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RESEARCH ARTICLE
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Abstract
The Nicotine Metabolite Ratio (NMR, ratio of trans-3’-hydroxycotinine and cotinine), has

previously been associated with CYP2A6 activity, response to smoking cessation treat-

ments, and cigarette consumption. We searched for drug metabolizing enzyme and trans-

porter (DMET) gene variation associated with the NMR and prospective abstinence in

2,946 participants of laboratory studies of nicotine metabolism and of clinical trials of smok-

ing cessation therapies. Stage I was a meta-analysis of the association of 507 common sin-

gle nucleotide polymorphisms (SNPs) at 173 DMET genes with the NMR in 449 participants

of two laboratory studies. Nominally significant associations were identified in ten genes

after adjustment for intragenic SNPs; CYP2A6 and two CYP2A6 SNPs attained experiment-

wide significance adjusted for correlated SNPs (CYP2A6 PACT=4.1E-7, rs4803381

PACT=4.5E-5, rs1137115, PACT=1.2E-3). Stage II was mega-regression analyses of 10
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DMET SNPs with pretreatment NMR and prospective abstinence in up to 2,497 participants

from eight trials. rs4803381 and rs1137115 SNPs were associated with pretreatment NMR

at genome-wide significance. In post-hoc analyses of CYP2A6 SNPs, we observed nomi-

nally significant association with: abstinence in one pharmacotherapy arm; cigarette con-

sumption among all trial participants; and lung cancer in four case:control studies. CYP2A6
minor alleles were associated with reduced NMR, CPD, and lung cancer risk. We confirmed

the major role that CYP2A6 plays in nicotine metabolism, and made novel findings with

respect to genome-wide significance and associations with CPD, abstinence and lung can-

cer risk. Additional multivariate analyses with patient variables and genetic modeling will

improve prediction of nicotine metabolism, disease risk and smoking cessation treatment

prognosis.

Introduction
The predominant enzyme involved in nicotine and cotinine metabolism is CYP2A6 [1, 2],
where nicotine is metabolized primarily to cotinine, and cotinine primarily to trans-3’-hydro-
xycotinine. The Nicotine Metabolite Ratio (NMR) is the ratio of the metabolites trans-3’-
hydroxycotinine and cotinine. The ratio reflects the enzymatic activity of CYP2A6 and is a bio-
marker of the rate of nicotine clearance [3]. The ratio is associated with smoking topography
[4], responsiveness to smoking cessation treatments [5], and the number of cigarettes smoked
per day (CPD) [6]. Significant correlations between the NMR and a) oral clearance of nicotine,
b) oral clearance and t1/2 of cotinine, and c) lack of production of trans-3’-hydroxycotinine in
individuals homozygous for null CYP2A6 alleles, support the validity of the NMR as a marker
of CYP2A6 activity [3]. In addition to CYP2A6, genetic and biochemical studies have identified
contributions of additional DMET loci to measures of nicotine metabolism in diverse samples
and study designs. Gene variants associated with differences in nicotine metabolism [7] influ-
ence smoking behavior, tobacco exposures and attributable disease risks, and could serve as
biomarkers for disease risk, and treatment prognosis [8].

To discover and develop novel biomarkers of nicotine metabolism and related phenotypes,
we performed a planned analysis to: a) identify DMET SNPs associated with the laboratory
study-based NMR [9, 10] using the DMET Plus Array [11]; b) validate nominally significant
DMET SNP associations with baseline NMR in clinical trial participants from two trials [12];
and, c) further validate nominally significant DMET SNPs with end-of-treatment and six-
month seven day point prevalence abstinence (abstinence) in clinical trial participants from
eight trials [12–18]. We also conducted post-hoc analyses of validated DMET SNPs in clinical
trial participants with abstinence by smoking cessation pharmacotherapy assignment, and with
nicotine dependence measures among all participants. Finally, we interrogated a meta-GWAS
lung cancer database [19] for association results of two validated DMET SNPs.

Methods

Human Subjects
Institutional Review Board approval for each study, and informed written consent from each
participant, was obtained by the Principal Investigators of each study. Institutional Review
Board approval for these analyses was obtained from the Committee on Human Research at
the University of California San Francisco and the Human Subjects Committee at SRI
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Consortium. Therefore I will not submit individual
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International, and for the TRICL study by the institutional ethics review committees at the
involved institutions.

