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Nonulosonic acids (NulOs) encompass a large group of structurally diverse nine-carbon backbone �-keto
sugars widely distributed among the three domains of life. Mammals express a specialized version of NulOs
called sialic acids, which are displayed in prominent terminal positions of cell surface and secreted glycocon-
jugates. Within bacteria, the ability to synthesize NulOs has been demonstrated in a number of human
pathogens and is phylogenetically widespread. Here we examine the distribution, diversity, evolution, and
function of NulO biosynthesis pathways in members of the family Vibrionaceae. Among 27 species of Vibrion-
aceae examined at the genomic level, 12 species contained nab gene clusters. We document examples of
duplication, divergence, horizontal transfer, and recombination of nab gene clusters in different Vibrionaceae
lineages. Biochemical analyses, including mass spectrometry, confirmed that many species do, in fact, produce
di-N-acetylated NulOs. A library of clinical and environmental isolates of Vibrio vulnificus served as a model
for further investigation of nab allele genotypes and levels of NulO expression. The data show that lineage I
isolates produce about 20-fold higher levels of NulOs than lineage II isolates. Moreover, nab gene alleles found
in a subset of V. vulnificus clinical isolates express 40-fold higher levels of NulOs than nab alleles associated
with environmental isolates. Taken together, the data implicate the family Vibrionaceae as a “hot spot” of NulO
evolution and suggest that these molecules may have diverse roles in environmental persistence and/or animal
virulence.

Nonulosonic acids (NulOs) are a family of negatively charged
nine-carbon backbone �-keto sugars that include the neuraminic
(also known as sialic), legionaminic, and pseudaminic acids (2,
35). The sialic acids are the best-understood NulOs and are
found in prominent outermost positions on the surfaces of all
vertebrate cells (55). In mammals, the most common NulO is
sialic acid, a molecule found at particularly high levels at mu-
cosal surfaces of mammals. Pseudaminic and legionaminic ac-
ids are not expressed in animals. In their various locations on
microbial surfaces, different NulO structures have been impli-
cated in a variety of host-microbe interactions. NulOs of the
sialic, legionaminic, and pseudaminic acid types are involved in
bacterial behaviors like biofilm formation, autoagglutination,
and motility (1, 15, 18, 45, 52), as well as direct protein-carbo-
hydrate interactions between hosts and pathogens (8, 9, 26, 30,
52). In particular, sialic acid-containing bacterial glycans par-
ticipate in strategies of immune suppression and subversion,
likely contributing to clinical conditions ranging from uro-
genital, airway, and ear infections to systemic bacteremia,
meningitis, and the induction of autoimmunity (1, 24, 32, 56,
57, 63, 64).

Sialic acids were once thought to be unique to the deuter-

ostome lineage of “higher” animals and absent from most
protostomes, fungi, plants, and protists (61). In fact, the bio-
synthetic pathways for sialic acids appear to be quite ancient,
likely predating the divergence of the three domains of life
(35). Recent studies show that NulO biosynthetic (nab) gene
clusters are found in a surprising variety of bacterial strains and
species, including a large number of gammaproteobacteria,
including the family Vibrionaceae (35). Different proteobacte-
ria have been shown to express NulOs as modifications of
polymerized cell surface molecules such as capsular polysac-
charides (16, 34), lipopolysaccharides (LPSs) (37, 48, 51), and
flagella (40–43, 50). Among the members of the family Vibri-
onaceae, strains of Vibrio parahaemolyticus, V. vulnificus, Ali-
ivibrio salmonicida, and Photobacterium profundum have also
been shown to express NulOs (7, 13, 35, 58). However, little is
known about the larger distribution patterns, the natural his-
tory of NulOs in Vibrionaceae, or the biology of these mole-
cules in aquatic or host-associated niche environments.

As a group, the members of the family Vibrionaceae engage
in a full spectrum of lifestyles, from free-living states to colo-
nization or infection of both aquatic and terrestrial hosts (3,
17). V. vulnificus is an excellent example of the range of envi-
ronmental and host niches that can be occupied by different
members of the same Vibrio species. V. vulnificus is an obligate
halophile found in estuarine and marine coastal environments
worldwide (28, 29, 46, 53). It is found in association with
zooplankton, crabs, and various filter feeders, such as oysters
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and mussels (12, 21, 22, 44). V. vulnificus is also a highly
invasive pathogen of both fish and humans, and in humans,
infection is characterized by primary septicemia and wound
infections with mortality rates of greater than 50% among
susceptible individuals (27, 38, 47). Multilocus sequence typing
analysis of six housekeeping genes and genotyping data have
previously divided V. vulnificus isolates into at least three dis-
tinct clusters or lineages; lineage I is composed exclusively of
biotype 1 isolates recovered mainly from clinical sources, lin-
eage II contains biotype 1 and all biotype 2 isolates recovered
from environmental sources, including diseased fish, and the
third lineage is composed of biotype 3 (4–6, 11, 59, 60). Biotype
3 isolates, which are recovered from one geographic region and
associated with one fish species, were shown to be genetically
identical and distinct from lineage I and II isolates (4, 5).

We hypothesize that the family Vibrionaceae may be a par-
ticularly active lineage of NulO evolution. Here we combine
genomic and biochemical approaches to more systematically
investigate and document the distribution, phylogeny, and
functional activity of homologous NulO biosynthetic (NAB)
pathways in members of the family Vibrionaceae.

