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Urinary Tract Infection in a Murine Model
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Abstract

The epidemiology and bacteriology of urinary tract infection (UTI) varies across the human lifespan, but the reasons for
these differences are poorly understood. Using established monomicrobial and polymicrobial murine UTI models caused by
uropathogenic Escherichia coli (UPEC) and/or Group B Streptococcus (GBS), we demonstrate age and parity as inter-related
factors contributing to UTI susceptibility. Young nulliparous animals exhibited 10–100-fold higher bacterial titers compared
to older animals. In contrast, multiparity was associated with more severe acute cystitis in older animals compared to age-
matched nulliparous controls, particularly in the context of polymicrobial infection where UPEC titers were ,1000-fold
higher in the multiparous compared to the nulliparous host. Multiparity was also associated with significantly increased risk
of chronic high titer UPEC cystitis and ascending pyelonephritis. Further evidence is provided that the increased UPEC load
in multiparous animals required TLR4-signaling. Together, these data strongly suggest that the experience of childbearing
fundamentally and permanently changes the urinary tract and its response to pathogens in a manner that increases
susceptibility to severe UTI. Moreover, this murine model provides a system for dissecting these and other lifespan-
associated risk factors contributing to severe UTI in at-risk groups.
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Introduction

Urinary tract infection (UTI) is one of the most common

bacterial infections in humans, with an estimated annual incidence

rate of nearly 13% in women [1]. Approximately 8 million

outpatient visits occur each year due to UTI, costing an estimated

$2 billion in annual health care costs in the United States [2].

Uncomplicated UTI are most often caused by uropathogenic

Escherichia coli (UPEC). Complicated UTI is associated with

functional or structural urinary tract abnormalities, pregnancy,

or urinary catheterization. These host factors are associated with

increased rates of infection with a more diverse array of organisms,

including Streptococcus agalactiae (Group B Streptococcus, GBS). GBS

commonly colonizes the same anatomical niches (urogenital tract,

gut) as UPEC, is adept at causing infections in a variety of human

tissues including the urinary tract, and has immune modulatory

capabilities [3,4,5].

Physical, hormonal, and immunological changes that occur

throughout the female lifespan are thought to put women at

additional risk of bladder infection (cystitis), as well as ascending

kidney (pyelonephritis) and disseminated (bloodstream) infections

[6,7,8,9]. For example, a number of studies show that asymptom-

atic bacteriuria (ASB) is common in pregnancy and is associated

with higher risks of symptomatic cystitis, ascending pyelonephritis,

and preterm delivery [10,11]. In contrast, associations between

ASB and UTI in non-pregnant individuals appear to be more

complex, in some cases even showing a protective effect of ASB

[12,13,14,15]. Other studies have correlated increased parity

(number of gestations) and advanced age with a greater risk of

UTI [1,7]. Indeed, pregnant women and the elderly suffer a

greater risk of complicated UTI and other adverse outcomes, such

as pyelonephritis, bacteremia, and urosepsis [16,17,18]. In

addition to the influence of parity, UTI rates and bacterial

etiologies differ between younger and older populations [1,18].

Despite the unique risks of UTI to women at particular life stages,

in vivo models of UTI almost exclusively study this infection in

young nulliparous animals.

Here we examine the impact of age and parity on host

susceptibility to acute and chronic UTI across a range of ages and

prior reproductive experiences. We use a well-characterized

murine model of UTI in female C3H/HeN mice, which have

been extensively used for studies of acute and chronic UTI

[4,19,20,21,22,23,24,25]. UPEC colonization in this model follows

a reproducible cascade of intracellular and extracellular bladder

colonization events during the first 24 hours of acute infection

[25,26]. Thereafter, a subset of UPEC-infected animals experience

persistent bacteriuria throughout their lifetime, displaying .104

CFU bacteria in the bladder and per milliliter of urine [19]. We

characterized infection dynamics for UPEC and GBS, and

examined whether GBS modifies susceptibility to UPEC infection,
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as we have recently reported in young nulliparous mice [3]. In that

