;17)(q22;q21),

and is found only in the hematopoietic cells of patients with acute

promyelocytic leukemia (APL). When PML-RARA is expressed in

mice using regulatory elements from the human or mouse

cathepsin G gene (CTSG/Ctsg) or the human S100A8 (MRP8)

promoter/enhancer, it can initiate APL; when RARA or PML-

RARA are expressed in mouse bone marrow cells via retroviral

transduction, both can decrease myeloid maturation and increase

self-renewal [1,2,3,4]. Human APL is associated with differenti-

ation arrest at the promyelocyte stage; in mouse models of the

disease, this maturation arrest is less pronounced and varies

between models, for reasons that are not yet clear. However, the

disease is always myeloid-restricted [5]. Because murine models of

APL were designed to target PML-RARA expression to myeloid-

restricted cells, we and others have suggested that myeloid-

restricted disease might result from targeted expression of PML-

RARA to the promyelocyte compartment [6,7,8,9,10]. However,

human PML and murine Pml are expressed in early CD34+

hematopoietic progenitor cells, and human PML-RARA expression

may not be limited to committed myeloid progenitors and

promyelocytes [11,12].

Several studies have suggested that in APL, the leukemic cell of

origin must be a committed myeloid progenitor [10]. First,

Turhan et al. did not observe PML-RARA expression in flow-

sorted CD34+/CD382 cells (a cell population enriched for less

mature hematopoietic progenitors, including stem cells), but did

detect PML-RARA expression in CD34+/CD38+ cells (a popula-

tion enriched for more mature hematopoietic progenitors,

including early myeloid committed progenitors) from two APL

patients, using semi-quantitative RT-PCR [7]. Secondly, Bonnet

and Dick observed engraftment of CD34+/CD382 AML cells into

NOD/SCID mice, but no engraftment of similarly sorted CD34+/

CD382 cells from APL patients, suggesting that these were not the
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initiating cells for this subtype of AML [13]. Many authors have

suggested that mouse models of APL support this hypothesis, since

expression of PML-RARA under the control of Ctsg or MRP-8

regulatory elements has led to myeloid leukemia [8,9,10,14].

However, Chapiro et al. recently reported expression of T-lineage

transcripts and TCR rearrangements in 60% of hypogranular

t(15;17) APL cases, suggesting the translocation may affect HSPCs

with the capacity to differentiate into both myeloid and lymphoid

lineages [14]. In addition, APL cells often do not express CD34 on

the cell surface, but do often express atypical lymphoid linage

markers (CD56, CD19, or CD2), again suggesting that PML-

RARA may initiate disease (in human patients) within a multip-

otent progenitor compartment [15].

In this study, we use state-of-the-art flow-sorting, mRNA

amplification, and expression profiling strategies to carefully

define the timing of activation of Ctsg and PML-RARA during

early hematopoietic development in Ctsg-PML-RARA mice. We

found that Ctsg mRNA is expressed not only in the KLS (Kit+/

Lin2/Sca+) compartment, but also in SLAM cells (CD150+/

CD412/CD482 KLS), which are even more primitive. We

observed striking changes in the gene expression profile of flow-

sorted common myeloid progenitors (CMPs) and granulocyte/

monocyte progenitors (GMPs) derived from Ctsg-PML-RARA mice,

which suggests that PML-RARA has important transcriptional

consequences in early myeloid progenitor cells. We extend these

findings with functional validation of PML-RARA effects on

lymphoid and erythroid lineages, which confirm that PML-RARA

is expressed (and functional) at a very early stage in the

hematopoietic development of Ctsg-PML-RARA mice. We ob-

served that in flow-sorted Ctsg-PML-RARA promyelocytes, PML-

RARA expression does result in significant gene expression changes

but does not result in distinct gene expression signature, nor does it

promote self-renewal. These results change our understanding of

the cellular compartments in which PML-RARA initiates leukemia

in the Ctsg-PML-RARA mouse model of APL.

Results

Expression of PML-RARA and the genes used to direct
expression in APL mouse models

We analyzed the expression profiles of flow-sorted SLAM cells

(cKit+Lin2Sca+CD150+CD412CD482), KLS cells (cKit+Lin2-

Sca+), CMPs (Lin2Sca-12cKit+CD34+FccRII/IIIlo), GMPs

(Lin2Sca-12cKit+CD34+FccRII/IIIhi), megakaryocyte-erythro-

cyte progenitors (MEPs; Lin2Sca-12cKit+CD342FccRII/IIIlo),

‘‘promyelocytes’’/early myeloid cells (Ly6gintSC-

CintB2202CD1152Ter1192), and neutrophils (Ly6g+SC-

ChighB2202CD1152Ter1192) from 2–6 individual Ctsg-PML-

RARA or WT mice (Figure S1).

In our mouse model of APL, PML-RARA is inserted into the 59

untranslated region of Ctsg, and the Ctsg locus therefore regulates

its expression [2]. To begin to define when PML-RARA expression

is activated in this model during hematopoietic development, we

first examined the expression of the Ctsg gene in all the

compartments listed above, using young WT and Ctsg-PML-RARA

mice (Figure 1). Ctsg expression is not consistently detected in the

SLAM compartment by exon array. However, KLS cells express

detectable amounts of Ctsg mRNA by exon array, and this

expression is absent in KLS cells derived from Ctsg deficient mice

(proving the specificity of the probesets for Ctsg transcripts). Ctsg

expression increases massively in the CMP compartment; the high

level of expression persists in the GMP compartment and in

promyelocytes, and declines in neutrophils. Ctsg is minimally

expressed in the MEP compartment.

