
Washington University School of Medicine
Digital Commons@Becker

Open Access Publications

2011

The nuclear receptor PPARβ/δ programs muscle
glucose metabolism in cooperation with AMPK
and MEF2
Zhenji Gan
Sanford-Burnham Medical Research Institute

Eileen M. Burkart-Hartman
Washington University School of Medicine in St. Louis

Dong-Ho Han
Washington University School of Medicine in St. Louis

Brian Finck
Washington University School of Medicine in St. Louis

Teresa C. Leone
Washington University School of Medicine in St. Louis

See next page for additional authors

Follow this and additional works at: http://digitalcommons.wustl.edu/open_access_pubs

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open
Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact engeszer@wustl.edu.

Recommended Citation
Gan, Zhenji; Burkart-Hartman, Eileen M.; Han, Dong-Ho; Finck, Brian; Leone, Teresa C.; Smith, Emily Y.; Ayala, Julio E.; Holloszy,
John; and Kelly, Daniel P., ,"The nuclear receptor PPARβ/δ programs muscle glucose metabolism in cooperation with AMPK and
MEF2." Genes & Development.25,24. 2619-2630. (2011).
http://digitalcommons.wustl.edu/open_access_pubs/4306

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital Commons@Becker

https://core.ac.uk/display/70384386?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://digitalcommons.wustl.edu?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F4306&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F4306&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wustl.edu/open_access_pubs?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F4306&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:engeszer@wustl.edu


Authors
Zhenji Gan, Eileen M. Burkart-Hartman, Dong-Ho Han, Brian Finck, Teresa C. Leone, Emily Y. Smith, Julio
E. Ayala, John Holloszy, and Daniel P. Kelly

This open access publication is available at Digital Commons@Becker: http://digitalcommons.wustl.edu/open_access_pubs/4306

http://digitalcommons.wustl.edu/open_access_pubs/4306?utm_source=digitalcommons.wustl.edu%2Fopen_access_pubs%2F4306&utm_medium=PDF&utm_campaign=PDFCoverPages


The nuclear receptor PPARb/d programs
muscle glucose metabolism in cooperation
with AMPK and MEF2

Zhenji Gan,1,3 Eileen M. Burkart-Hartman,2,3,4 Dong-Ho Han,2 Brian Finck,2 Teresa C. Leone,1,2

Emily Y. Smith,1 Julio E. Ayala,1 John Holloszy,2 and Daniel P. Kelly1,2,5

1Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, Florida 32827, USA:
2Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA

To identify new gene regulatory pathways controlling skeletal muscle energy metabolism, comparative studies
were conducted on muscle-specific transgenic mouse lines expressing the nuclear receptors peroxisome
proliferator-activated receptor a (PPARa; muscle creatine kinase [MCK]-PPARa) or PPARb/d (MCK-PPARb/d).
MCK-PPARb/d mice are known to have enhanced exercise performance, whereas MCK-PPARa mice perform at
low levels. Transcriptional profiling revealed that the lactate dehydrogenase b (Ldhb)/Ldha gene expression ratio is
increased in MCK-PPARb/d muscle, an isoenzyme shift that diverts pyruvate into the mitochondrion for the final
steps of glucose oxidation. PPARb/d gain- and loss-of-function studies in skeletal myotubes demonstrated that
PPARb/d, but not PPARa, interacts with the exercise-inducible kinase AMP-activated protein kinase (AMPK) to
synergistically activate Ldhb gene transcription by cooperating with myocyte enhancer factor 2A (MEF2A) in
a PPARb/d ligand-independent manner. MCK-PPARb/d muscle was shown to have high glycogen stores, increased
levels of GLUT4, and augmented capacity for mitochondrial pyruvate oxidation, suggesting a broad reprogram-
ming of glucose utilization pathways. Lastly, exercise studies demonstrated that MCK-PPARb/d mice persistently
oxidized glucose compared with nontransgenic controls, while exhibiting supranormal performance. These results
identify a transcriptional regulatory mechanism that increases capacity for muscle glucose utilization in a pattern
that resembles the effects of exercise training.
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Muscle performance and resistance to fatigue are deter-
mined, in part, by the capacity to burn the chief fuels—
fatty acids (FAs) and glucose—in order to generate the ATP
needed for consistent mechanical function (Coggan 1991;
Holloszy et al. 1998; Burke and Hawley 1999; Hawley
2002; Hargreaves 2004). The capacity for muscle glucose
utilization is an important determinant of muscle fitness.
Endurance training enhances insulin-dependent and -in-
dependent muscle glucose uptake and utilization (Ivy and
Holloszy 1981; Richter et al. 1982; Hayashi et al. 1997;
Holloszy 2005), resulting in improvements in whole-body
insulin sensitivity (DeFronzo et al. 1985; Treadway et al.
1989; Goodyear et al. 1995; Wojtaszewski et al. 1997, 2000a).
Evidence is emerging that the effects of exercise training
on muscle glucose uptake involve events downstream

from the exercise-stimulated kinase AMP-activated protein
kinase (AMPK) and related cellular signaling pathways
(Witczak et al. 2008). Delineation of the molecular reg-
ulatory pathways involved in the beneficial effects of ex-
ercise on muscle glucose metabolism could yield novel
therapeutic targets aimed at the prevention or treatment
of obesity-related insulin resistance and its consequences.

The capacity of muscle to burn FAs is determined, in part,
at the level of gene expression. A transcriptional regulatory
circuit involved in the control of skeletal muscle FA uti-
lization has been delineated. The peroxisome proliferator-
activated receptors (PPARs) a and b (also known as d),
members of the nuclear receptor superfamily, have been
shown to regulate genes involved in muscle FA uptake and
catabolism (Desvergne and Wahli 1999). The activity of the
PPARs is regulated at multiple levels, including availability
of activating ligands (endogenous FA/lipid moieties) and
coactivators such as PPARg coactivator-1a (PGC-1a)
(Desvergne and Wahli 1999; Vega et al. 2000; Wende et al.
2007; Madrazo and Kelly 2008; Schupp and Lazar 2010).
Most of the work relevant to the control of cellular fuel
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metabolism by PPARs has focused on PPARa. PPARa

activates transcription of genes involved in numerous
steps of cellular FA uptake and oxidation in muscle, liver,
and heart (Gulick et al. 1994; Leone et al. 1999; Finck
et al. 2002, 2005; Madrazo and Kelly 2008; Montagner
et al. 2011). Thus, activation of PPARa serves to repro-
gram the skeletal myocyte for high-capacity FA burning.