Stage I Participants
Stage I participants were derived from two distinct studies (Table 1). Healthy twin pairs and
siblings were recruited from the Northern California Twin Registry, age�18 and<65 years,
<130% of height-adjusted ideal weight, neither pregnant nor intending to become pregnant,
and after exclusion of chronic medical and psychiatric conditions (PKTWIN study) [9]. Partic-
ipants underwent a 30 minute infusion of deuterium-labeled nicotine (3’,3’-dideuteronicotine)
and cotinine (2’,4’,5’,6’-tetradeuterocotinine), monitoring, and blood and urine collection in a
hospital setting [9]. Probands and two first-degree relatives from 158 pedigrees with�three
ever-smoking individuals per pedigree were recruited to assess the relations between genetic
factors, environmental factors and tobacco use (SMOFAM study) [10]. Individuals from 61
pedigrees completed a clinical study of nicotine metabolism; oral administration of a fixed dose
of deuterium-labeled nicotine and cotinine at home, monitored by a nurse, was followed by
collection, aliquoting and freezing of saliva samples at multiple time points [10]. Participants
completed a detailed questionnaire and provided a blood sample for DNA extraction and anal-
ysis [10]. Levels of nicotine, cotinine trans-3’-hydroxycotinine and their glucuronides were
estimated via liquid chromatography-mass spectrometry and pharmacokinetic phenotypes cal-
culated, as described [3], from each study.

Stage I Analysis
Genomic DNA was extracted from whole blood [20], and quantified [21]. DNA samples were
genotyped using the Affymetrix DMET Plus Array [11] (S1 File). Genotype and phenotype
data are accessible through application to a data access committee using dbGaP Study ID
phs000931.v1.p1. We performed association analyses with common biallelic SNPs and indels
[�0.05 minor allele frequency (MAF) in each dataset] with the NMR derived from the six hour
biospecimen collection. In the PKTWIN dataset, the NMR was square-root transformed and
adjusted for age, age-squared, BMI, sex, smoking status (current versus other), and any hor-
mone use (menopausal status and/or reproductive hormone use versus no hormone use). In
the SMOFAM dataset, the NMR was log transformed and adjusted for age, aged-squared, BMI,
sex, and smoking status. We constructed principal components of population genetic variation
using 655 unlinked (r2<0.5) DMET Plus Array SNPs in 323 PKTWIN individuals and 212
SMOFAM individuals, and used the first ten principal components to further adjust the NMR
in each dataset. To avoid heterogeneity due to potential differential linkage disequilibrium
among different continental population samples, genotype-phenotype analyses presented were
performed on individuals who self-identified as White. Additive models were evaluated for
each common SNP via Hierarchical Linear Modeling (HLM) [22] as our primary analysis (S1
File). We performed a sample-size weighted fixed-effect meta-analysis followed by PACT
adjustment using test statistics from the HLM analyses. The meta-PACT procedure [23] assesses
meta-analysis significance at two levels: adjusted for all SNPs tested within a gene, and within
the entire experiment, accounting for intragenic SNP correlation.

Stage II Participants
We used DNA samples and clinical data from self-identified White participants from eight
clinical trials of smoking cessation therapies conducted in six US sites [12–18] to validate nom-
inally significant DMET SNPs from Stage I with pretreatment NMR and prospective absti-
nence (Table 2). Treatment-seeking smokers (�10 CPD,�18 years of age, recruited using local
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media and screened for eligibility), were randomized to placebo or active pharmacotherapy
[12, 14–18], or were prescribed varenicline and randomized to three modes of behavioral ther-
apy [13]; all participants were provided with multiple sessions of supportive therapy (individ-
ual, group, telephone, internet or combined modes). Trial participants provided a blood [12,
14–18] or a saliva [13] sample on study entry; blood was used for pretreatment NMR determi-
nation from two clinical trials [12] and blood or saliva for DNA extraction from eight trials
[12–18].

Stage II Analysis
For validation, we chose one or more SNPs with uncorrected meta-analysis p-values<0.05
from each of the ten genes with meta-PACT p-values<0.05 and evaluated availability of Taq-
Man SNP Genotyping Assays (Life Technologies). Of 16 selected SNPs, 12 SNPs had prede-
signed assays, two were proxy SNPs (r2 = 1, Utah residents with ancestry from northern and
western Europe HapMap sample, CEU) with predesigned assays, and two had custom assays
designed (S1 File and S4 Table). We performed genotyping on the TaqMan OpenArray SNP
Genotyping System or ViiA 7 using laboratory study, clinical trial, and HapMap (Coriell Cell
Repositories, Camden, NJ) DNA samples. Stage II SNP genotyping assays were evaluated for
clustering, concordance and completion rates prior to removing DNA samples with low com-
pletion rates, then for concordance, completion and Hardy Weinberg Equilibrium (HWE).
Quality control procedures and summary results are described in S1 File, and completion rate

Table 1. Laboratory study participant characteristics.