Using very sensitive quantitative RT-PCR to further investigate

the timing of Ctsg activation, we found that Ctsg mRNA could be

detected not only in the KLS compartment but also in SLAM cells

(Figure S2A). However, we could not reliably detect PML-RARA

expression in SLAM cells, demonstrating that PML-RARA

expression is at or below the level of detection by RT-PCR

(Figure S2B and S2C). We have previously shown that the

expression of the PML-RARA transgene driven from the Ctsg locus

is much lower than that of endogenous Ctsg from a WT locus, so

this result is consistent with those findings [1,2]. As expected,

PML-RARA mRNA was not detected in bone marrow cells from

WT littermate controls [8].

We noted that Ly6g (Gr-1) expression was limited to promyelo-

cytes and neutrophils, and that Kit and Flt3 expression declined

during myeloid maturation, as expected (Supplemental Figures

S3A, S3B, and S3C). Promyelocytes had relatively low but

detectable expression of Cd34 with an average expression intensity

of 785.912672.575 in Ctsg-PML-RARA promyelocytes (n = 3) and

467.2556189.475 in WT promyelocytes (n = 6) with much higher

Cd34 expression in the earlier myeloid compartments, CMPs and

GMPs, as expected (Figure S3D). Importantly, we detected no

expression of Ly6g in SLAM and KLS cells, demonstrating

efficient negative selection of differentiated myeloid cells within

these populations: all probes had signal intensity ,100, whereas

signal intensity ,200 represents experimental ‘noise’ on this

platform (Figure S3A).

We confirmed the purification of the sorted compartments by

plotting the expression of myeloid genes that are known to be

developmentally-regulated: myeloperoxidase (Mpo), elastase (Ela2),

Figure 1. Expression of Ctsg in flow-sorted bone marrow cells
and mouse leukemia samples. Expression profile in indicated WT
and Ctsg-PML-RARA (labeled mCG-PR) flow-sorted bone marrow cells
and 15 Ctsg-PML-RARA leukemia samples (labeled Mouse APL) using
Nugen amplified mRNA and Affymetrix Mouse Exon 1.0ST arrays. We
plotted Ctsg expression for probeset 5542324. Note the absence of Ctsg
mRNA in Ctsg deficient cells (labeled Ctsg KO). There were no
statistically significant differences in Ctsg expression between the same
cell populations, when comparing WT and Ctsg-PML-RARA samples
(using two-tailed t test, p-value cutoff 0.05). Comparing the levels of
Ctsg expression between the Ctsg-PML-RARA samples using a two-tailed
t test, the p-value for SLAM vs. KLS = 0.11, KLS vs. CMPs = 0.00026, CMPs
vs. GMPs = 0.022, GMPs vs. MEPs 2.461028, MEPs vs. Pros 2.661027,
GMPs vs. Pros = 0.027, Pros vs. PMNs = 2.461026.
doi:10.1371/journal.pone.0046529.g001

Ctsg-PML-RARA Alters Multipotent Hematopoiesis
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and proteinase3 (Prtn3) are expressed early in myeloid develop-

ment in primary granules; lactoferrin (Ltf) is expressed later in

secondary granules; and matrix metallopeptidase 9 (Mmp9) found

in tertiary granules is a marker of mature neutrophils (Figure S4A–

E). [9,16,17]. In addition, we show that the mature myeloid

markers formyl peptide receptor 1 (Fpr1) and lysozyme-2 (Lyz2) are

appropriately expressed in our sorted cell populations (Figure S4F

and S4G) [18]. The expression data from 11 developmentally-

regulated myeloid genes was used to construct a supervised

heatmap (by z-score) which clearly illustrates the expected levels of

gene expression at the appropriate stage of myeloid development

for our sorted cell populations (Figure 2).

Regulatory elements from other ‘‘myeloid-restricted’’ genes

have also been used to generate mouse models of APL. One

transgenic strategy (using the S100A8 (MRP8) 59 flanking region)

resulted in myeloid leukemia, while two others (using Fes and Itgam

(CD11b) promoters) did not [3,19,20]. Using data from the same

expression arrays, we found that Fes and Itgam are both expressed

at much lower levels in KLS cells than Ctsg, with expression

peaking in neutrophils, rather than promyelocytes (Figure 3A and

3B). In contrast, S100A8 is highly expressed in human AML cells

and in flow-sorted CD34+ cells, with massive up-regulation at the

promyelocyte stage (Figure 3C). High expression of S100a8 was

also seen in murine hematopoietic cells, although dynamic

regulation during promyelocyte maturation was absent

(Figure 3D). The expression pattern of these loci contrasts with

that of human PML and murine Pml, which are expressed at much

lower levels, and which exhibit little or no dynamic regulation

during myeloid maturation (Figure 3E and 3F).

Effects of Ctsg-PML-RARA in multiple hematopoietic
compartments

To determine whether PML-RARA expression from the Ctsg

locus results in biological effects on multipotent hematopoietic

cells, we used four independent approaches. First, we used

transcriptional profiling using exon arrays of SLAM, KLS,

MEP, CMP, GMP, promyelocyte and mature neutrophil popu-

lations from Ctsg-PML-RARA and WT mice. We performed

Figure 2. A supervised heatmap of 11 developmentally-regulated myeloid genes. Using the expression data from the Affymetirix Mouse
Exon 1.0ST arrays, we created a supervised heatmap with SPOTFIRE using z-score averaging of the probeset with the highest average expression for
each of 11 developmentally-regulated myeloid genes across all of our flow-sorted bone marrow cell samples. The legend is shown below the
heatmap with downregulated genes in green and upregulated genes in red.
doi:10.1371/journal.pone.0046529.g002

Ctsg-PML-RARA Alters Multipotent Hematopoiesis
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Figure 3. Expression of genes used to target PML-RARA expression in mice. Expression data for the indicated genes in flow-sorted bone
marrow cells using murine Affymetrix Exon 1.0ST arrays or Human Genome U133 Plus 2.0 arrays. Each panel is a highly representative probe on the
array. A. cFes (probeset 4758608). B. Itgam (CD11b, probeset 4782002). C. S100A8 (MRP8, probeset 202917). D. S100a8 (Mrp8, probeset 5010279). E.
PML (probeset 235508). F. Pml (probeset 4885841). We have previously published the expression profile of PML in AML and human hematopoietic
cells [11]. Panel E includes an additional 86 AML cases of AML and data from a second representative probe.
doi:10.1371/journal.pone.0046529.g003