study, we examined the consequence of multi-species inoculation

into the urinary tract, because UTI in humans often proceeds from

exposure to inherently polymicrobial bacterial community derived

from the gut and/or periurethral area. We showed that GBS

presence along with UPEC at the time of inoculation significantly

altered acute and chronic UPEC UTI outcomes, despite the fact

that GBS was rapidly cleared from the urinary tract within the first

24 hours after infection [3]. This previous study suggests that, in

humans, GBS may not be at detectable titers at the time a

symptomatic individual visits the clinic despite being present at the

time of infection.

Here we extend those studies and show that in virgin

nulliparous mice, increased age is associated with less severe

monomicrobial or polymicrobial acute UTI, in each case

characterized by ,100-fold lower UPEC titers in old vs. young

mice. On the other hand, among older mice, multiparity was

associated with greater susceptibility to severe high titer acute and

chronic UTI. Evidence is presented that this parity-associated

augmentation of UTI requires intact inflammatory processes

initiated through the microbe-associated pattern receptor TLR4.

Materials and Methods

Ethics Statement
All animal experiments were conducted following the National

Institutes of Health guidelines for housing and care of laboratory

animals and in accordance with institutional regulations and

approval by the Committee for Animal Studies at Washington

University School of Medicine. During the course of experiments,

animal pain and distress was minimized by: performing infections

while mice were under isoflurane anesthetic, monitoring them

until recovery from isofluorane, and checking the animals again 1–

4 hours after infection. Uropathogenic microorganisms do not

typically cause severely painful symptoms; nevertheless, mice were

closely monitored for signs of pain, distress, or dehydration. While

not necessary during our studies, analgesic administration or

injectable saline administration via intra peritoneal injection could

have been applied for pain or dehydration as needed. At the end of

experiments, animals were euthanized by cervical dislocation

while under isoflurane anesthetic.

Bacterial Strains and Growth Conditions
Uropathogenic E. coli strain UTI89 [27] or UTI89 attHK022::-

COM-GFP (kanamycin-resistant, KanR) [28] were inoculated from

single colonies grown on LB agar plates into LB containing

kanamycin at 25ug/ml where appropriate, and grown statically

overnight [18–24 hours (h)] at 37uC as described for infection

studies [25,29,30,31] to promote expression of type 1 pili

important for bladder infection [32,33]. Streptococcus agalactiae

(GBS) wild type strain COH1, a well-characterized strain that

expresses low levels of the beta-hemolysin and high levels of the

capsular polysaccharide [34,35,36,37] were inoculated from single

colonies grown on Todd Hewitt (TH) agar into TH broth (Difco).

GBS were grown statically overnight, and then diluted 1:10 in

fresh TH broth for an additional 1 to 2 h at 37uC to an optical

density at 600 nm (OD600) of approximately 0.4 (logarithmic

phase) as previously described for GBS UTI and other in vivo

virulence studies [3,4,5,38].

Murine Infections
Bacterial cultures, grown as described above, were collected by

centrifugation and resuspended in phosphate-buffered saline

(PBS). Female wild-type nulliparous mice aged 7–10 weeks or 8–

9 months, or retired breeders (multiparous) ranging from 7–11

months of age were obtained from Harlan (C3H/HeN) or the

Jackson Laboratories (C3H/HeJ). Mice were anesthetized by

inhalation of 4% isoflurane. Mice were then voided prior to

transurethral bacterial inoculation with 1–26107 CFU in 50 mL
[39]. For mixed infections, GBS and UPEC were mixed to obtain

a 50 mL bacterial suspension of 1–26107 CFU of each organism.