(A portion of this work was presented by S.A. at the 2009
INTEL International Science and Engineering Fair.)

MATERIALS AND METHODS

Bacterial strains and culture conditions. The bacterial strains used in this
study are listed in Tables 1 and 2. Unless otherwise noted, all strains were grown
aerobically (250 rpm) at 37°C in Luria-Bertani broth (Fisher Scientific, Fair
Lawn, NJ) with a final NaCl concentration of 2% (Fisher Scientific). The 67 V.
vulnificus isolates examined in this study were temporally (1980 to 2005) and
geographically (Asia, Europe, and North America) widespread, encompassing all
3 biotype groups as previously reported (11). Of the 67 isolates examined, 27

were recovered from clinical sources (wound infections and blood) and 40 were
from environmental sources (clams, oysters, mussels, fish, seawater, and sea
sediment). All V. vulnificus strains were grown in LB supplemented with 2%
NaCl and stored at �80°C in LB broth with 20% (vol/vol) glycerol.

Molecular analysis. Chromosomal DNA was extracted from each of the V. vul-
nificus isolates using the Genome DNA isolation kit from Bio 101 as previously
described (11) (MP Biomedicals, Solon, OH). The PCR primers used to amplify
the nab1 and nab2 genes from V. vulnificus YJ016 and CMCP6 were designed
based on unique sequences of each strain and purchased from Integrated DNA
Technologies (Coralville, IA) (Table 3). PCRs were performed in a 25-�l reac-
tion mixture using the following program: an initial denaturation step of 94°C for
1 min, followed by 30 cycles of denaturation at 94°C for 30 s, 30 s of primer
annealing at 57 to 61°C, and 60 s of primer extension at 72°C. PCR products were
visualized on agarose gels.

Bioinformatic and phylogenetic analysis of nab genes. We performed BLAST
searches (blastp) against the sequenced genome database using as seeds the
sequences of proteins encoded by nab1, nab2, nab3, and nab4 from YJ016 and
CMCP6, respectively. Phylogenetic analysis was performed on Nab1 and Nab2
from 21 strains encompassing 12 species. The nab1 gene alleles from 2 of the 3
nab clusters in A. salmonicida are pseudogenes and were not included in the
analysis of Nab1 proteins. Complete protein sequences were aligned using
ClustalW 2.0 or MUSCLE V3.8, and the alignment was manually checked for
invariant and conserved regions using GENEDOC (version 2.7; National Resource
for Biomedical Supercomputing (Pittsburgh, PA) (14, 33). We used neighbor joining
(NJ) as implemented in MEGA4 (19, 20, 54). The bootstrap values for NJ trees were
obtained after 1,000 generations, and MEGA4 tree viewer was used to visualize the
trees and calculate confidence values (25, 54). 16S rRNA sequences were also
analyzed as described above for overlay of NAB pathway presence or absence.

Nucleotide sequence accession numbers. The 16S rRNA gene sequence ac-
cession numbers used to construct Vibrio phylogeny were as follows: Vibrio
cholerae CECT 514, X76337; Vibrio furnissii ATCC 35016, X76336; Vibrio flu-
vialis NCTC 11327, X76335; Vibrio brasiliensis LMG 20546, AJ316172; Vibrio
mimicus ATCC 33653T, X74713; Vibrio metschnikovii CIP69.14T, X74711; V.
vulnificus ATCC 27562, X76333; Vibrio alginolyticus ATCC 17749, X56576;
Vibrio splendidus LMG 4042, AJ515230; Vibrio parahaemolyticus ATCC 17802,
AF388386; Vibrio harveyi NCIMB1280T, AY750575; Vibrio tubiashii ATCC
19109, X74725; Vibrio orientalis ATCC 33934T, X74719; Vibrio sinaloensis CAIM
797, DQ451211; Vibrio rotiferatus LMG 21460, AJ316187; Vibrio navarrensis,
X74715; Vibrio sp. AND4, AF025960; Vibrio sp. EX25, CP001805; Vibrio coral-
liilyticus LMG 20984, AJ440005; Vibrio shiloni AK1, AF007115.1; Listonella
anguillarum, AM235737; Photobacterium damselae ATCC 33539, AB032015;
Photobacterium angustum ATCC 25915, D25307; Photobacterium profundum
DSJ4, D21226; Grimontia hollisae LMG 17719, AJ514909; Aliivibrio fischeri ATCC
774T, X74702; Aliivibrio salmonicida NCMB 2262, X70643; Vibrio ordalii ATCC
33509T, X74718; Shewanella benthica ATCC 43992, X82131. PCR primers for V.
vulnificus YJ016 and CMCP6 nab1 and nab2 were designed using accession numbers
VV0316 (NP_933109.1), VV0312 (NP_933105.1), VV10803 (NP_759780.1), and
VV10808 (NP_759785.1) respectively. The accession numbers for the other Vibrio
nab genes used, including those used for BLAST analysis and tree construc-
tion, are as follows. The nab1 accession numbers for V. vulnificus (2 strains),
Vibrio sp. EX25, V. parahaemolyticus, V. salmonicida, V. fischeri, Photobacterium
profundum (2 strains), V. harveyi, V. splendidus, V. coralliilyticus, V. shilonii, V.
mimicus, and Grimontia hollisae are NP_759780.1, NP_933109.1, ZP_04922879.1,
NP_796582.1, YP_002264336.1, YP_203530.1, YP_002154944.1, ZP_01218688.1,
YP_130889.1, ZP_00989910.1, YP_001443906.1, ZP_01867489.1, ZP_06040339.1,
ZP_06054134.1, and ZP_06053975.1. The nab2 accession numbers for V. vulnifi-
cus (2 strains), Vibrio sp. EX25, V. parahaemolyticus, V. salmonicida, V. fischeri,
P. profundum (2 strains), V. harveyi, V. splendidus, V. coralliilyticus, V. shilonii, V.
mimicus, and G. hollisae are NP_759785.1, NP_933105.1, ZP_04922882.1,
NP_796579.1, YP_002261714.1, YP_002261791.1, YP_002264335.1, YP_203526.1,
YP_002154946.1, ZP_01218684.1, YP_130887.1, YP_001443899.1, ZP_00989905.1,
ZP_05888524.1, ZP_01867488.1, ZP_06040343.1, ZP_06054132.1, and
ZP_06053977.1.