Dataset PKTWIN SMOFAM

N individuals 247 202

N families 120 59

Age, Years, mean (SD) Overall 247 (37.5, 12.7) 202 (39.7, 13.8)

Twins 235 (37.2, 12.6)

Siblings 12 (43.7, 13.2)

Offspring 113 (28.1, 4.6)

Parents 89 (54.4, 4.3)

Sex (N, %)a Female 178 (72.1%) 107 (53.0%)

Smoking status (N, %)a Current 44 (17.8%) 70 (34.7%)

Former 62 (25.1%) 66 (32.7%)

Never 141 (57.1%) 66 (32.7%)

NMR (mean, SD) VA, PAb 247 (0.27, 0.14)
cOA, SA 202 (0.28, 0.14)

BMI (kg/m2)a 247 (25.1, 4.8) 202 (28.6, 6.78)

Zygosity MZ 188 (80.0%)

Menopausal status Pre-menopausal 130 (77.4%)

During menopause 18 (10.7%)

Post-menopausal 20 (11.9%)

Hormone use Oral Contraceptive 40 (25.8%)
dHRT 16 (10.3%)

aP<0.001 for t, χ2, and t tests, respectively.
bVenous administration, plasma analysis.
cOral administration, saliva analysis.
dHormone Replacement Therapy.

doi:10.1371/journal.pone.0126113.t001
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and HWE significance by assay and by clinical trial are described in S5 and S6 Tables. Six of 16
selected DMET SNPs failed genotype clustering, completion rate and HWE quality thresholds.
Thus, ten SNPs from seven of 10 genes passed quality thresholds and were included in subse-
quent analyses. In the course of evaluating the specificity of custom assays for one CYP2A6
SNP (rs4803381), we resolved an ambiguous genomic location, i.e., evidence for rs4803381’s
location proximal to CYP2A6 rather than proximal to CYP2A7 (S1 File).

We used linear regression to estimate association of ten DMET SNPs on natural log trans-
formed NMR in treatment-seeking smokers from two trials [12], adjusted for age, age-squared,
BMI, sex, the first three principal components of population genetic variation obtained from
analysis of 45 ancestry informative markers [24], and site. We used logistic regression to esti-
mate association between ten DMET SNPs on end of treatment and on six month abstinence
in treatment-seeking smokers from eight trials [12–18], adjusting for age, age-squared, BMI,
sex, education (college degree or less than a college degree), marital status (married or other),
principal components, and 26 treatment arms. For both analyses, we imputed missing values
for BMI (N = 43), education (N = 10) and marital status (N = 7) 20 times, analyses were per-
formed on each data set, and results combined with adjustment to reflect the variance attribut-
able to the imputations [25].

Post-hoc analyses
For two CYP2A6 SNPs (rs4803381 and rs1137115) we estimated the proportions of variance
and significance of association with: cigarettes per day (CPD), coded as a continuous variable
and as in the Fagerström Test for Nicotine Dependence (FTND) [26] or Cigarette Depen-
dence (FTCD) [27]; time to first cigarette after waking (TTFC); and total FTND/FTCD

Table 2. Clinical trial participant characteristics.

NCT Trial ID 00326781 00322205 00301145 00087880 00086385 01621009 01621022 00332644

Investigator Lerman Lerman Swan Hall Hall Baker Baker Baker

N genotyped 310 341 493 149 177 176 159 694

Age Mean (SD) 46.5 (10.9) 44.4 (11.6) 49.2 (11.4) 42.0 (9.6) 57.3 (5.9) 37.7 (11.3) 41.6 (11.1) 44.4 (11.7)

BMI Mean (SD) 27.6 (5.2) 26.9 (4.8) 27.8 (5.8) 26.4 (4.7) 26.5 (5.9) 26.6 (5.7) 26.6 (5.3) 28.8 (6.7)

College (%) 50.3 41.8 25.6 50.7 57.6 20.5 17.7 22.5

Female (%) 46.5 54.6 68.8 38.9 41.8 53.4 59.1 59.5

Married (%) 48.4 51.0 68.2 24.2 29.4 44.6 46.5 47.4

FTND Mean (SD) 5.56 (2.2) 5.34 (2.1) 5.17 (2.1) 4.80 (2.1) 4.86 (2.1) 5.10 (2.4) 5.67 (2.1) 5.23 (2.2)