Ctsg-PML-RARA Alters Multipotent Hematopoiesis
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unsupervised hierarchical clustering analyses to assess the global

effects of PML-RARA expression on gene expression in KLS and

SLAM cells. We observed that KLS (but not SLAM) samples

segregated by genotype in an unsupervised clustering analysis,

suggesting that expression of PML-RARA within the KLS

compartment significantly alters the expression of a specific set

of genes (Figure S5A). Although many genes were significantly

dysregulated in the comparison between WT and Ctsg-PML-RARA

promyelocytes, this cell population did not cluster by genotype in

an unsupervised analysis (Figure S5B).

To assess the downstream consequences of PML-RARA expres-

sion in early myeloid progenitors, we purified CMPs and GMPs

for expression analysis. These populations segregated by Ctsg-

PML-RARA genotype in unsupervised hierarchical clustering,

whereas MEPs did not cluster by genotype (Figure S6). To

ascertain significant differences in specific gene expression between

the Ctsg-PML-RARA and WT samples, we performed ANOVA

and Significance of Microarrays (SAM) analysis to define

significantly dysregulated genes in each subset (Tables S1, S2,

S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, 13 and Data S1). In the

KLS comparison, one of the most significantly dysregulated genes

by ANOVA was Notch1 (Table S2), which is relevant for the recent

finding of activated Notch1 signaling in both human and murine

APL pathogenesis (Grieselhuber NR et al., submitted). Unexpect-

edly, one of the most significantly dysregulated genes within the

CMP and GMP compartments was Cadherin 1 (Cdh1), a tumor

suppressor in epithelial cancers, which was strikingly up-regulated

in both the CMP and GMP compartments of Ctsg-PML-RARA

mice (Table S7) [21]. We also found that cyclin H (Ccnh) expression

is down-regulated in the CMP compartment of Ctsg-PML-RARA

mice (Table S3): cyclin H has been previously shown to be part of

a complex that phosphorylates the AF-2 domain of RARA,

leading to the downstream activation of retinoic acid responsive

genes [22].

To highlight the changes in gene expression in the CMP and

GMP populations, we performed a supervised clustering analysis

of the twenty-two genes that were significantly dysregulated

(unadjusted p value,0.001, fold change $2) in both the CMP and

GMP ANOVA results (the supervised heatmap was created by

plotting the relative expression of each of these genes to each

other) (Figure 4). Interestingly, this gene expression signature is not

present in earlier cell populations (KLS or SLAM), in more mature

myeloid cells (promyelocytes and neutrophils), nor the leukemic

cells from the Ctsg-PML-RARA mice. Also, there is no concordant

overlap between genes dysregulated in the CMP or GMP

compartments versus promyelocytes.

To further validate the changes in gene expression in the CMP

and GMP compartments, we performed supervised clustering

analyses of all the significantly dysregulated genes by ANOVA

(unadjusted p value,0.001, fold change $2) from the GMP and

CMP compartments individually (these heatmaps were created by

traditional z-score scaling). As expected, the clustering with genes

dysregulated in either the CMP or GMP compartment segregated

both the GMP and CMP populations, but not the MEP

populations, by genotype (Figure S7A and S7B). Thus, the

expression of PML-RARA in Ctsg-PML-RARA mice has clear

transcriptional consequences that occur early in myeloid develop-

ment and are specific for the CMP and GMP cell populations.

These transcriptional changes, in turn, may influence the gene

expression profile of more mature myeloid cells, just as gene

expression changes driven by the presence of PML-RARA

expression in earlier hematopoietic precursors may shape the

distinct expression signature seen in the CMP and GMP

compartments.

Secondly, we assessed the function of Ctsg-PML-RARA bone

marrow cells after competitive transplantation. We transplanted

total bone marrow from healthy 6-week-old (i.e. non-leukemic)

Ctsg-PML-RARA mice (CD45.2+) at ratios of 1:9, 1:1, and 9:1 with

competitor Ly5.1/Ly5.2 bone marrow (CD45.1+/CD45.2+) into

Ly5.1 recipients (CD45.1+). Peripheral blood was assessed at 6

weeks, 3 months, and 6 months post-transplant. Four mice

developed leukemia between 3 and 6 months, and could not be

analyzed further. As expected, we noted a consistent expansion of

Ctsg-PML-RARA+ cells within the Ly6g+ (myeloid) compartment at

all time points tested (Figure 5A). However, we also observed an

expansion of Ctsg-PML-RARA+ cells within the CD3+ and B220+

compartments at 3 and 6 months (Figure 5A).

Thirdly, we examined the function of erythroid progenitors

derived from Ctsg-PML-RARA mice. Total Ctsg-PML-RARA bone

marrow cells contained significantly more BFU-Es than wild-type

littermate controls (Figure 5B). There was no difference in the

percentage of mature erythroid cells (Ter119+CD71high, 24%68%

vs 37%618%, p = 0.1; Figure S8A) in these colonies, although

Ctsg-PML-RARA BFU-E colonies contained more immature

erythroid cells (cKit+CD71dim, 12.7%62.3% vs 7%63.5%,

p = 0.007; Figure 5C) and more myelomonocytic/monocytic cells

(CD11b+, 32%64.4% vs 21%69.6%, p = 0.02; Figure S8B). The

lack of transcriptional changes in flow sorted MEP cells (Tables S5

and S12) may be accounted for by differences between the

immunophenotypically defined MEPs and the physiologically

defined colony forming cell (which may be less mature than MEP

cells). Evaluation of a large cohort of mice (n = 19 Ctsg-PML-RARA

and 15 wild-type littermate controls) revealed normal hemoglobin

levels and red cell size in all mice (Figure S8C and S8D),

suggesting that PML-RARA-dependent effects on BFU-Es are not

associated with a loss of erythroid homeostasis in vivo. These results

parallel our previous finding that myeloid CFUs are increased in

healthy pre-leukemic Ctsg-PML-RARA mice, but do not lead

directly to increased numbers of circulating neutrophils [23,24].