At indicated time points, mice were euthanized and bladders and

kidneys were aseptically removed. The number of bacteria present

in the tissues was determined by homogenization of bladders or

kidney pairs in PBS and plating of serial dilutions on LB or TH

agar supplemented with antibiotics when appropriate. For

comparisons of infection in differently aged animals, organ weights

of uninfected 7–11 week nulliparous or 8–9 month multiparous

animals were measured and used for CFU/g calculations. While

most published studies use CFU/organ, we noticed that older mice

had significantly larger organs than younger animals. The weight

normalization between younger and older mice thus allowed a

reduction of the impact of this potential bias on our interpreta-

tions. Statistical analyses were performed using the Kruskal-Wallis

test with Dunn’s post-test for multiple comparisons where p,0.05

was considered significant with GraphPad Prism software (version

6.00 for Windows, GraphPad Software, www.graphpad.com).

Recovered titers of zero were set to the limit of detection of the

assay of 40 CFU/organ, and also adjusted for organ weight for

comparisons of animals of different ages where appropriate, prior

to statistical analyses and graphical representation.

Results

Age and Parity are Inversely-related Factors Influencing
Acute Cystitis and Ascending Pyelonephritis
To evaluate the impact of age, (independent of parity), female

mice ranging in age between 7–9 weeks or 7–11 months that had

never been bred or given birth (nulliparous virgin) were

transurethrally infected with either UPEC or GBS or both. These

experiments showed that young nulliparous mice experienced

more severe acute cystitis compared to aged nulliparous mice at 24

hours post infection (hpi) (,100-fold higher bladder titers of

UPEC and ,15-fold higher GBS titers in young vs. aged

nulliparous mice) (Fig. 1A–B). Younger nulliparous animals also

exhibited nearly 1000-fold higher titers of UPEC than aged virgins

in the bladder and ,8-fold higher titers in the kidneys following

simultaneous infection with both UPEC and GBS (Fig. 1A&C).
As described above, bacterial titers in acute GBS cystitis were

lower in aged versus young nulliparous virgins (Fig. 1B). In

contrast, GBS kidney infection was equally robust in older versus

younger virgins with approximately 105 GBS recovered from the

kidneys in female mice of all ages (Fig. 1D). UPEC titers were

similar in the presence or absence of GBS (Fig. 1A&C) whereas,

consistent with our previous findings in young mice where we

observed that GBS were rapidly cleared after co-infection with

UPEC [3], GBS were rapidly cleared when UPEC were also

present in the inoculum (Fig. 1B&D). CFU/organ data, prior to

adjustment for age-associated difference in organ weights, are

shown in Fig. S1. In summary, these data indicate that, when

controlling for parity, increased age was associated with reduced

severity of cystitis in general and reduced severity of UPEC

pyelonephritis, whereas the severity of GBS pyelonephritis

remained constant with increasing age.

In humans, increasing age is often associated with increasing

reproductive experience. Hence, the observations that increased

age was associated with decreased UTI severity in Fig. 1A–D
were unexpected. To further examine the contribution of parity to

Age and Parity Effects on UTI Susceptibility
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UTI susceptibility, we compared age-matched nulliparous and

multiparous female mice for their susceptibility to UTI. Aged (7–

11month old) animals with or without reproductive experience

were infected with UPEC, GBS, or co-infected with UPEC+GBS.

While there was no significant impact of parity on susceptibility of

aged mice to monomicrobial UPEC infection, multiparous mice

that were co-infected exhibited nearly 2500-fold higher titers of

UPEC in the bladder, and ,8-fold higher titers of UPEC in the

kidney, compared to age-matched nulliparous mice (Fig. 2A–B;
note that the same 7–11 mo nulliparous data are plotted in Figs. 1
and 2 for ease of comparison with data from aged multiparous

hosts). Multiparity was also associated with significantly higher

GBS CFU in the bladders during GBS mono-species infection

(Fig. 2C–D). GBS CFU were significantly lower after co-infection

with UPEC, compared to GBS mono-infection, albeit only in

multiparous mice (Fig. 2C–D). Hence, the effects of parity on

GBS titers that we observed following mono-species UTI were not

detectable in the presence of UPEC.