Release of NulOs by mild acid hydrolysis. NulO sugars were released from
extensively washed culture pellets by mild acid hydrolysis using 2 N acetic acid for
3 h at 80°C as previously described (36). Supernatants were filtered over Cen-
tricon centrifugal filtration cassettes with a molecular weight cutoff of 10,000
(Millipore, Kankakee, IL). The low-molecular-weight fraction was then
lyophilized and stored at �20°C for use in thiobarbituric acid (TBA), 1,2-
diamino-4,5-methylene dioxybenzene (DMB) high-performance liquid chro-
matography (HPLC), or mass spectrometric analyses as described below.

TBA assays. The TBA assay is relatively simple, fast, and inexpensive and has
been used extensively for studies of NulOs such as N-acetylneuraminic acid.

TABLE 1. Species and strains examined in this study

Species Isolate name

Listonella anguillarum...........................................................B559
Listonella anguillarum...........................................................B561
Listonella anguillarum...........................................................B563
Vibrio angustum.....................................................................B70
Vibrio fischeri .........................................................................ATCC 33983
Vibrio fischeri .........................................................................394
Vibrio fischeri .........................................................................63
Vibrio fischeri .........................................................................ES114
Vibrio harveyi .........................................................................ATCC 33843
Vibrio harveyi .........................................................................L222
Vibrio logei .............................................................................B583
Vibrio ordalii ..........................................................................B572
Vibrio orientalis......................................................................B717
Vibrio pelagius........................................................................B98
Vibrio splendidus ...................................................................B12
Vibrio parahaemolyticus ........................................................428/01
Vibrio parahaemolyticus ........................................................30824
Vibrio parahaemolyticus ........................................................9808/1
Vibrio parahaemolyticus ........................................................UCMA178
Vibrio parahaemolyticus ........................................................090-96
Vibrio parahaemolyticus ........................................................906-97
Vibrio parahaemolyticus ........................................................190-2004
Vibrio parahaemolyticus ........................................................155-05
Vibrio parahaemolyticus ........................................................357-99
Vibrio parahaemolyticus ........................................................518-01
Vibrio parahaemolyticus ........................................................VP81
Vibrio parahaemolyticus ........................................................Vphy191
Vibrio parahaemolyticus ........................................................V0441
Vibrio parahaemolyticus ........................................................V0586
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TABLE 2. V. vulnificus strains used in this study and their nab alleles