Finally, we asked whether promyelocyte self-renewal was altered

in Ctsg-PML-RARA mice. As expected, we observed that KLS cells

from Ctsg-PML-RARA mice contained increased numbers of CFUs

compared with purified promyelocytes (Figure 6B and 6C). We

also observed a trend toward increased numbers of CFUs in Ctsg-

PML-RARA KLS cells compared with wild-type KLS cells. Serial

re-plating was detected with Ctsg-PML-RARA KLS cells, as

expected, but was not found with Ctsg-PML-RARA promyelocytes

(Figure 6C). Transplantation of pools of donor KLS cells (3,000

cells per sub-lethally irradiated Ly5.1 recipient) from either WT or

Ctsg-PML-RARA mice led to multi-lineage engraftment, as

expected (Figure 6D and Figure S9A–C). In contrast, transplan-

tation of 50,000 purified promyelocytes led to trace engraftment

(,1% of bone marrow leukocytes) regardless of genotype, which

was not myeloid restricted (Figure 6D–E and Figure S9D–F).

Discussion

The fusion protein PML-RARA is associated exclusively with

myeloid leukemia in both humans and mice (unlike BCR-ABL and

MLL fusion proteins, which can lead to myeloid or lymphoid

leukemias) [2,3,5,25,26,27]. There has therefore been much

speculation regarding whether the leukemic cell of origin is a

committed progenitor (e.g. a promyelocyte) or multipotent

progenitor [5,6,7,8,10,14,28]. The data presented here show that

when PML-RARA is inserted into the murine Ctsg locus, it begins to

be expressed in KLS cells, where it alters myeloid, lymphoid, and

erythroid hematopoiesis (biologically confirming its activity in

multipotent cells). It is massively upregulated in CMP and GMP

Ctsg-PML-RARA Alters Multipotent Hematopoiesis
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cells, where it significantly alters the expression of a number of

genes. In contrast, PML-RARA expression in promyelocytes is not

associated with a striking change in gene expression or inappro-

priate self-renewal. The studies described here define the

hematopoietic compartments that are initially exposed to (and

perturbed by) PML-RARA in healthy, pre-leukemic Ctsg-PML-

RARA mice; the immunophenotype and cytomorphology of

leukemia initiating cells within the subsequent leukemias have

been defined elsewhere, and are not addressed in this analysis

[8,9].

One of the important arguments used to support a committed

progenitor as the leukemic cell of origin has been the successful

generation of leukemia using CTSG, Ctsg, and S100A8 loci, which

were thought to target PML-RARA to the promyelocyte compart-

ment [10]. However, we and others have now found that in Ctsg-

PML-RARA mice, PML-RARA is consistently expressed in cells

within the KLS compartment, [8], and is strikingly upregulated in

committed myeloid progenitor cells. We have therefore reevalu-

ated the expression patterns of the genes used to direct PML-RARA

expression in mice: PML-RARA directed from the CTSG, Ctsg and

S100A8 (MRP8) loci cause APL; expression directed by regulatory

elements from the cFes and Itgam (CD11b) loci do not

[1,2,3,19,20]. Ctsg, CTSG, S100a8, and S100A8 are all expressed

in multipotent progenitor compartments, while cFes and Itgam

display low to absent levels of expression in KLS cells, with

maximal expression in neutrophils. This suggests that APL

development may require PML-RARA expression in an early

hematopoietic compartment, and that induction of expression at

the promyelocyte stage is insufficient to initiate leukemia, perhaps

because PML-RARA cannot reverse the commitment of termi-

nally differentiated neutrophils to die.

Other authors have evaluated the cell-specific effects of PML-

RARA and MLL fusion transcripts using viral transduction

[4,29,30,31]. We have focused our analysis on transgenic mouse

Figure 4. A supervised heatmap of the 22 genes significantly dysregulated in both the CMP and GMP compartments. We created a
supervised clustering using SPOTFIRE of the 22 genes that were significantly dysregulated (unadjusted p value,0.001, fold change $2) in both the
CMP and GMP ANOVA results comparing WT vs. Ctsg-PML-RARA samples. The supervised heatmap was created by plotting the relative expression of
each of these genes to each other as a relative percentage, rather than z-score averaging, since the differences in expression levels between some
genes was large, and z-score averaging inappropriately highlighted the genes with the highest expression levels. The legend is shown below the
heatmap, with minimally expressed genes in green, and highly expressed genes in red.
doi:10.1371/journal.pone.0046529.g004
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models because interpretation of viral-transduction models is

complicated both by the heterogeneity of the bone marrow cells

transduced, and by the toxicity of PML-RARA, which is variable

among cell types [28,32,33].

Importantly, this work addresses a different question than the

work of Guibal et al., which defined the immunophenotype of a

committed myeloid progenitor (cKit+CD34+FccRII/III+Ly6gint)

as the leukemia-initiating cell in the hMRP8-PML-RARA trans-

genic mouse model of APL. Here we show the transcriptional and

functional consequences of PML-RARA expression in Ctsg-PML-

RARA pre-leukemic cells. These findings are not mutually

exclusive, since the hematopoietic compartment susceptible to

PML-RARA transformation may not be at the same developmental

stage as the resultant leukemia [9].