CPDa Mean (SD) 23.9 (9.5) 22.0 (9.4) 20.3 (8.3) 19.2 (7.6) 20.8 (8.8) 21.5 (8.3) 23.8 (9.4) 21.7 (8.9)

CPDb Mean (SD) 1.57 (0.9) 1.36 (0.7) 1.21 (0.7) 1.15 (0.7) 1.26 (0.8) 1.54 (0.7) 1.68 (0.8) 1.47 (0.8)

TTFC Mean (SD) 2.11 (0.9) 2.09 (0.9) 2.09 (0.9) 1.78 (0.9) 1.93 (1.0) 1.78 (1.0) 2.15 (0.8) 1.92 (0.9)

Pharmacotherapyc NRT BUP, PLA VAR NRT+BUP NRT+BUP BUP, PLA BUP, PLA NR, BU, PL

N Arms 2 2 3 5 4 4 2 4

EOT ABSd (%) 0.326 0.264 0.550 0.633 0.667 0.273 0.220 0.415

6MOe ABS (%) 0.197 0.211 0.426 0.449 0.616 0.148 0.214 0.320

aContinuous.
bFTND/FTCD.
cNicotine Replacement Therapy (NRT, NR), Bupropion (BUP, BU), Placebo (PLA, PL), Varenicline (VAR), combined NRT and BUP (NRT+BUP).
dEOT ABS = End of treatment seven day point prevalence abstinence, except for trials 00087880 and 00086385 which provided NRT+BUP for 12 weeks

and then randomized participants to chronic NRT, chronic BUP or no further treatment.
e6MO = Six months.

doi:10.1371/journal.pone.0126113.t002
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score. Model covariates in nicotine dependence regressions were age, age squared, BMI, sex,
education, marital status, three principal components of population genetic variation, and
site. We performed regression analyses to evaluate the influence of rs4803381 on prospective
abstinence outcomes stratified by pharmacotherapy. Model covariates in abstinence regres-
sions were the same as in the nicotine dependence regressions with the addition of clinical
trial arm. Power analyses of SNP associations with NMR and six month prospective absti-
nence were performed. The TRICL meta-GWAS database, comprised of multiple case:con-
trol studies of lung cancer [19], was interrogated for existing association results at two
CYP2A6 SNPs.

Analysis software, annotation, and model parameters
We used: SAS (Cary, NC) for data curation and HWE testing; plink [28] to evaluate Mendelian
transmission; GCTA [29] to estimate principal components; STATA (StataCorp, College Sta-
tion, TX) to perform HLM, imputation and other regression analyses; PACT [30] and meta-
PACT [23] to adjust for multiple testing; Haploview to calculate linkage disequlibrium [31];
SNAP [32] to identify proxy SNPs; Quanto [33] for power analyses; and dbSNP [34] and Affy-
metrix resources for SNP annotation. Chromosome coordinates are from the NCBI36/hg18
assembly [34]. SNP models were additive, tests were two-sided, and all alphas were 0.05.