Strain name nab1 allele nab2 allele Place of isolation Source Yr of isolation

YJ002 YJ016-like YJ016-like Taiwan Clinical 1993
JJ068 Taiwan Clinical 1993
JJ072 Taiwan Clinical 1993
JJ067 YJ016-like Taiwan Clinical 1993
YJ016 YJ016-like YJ016-like Taiwan Clinical 1993
L-180 Japan Clinical 1980
N-87 CMCP6-like CMCP6-like Japan Clinical 1987
KH-03 YJ016-like YJ016-like Japan Clinical 2003
SPRC 10143 YJ016-like YJ016-like NKa Clinical NK
CMCP6 CMCP6-like CMCP6-like Korea Clinical NK
CDC 9038-96 CMCP6-like CMCP6-like Texas Clinical 1996
CDC 9062-96 CMCP6-like YJ016-like Louisiana Clinical 1996
CDC 9005-97 YJ016-like Louisiana Clinical 1997
CDC 9030-95 YJ016-like YJ016-like Florida Clinical 1995
313-98 Israel Clinical 1998
11028 Israel Clinical NK
CIP 81.90 YJ016-like YJ016-like France Clinical 1980
LSU 1866 YJ016-like NK Clinical NK
M06 CMCP6-like CMCP6-like United States Clinical NK
M06-24/O CMCP6-like CMCP6-like California Clinical NK
6353/O YJ016-like Maryland Clinical NK
85A667/O YJ016-like California Clinical NK
K2637 CMCP6-like Louisiana Clinical 2005
K2667 CMCP6-like CMCP6-like Louisiana Clinical 2005
K2719 YJ016-like YJ016-like Louisiana Clinical 2005
C-7184 United States Clinical NK
IFVv8 Florida Clinical NK
CG27 CMCP6-like CMCP6-like Taiwan Oyster 1993
98-640 DP-B9 YJ016-like YJ016-like Louisiana Oyster 1998
99-609 DP-A4 YJ016-like YJ016-like Oregon Oyster 1999
99-779 DP-D2 YJ016-like Louisiana Oyster 1999
99-509 DP-A6 YJ016-like YJ016-like Texas Oyster 1999
99-540 DP-B6 YJ016-like YJ016-like Texas Oyster 1998
300-1C1 YJ016-like YJ016-like NK Oyster NK
JY1701 YJ016-like Louisiana Oyster NK
Env1 YJ016-like YJ016-like Louisiana Oyster NK
SS108A-3A YJ016-like YJ016-like NK Oyster NK
b60 CMCP6-like CMCP6-like India Oyster NK
b122 CMCP6-like CMCP6-like India Oyster NK
IFVv10 France Mussel NK
IFVv11 France Mussel NK
72M4 CMCP6-like CMCP6-like India Clam NK
79M4 YJ016-like YJ016-like India Clam NK
76M3 YJ016-like YJ016-like India Fish NK
80M4 CMCP6-like YJ016-like India Fish NK
G-83 YJ016-like YJ016-like Korea Fish NK
NCIMB 2136 YJ016-like YJ016-like Japan Eel NK
90-2-11 YJ016-like YJ016-like Norway Eel NK
ATCC 33149 YJ016-like YJ016-like Japan Eel NK
NCIMB 2137 YJ016-like YJ016-like Japan Eel NK
E86 YJ016-like YJ016-like Spain Eel 1990
M79 CMCP6-like CMCP6-like Spain Eel NK
IFVv18 France Seawater NK
MLT362 CMCP6-like CMCP6-like Hawaii Seawater 1991
MLT364 CMCP6-like CMCP6-like Hawaii Seawater 1991
MLT406 YJ016-like Florida Seawater 1991
SPRC 10215 NK Seawater NK
CG62 YJ016-like Taiwan Seawater 1993
CG63 YJ016-like YJ016-like Taiwan Seawater 1993
CG123 YJ016-like YJ016-like Taiwan Seawater 1993
96-9-114s Denmark Sediment NK
L-49 Japan Environmental 1988
JY1305 YJ016-like YJ016-like Louisiana Environmental NK
UNCC 1015 CMCP6-like CMCP6-like North Carolina Environmental NK
MLT 365 CMCP6-like CMCP6-like Florida Environmental NK
UNCC 913 YJ016-like YJ016-like North Carolina Environmental NK
345/O CMCP6-like CMCP6-like Louisiana Environmental NK

a NK, not known.
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Potential NulOs released from vibrios (see above) were treated for 30 min at
37°C with 0.1 N (final concentration) sodium hydroxide, followed by neutraliza-
tion as previously described (23). The Vibrio strains used in these assays are listed
in Table 1. Measurement of TBA-reactive species (TBARs) in this material was
performed as previously described (62). Group B and A streptococci were used
as positive and negative controls, respectively; the former display high levels of
surface sialic acids, while the latter do not. A standard curve for TBARs was
generated in each experiment using N-acetylneuraminic acid (Sigma). Results
were normalized to the total protein contents of bacterial culture pellet lysates
that were set aside prior to NulO hydrolysis. Protein content was measured using
the bicinchoninic acid assay (Pierce).

FIG. 1. Genetic structure of the nab gene cluster among sequenced Vibrionaceae species. Shown is a schematic representation of the gene
arrangement of NAB clusters among sequenced isolates of members of the family Vibrionaceae. The annotated homologs of the ORFs are nab1
(CMP-NeuAc synthase homolog), nab2 (N-acetylneuraminic acid synthase homolog), nab3 (UDP–N-acetylglucosamine 2 epimerase homolog),
neuD (acetyltransferase homolog), pseA (flagellin modification protein homolog), pseB (polysaccharide biosynthesis homolog), pseC (DegT
aminotransferase homolog), and pseG (nucleotidyl/sugar P transferase homolog). Strains with identical gene orders are shown only once with
isolate names listed on the left. Accession numbers for nab genes are shown below schematic ORFs.

TABLE 3. Primers used for PCR assays in this study

Oligonucleotide
name Sequence (5�–3�)

Product
size
(bp)

Tm
(°C)

VV0312F CGA CGA AGC ACT GGC GTT TAA A
VV0312R GCT CGA GCA TCT CCC AAT ACT 986 61
VV0316F GGC CAC CCC TTC AAT TGA G
VV0316R GTC GCA TAC ACA ACC GTG G 435 60
VV10808F TAT TCG TTT AGC CAA ACA GTT GA
VV10808R CCA CTT CAT CCC AAC GCG TT 902 57
VV10803F TTA TCG GCG ACA AGG TGA
VV10803R ATC CAT TAC ATA GGC AAA TAT G 346 60

VOL. 77, 2011 VIBRIONACEAE NONULOSONIC ACID 5785

 on D
ecem

ber 30, 2013 by W
ashington U

niversity in S
t. Louis

http://aem
.asm

.org/
D

ow
nloaded from

 

http://aem.asm.org/
http://aem.asm.org/


DMB derivatization and HPLC. NulOs released by mild acid hydrolysis were
derivatized with DMB. Reaction mixtures consisted of 7 mM DMB, 18 mM
sodium hydrosulfite, 1.4 M acetic acid, and 0.7 M 2-mercaptoethanol, and reac-
tions were carried out for 2 h at 50°C in the dark. DMB-NulO derivatives were
resolved by HPLC using a reverse-phase C18 column (Varian) eluted isocratically
at a rate of 0.9 ml/min over 50 min using 85% Milli-Q ultrapure water, 7%
methanol, and 8% acetonitrile as previously described (35, 36). Detection of
fluorescently labeled NulO sugars was achieved at excitation and emission wave-
lengths of 373 nm and 448 nm, respectively. 3-Deoxy-D-manno-octulosonic acid
(Kdo) is an eight-carbon backbone �-keto acid that forms part of the conserved
core portion of LPS in virtually all Gram-negative bacteria. Kdo was released and
derivatized under the same conditions as the related NulO �-keto acids and
served as an internal control in these assays to express relative levels of NulOs.
The Mann-Whitney nonparametric test was used for statistical evaluation of
NulO/Kdo ratio differences between strains. All of the chemicals used in DMB
reactions were from Sigma, St. Louis, MO.