Our work clarifies and expands the findings of Wojiski et al. [8]

Using semi-quantitative RT-PCR, they observed PML-RARA

Figure 5. Effects of Ctsg-PML-RARA on multi-lineage hematopoiesis. A. Effects on myeloid and lymphoid lineage hematopoiesis. Bone marrow
cells from indicated mice at 6 weeks of age were mixed at ratios of 1:1, 9:1, or 1:9 with competitor CD45.1+/CD45.2+ bone marrow cells from sex- and
age-matched mice. These cells were transplanted into sex-matched, 6-week-old, lethally irradiated CD45.1+ recipients. At the indicated time points,
peripheral blood was assessed for ratios of CD45.2+ and CD45.1+/CD45.2+ white blood cells within the B220+, CD3+, or Gr1+ compartments. One
sample, two-tailed t-test compared outcomes with the expected values of 10%, 50%, or 90%. Alpha was set at 0.05. Time points with p,0.01 (*) and
p,0.05 ({) are indicated. B–C. Effect of Ctsg-PML-RARA on erythroid lineage hematopoiesis. Bone marrow cells from 6-week-old and 8-week-old,
healthy mice were plated in methylcellulose containing erythropoietin. B. Total colonies after one week in culture (each data point represents results
from an individual mouse in three combined experiments). Results of paired t-test between WT and mCG-PR samples are shown (p-value = 0.002). C.
After one week in culture, total colony cells were washed and the number of immature erythrocytes (cKit+CD71dim) was assessed. Results of a paired
t-test between WT and mCG-PR samples are shown (p-value = 0.007).
doi:10.1371/journal.pone.0046529.g005
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expression in the KLS cells of Ctsg-PML-RARA mice. Their

functional studies revealed increased myeloid self-renewal in flow-

sorted KLS, CMP, and GMP cells from Ctsg-PML-RARA mice.

They used a PCR-based protocol to demonstrate long-term

engraftment of flow-sorted Ctsg-PML-RARA promyelocytes (Lin2-

Sca2Ly6g+cKit+CD34+ cells) in sub-lethally irradiated recipient

B6 mice. However, this strategy does not determine whether the

engrafted cells are myeloid-restricted (i.e. derived from promyelo-

cytes) or whether they are multi-lineage (i.e. arising from stem/

progenitor cells that contaminated the purified ‘‘promyelocytes’’).

In contrast, we used Ly5.1 mice as the recipients for our purified

promyelocyte populations, and found that even large numbers of

promyelocytes (50,000 purified cells per recipient) were insufficient

to lead to long-term engraftment of myeloid restricted cells. Our

data therefore do not support the idea that the promyelocytes from

Ctsg-PML-RARA mice have altered self-renewal properties that

contribute to the expansion of these cells in vivo.

There are no standard immunophenotypic markers for defining

murine promyelocytes, and our flow-sorting strategy for promy-

elocytes was different than that used by Wojiski et al.; however, we

extensively validated our approach using both expression data

from genes known to be developmentally-regulated during

myeloid development as well as traditional cytomorphology, in

which a trained hematopathologist performed blinded differentials

(Figure S1) [8,34]. Using these techniques, we demonstrate that we

have greatly enriched murine promyelocytes using our flow-sorting

Figure 6. Effects of Ctsg-PML-RARA on flow-sorted promyelocytes. A. Experimental schema. Bone marrow cells from Ctsg-PML-RARA and
littermate WT controls were harvested and KLS and promyelocytes were purified by flow sorting. Aliquots from individual donor mice were plated in
methylcellulose containing myeloid cytokines (SCF, IL-3, IL-6, Epo). KLS cells were combined from all donors by genotype and 3,000 cells/recipient
were transferred to sub-lethally irradiated Ly5.1 mice (4 recipients per genotype). Purified promyelocytes were separated into two pools, and 50,000
cells/recipient were transferred into sub-lethally irradiated Ly5.1 mice. B. Total CFUs per 10,000 KLS cells plated by week. Every 7 days, total colonies
were counted. Total cells were then collected in warm (37u) media and serially replated. C. Total CFUs per 10,000 promyelocytes plated by week. D.
Percentage of donor CD45.2+ cells in total bone marrow cells of individual recipient mice 12 weeks after engraftment, with indicated flow sorted cells.
All mice that received promyelocytes had ,1% CD45.2+ cells. E. Percentage of CD45.2+ cells within the Gr1+, CD3+, and CD19+ bone marrow cells of
mice engrafted with promyelocytes.
doi:10.1371/journal.pone.0046529.g006
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strategy; however, it remains possible that the different strategy

used by Wojiski et al. enriches for an earlier myeloid population

that could account for the different results regarding ‘‘promyelo-

cyte’’ self-renewal between our studies.

Nonetheless, our data demonstrate that in healthy, pre-leukemic

Ctsg-PML-RARA mice, PML-RARA is first expressed in very early

hematopoietic stem/[progenitor cells (KLS cells), and that its

expression continues throughout myeloid development (CMPs,

GMPs, promyelocytes, and neutrophils). Biological effects of PML-

RARA can be seen in pre-leukemic KLS cells, CMPs and GMPs.

Thus, in this model system, it is highly likely that PML-RARA

initiates leukemia in very early hematopoietic cells, and not in

promyelocytes, as originally predicted. Although we cannot

formally exclude the possibility that pre-leukemic promyelocytes

acquire self-renewal properties, it seems very unlikely, based on

recent data that some human APL cells have TCR rearrange-

ments, and express T lineage genes [14]. We suggest that the Ctsg-

PML-RARA mouse model may recapitulate the physiologic timing

of PML-RARA activation in very primitive human HPSCs that are

capable of giving rise to both lymphoid and myeloid cells.