Together these observations demonstrate that 1) among

nulliparous virgin mice, increased age rendered animals less

susceptible to acute UTI, and 2) in aged mice, multiparity

dramatically increased susceptibility to acute high titer cystitis,

particularly in the setting of polymicrobial UTI.

Multi-parity-augmented UPEC Bladder Infection is TLR4-
dependent
Previous studies have shown that TLR4 signaling is required to

mount a host response that limits UPEC infection in the bladder

[22,40,41,42,43]. C3H/HeJ mice are unable to mount a TLR4-

driven response [44,45] and exhibit higher titer acute bladder and

kidney infections compared to their TLR4 nonresponsive C3H/

HeJ counterparts [46]. To examine the contribution of TLR4

signaling in multiparity-augmented UTI, we infected 7–11 month

old multiparous C3H/HeJ or C3H/HeN mice with UPEC or with

UPEC+GBS and enumerated the CFU in bladders and kidneys at

24 hpi. As described in Fig. 2A, multiparous C3H/HeN mice

exhibited ,2500-fold higher titer UPEC cystitis (median

1.256108 CFU) following dual-species infection compared to

their nulliparous counterparts. Surprisingly, after the same dual-

species infection in multiparous C3H/HeJ mice, bladder titers

Figure 1. Age-associated risk factors for UTI in nulliparous virgin hosts. Organ weight-adjusted bladder CFU for UPEC (A) and GBS (B), and
kidney CFU for UPEC (C) and GBS (D) at 24 hours post infection of C3H/HeN female mice with ,107 UPEC UTI89 alone or with ,107 GBS COH1 in
UPEC+GBS mixed inoculation. N = 1–4, at least 5 mice per experiment, where N indicates the number of biologically distinct experiments performed
(N= 4 for 7–9wk groups, N = 1 for UPEC mono-infected 7–11mo group, and N= 2 for GBS mono-infected and all dual-infected 7–11mo groups).
Recovered titers of zero were set to the limit of detection of the assay for statistical analyses and graphical representation in all figures. The horizontal
bar represents the median value for each group of mice. Statistical significance was determined by the Kruskal-Wallis test with Dunn’s post-test for
multiple comparisons. * P,0.05, ** P,0.005, *** P,0.0005.
doi:10.1371/journal.pone.0097798.g001

Age and Parity Effects on UTI Susceptibility
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were nearly 50-fold lower than in age-matched C3H/HeN mice

(Fig. 3A). We also observed significantly higher titer cystitis after

mono-species UPEC infections in C3H/HeN mice compared to

C3H/HeJ mice (Fig. 3A). In contrast, aged C3H/HeJ mice had

significantly higher titer kidney infections after mono- or dual-

species UPEC infections (Fig. 3B). These results show that the

augmentation of bladder infection in multiparous mice is limited in

the absence of TLR4 signaling, strongly suggesting that TLR4-

driven inflammation is required for parity-associated susceptibility

to severe high titer acute cystitis but not pyelonephritis.

Multiparity Significantly Increases Susceptibility to
Chronic UPEC Infection
We have previously shown that the presence of UPEC and GBS