PPARb shares many gene targets with PPARa, includ-
ing those involved in cellular FA utilization (Desvergne
and Wahli 1999; Gilde et al. 2003; Huss and Kelly 2004;
Montagner et al. 2011). Surprisingly, however, transgenic
mice with skeletal muscle-specific forced expression of
either PPARa or PPARb exhibit remarkably different phe-
notypes (Luquet et al. 2003; Wang et al. 2004; Finck et al.
2005), suggesting that the two structurally related nuclear
receptors regulate a subset of unique downstream genes and
biological functions. Specifically, muscle-specific PPARa

(muscle creatine kinase [MCK]-PPARa) transgenic mice
exhibit myocyte triacylglyceride (TAG) accumulation, high
muscle FA oxidation (FAO) rates, glucose intolerance, and
mild insulin resistance (Finck et al. 2005). In striking
contrast, muscle-specific PPARb mice (MCK-PPARb) de-
velop many features of an exercise-trained phenotype
(‘‘marathon mice’’), including increased endurance, in-
creased mitochondrial capacity, an oxidative fiber type
shift, and enhanced insulin sensitivity (Luquet et al. 2003;
Wang et al. 2004).

The contrasting phenotypes of the MCK-PPAR lines,
while clearly representing extremes due to genetic manip-
ulation of transcription factor expression, afford a unique
opportunity to identify new downstream gene regulatory
mechanisms involved in the chronic control of muscle
energy metabolism. Moreover, delineation of the mech-
anisms whereby PPARa and PPARb regulate distinct
gene targets is an important question for the nuclear
receptor biology field. Therefore, we embarked on a study
to compare and contrast the gene expression profiles and
metabolic phenotypes of closely matched MCK-PPAR
lines. Our results indicate that, in addition to controlling
muscle FA metabolism, PPARb activates a program in-
volved in muscle glucose utilization in a pattern that is
strikingly similar to the effects of exercise training. Specif-
ically, PPARb activates transcription of the gene encoding
lactate dehydrogenase B (LDHB), which catalyzes a key
nodal point for increasing capacity for glucose oxidation by
diverting glucose and lactate into the formation of pyruvate
for mitochondrial oxidation. This transcriptional regulatory
mechanism, which is unique for PPARb (compared with
PPARa), involves cooperation with the exercise-induced
kinase AMPK and the muscle-enriched transcription
factor myocyte enhancer factor 2 (MEF2).

Results

PPARb and PPARa regulate distinct LDH
isoenzyme shifts

MCK-PPARb transgenic lines were established using
the same strategy as that for MCK-PPARa lines gener-
ated previously (Finck et al. 2005). Three independent
MCK-PPARb transgenic lines were established, with

levels of expression ranging from high physiological
(low expression [LE]) to supraphysiological (medium [ME]
and high [HE] expression) (Supplemental Fig. 1A,B), cor-
responding to those of the MCK-PPARa lines (Finck et al.
2005). The data shown here represent assessment of the
HE lines unless indicated otherwise. Gene expression pro-
filing studies conducted with RNA isolated from muscle of
the MCK-PPARb and MCK-PPARa mice, compared with
corresponding nontransgenic littermate (NTG) controls,
confirmed increased expression of many known PPAR
target genes involved in cellular FAO in both lines (Supple-
mental Fig. 1C,D). Exercise studies using a motorized
treadmill confirmed that MCK-PPARb mice ran longer
distances than corresponding NTG controls using an en-
durance regimen (Supplemental Fig. 1E), consistent with the
original observations by Wang et al. (2004) for the PPARb-
VP16 transgenic line. In contrast, MCK-PPARa mice ran
shorter distances than NTG controls (Supplemental Fig. 1E).

The gene expression profiling data sets were analyzed to
identify metabolic genes that were differentially regulated
in the two MCK lines. Comparative analysis identified
several genes involved in glucose utilization pathways
that were differentially regulated (Supplemental Fig. 2).
Of particular interest was the expression pattern of the
Ldhb (or Ldh2) and Ldha (or Ldh1) genes. Ldhb gene ex-
pression was increased, whereas Ldha gene expression was
modestly decreased, in MCK-PPARb muscle, a pattern that
was not observed for MCK-PPARa (Supplemental Fig. 2).
These results were of interest because the LDHB isoenzyme
favors the reaction that converts lactate to pyruvate, which
in turn provides substrate for the mitochondrial TCA cycle
(glucose oxidation), whereas LDHA favors the reverse
reaction to produce lactate from pyruvate generated by
glycolysis (Fig. 1A). These findings were validated by quan-
titative RT–PCR (qRT–PCR) across several muscle types
(Fig. 1B). The expected LDH isoenzyme activity shifts were
confirmed by activity gel studies (Fig. 1C; Supplemental Fig.
3; data not shown).

PPARb cooperates with AMPK and MEF2 to activate
Ldhb gene transcription

Evidence has emerged that AMPK serves as a transducer
of exercise to increase muscle glucose uptake (Ren et al.
1994; Holmes et al. 1999; Ojuka et al. 2000; Holloszy 2005;
Witczak et al. 2008). More recently, PPARb and AMPKa

were shown to cooperate in the transcriptional regulation
of several known PPAR target genes, including uncou-
pling protein 3 (Ucp3) and lipoprotein lipase (Lpl) (Narkar
et al. 2008). To assess the requisite role of PPARb in the
control of Ldhb gene expression in the absence of over-
expression and determine whether AMPK signaling is
involved in this mechanism, PPARb loss-of-function stud-
ies were conducted in wild-type mouse primary skeletal
myotubes. The effects of PPARb ligand (GW501516) and the
AMPK activator AICAR were assessed alone and together
in the presence or absence of PPARb shRNA-mediated
knockdown. Consistent with previous results (Narkar
et al. 2008), GW501516 and AICAR cooperated to increase
expression of the Ucp3 gene, a known PPAR target—an
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effect that was abolished upon knockdown of PPARb.
Interestingly, Ldhb gene expression was activated by
AICAR but not by the PPARb agonist GW501516 (Fig. 2A).
PPARb knockdown modestly reduced basal Ldhb mRNA
levels and completely abolished the AICAR-mediated
stimulatory effect (Fig. 2A). These results further establish
the relevance of PPARb-mediated regulation of Ldhb gene
expression and demonstrate the importance of PPARb/
AMPK cooperativity in this mechanism.

We next sought to determine whether the AMPK signal-
ing pathway was activated in MCK-PPARb muscle. Levels
of phosphorylated AMPKa (p-AMPKa) and acetyl-CoA
carboxylase (p-ACC), a known AMPK target, were signif-
icantly increased in MCK-PPARb muscle (Fig. 2B). Levels
of LKB1, an activating kinase upstream of AMPK, were
not different in the transgenic and control muscle. How-
ever, levels of CaMKKa, a second AMPK kinase (Hawley
et al. 2005; Woods et al. 2005), were significantly increased
in the MCK-PPARb muscle compared with control, but
not in the MCK-PPARa muscle (Fig. 2C). CaMKKb protein
levels were not detected by immunoblotting in these
samples. These results indicate that the CAMKKa–AMPK
axis is activated in MCK-PPARb muscle in the absence of
an exercise stimulus.