Electrospray ionization mass spectrometry. DMB-derivatized extracts or in-
dividually isolated HPLC peaks were analyzed at the University of California San
Diego Glycotechnology Core resource using a ThermoFinnigan LCQ ion trap
mass spectrometer with tandem HPLC.

RESULTS

Frequency of nab gene clusters in Vibrionaceae. As of Sep-
tember 2010, there were 24 species and 66 strains of the family
Vibrionaceae in the genome database (http://www.ncbi.nlm.nih
.gov/genomes/lproks.cgi). This includes 27 strains of V. chol-
erae, four strains of the closely related species V. mimicus,
seven V. parahaemolyticus genome sequences, and 21 addi-
tional species with either two genomes or a single genome
represented. NAB pathways are encoded by nab gene clusters,
which share a core portion composed of nab1, a homolog
of CMP–N-acetylneuraminic acid synthetase, nab2, a homolog
of N-acetylneuraminic acid synthase, and nab3, a homolog of
UDP–N-acetylglucosamine 2 epimerase. Many of these se-
quenced Vibrio species contained a putative NAB pathway.
BLAST analysis of nab genes identified 12 species and a total
of 21 strains containing nab gene clusters, i.e., V. vulnificus (2
strains), V. parahaemolyticus (6 strains), V. mimicus (1 strain),
V. harveyi (2 strains), V. shilonii (1 strain), V. splendidus (1
strain), V. coralliilyticus (1 strain), V. fischeri (2 strains), V.
salmonicida (1 strain), Vibrio sp. EX25 (1 strain), Photobacte-
rium profundum (2 strains), and Grimontia hollisae (1 strain)
(Fig. 1). However, about 50% (13/27) of the fully sequenced
Vibrionaceae species isolates did not contain homologous path-
ways for NulO biosynthesis (Fig. 2).

Evolution of NulO biosynthesis in Vibrionaceae. Analysis of
the distribution and arrangement of nab gene clusters among
Vibrionaceae lineages reveals a complex evolutionary history.
Within many lineages, there is a conspicuous presence or ab-
sence of homologous NAB pathways, with some notable ex-
ceptions. For example, among the seven V. parahaemolyticus
strains examined, only AN-5034 lacked the nab cluster and the
nab genes from 5/6 other strains shared 100% amino acid
sequence identity. V. parahaemolyticus strain 16 shared only
90% amino acid identity with the nab genes from the other
strains. Among the 27 V. cholerae genomes, none contained
nab genes. Yet, within sequenced isolates of V. mimicus, a
species closely related to V. cholerae, 1 of the 4 sequenced
strains (MB451) contained a nab region with a divergent gene
order compared to that of related species (Fig. 1).

For other vibrios, phylogenetic analysis of Nab amino acid
sequences revealed that members of the same species some-

times contain NAB pathways that are highly divergent from
each other. One of the clearest examples of phylogenetic di-
vergence involved the two sequenced strains of V. vulnificus
(YJ016 and CMCP6), both clinical biotype 1 strains from Asia
(10). The nab gene cluster within V. vulnificus YJ016 encom-
passes open reading frames (ORFs) VV0311 to VV0316 on
chromosome 1. In strain CMCP6, the NAB cluster encom-
passes ORFs VV10803 to VV10808 and is also found on chro-
mosome 1 (Fig. 1). Both Nab1 and Nab2 from CMCP6 and
YJ106 are found in two divergent lineages (a and b in Fig. 3A
and B). Nab2 from YJ016 is closely related to Nab2 from V.
fischeri ES114 and P. profundum 3TCK, whereas Nab2 from
CMCP6 is closely related to Nab1 from V. splendidus and V.
harveyi (a and b in Fig. 3B).