Results

Stage I participants, common DMET SNPs and the NMR
PKTWIN participants are significantly (P< .001) more likely to be female, less likely to be a
current smoker, and, lower in adiposity than SMOFAM participants (Table 1). Five SMOFAM
individuals were excluded from analysis, one with a NMR value more than five standard
deviates above the mean, and four due to genotypes inconsistent with interview-based family
relationships. We excluded 121 and 28 DMET SNPs in PKTWIN and SMOFAM, respectively,
from analysis due to nominally significant deviation (p-values<0.05) from HWE. We tested
608 DMET SNPs common in PKTWIN and 531 SNPs common in SMOFAM, and adjusted
for multiple tests in genes with more than one SNP tested using the PACT procedure. We
meta-analyzed 507 SNPs within 173 genes in 449 individuals from the PKTWIN and SMO-
FAM datasets and adjusted for multiple SNPs within a gene, and for two datasets, using the
meta-PACT procedure. S1–S3 Tables contain genotype counts and HLM analyses results,
meta-analysis Z scores and p-values, and meta-PACT gene-wise p-values, respectively. Ten
genes exhibited gene-wise meta-PACT p-values<0.05; CYP2A6, CYP2D6, and SPG7 were
the top three ranked genes (Table 3). Forty-one SNPs had uncorrected meta-analysis p-
values<0.05 with CYP2A6 and CYP2D6 SNPs in the top three ranked SNPs. rs4803381 was
the top ranked SNP with an uncorrected meta-analysis P = 1.33E-07. After multiple test cor-
rection for 507 SNPs, two CYP2A6 SNPs attained experiment-wide significance: rs4803381
(PACT = 4.53E-05) and rs1137115 (PACT = .0012), located in the promoter (c.-1013) and first
exon (c.51) of CYP2A6. These SNPs are in strong linkage disequilibrium with each other (r2 =
0.63 and 0.62 and D’ = 0.99 and 1.00 in PKFAM and SMOFAM), and in ex vivo hepatic tissue
have been shown to be associated with significantly reduced protein and activity [35].
rs4803381 and rs1137115 are assocated with many CYP2A6� star allele (�) haplotypes (�1B/
�1B2, �1B5, �1B6, �1B8, �1B9, �1B10, �1B11, �1D, �1J, �9A, �9B, �18C, �24A, �24B, �31A, �31B,
�35A and �1A, �1B14, �1B17, �2, �14, �18B, �20, �21, �28A, �28B, �41, �42, �44, �45, respec-
tively) [36].
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Stage II participants, NMR and prospective abstinence
DNA samples from 2,499 clinical trial participants (Table 2) were subject to genotyping at 16
DMET SNPs, and to quality control filtering (S1 File and S4–S6 Tables). Two CYP2A6 SNPs
evaluated for association with pretreatment NMR were associated at genome-wide significance
[β = -0.280, 95%CI (-0.336, -0.225), P = 1.25E-21, N = 633 individuals, and -0.240, 95%CI
(-0.301, -0.178), P = 7.30E-14, N = 614 individuals]. The Stage II mean (standard deviation)
completion rates for the two CYP2A6 SNPs over the eight randomized clinical trials were:
rs4803381, 0.9946 (0.0045) and rs1137115, 0.9834 (0.0218). One of eight clinical trial HWE p-
values for rs4803381 was< .05, while all other p-values were>.155; no clinical trial HWE p-
value for rs1137115 was< .05. The two CYP2A6 SNPs are in strong linkage disequilibrium
with each other (r2 = 0.58 and D’ = 0.98 in the two clinical trials). No other analyzed DMET
SNPs were statistically significantly associated with pretreatment NMR, including the CYP2D6
SNP rs28371725 (Table 4). In joint analysis of rs4803381 and rs1137115 with baseline NMR
(N = 605 individuals), rs4803381 was experiment-wide statistically significantly associated [β =
-0.209, 95%CI (-0.293, -0.125), P = 1.31E-6], while rs1137115 was not [β = -0.075, 95%CI
(-0.168, 0.017), P = 0.110]. Pretreatment NMR variance accounted for by covariates alone, with
rs4803381, with rs1137115, and with both SNPs were 9.2%, 21.9%, 18.5%, and 22.2%. The
mean (SD) and N of the residualized transformed NMR in individuals with SNP reference, het-
erozygote and minor allele homozygote genotypes were: -0.947 (0.153) 263, -0.950 (0.166) 296;
and -0.953 (0.161) 74 for rs4803381; and -0.955 (0.156) 351, -0.951 (0.166) 228, -0.947 (0.143)
35 for rs1137115. Coefficient signs from Stage I and II analyses matched for both CYP2A6
SNPs. No DMET SNPs were associated with prospective abstinence over all participants, at
either time point (S7 Table); power to detect ORs of 1.2 to 1.4-fold was good to excellent (S8
Table).

Post-hoc analyses
rs4803381 and rs1137115 were statistically significantly associated with cigarettes per day at
different levels of significance (continuous, p-values of .0001 and .0017; categorical, p-values of
.0020 and .0215), but not with TTFC or with total FTND (Table 5 and S9 Table). In joint analy-
sis of rs4803381 and rs1137115, rs4803381 remained nominally associated with CPD (continu-
ous, P = .0279; categorical, P = .0376).

Table 3. DMET genes associated with the laboratory study-based NMR, bymeta-PACT P<0.05.

Gene meta-PACT chr:coor of transcripta SNPs ranked by meta-PACT p-value

CYP2A6 4.05E-07 chr19:46,041,283–46,048,192 rs4803381, rs1137115, rs4079369, rs8192729

CYP2D6 1.03E-03 chr22:40,852,445–40,856,827 rs1080985, rs28371725, rs16947, rs1080983, rs1065852

rs28360521, rs1800716, rs3892097, rs1135840, rs1058164

SPG7 1.08E-02 chr16:88,102,306–88,151,675 rs12960, rs2292954

XDH 1.11E-02 chr2:31,410,692–31,491,115 rs1884725, rs2295475

CHST8 1.49E-02 chr19:38,804,701–38,956,254 rs1064349

CHST13 2.46E-02 chr3:127,725,866–127,744,824 rs1873397, rs6783962, rs4305381, rs1056522