To further define the mechanism involved in the acti-
vation of Ldhb gene expression by PPARb, the Ldhb gene
promoter region was screened for putative PPARb occu-
pation sites via chromatin immunoprecipitation (ChIP) in
primary skeletal myotubes in which PPARb was overex-
pressed. One region, defined by primers amplifying a seg-
ment spanning �1228 to �1078 base pairs (bp) upstream
of the transcription start site, was specifically enriched by
the PPARb antibody (Supplemental Fig. 4). This region
was notable for the lack of a consensus PPAR response
element but the presence of a MEF2 recognition site
(CTATTTATAG), which is highly conserved in the rat
(CTATTTATAG) and human (ATAATTATAG) Ldhb gene
promoter regions. Mef2a and Mef2c mRNA levels were
modestly increased in MCK-PPARb muscle, whereas
Mef2a gene expression was decreased in MCK-PPARa

muscle (Supplemental Fig. 5).
Additional ChIP experiments were conducted to deter-

mine whether PPARb and MEF2 co-occupy the region of
the Ldhb promoter containing the MEF2-binding site.
Antibodies to both PPARb and MEF2 precipitated this
region of chromatin (Fig. 3A). As a control for specificity,
ChIP experiments were also performed with a region of
the Cpt1b gene promoter containing known PPAR and
MEF2 response elements (Brandt et al. 1998; Baldan et al.
2004). Anti-PPARb and anti-MEF2 immunoprecipitated
the relevant region in the Cpt1b promoter. In contrast,
anti-PPARb, but not anti-MEF2, immunoprecipitated the
PPAR-responsive region of the Ucp1 gene promoter, which
lacks a MEF2 site (Fig. 3A). These results strongly suggest
that MEF2 is involved in the PPARb-mediated regulation
of Ldhb gene transcription. Consistent with this conclu-
sion, siRNA-mediated knockdown of Mef2a transcript in
skeletal myotubes resulted in diminished expression of
Ldhb and the known MEF2A target Slc2a4 (GLUT4), but
not Ldha (Fig. 3B).

A series of coimmunoprecipitation (co-IP) studies were
conducted to determine whether AMPK participated di-
rectly in the PPARb/MEF2A interaction and define the
PPARb versus PPARa specificity in this response. The a

subunit of the AMPK complex was chosen for these
experiments, given that this subunit has recently been
shown to interact with PPARb (Narkar et al. 2008).
HEK293 cells were cotransfected with expression vectors
for PPARb, PPARa, Flag-MEF2A, and/or Myc-AMPKa2.
Anti-Flag was found to coimmunoprecipitate PPARb and
endogenous AMPKa (Fig. 4A). Using AMPKa as the immu-
noprecipitation target, PPARb, but not PPARa, was pulled
down (Fig. 4B). To determine the in vivo relevance of these
interactions, co-IP studies with anti-PPARa or anti-PPARb

antibodies were conducted with extracts of gastrocnemius
muscle from the MCK-PPAR lines. PPARb, but not
PPARa, interacted with endogenous AMPKa2 (Fig. 4C).

Lastly, to determine whether endogenous AMPK local-
izes to the region of the Ldhb promoter containing the
MEF2-binding site, additional ChIP experiments were
conducted in primary skeletal myotubes. Anti-AMPKa2
precipitated this region of chromatin in response to acti-
vation of AMPK (AICAR) but not in response to PPARb

ligand (Fig. 4D). Taken together, these results suggest that

Figure 1. MCK-PPARb drives an LDHB/LDHA isoenzyme shift,
reprogramming muscle for increased glucose oxidation. (A) Sche-
matic depicts the lactate- and glucose-derived pyruvate catabolic
fates. The reaction catalyzed by LDH isoenzymes is shown with
the A isoenzyme (LDHA) favoring pyruvate to lactate and the B
isoenzyme (LDHB) favoring the reverse reaction. (B) Results of
qRT–PCR analysis of Ldha and Ldhb mRNA levels in soleus,
gastrocnemius (Gastroc), and white vastus (WV) muscles from
indicated mice (n $ 6 mice in each group). Values represent
mean (6SEM) shown as arbitrary units (AU) normalized (=1.0)
to the value of NTG control. (*) P < 0.05 compared with
corresponding NTG control. (C) A representative LDH iso-
enzyme activity gel is shown. Isoenzymes were separated by
polyacrylamide gel electrophoresis using whole-cell extracts
from NTG heart (Ht, control) and gastrocnemius muscle from
indicated mice (n $ 3 mice in each group). Note a distinct shift
toward the LDHB-containing isoenzymes LDH4, LDH3, and
LDH2, with a concomitant reduction in LDH5 (which lacks the
B isoenzyme) in the MCK-PPARb samples.
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PPARb, but not PPARa, interacts directly with activated
AMPK to occupy the Ldhb promoter in cooperation with
MEF2A.

To explore functional correlates of the PPARb/MEF2/
AMPK interaction, a series of cell cotransfection studies
were conducted using a MEF2 reporter containing three
MEF2-responsive DNA elements multimerized upstream
of a thymidine kinase (tk) promoter driving a luciferase
reporter, [MEF2MEF2A]3-tk-Luc (Zhu and Gulick 2004). In
the presence of MEF2A, [MEF2MEF2A]3-tk-Luc was not acti-
vated by either PPARb or AMPKa2 alone, but when
expressed together, synergistic activation was observed
(Fig. 5A). PPARb and AMPKa2 also synergized on a
Gal4-MEF2A reporter, indicating that PPARb can coac-
tivate MEF2 with AMPK without binding DNA (Fig. 5B).
In contrast, and as predicted by the binding studies,
AMPKa2 did not activate either reporter with PPARa

(Fig. 5A,B). These findings indicate that PPARb is capable
of activating Ldhb gene transcription via MEF2A in
cooperation with AMPK, likely in a ligand-independent
manner.

MCK-PPARb muscle is reprogrammed for increased
capacity for glucose uptake, storage, and oxidation

The capacity of muscle to import, store, and utilize glucose
is an important determinant of endurance and sprint exer-
cise performance. Therefore, we next sought to determine
whether a broad program of muscle glucose metabolism
was activated in MCK-PPARb muscle. Pre-exercise mus-
cle glycogen levels were significantly increased in MCK-

PPARb, but not MCK-PPARa, mice (Fig. 6A,B). Glycogen
levels were depleted after run to exhaustion in both
groups (Fig. 6B), indicating that the MCK-PPARb mice
used the high glycogen stores as fuel during exercise.
Levels of total cellular GLUT4 protein and plasma

Figure 2. PPARb activates and cooperates with
AMPKa to activate Ldhb gene expression via a ligand-
independent mechanism. (A) Results of qRT–PCR anal-
ysis for primary mouse myotubes after infection with
adenovirus expressing specific or scrambled shRNAs as
indicated. Forty-eight hours post-infection, myotubes
were treated for 24 h with DMSO (vehicle), 0.5 mM
GW501516 (GW), 1 mM AICAR, or GW + AICAR as
indicated in the key. Values represent mean (6SEM)
arbitrary units (AU) normalized (=1.0) to the value of
DMSO-treated scrambled shRNA (n = 3). (*) P < 0.05
versus the corresponding scrambled shRNA; (z) P