Representative members of other species (A. salmonicida

FIG. 2. Distribution of nab genes among sequenced members of
the family Vibrionaceae. A phylogenetic tree of completely sequenced
members of the family Vibrionaceae based on 16S rRNA sequences
was constructed. Evolutionary history was inferred by the NJ method
(49). The bootstrap consensus tree inferred from 500 replicates is
taken to represent the evolutionary history of the taxa analyzed.
Branches corresponding to partitions reproduced in less than 50%
bootstrap replicates are collapsed. The percentages of replicate trees
in which the associated taxa clustered together in the bootstrap test
(500 replicates) are shown next to the branches. The tree is drawn to
scale, with branch lengths in the same units as the evolutionary dis-
tances used to infer the phylogenetic tree. The evolutionary distances
were computed using the Kimura 2-parameter method and are ex-
pressed as the number of base substitutions per site. All positions
containing gaps and missing data were eliminated from the data set
(complete deletion option). There were a total of 1,191 positions in the
final data set. Phylogenetic analyses were conducted in MEGA4 (54).
Shewanella benthica 16S rRNA served as the outgroup. Strains that
contain nab genes are indicated by circles on the right. Accession
numbers for 16S sequences are provided in Materials and Methods.
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and G. hollisae) contain multiple paralogous nab gene clusters
within the same genome. In A. salmonicida, ORFs VSAL_I0164
to VSAL_I0172 are duplicated at positions VSAL_I0250 to
VSAL_I0259, but on the negative strand, and the nab1 gene is
a pseudogene. A third copy of the nab cluster is found in this
species at ORFs VSAL_I3009 to VSAL_I3013, but the region
shows low sequence similarity to the other two clusters and has
a unique gene arrangement (Fig. 1). Flanking all three nab
regions in A. salmonicida is a transposase. In the G. hollisae
genome, two copies of the nab region are present but the regions
show less than 65% amino acid identity, ORFs VHA_003148 to
VHA_003151 and VHA_003308 to VHA_003011; however, the
gene order is identical. Taken together, these observations
suggest that nab gene clusters in Vibrionaceae are prone to
duplication, divergence, and horizontal transfer.

Gene cluster organization matches phylogenetic signatures
of Nab1 and Nab2 in Vibrionaceae. Initial observations of the
nab gene clusters in sequenced strains of Vibrionaceae and
other gammaproteobacteria suggested that there are at least
three divergent nab gene alleles found within different gene
cluster arrangements (Fig. 1). To examine this more carefully,

selected nab gene clusters were aligned (Fig. 3C) and com-
pared to the phylogenetic branching patterns of the Nab1 (Fig.
3A) and Nab2 (Fig. 3B) amino acid sequences. There was a
strong correlation between the nab gene cluster arrangement
and the phylogenetic lineages of the Nab1 and Nab2 amino
acid sequences (Fig. 3, lineages a and b). These data also
revealed examples of apparent recombination between the dif-
ferent nab alleles. For example, while most of the members of
the family Vibrionaceae contained nab1 and nab2 alleles that
both cluster in phylogenetic clade a or b, the Vibrio sp. EX25
strain contained nab1 and nab2 alleles that clustered in differ-
ent phylogenetic clades (b and a, respectively) (Fig. 3).

Biochemical analyses of Vibrionaceae isolates confirm that
many species express NulOs. To determine whether NAB
pathways are functional in Vibrionaceae, analytical approaches
were applied to investigate the potential production of NulOs
in different lineages. Initially, Vibrionaceae isolates (28 strains
representing 14 species) were subjected to the classic TBA
assay, a method originally used to evaluate the distribution and
levels of sialic acids expressed by various animal lineages (61).
Indeed, many of the vibrios expressed TBARs when grown

FIG. 3. Correlation of phylogenetic branching patterns and analysis of Nab1 and Nab2 among Vibrionaceae species. Evolutionary relationships
of Nab1 (A) and Nab2 (B) amino acid sequences from 12 species of the family Vibrionaceae was inferred by the NJ method (49). The percentages
of replicate trees in which the associated taxa clustered together in the bootstrap test (500 replicates) are shown next to the branches. The
phylogenetic trees are drawn to scale, with branch lengths in the same units as the evolutionary distances used to infer each phylogenetic tree.
Evolutionary distances were computed using the Poisson correction method and are expressed as the number of amino acid substitutions per site.
All positions containing alignment gaps and missing data were eliminated only in pairwise sequence comparisons (pairwise deletion option). There
were a total of 432 positions in the final data set. Phylogenetic analyses were conducted in MEGA4 (54). The lowercase letters a and b refer to
similar phylogenetic clades and gene cluster arrangements shown in green and yellow, respectively. Asterisks highlight Vibrio sp. EX25, which
exhibits evidence of recombination between the a and b gene cluster alleles. See Fig. 1 for a complete description of gene identifiers and accession
numbers.
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under standard culture conditions (Fig. 4A). However, as sug-
gested by genomic observations of nab gene clusters in se-
quenced vibrios, many of the Vibrionaceae isolates did not
show TBARs at levels above those observed in negative con-
trols. The method of TBA reactivity has some limitations,
including the potential for interfering molecular species that
may confound interpretation of the results (62). To further
characterize potential NulO expression, selected isolates were
analyzed using a method of derivatization that relies specifi-
cally on the �-keto acid shared by all types of NulOs. Briefly,
mild acid hydrolysates of selected Vibrio isolates were sub-
jected to derivatization (fluorescence tagging) of NulOs with
DMB. Molecular species of DMB-NulOs were then resolved
by HPLC. Chromatograms revealed multiple peaks of DMB-
derivatized molecules in several Vibrio isolates (Fig. 4B).

Further verification that HPLC peaks of DMB-derivatized
molecules correspond to masses characteristic of NulOs was
achieved by mass spectrometry (Fig. 5). For example, experi-
ments with V. fischeri ES114 showed several retention times of
DMB-derivatized molecules that correspond to masses of di-
N-acetylated NulOs (m/z 450 to 451) (35), while V. parahae-
molyticus V0586 and V. vulnificus N-87 produced a single dom-
inant NulO species of this mass (note that 473 and 433
correspond to the sodium adduct and dehydrated forms of the
same molecule). Due to the multiple epimers and modifica-
tions of NulOs that can occur naturally (31), identical masses
found within many of the HPLC peaks could not be assigned
unambiguously to specific chemical structures. However, it is
clear from these studies that a variety of di-N-acetylated NulOs
are produced by multiple strains of V. parahaemolyticus, V.
fischeri, and V. vulnificus. Taken together, these experiments
conclusively show that many members of the family Vibrion-
aceae contain functional NAB pathways that are capable of
producing a variety of NulOs.