SLCO1B1 2.46E-02 chr12:21,175,404–21,283,997 rs11045819, rs2291075, rs2306283, rs4149057, rs4149056

CYP4F3 2.66E-02 chr19:15,587,029–15,601,447 rs1805041, rs1805042

SLC15A1 4.42E-02 chr13:98,134,057–98,202,909 rs2297322, rs1339067

CBR1 4.76E-02 chr21:36,364,155–36,367,332 rs2835265, rs1005695, rs998383, rs3787728

aNCBI36/hg18

doi:10.1371/journal.pone.0126113.t003
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In analyses of end-of-treatment and six month abstinence among individuals randomized
to one of six (end-of-treatment) and to one of nine (six months) different pharmacotherapies,
we observed two results of interest (S10 Table). In the first result of interest, we observed
increased abstinence in individuals randomized to nicotine replacement therapy (NRT) (S10
Table). After analyses by mode of administration, we observed increased abstinence at end-of-
treatment and at six months, with a trend towards significance (p-values< .10) in individuals
randomized to NRT patch [in 339 individuals, ORend-of-treatment (95%CI) P = 1.348 (0.961–
1.890) 0.084 and ORsix months (95%CI) P = 1.386 (0.973–1.975) 0.071]. These observations,
while not statistically significant, are the most directly interpretable. We also observed a nomi-
nally statistically significant rs4803381 association with six month abstinence in one arm of 66

Table 4. DMET SNP association with NMR, Stage I (PKTWIN, SMOFAM, Meta-analysis) and Stage II (RCT), by Stage I Meta-PACT.

Gene SNPa βPK
b SEPK PPK βSM SESM PSM ZMeta PMeta βRCT SERCT PRCT

CYP2A6 rs4803381 -0.054 0.014 0.000 -0.070 0.020 0.000 -5.274 1.3E-7 -0.280 0.028 1E-21

CYP2A6 rs1137115 -0.053 0.015 0.000 -0.068 0.023 0.003 -4.657 3.2E-6 -0.240 0.031 4E-14

XDH rs1884725 0.040 0.014 0.004 0.014 0.024 0.569 2.768 0.0056 -0.002 0.033 0.949

SLCO1B1 rs11045819c 0.047 0.018 0.007 0.024 0.028 0.394 2.752 0.0059

rs17329885d -0.012 0.040 0.767

CYP4F3 rs1805041 0.007 0.015 0.644 0.074 0.021 0.000 2.456 0.0140 0.039 0.031 0.216

CBR1 rs2835265c 0.056 0.022 0.012 0.022 0.033 0.497 2.447 0.0144

rs2835272d 0.068 0.045 0.133

CYP2D6 rs28371725 -0.048 0.019 0.011 -0.005 0.035 0.888 -2.299 0.0215 0.013 0.047 0.779

SLC15A1 rs2297322 -0.022 0.020 0.275 -0.079 0.031 0.012 -2.284 0.0224 0.031 0.044 0.481

CYP4F3 rs1805042 -0.015 0.012 0.229 -0.041 0.018 0.023 -2.272 0.0231 -0.020 0.031 0.520

SLCO1B1 rs2306283 0.013 0.013 0.319 0.049 0.020 0.013 2.178 0.0294 0.018 0.030 0.558

aSee S4 Table for details on SNPs.
bβ, P = coefficient and P from PKTWIN [9] (PK), SMOFAM [10] (SM), and two clinical trials [12] (RCT), respectively; SE = Standard Error; ZMeta = meta-

analysis Z score; and PMeta = meta-analysis PACT.
c,dProxy SNPs, r2 = 1.0, CEU for laboratoryc and clinical triald analyses, respectively.

doi:10.1371/journal.pone.0126113.t004

Table 5. Post-hoc analyses of CYP2A6 SNPs andmeasures of nicotine dependencea in treatment-seeking smokers.

CPD (continuous) CPD (FTND coding) TTFC FTND

Mean (SD) 21.67 (8.95) 1.34 (0.77) 1.99 (0.90) 5.23 (2.18)

Min, Max 1, 100 0, 3 0, 3 0, 10

Covariatesb r2 0.1064 0.1056 0.0633 0.0674

Covariates and rs4803381 r2 0.1118 0.1092 0.0633 0.0678

rs4803381 p-values 0.0001 0.0020 0.9045 0.2938

Covariates and rs1137115, r2 0.1101 0.1076 0.0633 0.0678

rs1137115, p-values 0.0017 0.0215 0.8415 0.2938

Covariates and both CYP2A6 SNPs, r2 0.1119 0.1092 0.0633 0.0678

rs4803381 and rs1137115, p-values 0.0279 0.6966 0.0376, 0.9522 0.9601, 0.8650 0.6966, 0.6892

aPairwise correlations of cigarettes per day (continuous) with categorical CPD, TTFC and FTND were 0.914, 0.400 and 0.614, of categorical CPD with