< 0.05 versus DMSO control. (Inset) Western blot
analysis confirms an increase in p-AMPKa levels in
myotubes treated with AICAR for 30 min. (B, left)
Results of Western blot analysis performed on ex-
tracts of gastrocnemius muscle isolated from NTG
or MCK-PPARb mice using p-AMPKa (Thr 172),
AMPKa, p-ACC (Ser 79), or total ACC antibodies.
(Right) Quantification of the p-AMPK/AMPK and
p-ACC/ACC signal ratios (n = 8 mice in each group)
normalized (=1.0) to the NTG control. (C, left) Results
of Western blot analysis performed on gastrocnemius
muscle extracts using CaMKKa, LKB1, and S6RP
(control) antibodies. (Right) Quantification of the
Western blot signals corrected to S6RP (n $ 3 mice
in each group). Values represent mean (6SEM) shown
as arbitrary units (AU) normalized (=1.0) to the value
of NTG control. (*) P < 0.05 compared with NTG.

Figure 3. PPARb and MEF2 bind to the Ldhb promoter. (A) The
results of ChIP assays performed on primary mouse myotubes
following infection with Ad-PPARb. Schematic shows PCR primer
set location (�1228 and �1078) and the putative MEF2-binding
site relative to the Ldhb promoter transcription start site (= +1).
(Left) Results of representative gel analysis showing relative
binding (PCR results) to Ldhb, Cpt1b, and Ucp1 promoters and
control (L32) promoter. Antibodies (or IgG control) are shown at
the top. (Right) Graphs display mean SYBR Green-based quan-
tification of ChIP normalized to IgG control (n = 3). (*) P < 0.05
versus IgG control. (B) Results of qRT–PCR analysis for primary
mouse myotubes after transfection with Mef2a siRNAs or
scrambled control siRNAs as indicated. Values represent mean
(6SEM) shown as arbitrary units (AU) normalized (=1.0) to the
value of control siRNAs (n = 4). (*) P < 0.05 versus control.
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membrane-associated GLUT4 (Fig. 6C,D) were signifi-
cantly increased in MCK-PPARb muscle. In contrast, and
as shown previously (Finck et al. 2005), GLUT4 levels
were reduced in MCK-PPARa muscle (Fig. 6C). Consistent
with these results, MCK-PPARa mice developed marked
hyperglycemia during exercise, whereas blood glucose
levels declined with exercise in MCK-PPARb mice (Sup-
plemental Table 1). Thus, PPARb, but not PPARa, repro-
grams muscle for increased glucose uptake and storage.

A series of studies were next conducted to determine
whether PPARb-driven activation of Ldhb expression
resulted in increased capacity for mitochondrial pyruvate
oxidation in MCK-PPARb muscle. As has been shown for
an independent muscle-specific PPARb-VP16 line (Wang
et al. 2004), electron microscopy revealed an increase in
mitochondrial volume density and mitochondrial DNA
levels in MCK-PPARb soleus muscle compared with
NTG controls (Supplemental Fig. 6A,B). A similar in-
crease in muscle mitochondrial volume density was also
present in MCK-PPARa muscle, together with myocyte
lipid droplet accumulation (Supplemental Fig. 6A,B).
Respiration rates were determined in mitochondria iso-
lated from the hindlimb of the MCK-PPAR lines and
corresponding NTG controls using pyruvate as a substrate.
Pyruvate-driven state 3 (maximal ADP-stimulated) respi-

ration rates were significantly higher in MCK-PPARb

mitochondria compared with controls, an effect that was
not seen with the MCK-PPARa mice (Fig. 7A). In contrast,
and consistent with the increased expression of genes
involved in FAO in both lines, palmitoylcarnitine-driven
state 3 respiration rates were increased in both MCK-
PPARb and MCK-PPARa mice (Supplemental Fig. 6C).

To determine the effect of increasing the LDHB/LDHA
ratio on cellular pyruvate oxidation, oxygen consumption
rates (OCRs) were measured in skeletal myotubes following
knockdown of Ldha expression. As predicted, increasing
the LDHB/LDHA ratio stimulated OCRs under basal con-
ditions and in the presence of the uncoupler FCCP (Fig. 7B).
Importantly, these effects were dependent on the addition of
pyruvate to the medium (Supplemental Fig. 7).

To assess the physiological impact of increased capacity
for muscle glucose uptake and oxidation in MCK-PPARb

mice, additional exercise testing was conducted. Sprint
exercise performance depends, in part, on high capacity for
glucose utilization. Therefore, we hypothesized that the
MCK-PPARb mice would perform better than wild-type
controls and MCK-PPARa mice on a high-intensity (‘‘wind
sprint’’) exercise regimen protocol. Indeed, MCK-PPARb

mice ran longer distances than corresponding NTG con-
trols on this protocol (Fig. 7C). In contrast, MCK-PPARa

mice ran shorter distances than NTG controls. Strikingly,

Figure 4. AMPK–PPARb–MEF2 interaction. (A,B) Co-IP exper-
iments were performed by cotransfecting Myc-AMPKa2, PPARb,
PPARa, and/or Flag-MEF2A in HEK293 cells as indicated at the
top. Antibodies against the Myc or Flag epitope were used for co-
IP. The extracts (Input) from the HEK293 cells and the proteins
from the immunoprecipitation were analyzed by immunoblot-
ting (IB). Representative results for co-IP (repeated at least twice)
are shown. (C) Co-IP results with extracts prepared from gastroc-
nemius muscle extracts prepared from indicated mice using anti-
PPARb or anti-PPARa antibodies (n = 4 per group). (D) AMPKa2
ChIP assays performed on primary mouse myotubes following
infection with Ad-PPARb. Myotubes were treated for 6 h with
DMSO (vehicle), 0.5 mM GW501516 (GW), or 1 mM AICAR.
Schematic shows PCR primer set location on the Ldhb promoter.
The graph displays mean SYBR Green-based quantification of
AMPK-ChIP/IgG-ChIP normalized to DMSO (=1.0) control (n = 3).
(*) P < 0.05 compared with DMSO control.

Figure 5. PPARb and AMPK synergistically coactivate MEF2A.
(A,B) Values represent mean (6SEM) firefly/renilla luciferase
activity shown as arbitrary units (AU) normalized (=1.0) to vector
control in HEK293 cells after cotransfection with expression
vectors indicated and either the [MEF2MEF2A]3-tk-Luc or five-copy
Gal4-Luc (pG5Luc) reporters. All values represent the results of
a minimum of three separate experiments done in triplicate. (*) P

< 0.05 compared with MEF2A or Gal4-MEF2A alone.
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despite running longer, levels of blood lactate following
exercise were lower in MCK-PPARb mice compared with
NTG littermate controls, consistent with increased di-
version of pyruvate into mitochondrial oxidation (Table 1).
In stark contrast, lactate levels increased post-exercise in
MCK-PPARa mice (Table 1).