together at the time of urinary tract inoculation rendered young,

nulliparous mice significantly more likely to develop chronic

bladder infection [3]. Since multiparity was associated with higher

UPEC titers during acute UTI, we hypothesized that chronic

infection outcomes may be similarly impacted. To test this

hypothesis, we infected older (7–11mo) nulli- and multiparous

mice with UPEC alone or UPEC+GBS in a dual species

inoculation and measured CFUs in bladders and kidneys at 4

weeks post-infection. Similar to the results of acute UTI,

multiparous animals were dramatically more susceptible to chronic

cystitis, harboring ,8000-fold more UPEC CFU in the bladder

after single species infection (albeit not statistically significant) and

,900-fold higher after dual-species infection, compared to

nulliparous mice (Fig. 4A). In the kidneys, median UPEC CFU

after mono- or dual- species infection were at or below the limit of

detection in older nulliparous mice at 4 weeks post infection (wpi),

but were ,106 and ,104 in multiparous mice, respectively

(Fig. 4B). High UPEC titer (.104 CFU) in the bladder at 4 wpi

is a hallmark of chronic cystitis characterized by high bacterial

load in the bladder lumen [19]. The frequency of chronic cystitis

(i.e. mice with bladder titers .104 CFU/mL) was significantly

higher in multiparous mice after both mono- and dual-species

infection (,80% vs 20% and 60% vs. 10%, respectively, Fig. 4C).
We previously showed that GBS is cleared from the bladder of

young mice within 2 weeks post infection, but could persist in the

kidney in most animals [4]. The current data now demonstrates

Figure 2. Parity-associated risk factors for UTI in aged hosts. Bladder CFU for UPEC (A) and GBS (C), and kidney CFU for UPEC (B) and GBS (D)
at 24 hours post infection of C3H/HeN female mice with,107 UPEC UTI89 alone or with,107 GBS COH1 in UPEC+GBS mixed inoculation. N= 1–4, at
least 5 mice per experiment, as described for Fig. 1. Data from 7–11 mo (aged) nulliparous animals are replotted from Fig. 1 here for ease of
comparison with data from aged multiparous hosts. The horizontal bar represents the median value for each group of mice. Statistical significance
was determined by the Kruskal-Wallis test with Dunn’s post-test for multiple comparisons. * P,0.05, *** P,0.0005.
doi:10.1371/journal.pone.0097798.g002

Age and Parity Effects on UTI Susceptibility
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that most aged mice (irrespective of parity) cannot clear GBS

infections from the bladder or kidney (Fig. 4D–E).

In summary, we demonstrate that aged multiparous mice

exhibit heightened susceptibility to 1) acute high titer GBS cystitis

and pyelonephritis, 2) acute high titer UPEC cystitis and

pyelonephritis in the context of a polymicrobial exposure

containing GBS, and 3) chronic high titer UPEC infection in

the presence or absence of GBS.

Discussion

UTI is a significant public health problem that can affect

persons in all age groups; however, host susceptibility to severe,

chronic, recurrent, or complicated UTI, as well as the bacterial

uropathogen(s) causing UTI, varies over the female lifespan. Our

understanding of UTI susceptibility at different life stages is

limited, and progress is hampered by a lack of relevant model

systems. Here we model UTI susceptibility across a portion of the

female lifespan, examining acute and chronic UTI outcomes as a

function of bacterial etiology, age, and prior reproductive

experience.

Advanced age is associated with an increased risk of a variety of

infections in humans, including acute mono-species and polymi-

crobial UTI [8,18,47,48]. UTI in older adults is attributed to

many interrelated factors that include deteriorating immune

function, diminished integrity of anatomical barriers, exacerbating

underlying medical conditions, altered sex hormone levels, and

changes in vaginal microbial ecology [6,49,50]. For example, post-

menopausal women experience more recurrent chronic UTI than

their pre-menopausal counterparts, and lack of estrogen is thought

to contribute to this increased susceptibility [51,52,53]. However,

there are conflicting reports regarding the effect of estrogen

therapy on UTI susceptibility in this context [54,55,56,57]. Similar

to the human studies, findings in a murine model of surgical

menopause are also conflicting. Several studies show that

ovariectomized mice exhibited higher bacterial titers during acute

cystitis or more severe bladder symptoms [58,59], and estrogen

supplementation of ovariectomized animals limited some UTI-

associated symptoms [59]. However another study showed that

estrogen treatment resulted in an increased bacterial load in the

kidneys [60]. In vitro studies showing that estradiol exposure

simultaneously improves antimicrobial innate responses and

enhances bacterial invasion into urothelial cells may, in part,

explain differential effects of estrogen on UTI and discrepancies

observed in vivo [58].