TTFC and FTND were 0.379 and 0.622, and of TTFC with FTND were 0.799.
bAge, age squared, BMI, sex, education, marital status, three principal components of population genetic variation and site. Descriptive and regression

analyses were performed on a sample of 2,418 individuals with called genotypes at both rs4803381 and rs1137115.

doi:10.1371/journal.pone.0126113.t005
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individuals first treated with combined NRT and bupropion from baseline to 12 weeks and
then randomized to chronic bupropion (P = 0.023). This result has a more speculative
interpretation.

rs1137115 was nominally significantly associated with lung cancer in a meta-analysis of
four studies from the TRICL database [fixed effects odds ratio (95%CI) P 0.92 (0.87–0.97)
0.0022], and in two of the individual case:control studies (S11 Table). rs4803381 does not have
results in the TRICL database. The direction of effect of the rs1137115 association with lung
cancer is consistent with the reduced nicotine metabolism and cigarette consumption associ-
ated with the rs1137115 minor allele we observed in our Stage I and II analyses, and with the
functional effects of rs1137115 evaluated in ex vivo hepatic tissue [35, 37].

Discussion

Findings
There were five novel findings in this study, two in the a priori phase, and three in the post-hoc
phase. CYP2A6 was associated with laboratory based NMR at experiment-wide significance in
an analysis of 173 DMET genes. rs4803381 and rs1137115 were associated with the pretreat-
ment NMR at genome-wide significance. In post-hoc analyses in clinical trial participants,
these two CYP2A6 SNPs were shown to be associated at experiment-wide significance with
baseline CPD in treatment-seeking smokers of eight clinical trials, and rs4803381 was associ-
ated with six month abstinence in individuals randomized to chronic bupropion treatment at
nominal significance. In the post-hocmeta-analysis of four case:control studies, rs1137115 was
associated with lung cancer at nominal significance. The minor alleles of these CYP2A6 SNPs
were associated with reduced nicotine metabolism, smoking heaviness and lung cancer risk in
a mechanistically interpretable fashion (reduced nicotine metabolism rate reduces cigarette
consumption reduces lung cancer risk).

rs4803381, rs1137115, and correlates
Our multivariate analysis of two CYP2A6 SNPs, demographics, population genetic variation
and clinical trial site accounted for up to 22.2% of the variance of the pretreatment NMR with
the individual SNPs accounting for approximately half of this variance. Validation of the asso-
ciation of CYP2A6 SNPs with the NMR confirms the role CYP2A6 plays in nicotine metabo-
lism [7, 38, 39]. Both SNPs are common polymorphisms in continental ancestry samples,
where the rs4803381 European ancestry minor allele is the major allele in Asian and African
HapMap populations. The minor alleles of rs4803381 and rs1137115 are associated with
reduced CYP2A6 transcript levels [35, 37], CYP2A6 protein level [35], and CYP2A6 activity
[35, 37] and are linked with reduced function CYP2A6 alleles [36] (S4 Table).