To further evaluate the muscle fuel utilization prefer-
ence of MCK-PPARb mice during exercise, respiratory
exchange ratio (RER) and oxygen utilization (VO2) were

measured during a run-to-exhaustion exercise protocol.
Consistent with a shift to muscle glucose oxidation, the
RER increased to ;1.0 with exercise in both MCK-
PPARb and the NTG control group, indicative of a switch
to carbohydrates as the chief fuel (Supplemental Fig. 8A).
Despite exercising significantly longer (and consuming
more oxygen) compared with the control group, the
MCK-PPARb mice maintained RER at ;1.0 during the
entire exercise period (Supplemental Fig. 8A). Interest-
ingly, whereas the MCK-PPARb mice consumed more

Figure 6. Increased glycogen stores in MCK-PPARb muscle
parallel-enhanced expression of GLUT4 protein. (A) Represen-
tative images of PAS staining of sections prepared from gastroc-
nemius muscles of 12- to 14-wk-old male MCK-PPARb, MCK-
PPARa, and NTG littermates at baseline (in the absence of
exercise). (B) Bars represent mean glycogen levels (mmoles of
glucose per gram of tissue) (6SEM) determined enzymatically
(amyloglucosidase digestion) at baseline and after high-intensity
run-to-exhaustion protocol (Exercise). (C, left) Results of West-
ern blot analysis performed with gastrocnemius muscle total
protein extracts prepared from indicated mice using GLUT4,
PPARb, PPARa, or S6RP (control) antibodies. (Right) Quantifi-
cation of the blotting results (corrected to S6RP levels; n $ 5
mice in each group). Values represent mean (6SEM) shown as
arbitrary units (AU) normalized (=1.0) to the value of NTG
controls. (D, left) Results of Western blot analysis of the plasma
membrane (PM) fraction of gastrocnemius muscle lysate from
NTG or MCK-PPARb mice using GLUT4, insulin receptor b

subunit (InsRb; membrane control), or GAPDH (cytosol control)
antibodies. Cytosolic fraction (Cyto) is shown to confirm purity.
Note that the lanes were run on the same gel but were
noncontiguous. (Right) Quantification of the plasma membrane
(PM) GLUT4 levels (corrected to InsRb) (n $ 6 mice in each
group). (*) P < 0.05 versus NTG.

Figure 7. MCK-PPARb mice exhibit enhanced high-intensity
exercise performance. (A) Respiration rates determined from
mitochondria isolated from hindlimb muscle of indicated geno-
types using pyruvate as substrate. ADP-dependent respiration
(state 3), oligomycin-induced state 4 (oligo) and the respiratory
control ratio (RC) are shown. The increase in state 3 respiration
in MCK-PPARb mitochondria is consistent with an increased
capacity for pyruvate oxidation. (*) P < 0.05 versus NTG. (B, left)
Results of qRT�PCR analysis for primary mouse myotubes after
transfection with Ldha siRNAs or scrambled control siRNAs as
indicated. (Right) OCRs in primary mouse myotubes transfected
with Ldha siRNAs or control siRNAs. Basal OCR was first
measured, followed by administration of 2 mM oligomycin
(Oligo, to inhibit ATP synthase) and then the uncoupler FCCP
(2 mM). OCR were measured in the presence of 10 mM sodium
pyruvate. Values represent mean (6SEM); n = 5 separate
experiments done in five biological replicates. (*) P < 0.05 versus
control. (C, right) Bars represent mean running distance (6SEM)
for 12-wk-old male MCK-PPARb and MCK-PPARa mice and
littermate controls (NTG) during high-intensity (sprint) pro-
tocols (described in the Materials and Methods) on a motorized
treadmill. (Left) Schematic depicts the speed change over time.
n = 8�11 mice in each group. (*) P < 0.05 versus NTG.
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oxygen during the exercise period (as reflected by an
increase in DVO2max), the maximal peak oxygen con-
sumption (VO2max) was not different between the groups
(Supplemental Fig. 8B,C). Taken together, these results
suggest that PPARb activates a gene regulatory program
that increases the coupling of muscle glycolysis to
glucose oxidation, allowing for greater ATP generation
per mole of glucose burned.

Discussion

The capacity to burn fuel is a key determinant of muscle
fitness. Exercise training triggers an adaptive metabolic
response in muscle, leading to increased fuel burning
capacity and the flexibility to switch between the chief
substrates: FAs and glucose (Holloszy and Coyle 1984). In
contrast, obesity and chronic disease, conditions that re-
duce physical activity, lead to a state in which the capacity
of muscle to burn glucose is constrained (Mujika and
Padilla 2001). Delineation of the gene regulatory mecha-
nisms involved in the adaptive and maladaptive pro-
gramming of muscle fuel metabolism could unveil new
therapeutic targets aimed at common metabolic diseases
such as obesity-related insulin resistance and diabetes.
Here, we show that the nuclear receptor PPARb, but not
PPARa, is capable of increasing capacity for muscle
glucose oxidation by activating transcription of the Ldhb
gene through a unique mechanism, in cooperation with
AMPK and the transcription factor MEF2.

We found that PPARb activates a program that in-
creases the coupling of glycolysis to glucose oxidation in
muscle. This response involves PPARb-mediated induc-
tion of Ldhb gene transcription and repression of Ldha
gene expression, resulting in an increase in the LDHB/
LDHA isoenzyme ratio. The LDHB isoenzyme functions
to convert lactate to pyruvate; LDHA favors the opposite
reaction to produce lactate. Notably, exercise training is
known to increase muscle LDHB/LDHA ratio, increasing
capacity to fully catabolize glucose for maximal ATP pro-
duction (Hittel et al. 2005). Several lines of evidence pre-
sented here support the conclusion that PPARb, but not
PPARa, drives a gene regulatory program that increases
capacity for muscle glucose oxidation. First, activity of
LDH isoenzymes containing LDHB is selectively acti-
vated in muscle extracts prepared from MCK-PPARb, but
not MCK-PPARa, mice. Second, capacity for glucose
uptake, glycogen storage, and mitochondrial pyruvate
oxidation is increased in MCK-PPARb muscle compared
with MCK-PPARa muscle. Third, the MCK-PPARb mice
maintain a high RER throughout a bout of exercise to
exhaustion. Interestingly, despite running longer and thus

using more oxygen during exercise, the MCK-PPARb mice
did not exhibit an increased absolute VO2max compared
with NTG controls. This interesting observation may
reflect the persistent use of glucose (rather than fat) as an
oxidative substrate, despite longer periods of exercise.
Lastly, high-intensity exercise performance is increased
and post-exercise blood lactate levels are decreased in
MCK-PPARb mice compared with wild-type controls.
In contrast, circulating lactate levels were abnormally
increased in MCK-PPARa mice following exercise.