Distribution of nab alleles among diverse V. vulnificus iso-
lates. To more clearly define potential associations between
the different nab alleles, functional output of NulOs, and spe-
cific bacterial phylogenetic lineages, a more directed approach
within a single species was utilized. V. vulnificus was chosen for
these studies due to the phylogenetically divergent nab gene
clusters found in the two available reference genome strains
(YJ016 and CMCP6) (Fig. 3 and 6). Allele typing of nab1 and
nab2 was performed on a collection of 67 V. vulnificus strains
whose phylogenetic relationships are known, using a set of
primer pairs for nab1 and nab2 alleles designed using genomic
sequences from reference strains YJ016 and CMCP6 (alleles
here referred to as YJ-like and CM-like [Table 2]). Four PCR
assays were performed (Table 3) using genomic DNA isolated
from the 67 V. vulnificus strains (Table 2), of which 40 were
from environmental sources and 27 were from clinical sources.
We then mapped the presence of YJ-like or CM-like nab1
and/or nab2 alleles onto the V. vulnificus phylogenetic tree (11)
(Fig. 6).

PCR assays were negative for 13 of the 67 isolates examined,
including biotype 3 isolates, suggesting that these strains may
either lack the genes or contain unique untypeable nab genes
(Fig. 6). YJ-like alleles of nab1 and nab2 were identified in 26
strains, while 16 strains contained CM-like alleles of both
genes. Among the lineage I isolates, which are mostly from
clinical sources, both YJ-like and CM-like alleles of nab1 and
nab2 were present. However, among the lineage II isolates,
which are predominantly environmental and fish isolates, the
YJ-like allele was by far the most common (Fig. 6). Interest-
ingly, two V. vulnificus isolates contained a CM-like nab1 allele
with a YJ-like nab2 allele (Fig. 6). Taken together with data
presented in Fig. 3, these observations further support the
conclusion that members of the family Vibrionaceae sometimes

FIG. 4. Analysis of putative NulOs in Vibrionaceae. (A) A TBA assay of Vibrio strains listed in Table 1 was carried out as described in Materials
and Methods. Results were normalized to total protein content and expressed as TBARs. Controls gave the expected results and included
Streptococcus agalactiae (group B), which is known to express sialic acids, and Streptococcus pyogenes (group A), which does not express sialic acids
(� and �, respectively). (B) Putative NulOs released from selected strains (indicated by arrows in panel A) were fluorescently derivatized with
DMB as described in Materials and Methods. DMB-derivatized �-keto acids were then resolved by HPLC with reverse-phase separation.
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engage in horizontal exchange and recombination of different
nab gene cluster alleles.

NulOs are expressed at higher levels in lineage I clinical
isolates with CMCP6-like alleles. We hypothesized that allelic
differences in nab genes may predict functional differences in
the level of NulO production by isolates of V. vulnificus. To test
this hypothesis, we subjected isolates of V. vulnificus represent-
ing all three lineages and two nab allele types to DMB HPLC
analysis. The structurally related 8-carbon �-keto acid known
as Kdo served as a convenient internal standard for normal-
ization of NulO expression, since it is present as part of the
conserved core structure of LPS in Gram-negative bacteria and
also reacts with DMB. Relative NulO production was deter-
mined for the different isolates by comparing HPLC peak areas
at characteristic retention times of NulO and Kdo in V. vulni-

ficus as described in Materials and Methods (Fig. 7A). Relative
NulO levels were compared among lineage I and lineage II
isolates (Fig. 7B) and among isolates having YJ-like and CM-
like nab1 and nab2 alleles (Fig. 7C). These data show that
NulO expression levels are much higher in isolates that contain
CM-like nab alleles (Fig. 7C) and that these strains tend to
belong to V. vulnificus phylogenetic lineage I (mostly clinical
isolates) (Fig. 7B). Alternatively, isolates that contained YJ-
like nab alleles expressed much lower levels of NulOs. Nearly
all of the lineage II (mostly environmental) isolates contained
YJ-like nab alleles and had low levels of NulOs (Fig. 7C).
Interestingly, the data also show that most of the isolates that
were “untypeable” by these methods did, in fact, express
NulOs at levels that were significantly higher than those of
strains with YJ-like nab genes but significantly lower than

FIG. 5. Mass spectrometry reveals masses of DMB-derivatized di-N-acetylated NulOs in Vibrionaceae. V. fischeri (ES114*) (A), V. parahae-
molyticus (518-01 and V0586*) (B), and V. vulnificus (CDC903896, N-87*, MLT362, MO6-24/O, and SS108A3A) (C) were subjected to electro-
spray ionization mass spectrometry performed in tandem with HPLC separation of DMB-NulOs. Asterisks indicate data representative of the
strains tested. The total ion currents (TIC) of selected m/z 450 to 451 during HPLC elution are shown on the left, while mass spectra are shown
on the right along with the retention times (RT).
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those of strains with CM-like nab genes. Taken together, these
data strongly suggest that there are at least 3 alleles of nab
genes that correspond to low (YJ-like), intermediate (untype-
able), and high (CM-like) levels of NulO expression.