Among older women, parity has been reported as a risk-factor

for UTI in some [7], but not all [61] studies. It is unclear whether

many studies with negative results were adequately powered to

examine parity-related differences since there are far fewer older

nulliparous than multiparous women in most populations. Further,

there are some reports of a positive correlation between pregnancy

and long-term hormonal effects [62]. For example, one study

measuring hormone levels at midcycle and luteal phases of the

menstrual cycle in premenopausal women showed increased

estradiol levels with increasing age in parous women, while

observing reduced estradiol levels with increasing age in nonpar-

ous women. [63]. Clearly, the relationships of estradiol levels to

age and parity are complex, but this may help to explain the

differential host susceptibility to urogenital infection.

Gestation and childbirth are also associated with numerous

functional and morphological changes to the urinary tract that

may impact UTI susceptibility, including incontinence and genital

prolapse [64,65]. Urine retention is thought to contribute to

enhanced UTI susceptibility among elderly and catheterized

individuals by limiting bacterial elimination from the bladder and

providing a reservoir in which bacteria can proliferate. These

physiologic changes have been modeled in rats, where multiparous

animals exhibited significantly increased bladder capacity and

residual urine volume in the bladder, compared to age-matched

nulliparous rats [65,66].

Surprisingly, and contrary to our initial hypothesis, we found

that older nulliparous mice were less susceptible to UPEC, GBS,

and polymicrobial UTI than were young nulliparous mice. We

show that multiparity, rather than increased age rendered C3H/

HeN mice more susceptible to acute high titer infections of the

bladder (GBS, and UPEC in the presence of GBS), suggesting that

the presence of GBS within a polymicrobial inoculum can

exacerbate acute UTI outcomes in this context. Based on this

finding, future clinical studies should examine GBS as a potential

risk factor for acute UPEC UTI in susceptible populations such as

Figure 3. Multiparity-associated augmentation of UPEC cystitis is blunted in C3H/HeJ mice. UPEC CFU in bladders (A) and kidneys (B)
were determined 24 hours after mono- or dual-species infection in 7–11 month old multiparous C3H/HeN and C3H/HeJ mice. N= 2–4, at least 5 mice
per experiment. The horizontal bar represents the median value for each group of mice. Statistical significance was determined by the Kruskal-Wallis
test with Dunn’s post-test for multiple comparisons. * P,0.05, ** P,0.005.
doi:10.1371/journal.pone.0097798.g003

Age and Parity Effects on UTI Susceptibility

PLOS ONE | www.plosone.org 5 May 2014 | Volume 9 | Issue 5 | e97798



pregnant and multiparous elderly women. We also show that

parity-associated increased severity of UPEC cystitis was aided by

TLR4- signaling in the bladder but not the kidney, since C3H/

HeJ mice deficient for TLR4-signaling have less severe cystitis.

These data suggest that bladder inflammation specifically

enhances UTI in older multiparous mice and we speculate that

the UPEC pathogenic cascade within the bladder, and the

contribution of inflammation, is significantly different in older

multiparous hosts. Further, multiparity significantly enhanced the

frequency of UPEC chronic cystitis (in the presence or absence of

GBS), which was often accompanied by chronic high titer

pyelonephritis. Overall these data firmly establish that multiparity

increases susceptibility to UTI in the C3H/HeN model. Further

studies are required, including an analysis of sex hormones in the

aged nulli- versus multi-parous mice, to clarify if this model can be

used to model infection human menopause. These findings also

call for further experiments to determine the reason underlying

increased susceptibility to UTI in multiparous animals, including

parameters of host immune response, and how this may translate

into an improved understanding of UTI susceptibility in older at-

risk women.

Supporting Information

Figure S1 Age-associated risk factors for UTI in nullip-
arous virgin hosts. Raw data corresponding to Figure 1, in

CFU/organ, are shown.

(TIF)
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