We found that PPARb activates Ldhb gene transcription
via a novel mechanism for nuclear receptors, involving
cooperation with AMPK and the transcription factor
MEF2A. The observed role of MEF2 is of interest given
its known role in the regulation of muscle energy me-
tabolism (Michael et al. 2001; Naya et al. 2002). Partic-
ipation by AMPK in this mechanism is consistent with
the observation that this kinase is activated by exercise
(Wojtaszewski et al. 2000b) and has been shown to cooper-
ate with PPARb (Narkar et al. 2008). Moreover, emerging
evidence indicates that activation of AMPK and related
kinases is involved in muscle glucose uptake via a mech-
anism that is independent of insulin signaling, similar to
the effects of exercise on glucose utilization (Witczak
et al. 2008). We speculate that AMPK is a key trigger for
the PPARb-mediated activation of Ldhb gene transcrip-
tion. The mechanism whereby AMPK is activated in
MCK-PPARb muscle was not fully delineated in this
study. Among the known upstream activators of AMPK—
LKB1 and CaMKK—we found only the latter to be induced
in MCK-PPARb muscle. Specifically, CaMKKa protein
levels were increased in MCK-PPARb muscle (CaMKKb

could not be detected, and therefore regulation could not
be assessed).

The mechanisms whereby related nuclear receptors
with similar DNA-binding domains regulate transcrip-
tion of distinct target genes are poorly understood. Our
results demonstrate that the Ldhb gene is activated by
PPARb, but not by PPARa, via a trans-activation mech-
anism that involves interaction with the transcription
factor MEF2A in the absence of a classical PPAR DNA
recognition element. This unique mechanism appears to
be PPAR ligand-independent, but requires AMPK. The
observed cooperativity with AMPK is consistent with
recent results by Narkar et al. (2008) demonstrating that
AMPKa interacts with PPARb to activate PPAR targets in
muscle. However, in this previous study, AMPK/PPARb

cooperativity was enhanced by ligand, in contrast to our
results with the Ldhb gene. It is tempting to speculate
that in certain circumstances, the effects of AMPK or
other signaling pathways can substitute for ligand in the

Table 1. Blood lactate levels in MCK-PPARb and MCK-PPARa mice

NTG MCK-PPARb NTG MCK-PPARa

Run distance (m) 2086 6 201 3559 6 186a 1883 6 63 1451 6 124a

Baseline lactate levels (mmol/L) 3.9 6 0.2 5.0 6 1.1 2.9 6 0.5 2.1 6 0.2
Post-exercise lactate levels (mmol/L) 5.2 6 0.7 3.9 6 0.6a 5.0 6 1.1 9.0 6 1.5a

Values represent the mean (6SEM); n = 8–11 mice in each group.
aP < 0.05 versus NTG
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activation of a subset of PPARb targets. Our results also
suggest that the PPARb versus PPARa specificity for
activation of Ldhb gene transcription relates to specific
interactions with AMPKa2 on the target promoter. The
precise mechanisms involved in the activation of transcrip-
tion via the MEF2A/PPARb/AMPKa complex were not
fully determined in this study. Recently, AMPK was shown
to phosphorylate histone H2B, suggesting one possible mech-
anism (Bungard et al. 2010). It is also possible that the
cooperative interaction releases MEF2 from suppressive
effects of repressors such as histone deacetylases (McGee
et al. 2008). Consistent with this latter notion, we showed
that activation of AMPK in C2C12 myoblasts does indeed
shift HDAC5 from nucleus to cytoplasm (data not shown).
Future studies aimed at assessing changes in protein
acetylation in the local vicinity of the PPARb/AMPKa/
MEF2A complex will likely require genome-wide chroma-
tin surveys.

In conclusion, our results suggest a model in which
activation of AMPK, such as occurs with exercise, trig-
gers the assembly of a transcriptional activation complex
containing AMPK and PPARb tethered to MEF2A to
regulate transcription of the Ldhb gene and likely a larger
subset of metabolic gene targets. Further delineation of
the mechanisms unveiled here could lead to strategies to
develop selective PPAR-based metabolic modulators with
pathway, or possibly even target, specificity.

Materials and methods

Generation of MCK-PPARb transgenic mice

A DNA construct containing a 1.0-kb PPARb cDNA was cloned
downstream from the skeletal muscle MCK promoter (kind gift
of E.N. Olson, University of Texas Southwestern). Transgenic mice
were generated by microinjection of the MCK-PPARb construct
into fertilized one-cell C57BL/6 3 CBA/J F1 embryos. Three inde-
pendent lines were generated, exhibiting different levels of trans-
genic expression as measured by Northern and Western blot
(Supplemental Fig. 1A). Unless specifically indicated, the results
described here were generated using the high-expressing MCK-
PPARb line (HE), compared with the previously generated high-
expressing MCK-PPARa line (Finck et al. 2005). The animal data
represent studies with MCK-PPAR mouse lines (hybrid strain,
B6/CBA), with the following specific exceptions: MCK-PPARa

mice in a C57BL/6J pure strain were used for immunoblotting
(Figs. 2C, 4C, 6C), qRT�PCR (Fig. 1B; Supplemental Fig. 5), and
LDH isoenzyme (Fig. 1C; Supplemental Fig. 3) experiments.
NTG controls were used in all cases. Of note, the majority of
the phenotypic characterization of these mice was performed in
the hybrid strain (B6/CBA) for both MCK-PPARa and MCK-
PPARb. In addition, several gene expression readouts, including
the regulation of Ldha and Ldhb compared with corresponding
nontransgenic controls, were similar in pure B6 backgrounds
compared with the hybrid strain for both MCK-PPARa and
MCK-PPARb lines (data not shown).

Animal studies

Male and female MCK-PPAR mice and NTG controls (;25�30 g
of body weight; 8�16 wk of age) were used for all studies. Animal
studies were conducted in strict accordance with the NIH
guidelines for humane treatment of animals.

Mitochondrial respiration studies

Skeletal muscle mitochondria were isolated from hindlimbs of
MCK-PPAR mice and NTG controls as previously described
(Zechner et al. 2010). Respiration rates of the mitochondrial
isolate containing 0.5 mg of protein were determined at 30°C
using an optical probe (Oxygen FOXY Probe, Ocean Optics) in a
2-mL sealed, continuously stirred respiration chamber, as pre-
viously described (Leone et al. 2005). Respiration was determined
using pyruvate and palmitoylcarnitine as substrates. Following
measurement of basal respiration, state 3 respiration was deter-
mined by exposing mitochondria to 1 mM ADP. Uncoupled res-
piration was evaluated following the addition of oligomycin (1 mg/
mL) to inhibit ATP synthase. The solubility of oxygen in the
respiration buffer at 30°C was taken as 230 nmol of oxygen per
milliliter. Respiration rates were expressed as nanomoles of
oxygen per minute per milligram of mitochondrial protein.