PML-RARA does not appear to alter normal hematopoietic

homeostatic feedback or cause increasing cell numbers within an

immunophenotypically-defined multipotent progenitor compart-

ment (although healthy Ctsg-PML-RARA mice do have a subtle

increase in bone marrow promyelocytes) [2,8,11,24]. Neither we,

nor others, have observed increased numbers of KLS, GMP, CMP

or MEP cells in mouse models of APL [8,20,24,35]. However, we

have identified a competitive advantage in multiple hematopoietic

lineages following transplantation [11], and increased numbers of

myeloid [26,36] and erythroid BFUs in the marrow of Ctsg-PML-

RARA mice. Since Ctsg-PML-RARA mice virtually never develop

lymphocytic leukemia or erythroleukemia, our data suggests that

the myeloid restriction of leukemia must be explained by myeloid-

restricted genes or proteins that cooperate with PML-RARA in

leukemic cells (Figure 7). Although neutrophil elastase is known to

be one of the critical interacting proteins, further investigation will

be needed to fully define all of the cooperating elements [23,28].

Methods

Mice
Mice expressing PML-RARA from the murine Ctsg locus (Ctsg-

PML-RARA) and Ctsg deficient mice (CG-KO) have been

previously reported [2,37]. The Ctsg-PML-RARA transgenic mice

used in this study were backcrossed more than 12 generations into

the C57Bl/6 Taconic background [38]. The Washington Univer-

sity Animal Studies Committee approved all animal experiments.

Flow Sorting, Expression Array Profiling, and RT-PCR
Validation

Bone marrow cells from individual mice were harvested from

both femurs and tibia of 6-week-old and 13-week-old mice and

prepared previously described [11,24]. Standard red blood cell

lysis was performed with ACK lysis buffer (0.15 M NH4Cl,

10 mM KHC03, 0.1 mM Na2EDTA) on ice for 10 minutes. Non-

specific staining was blocked with Miltenyi FcR Blocking Reagent

for mouse (Auburn, CA). Isotype-matched antibodies were used as

negative controls and the Fluorescence Minus One (FMO) strategy

was used to set appropriate gates. Flow sorting was performed on a

Reflection high-speed cell sorter (i-Cyt, Champaign, IL). Cells

were sorted directly into Trizol (Invitrogen, Carlsbad, CA). Cells

were stained by standard protocols with the following antibodies

(eBioscience unless otherwise noted): KLS (c-Kit+/lineage nega-

tive/Sca-1+) cells were assessed using the following lineage

markers: FITC-conjugated aGr-1, aTer119, aCD3, aCD4,

aCD8, aB220, aCD19, and aCD127; APC-ac-Kit, and PE-

aSca-1. CMPs (Lin2Sca-12cKit+CD34+FccRII/IIIlo), GMPs

(Lin2Sca-12cKit+CD34+FccRII/IIIhi), megakaryocyte-erythro-

cyte progenitors (MEPs; Lin2Sca-12cKit+CD342FccRII/IIIlo)

were done with the same antibody cocktail as KLS with addition

of APC-conjugated aFccRII/III (clone 93). SLAM (CD150+/

CD412/CD482 KLS) cells were assessed using KLS staining as

above, except for PerCP-Cy5.5–conjugated aSca-1, with the

addition of FITC-aCD41, FITC-aCD48 and PE-aCD150 anti-

bodies. Promyelocyte (Gr1intSCCintB2202CD1152Ter1192) and

neutrophil (Gr1+SCChighB2202CD1152Ter1192) sorting was

done using APC-aGr-1, PE-aCD115, FITC-aB220 and PE-

Cy7-aTer119. Additional cells from both the promyelocyte and

neutrophils fraction were sorted into FACS buffer for morpho-

logical validation of cytospins. Samples analyzed in expression

array profiling were generated during five separate flow-sorting

experiments to limit technical bias. 15 mouse Ctsg-PML-RARA

leukemia samples were prepared as previously described [38].

For expression array profiling, total cellular RNA was purified

using TRIzol reagent (Invitrogen), quantified using UV spectros-

copy (Nanodrop Technologies), and qualitatively assessed using an

Experion Bioanalyzer. Amplified cDNA was prepared from 20 ng

total RNA using the whole transcript WT-Ovation RNA

Amplification System and biotin-labeled using the Encore Biotin

Module, both from NuGen Technologies, according to the

manufacturer’s instructions. Labeled targets were then hybridized

to Mouse Exon 1.0 ST arrays (Affymetrix), washed, stained, and

scanned using standard protocols from the Siteman Cancer

Center, Molecular and Genomic Analysis Core Facility (http://

pathology.wustl.edu/research/cores/lcg/index.php). Affymetrix

Expression Console software was used to process array images,

export signal data, and evaluate image and data quality relative to

standard Affymetrix quality control metrics. Exon array data for

all samples used in this study have been deposited on GEO

(http://www.ncbi.nlm.nih.gov/geo/; SuperSeries accession num-

bers GSE26131 and GSE40022).

Figure 7. Model of APL development in Ctsg-PML-RARA mice.
Murine APL requires the expression of PML-RARA in a multipotent
progenitor, and cooperation of PML-RARA with myeloid restricted
elements; expression of PML-RARA within promyelocytes is insufficient
to cause leukemia. Orange ellipses indicate compartments with
expression of the indicated genes used to direct expression in
transgenic models. Red arrows indicate inappropriate self-renewal
resulting from Ctsg-PML-RARA expression. Broken arrows indicate that
multiple differentiation steps exist between indicated compartments.
SLAM: lineage negative/Kit+/Sca-1+/CD150+/CD412/CD482. KLS: c-Kit+/
lineage negative/Sca-1+. Pro: promyelocyte. PMN: polymorphic neutro-
phil. Concept after Lane and Ley [28].
doi:10.1371/journal.pone.0046529.g007

Ctsg-PML-RARA Alters Multipotent Hematopoiesis

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e46529



For Ctsg qRT-PCR, we performed standard, two-step RT-PCR,

including the Genomic DNA Wipeout step, according to the

manufacturer’s instructions using Ctsg QuantiTect Primers in

conjunction with the QuantiTect SYBER Green RT-PCR Kit

(both from Qiagen, Germantown, Maryland). For PML-RARA

qRT-PCR, we also used the Qiagen RT-PCR kit with the

following primers: Forward TCTTCCTGCCCAACAGCAA,

Reverse GCTTGTAGATGCGGGGTAGAG. We used GAPDH

as the PCR control with the following primers: Forward

TGCACCACCAACTGCTTAG, Reverse GGATGCAGGGAT-

GATGTTC.