rs4803381 and rs1137155 were significantly associated with cigarette consumption coded
continuously or as in the FTND/FTCD (Table 5). The influence of a single allele of rs4803381
and of rs1137115 in our multivariate regressions of treatment-seeking smokers were -0.11 and
-0.098 standard deviates of continuously coded CPD, or a reduction of 0.99 and 0.88 cigarette
per day (unadjusted means in S9 Table), which represent effect sizes larger than those associ-
ated with other CYP2A6 SNPs, e.g., rs1801272 (c.479T>A/p.L160H), with effect size of 0.68
CPD (N = 66,380, P = 1.1E-4) [40]. rs1137115 was nominally significantly associated with lung
cancer in a meta-GWAS database, adding to existing evidence that other CYP2A6 variants con-
tribute to lung cancer risk (S2 File). The functional effects of rs4803381 and rs1137115, i.e.,
reduced transcription, protein level and activity [35, 37] suggest that CYP2A6 variation that
influences regulation may be more important than CYP2A6 non-synonymous variants that
directly influence enzyme activity, e.g., rs1801272, but with lower prevalence [41].
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The validated CYP2A6 SNPs were not associated with the clinically relevant outcome of
abstinence in all trial participants, adjusted for pharmacotherapy. However, when we per-
formed analyses stratified by pharmacotherapy, we observed interesting effect sizes in several
smaller strata, including trending associations with increased abstinence in individuals ran-
domized to NRT patch, and nonminally significant decreased abstinence in individuals ran-
domized to chronic bupropion. The former result is consistent with reported results in
individuals from two trials [18, 42] analyzed together here, with the influence of CYP2A6 activ-
ity on abstinence previously evaluated using the biochemical NMR [42], or the CYP2A6 activ-
ity model [43]. In our analysis of indivdiuals randomized to NRT patch from two trials [18,
42], we find that a single CYP2A6 SNP is a statistically trending predictor where reduced nico-
tine metabolism implies increased nicotine plasma levels and increased abstinence. The latter
result in individuals randomized to chronic bupropion therapy reaches our a priori nominally
statistically significant threshold but is of uncertain clinical significance due to the small size of
the pharmacotherapy group and multiple pharmacotherapy groups examined. A speculative
interpretation might suggest that linkage disequilibrium between rs4803381 and CYP2B6 SNPs
that influence expression or activity might influence six month abstinence in indivduals under-
going chronic treatment with bupropion. Interaction between CYP2A6 and CYP2B6 variants
in association with nicotine metabolism has been reported [44]. CYP2B6 SNPs that influence
bupropion metabolism also influence abstinence in individuals at six months in individuals
treated with bupropion for 10 weeks [45], and linkage disequilbrium between relevant CYP2A6
and CYP2B6 alleles is low [46]. CYP2B6 association with smoking heaviness has been reported
at robust statistical significance (rs7260329, P = 6E-6) in a genome-wide scan [40]. Mechanistic
understanding of the potential association of rs4803381 and six month abstinence in individu-
als randomized to chronic bupropion treatment awaits replication and more data to permit
testing of CYP2A6 and CYP2B6metabolic and treatment outcome hypotheses.

Limitations
In this study, we did not identify the monooxygenase gene FMO3 in our Stage I meta-analysis;
FMO3 haplotypes were previously associated with the ratio of cotinine to the sum of nicotine
and cotinine in a laboratory study [47], with CPD in dependent smokers [47], and with the
NMR among slow metabolizers [48]. Future work should include haplotype and diplotype
analyses to evaluate the joint influence of multiple variants. Limitations of DMET Plus array
gene coverage contributed to the inability to identify some DMET gene variants previously
associated with nicotine metabolism. Finally, cytochrome P450 SNPs were over-represented
among DMET SNPs that failed quality control thresholds in Stage II of our analysis, suggesting
that methods that more effectively interrogate cytochrome P450 loci variation may enable fur-
ther analyses of NMR variance and related phenotypes at these loci. Significant CYP2A6 SNP
associations with CPD, with prospective abstinence by pharmacotherapy, and with lung cancer
were post-hoc and were not replicated in this study. In addition, findings from analyses of treat-
ment-seeking cigarette smokers may not generalize to all tobacco product smokers.

Conclusions
In this two-stage scan of DMET gene variation association with the NMR, we utilized two of
the largest laboratory-based studies of nicotine metabolism to nominate DMET genes and
SNPs, and eight randomized controlled trials of smoking cessation therapies and a lung cancer
meta-GWAS database, to validate novel SNP associations with the NMR and to explore associ-
ations with related phenotypes. We ranked DMET candidate genes and SNPs by their associa-
tion with the laboratory study NMR using a single model. We validated association of CYP2A6
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SNPs with a similar phenotype, the clinical trial-based pretreatment NMR. This suggests that
multiple CYP2A6 polymorphisms and non-genetic covariates will improve the predictive
power of CYP2A6 activity models and support a continued focus on CYP2A6 activity models
for use where phenotypic measures of nicotine metabolites are not available.

Enhanced knowledge of the genes that influence nicotine metabolism, smoking behaviors
and clinical outcomes will help to characterize the risks from gene variants on smoking behav-
iors and smoking-attributable disease, identify novel biomarkers for therapeutic efficacy, and
novel targets for the development of smoking cessation therapies. Based on this analysis and
additional studies cited, CYP2A6 SNPs account for large fractions of the variance of the NMR,
smaller fractions of the variance of cigarette consumption, and influence risk for lung cancer,
but do not account for other nicotine dependence factors. This study does not provide guid-
ance on the use of individual DMET SNPs to assign clinical treatment for tobacco dependence
as the findings of interest in this study were unreplicated. Research must continue to improve
our understanding of factors influencing tobacco product exposures and attributable disease,
to develop improved interventions, and to protect the public health.
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