Exercise studies

Mice were acclimated (run for 9 min at 10 meters [m]/min
followed by 1 min at 20 m/min) to the treadmill for two
consecutive days prior to the experimental protocol.

Low-intensity exercise (endurance) Fed mice were run for 1 h
at 10 m/min, followed by an increase of 2 m/min every 15 min
until exhaustion (defined as remaining on the shock grid for five
consecutive seconds).

High-intensity exercise (wind sprints) Fed mice were run for 1
min, alternating with rest for 2 min. Running intervals started at
10 m/min and increased 5 m/min each interval until a speed of
50 m/min was reached. Then, speed was increased 5 m/min
every sixth interval until exhaustion.

Tail blood was taken before and after exercise and measured
for glucose (B-GLUCOSE, Hemacue AB) and lactate (Lactate Pro
Arkray). Tissue was dissected and immediately processed for
glycogen analyses.

Peak VO2 and RER were determined as described previously
(Calvo et al. 2008). Briefly, 3-mo-old male mice were placed in an
enclosed treadmill attached to the Comprehensive Laboratory
Animal Monitoring System (CLAMS; Columbus Instruments)
for 30 min at a 0° incline and 0 m/min. The mice were then
challenged with 1.5-min intervals of increasing speed at a 15°
incline. The increasing speeds used in the protocol were 10, 14,
18, 22, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, and 46 m/min.
Measurements were collected before the exercise challenge,
throughout the challenge, and following failure.

Glycogen measurements

Mouse gastrocnemius tissue was pulverized under liquid nitro-
gen and homogenized in a 0.3 M perchloric acid solution. The
muscle extract was then assayed with and without amylogluco-
sidase digestion (Sigma Aldrich) in 50 mM sodium acetate (pH
5.5) and 0.02% BSA. Resulting changes in absorption at 340 nM
were compared with standards ranging from 0 to 80 mmol of
glucose. Results are presented as glucose released from glycogen,
normalized to tissue weight.

Histologic analyses and electron microscopy

Mouse gastrocnemius was collected, immersed in Tissue-Tek
O.C.T. Compound (Sakura Finetek USA, Inc.), and snap-frozen
using Cytocool II (Richard-Allan Scientific) in a cryomold for
sectioning. Sections were stained with Periodic Acid Schiff (PAS)

Gan et al.

2626 GENES & DEVELOPMENT

 Cold Spring Harbor Laboratory Press on October 12, 2015 - Published by genesdev.cshlp.orgDownloaded from 



to detect glycogen accumulation. Electron microscopy was
performed as previously described (Zechner et al. 2010).

Gene expression array studies

Total RNA isolated from gastrocnemius muscle of 6-wk-old
MCK-PPARa (HE) or MCK-PPARb (HE) and NTG littermate
mice was used for gene expression array studies performed as
previously described (Huss et al. 2004). The Alvin Siteman
Cancer Center’s Multiplexed Gene Analysis Core at Washington
University School of Medicine performed hybridization to Affy-
metrix mouse MOE430A chips. Affymetrix MAS 5.0 software
was used for initial analysis and background normalization.
Probe sets called ‘‘absent’’ by MAS 5.0 in both NTG and MCK-
PPAR were excluded. Two independent samples were analyzed.
Signal intensity ratios were averaged from both samples and
calculated as MCK-PPAR/NTG. A gene with a calculated fold
change $1.5 was considered an up-regulated gene target in the
MCK-PPAR transgenic, and a gene with a fold change of #0.5
was considered a down-regulated gene target. For pathway
analysis, the filtered data sets were uploaded into GenMAPP
software to review the biopathways using the Gene Ontology
database. The gene array data discussed in this study have been
deposited in NCBI’s Gene Expression Omnibus (GEO) and are
accessible through GEO series accession numbers GSE5777
(MCK-PPARa) and GSE29055 (MCK-PPARb).

RNA and genomic DNA analyses

Total RNA was isolated from mouse skeletal muscle using the
RNAzol method (Tel-Test). Northern blot analysis was per-
formed as previously described (Wende et al. 2005). Real-time
qRT–PCR was performed using the Stratagene MX3005P de-
tection system and reagents supplied by Stratagene. Specific
oligonucleotide primers for target gene sequences are listed in
Supplemental Table 2. Arbitrary units of target mRNA were
corrected to expression of 36b4.

Genomic/mitochondrial DNA was isolated using the RNAzol
method, followed by back extraction with 4 M guanidine
thiocyanate, 50 mM sodium citrate, and 1 M Tris and an alcohol
precipitation. Mitochondrial DNA content was determined by
SYBR Green analysis (Stratagene). The levels of NADH dehy-
drogenase subunit 1 (mitochondrial DNA) were normalized to
the levels of Lpl (genomic DNA). The primer sequences are noted
in Supplemental Table 2.

Antibodies and Western immunoblotting studies

Antibodies directed against PPARb (K-20), PPARa (H-98), insulin
receptor b subunit (InsRb), and CaMKKa (R-73) were purchased
from Santa Cruz Biotechnology. Anti-GLUT4 antibody was a gift of
M. Mueckler (Washington University); antibodies directed against
p-AMPKa (Thr172), AMPKa, p-ACC (Ser79), ACC, LKB1, and S6
ribosomal protein (S6RP) were purchased from Cell Signaling
Technology; anti-GAPDH antibody was purchased from Abcam;
and anti-AMPKa2 antibody was purchased from R&D Systems.

Western immunoblotting studies were performed with whole
gastrocnemius muscle lysates as previously described (Cresci
et al. 1996). Detection was performed by measuring the chemi-
luminescent signal as assayed by SuperSignal Ultra (Pierce). Band
intensities were quantified using the ChemiDoc (Bio-Rad) or
FluorChemQ (Alpha Innotech).

LDH isoenzyme analysis

LDH isoenzyme patterns were determined as previously described
(Salplachta and Necas 2000). Briefly, mouse gastrocnemius was

homogenized in a solution of 0.9% NaCl and 5 mM Tris-HCl (pH
7.4), and the lysates were centrifuged for 30 min at 15,000g to
remove the cellular debris. One-hundred micrograms of protein
was loaded onto a 6% nondenaturing polyacrylamide gel. Follow-
ing electrophoresis, the gel was placed in 10 mL of staining solution
containing 0.1 M sodium lactate, 1.5 mM NAD, 0.1 M Tris-HCl
(pH 8.6), 10 mM NaCl, 5 mM MgCl2, 0.03 mg/mL phenazinme-
thosulphate (PMS), and 0.25 mg/mL nitrobluetetrazolium (NBT).
Protein extracted from mouse heart served as a positive control.