Bone marrow Transplantation
Cells used for competitive repopulation studies were injected

retroorbitally, as previously described [11,24]. Two separate

experiments were performed, and the data was combined for

analysis.

Determination of engraftment of flow sorted bone marrow cells

is described in Figure S9. Recipient Ly5.1 mice received either

lethal (1,100 cGy) or sub-lethal (350 cGy) irradiation 24 hours

prior to transplantation with either 16106 total bone marrow cells,

3,000 KLS cells or 50,000 promyelocytes/mouse. At least 20,000

events (peripheral blood) and 40,000 events (bone marrow) per

recipient mouse were collected for analysis.

Hematopoietic Progenitor Assays
Bone marrow cells from 6-week-old and 8-week-old, healthy

Ctsg-PML-RARA mice and littermate controls were collected and

plated (in duplicate) in 1.1 ml of methylcellulose medium at

41.56103 cells/ml (MethoCult M3334, StemCell Technologies,

Vancouver, Canada) or 8.36103/ml (MethoCult 3434) [37].

Colonies with .30 cells were counted on day 7. Colonies were

collected in 37u DMEM and assessed by flow cytometry using the

following antibodies and FACS Scan (Beckman-Dickenson,

Franklin Lakes, NJ): FITC-aTer119 (BD Pharmingen, Franklin

Lakes, NJ, Ly-76), PE-aCD71 (eBioscience, R17217), PE-aCD11b

(eBioscience, M1/70), and APC-acKit (eBioscience, 2B8), or

serially replated.

Statistical analysis
Expression array analysis: exon-level summary was generated

using the RMA algorithm in the Affymetrix Expression Console

(Affymetrix Inc., USA). Only core probesets were used in order to

limit the analysis within well-annotated exons with the exception

of Ly6g, whose 2 probesets are within the extended probesets

group. Probesets having an expression signal less than 200 in all

samples were removed and an unsupervised hierarchical clustering

analysis was performed using z-score normalized expression values

in SPOTFIRE (Decision Site version 9.1.1, Somerville, USA) or

with the Partek Genomics Suite (Saint Louis, MO) with the

expression of each gene standardized to a mean of 0 and standard

deviation of 1 and using the Pearson dissimilarity as a distance

measure. Results did not segregate based on age of the mice used

in this analysis (6-week-old vs 13-week-old), and so the data were

combined. Supervised clustering analyses were done using SPOT-

FIRE as described in the text. Comparison of cell populations

using ANOVA was done with Partek with fold change $2 and

unadjusted p-values as noted in the text. Comparisons of cell

populations using SAM Version 4.0 (http://www-stat.stanford.

edu/,tibs/SAM/, Palo Alto, CA) as an Excel add-in performing

two-class unpaired analyses with unlogged data, 100 permutations,

standard regression and fold change $2 with false discovery rates

and q-values noted in the text. Competitive repopulation analysis:

a one sample, two-tailed t-test with alpha set at 0.05 compared

outcomes with expected values of 10%, 50%, and 90% (Prism,

Graphpad 5, La Jolla, CA). CFU-E analysis was done with a

paired t-test (Excel, Microsoft, Seattle, WA).

Supporting Information

Figure S1 Murine promyelocyte and neutrophil flow
sorting strategy. A. Total bone marrow cells were labeled with

B220, Ter119, CD115 and Gr1 and early myeloid cells/

promyelocytes (Pros) and neutrophils (PMNs) were identified as

B2202, Ter1192, CD1152 cells that are either BSCintGr1int

(Pros), or BSChighGr1high (PMNs). B. Results of 200 cell differential

counts by a blinded hematopathologist from 4 Pros (2 WT and 2

Ctsg-PML-RARA) and 5 PMNs (3 WT and 2 Ctsg-PML-RARA)

separate sorted samples. C. Representative cytomorphology of

WT and Ctsg-PML-RARA (labeled PR) Pros samples counted in B

(1,0006). D. Representative cytomorphology of WT and Ctsg-

PML-RARA (labeled PR) PMNs samples counted in B (1,0006).

(EPS)

Figure S2 Validation of Ctsg and PML-RARA expression
using quantitative reverse-transcriptase PCR. A. Ctsg

expression was validated with quantitative RT-PCR normalized to

Gapdh. B. Quantitative RT-PCR using PML-RARA specific primers

normalized to Gapdh in the indicated mice and Nugen amplified

mRNA. C. Agarose gel of PCR products from Panel B. PML-RARA

expected size is 145 bp. Markers are 100 and 200 base-pairs.

(EPS)

Figure S3 Expression of Ly6g, Kit, Flt3 and Cd34 in flow-
sorted bone marrow cells and mouse leukemia samples.
Expression profile in indicated WT and Ctsg-PML-RARA (labeled

mCG-PR) flow-sorted bone marrow cells and 15 Ctsg-PML-RARA

leukemia samples (labeled Mouse APL) using Nugen amplified

mRNA and Affymetrix Mouse Exon 1.0ST arrays. We plotted

Ly6g, Kit, Flt3 and Cd34 expression using representative probesets.

(EPS)

Figure S4 Expression of 7 developmentally-regulated
myeloid genes in flow-sorted bone marrow cells.
Expression profile in indicated WT and Ctsg-PML-RARA (labeled

mCG-PR) flow-sorted bone marrow cells and 15 Ctsg-PML-RARA

leukemia samples (labeled Mouse APL) using Nugen amplified

mRNA and Affymetrix Mouse Exon 1.0ST arrays. We plotted

Elane, Prtn3, Mpo, Ltf, Mmp9, Lyz2, and Fpr1 expression using

representative probesets.