DISCUSSION

These studies illustrate processes of evolution within the
family Vibrionaceae by analysis of genetic and phenotypic pat-
terns related to the nine-carbon backbone �-keto acid sugars
(NulOs). We show that biosynthetic pathways for NulOs are
widespread in members of the family Vibrionaceae but by no
means universal (Fig. 1 and 2). The distribution and phylogeny
of nab pathways in vibrios suggest that some lineages or strains
have lost, while others have apparently duplicated, these gene
clusters (Fig. 1 and 2 and Results). Multiple biochemical ap-
proaches confirm that NAB pathways are indeed active in a
variety of Vibrio isolates (Fig. 4 and 5) and can participate in
the biosynthesis of multiple structural variations of NulOs
within a given strain (Fig. 5A). Genomic comparisons revealed
multiple allele types of NAB pathways which are reflected by
similar patterns of gene arrangement and phylogeny (Fig. 3)
and correspond to functional differences in NulO expression
levels (Fig. 7). In particular, clinical isolates of the CMCP6-like
allele expressed, on average, nearly 100-fold higher levels of
NulOs than environmental isolates with the YJ016 allele.
Moreover, the data show several examples of apparent recom-

bination between nab gene cluster alleles (Fig. 3 and 6). Taken
together, these studies indicate a relatively plastic state of NAB
pathway evolution in Vibrionaceae. These observations high-
light the family Vibrionaceae and the species V. vulnificus as
interesting models for investigations of the biological functions
of NulOs.

During the completion of this study, the genome sequence
of a third V. vulnificus strain, MO6-24/O, a clinical isolate from
the United States, became available. We found that strain
MO6-24/O contains a NAB cluster identical to CMCP6 and
produces high levels of NulOs, confirming our genomic pre-
dictions (Fig. 6 and 7). Lastly, our data also strongly suggest
the presence of a third NAB cluster type (and possibly more
cluster types) that is present among natural V. vulnificus iso-
lates. We identified a total of 13 strains that were untypeable
by our PCR method; however, our analysis of NulO levels
demonstrates that these strains produce intermediate levels of
NulO, indicating the presence of nab genes unrelated to YJ016
or CMCP6. Given the limited number of V. vulnificus isolates
that we examined, it is tempting to speculate that there may be
even more heterogeneity in nab gene content within this spe-
cies and the challenge going forward will be to determine the
functional role of this diversity in survival and fitness.

NulOs are generally expressed on the surfaces of cells—both
in “higher” animals and on bacteria. Vibrionaceae species likely
express NulOs as part of one or more surface structures such
as capsular polysaccharides, LPSs, or flagella (16, 34, 37, 40–43,

FIG. 6. Distribution of nab1 and nab2 allele types among V. vulnificus. PCR diagnosis of nab alleles was carried out using genomic DNA
template from 67 strains of V. vulnificus and primers specific to the nab1 and nab2 alleles from reference strains YJ016 and CMCP6. If only one
gene allele was positive, a minus sign was used to indicate a negative PCR result for the other allele. Strains that were negative in all PCR assays
are indicated as “untypeable” here (�/�), since biochemical investigations revealed that they do, in fact, express NulOs (see Fig. 7). The
phylogenetic tree of V. vulnificus is based on a phylogenetic analysis of six housekeeping genes as previously described (11).

FIG. 7. CMCP6-like nab alleles are associated with high levels of NulO expression in mostly clinical strains. DMB HPLC analysis of diverse
V. vulnificus isolates was carried out, and NulO expression levels were normalized to an internal control monosaccharide (Kdo) that is a part of
the conserved core portion of LPS. (A) Raw HPLC data from strains representing the major V. vulnificus lineages (I and II) and common nab allele
types (CMCP6 and YJ016). (B) Relative NulO expression levels in lineage I and II strains. (C) V. vulnificus isolates with CM-like alleles of nab
genes have significantly higher levels of NulOs than isolates with YJ-like alleles. Most of the “untypeable” isolates do, in fact, express detectable
NulOs but at levels that are intermediate compared to those of isolates with YJ-like or CM-like alleles. (B and C) The Mann-Whitney test was
used for statistical evaluation (*, P � 0.05; **, P � 0.01; ***, P � 0.0001). Note the log scales.
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48, 50, 51). For example, strains of Campylobacter jejuni can
simultaneously express pseudaminic and legionaminic acids as
flagellar modifications and sialic acids as LPS modifications
(39, 40). It is possible that different nab alleles in Vibrionaceae
encode slightly different NulO structures and/or that NulO
sugars may be intended for different surface molecules (i.e.,
capsule, LPS, flagella). Alternatively, the different NAB alleles
in V. vulnificus could be responsible for NulO modifications at
different densities on the same molecule. Vibrio NulOs may be
involved in motility, biofilm formation, relative phage suscep-
tibility, or other phenotypes relevant to the marine ecosystem
niche. In addition, Vibrio NulOs may have functional implica-
tions during opportunistic pathogenesis in aquatic or terres-
trial animals.

In summary, the further study of NulO biology in Vibrion-
aceae will require careful analysis of the genetics and biochem-
istry of cell surface NulO modifications. Taken together with
the many known roles of NulOs in host-microbe interactions,
these studies provide a basis for further investigations of
NulOs in bacterial behaviors and host-pathogen interactions
involving the members of the family Vibrionaceae.
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