Preparation of subcellular membrane fractions

from skeletal muscle

Subcellular membrane fractions were prepared using a modifica-
tion of the Hirshman-modified Grimditch fractionation tech-
nique (Hirshman et al. 1990). Briefly, frozen mouse gastrocne-
mius were powdered in liquid nitrogen and homogenized in
homogenization buffer (HB) (20 mM Tris, 1 mM EDTA, 255 mM
sucrose at pH 7.4) at 4°C using a 1-mL dounce homogenizer.
Homogenates were centrifuged at 16,800g for 20 min at 4°C,
intracellular membranes (IMs) were isolated from supernatants,
and plasma membranes were isolated from the pellets. Pellets
containing plasma membranes were resuspended in HB, fol-
lowed by dounce homogenization, and were centrifuged at
16,800g for 20 min at 4°C. Pellets were resuspended in HB,
layered on a 1.12 M sucrose cushion, and centrifuged in a TL-100
(Beckman Coulter) at 44,000 rpm for 20 min at 4°C. Plasma
membranes at the interface between the sucrose cushion and
buffer were collected, resuspended in HB, and centrifuged in
a TL-100.3 (Beckman Coulter) at 50,000 rpm for 10 min at 4°C.
Plasma membrane pellets were resuspended in SDS lysis buffer.

Primary muscle cell culture

Primary myoblasts (satellite cells) were isolated from wild-type
mice as previously described (Rando and Blau 1994). Briefly, mice
were killed by CO2 inhalation, followed by cervical dislocation.
Hindlimb muscles from both legs were removed. Minced tissue was
digested in a collagenase/dispase/CaCl2 solution for 1.5 h at 37°C in
a shaking bath. Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% fetal bovine serum (FBS) (PPM) was added,
and samples were triturated gently before loading onto a Netwell
filter (70 mm; BD). Cell suspension was pelleted at 1000 rpm for
5 min. Cells were resuspended in PPM and plated on an uncoated
plate for differential plating. Cell suspension (nonadherent) was
centrifuged at 1000 rpm for 5 min, and the pellet was resuspended
in growth medium (GM) (Ham’s F-10 medium supplemented with
20% FBS and 2.5 ng/mL bFGF). Satellite cells were plated on
collagen-coated flasks for expansion. Cells were fed daily with
GM. For differentiation, plates were washed with PBS, refed with
2% horse-serum/DMEM differentiation medium, and refed daily.

Adenoviral infection

The adenoviral expression vector for PPARb shRNA was a gen-
erous gift from Dr. Zhidan Wu (Novartis). Primary muscle cells
were infected with an adenovirus overexpressing GFP shRNA or
PPARb shRNA as previously described (Kleiner et al. 2009) and
harvested 72 h post-infection. Cells were treated with DMSO,
GW501516 (0.5 mM), AICAR (1 mM), or GW + AICAR for 24 h
prior to harvest.

RNAi experiments

siRNAs (ON-TARGET plus SMARTpool, Dharmacon) targeting
mouse Ldha and Mef2a were transfected into primary myoblasts
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at a final concentration of 20 nM using HiPerFect transfection
reagent (Qiagen) according to the manufacturer’s instructions.
Cells were then differentiated for 3 d prior to harvest.

Oxygen consumption measurements

Cellular OCRs were measured using the XF24 analyzer (Seahorse
Bioscience, Inc.) per the manufacturer’s protocol. The basal OCR
was measured in XF Assay medium supplemented with or
without 10 mM sodium pyruvate (as indicated), following admin-
istration of 2 mM oligomycin (to inhibit ATP synthase) or the
addition of the uncoupler FCCP (2 mM). Immediately after mea-
surement, total protein levels were measured with the Micro BCA
protein assay kit (Thermo Scientific) for data correction.

Cell transfection and luciferase reporter assays

pCMX, pCMX-PPARb, pBOS, and pBOS-PPARa vectors have
been described previously (Robinson et al. 1998; Burkart et al.
2007). [MEF2MEF2A]3-tk-Luc, pG5Luc (Zhu and Gulick 2004),
pCMX-Gal4-MEF2A (Zhu and Gulick 2004), and pcDNA3.1-Flag-
MEF2A were generously provided by Dr. Tod Gulick (Sanford-
Burnham Medical Research Institute); pCMV-myc-hAMPKa2 was
kindly provided by Dr. Ronald Evans (Salk Institute). HEK293
cells were cultured at 37°C and 5% CO2 in DMEM supple-
mented with 10% FBS. Transient transfections in HEK293 cells
were performed using FuGENE6 (Roche) as per the manufac-
turer’s protocol. Briefly, 600 ng of reporter was cotransfected
with 100 ng of nuclear receptor expression vectors and 25 ng of
CMV promoter-driven Renilla luciferase to control for transfection
efficiency. Forty-eight hours after cotransfection, luciferase assay
was performed using Dual-Glo (Promega) according to the manu-
facturer’s recommendations. All transfection data are presented as
the mean 6 standard error of the mean (SEM) for at least three
separate transfection experiments done in triplicate.

Immunoprecipitation

Whole gastrocnemius muscle lysates from MCK-PPAR mice or
lysate from HEK293 cells 48 h post-transfection were used for co-
IP studies. HEK293 cells were collected in lysis buffer (20 mM
Tris at pH 7.5, 150 mM NaCl, 1 mM EDTA, 1% TritonX-100, 13

Complete [Roche], 1 mM PMSF) and lysed with a Branson sonicator
(power 1, 50% duty, 15 bursts). One microgram of M2 anti-Flag
(Sigma) or anti-MYC (Millipore) antibodies were incubated with
extract and protein G-conjugated agarose beads, and the immu-
noprecipitated proteins were analyzed by immunoblotting.

ChIP assays

ChIP assays were performed as previously described (Wende
et al. 2005; Yang et al. 2009). Briefly, primary myotubes were
cross-linked with 1% formaldehyde (10 min), and cells were
collected and lysed. For AMPK ChIPs, myotubes were first fixed
for 30 min with 0.5 mM ethylene glycolbis succinimidylsuccinate
(EGS) (Pierce). Chromatin fragmentation was performed by son-
ication using a Bioruptor (Diagenode). Proteins were immuno-
precipitated by using anti-PPARb (K-20, Santa Cruz Biotechnol-
ogy), anti-MEF2 (H-300, Santa Cruz Biotechnology), anti-AMPKa2
(R&D Systems), or IgG control (Sigma). Following reversal of
cross-linking, DNA was isolated (QIAquick PCR purification kit,
Qiagen). qPCR products were assessed and measured using the
Stratagene MX3005P detection system. Quantitative analysis
was performed by the standard curve method and normalized to
IgG control. Specific oligonucleotide primers for target regions
are listed in Supplemental Table 3.

Statistical analyses

Data were analyzed by Student’s t-test (two-tailed) or one-way
ANOVA coupled to a Fisher’s least-significant difference (LSD)
post-hoc test when more than two groups were being compared.
Data represent the mean 6 SEM, with a statistically significant
difference defined as a value of P < 0.05.
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