(EPS)

Figure S5 Expression profile of flow-sorted Ctsg-PML-
RARA and WT bone marrow cells by unsupervised
clustering analyses. Bone marrow cells were flow sorted as

described in Figure 1, and analyzed using Affymetrix Exon 1.0ST

arrays. A: Unsupervised hierarchal clustering using SPOTFIRE of

expression array data from flow-sorted SLAM and KLS cells from

littermate 6-week-old and 13-week-old healthy WT (2/2) vs.

mCG-PR mice (+/2). Clustering occurs by genotype within the

KLS samples, but not the SLAM samples. Samples were

generated during two independent flow-sorting experiments to

minimize technical bias. B. Unsupervised hierarchal clustering

using SPOTFIRE of expression array data of flow-sorted

promyelocytes cells from littermate 8-week-old healthy WT (2/

2) vs. mCG-PR mice (+/2). Clusters do not segregate by

genotype. Samples were generated with three independent flow-

sorting experiments to minimize technical bias. The legend is

shown below the heatmaps with downregulated genes in green and

upregulated genes in red.

(EPS)
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Figure S6 Unsupervised heatmap clustering analyses
for WT vs. Ctsg-PML-RARA CMP, GMP and MEP
samples. Bone marrow cells were flow sorted as described in

the Methods section, and analyzed using Affymetrix Exon 1.0ST

arrays. An unsupervised clustering analysis was performed using

Partek with Pearson dissimilarity as the distance measure.

Probesets with signal intensity of less than 200 in all samples were

removed from the analyses. The legend is shown below each

heatmap with downregulated genes in green and upregulated

genes in red. A. Unsupervised heatmap clustering analyses for

CMP WT vs. Ctsg-PML-RARA samples. B. Unsupervised heatmap

clustering analyses for GMP WT vs. Ctsg-PML-RARA samples. C.

Unsupervised heatmap clustering analyses for MEP WT vs. Ctsg-

PML-RARA samples.

(EPS)

Figure S7 Individual supervised clustering analyses for
the significantly dysregulated genes by ANOVA from the
GMP and CMP comparisons between WT and Ctsg-
PML-RARA samples. These heatmaps were created by

traditional z-score scaling using SPOTFIRE. The clustering with

genes dysregulated in either the CMP or GMP compartment by

ANOVA (with unadjusted p value,0.001, fold change $2)

segregated both the GMP and CMP populations, but not the

MEP populations, by genotype. The legend is shown below the

heatmaps with downregulated genes in green and upregulated

genes in red. A. Supervised clustering heatmap using genes

dysregulated by ANOVA comparison between WT and Ctsg-PML-

RARA CMP populations. B. Supervised clustering heatmap using

genes dysregulated by ANOVA comparison between WT and

Ctsg-PML-RARA GMP populations.

(EPS)

Figure S8 Erythroid colony formation (CFU-E) in Ctsg-
PML-RARA vs. WT mice. Bone marrow cells from 6-week-old

and 8-week-old, healthy mice were plated in methylcellulose

containing erythropoietin (Methocult 3334). Results of paired t-

tests are shown in each panel. A. Immunophenotypes of cells in

these colonies were assessed as indicated: A. Ter119+CD71high

(mature erythrocytes) and B. CD11b+ (myelomonocytic/mono-

cytic cells). C. and D. Hemoglobin and mean corpuscular volume

(MCV) values were determined in a cohort of healthy 4-month-old

mice with the indicated genotypes.

(EPS)

Figure S9 Examples of bone marrow immunopheno-
types following transplantation of flow sorted KLS and
promyelocytes. Bone marrow KLS and promyelocytes were

sorted from littermate Ctsg-PML-RARA (mCG-PR) and WT mice

and transplanted into sub-lethally irradiated Ly5.1 recipients

(Figure 6). Twelve weeks after transplantation, bone marrow cells

were harvested and assessed for Gr1, CD3, CD19, CD45.2 and

CD45.1 expression. At least 40,000 events were collected per

recipient. A–C. Representative recipient of KLS transplantation.

D–F. Representative recipient of promyelocyte transplantation.

(EPS)

Data S1 Comparative gene expression analysis between
cell populations derived from Ctsg-PML-RARA versus
WT mice. The supplementary data includes a summary of gene

expression differences (by ANOVA and SAM analysis) for

comparisons between Ctsg-PML-RARA and WT SLAM, KLS,

CMP, GMP, MEP and promyelocyte cell populations. The

analysis includes a comparison of dysregulated genes to previously

identified PML-RARA binding sites and to known dysregulated

mRNA abundance identified in primary human APL samples

[39,40].

(DOCX)

Table S1 Ctsg-PML-RARA versus WT SLAM ANOVA
Results.
(XLSX)

Table S2 Ctsg-PML-RARA versus WT KLS ANOVA
Results.
(XLSX)

Table S3 Ctsg-PML-RARA versus WT CMP ANOVA
Results.
(XLSX)

Table S4 Ctsg-PML-RARA versus WT GMP ANOVA
Results.
(XLSX)

Table S5 Ctsg-PML-RARA versus WT MEP ANOVA
Results.
(XLSX)

Table S6 Ctsg-PML-RARA versus WT Promyelocyte
ANOVA Results.
(XLSX)

Table S7 Concordant Dysregulated Genes in both the
CMP and GMP Compartments by ANOVA.
(XLSX)

Table S8 Ctsg-PML-RARA versus WT SLAM SAM Re-
sults.
(XLSX)

Table S9 Ctsg-PML-RARA versus WT KLS SAM Results.
(XLSX)

Table S10 Ctsg-PML-RARA versus WT CMP SAM Re-
sults.
(XLSX)

Table S11 Ctsg-PML-RARA versus WT GMP SAM Re-
sults.
(XLSX)

Table S12 Ctsg-PML-RARA versus WT MEP SAM Re-
sults.
(XLSX)

Table S13 Ctsg-PML-RARA versus WT Promyelocyte
SAM Results.
(XLSX)
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