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Abstract: Human T-lymphotrophic virus type-1 (HTLV-1) infects approximately 15 to 20 

million people worldwide, with endemic areas in Japan, the Caribbean, and Africa. The 

virus is spread through contact with bodily fluids containing infected cells, most often from 

mother to child through breast milk or via blood transfusion. After prolonged latency 

periods, approximately 3 to 5% of HTLV-1 infected individuals will develop either adult 

T-cell leukemia/lymphoma (ATL), or other lymphocyte-mediated disorders such as 

HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The genome of 

this complex retrovirus contains typical gag, pol, and env genes, but also unique 

nonstructural proteins encoded from the pX region. These nonstructural genes encode the 

Tax and Rex regulatory proteins, as well as novel proteins essential for viral spread in vivo 

such as, p30, p12, p13 and the antisense encoded HBZ. While progress has been made in 

the understanding of viral determinants of cell transformation and host immune responses, 

host and viral determinants of HTLV-1 transmission and spread during the early phases of 

infection are unclear. Improvements in the molecular tools to test these viral determinants 

in cellular and animal models have provided new insights into the early events of HTLV-1 
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infection. This review will focus on studies that test HTLV-1 determinants in context to 

full length infectious clones of the virus providing insights into the mechanisms of 

transmission and spread of HTLV-1. 

Keywords: HTLV-1; human T-lymphotropic virus type-1; transmission; replication; 

determinants; animal models 

 

1. Introduction 

Human T-lymphotrophic virus type-1 (HTLV-1) is a member of the deltaretroviridae, a family of 

retroviruses which includes both simian T-lymphotrophic virus (STLV-1) and bovine leukemia virus 

(BLV). Based on epidemiology studies it has been estimated that approximately 15 to 20 million 

HTLV-1 carriers exist throughout the world, with endemic areas in Japan, the Caribbean, and Africa 

[1]. In these endemic areas there is a wide range of seroprevalance rates ranging from 0.1 to 30%. 

After prolonged latency periods (as long as 20 to 60 years), approximately 5% of HTLV-1 infected 

individuals will develop either adult T-cell leukemia/lymphoma (ATL), or other lymphocyte-mediated 

disorders such as HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP).  

HTLV-1 is spread through contact with bodily fluids containing infected cells. Contaminated whole 

blood or whole blood products represent the most common form of HTLV-1 transmission in the 

United States of America, typically from sharing of needles among intravenous drug users [2,3]. 

However the more natural route of HTLV-1 transmission is through infected mothers who breast feed 

their children resulting in the transfer of infected maternal lymphocytes to their infant [4]. Perinatal 

contamination of the fetus from infected maternal blood occurs, but does not represent a significant 

mode of HTLV-1 transmission [5]. The transmission of HTLV-1 through sex is a less efficient route of 

transmission, however male to female transmission via semen is four-times as likely to lead to 

transmission as female to male [6]. Transfusion of infected blood products remains a major public 

health concern, and is a principal reason for current blood donor screening procedures particularly in 

the United States, Japan, as well as other countries [7]. Japan has educated HTLV-1 infected mothers 

about the possible risks of transmitting HTLV-1 through breast feeding, effectively reducing 

transmission in endemic regions [8,9].  

Mechanisms of how HTLV-1 is transmitted between cells is an active area of research. HTLV-1 is 

poorly infectious as cell-free virus particles for most cell types. The exception appears to be dendritic 

cells which can be infected by cell-free HTLV-1 [10]. Well organized cell-to-cell contacts between 

HTLV-1-infected cells and uninfected T-cells have been described as ―virologic synapses‖ [11,12]. 

These unique contact points have similar features as immunologic synapses during antigen 

presentation and appear to be virus-mediated, in part, through Tax [13]. As discussed in subsequent 

sections of this review, HTLV-1 p12/p8 expression increases T-cell contact through specific adhesion 

molecules and promotion of cellular conduits appears to enhance cell-to-cell viral transmission [14]. 

Recently more complex cell surface structures have been described that may protect HTLV-1 particles 

during cell-to-cell transfer. Glycoprotein-rich aggregates on the surface of HTLV-1-infected cells 

analogous to ―biofilms‖ suggest unique virus-mediated events may promote successful transmission 
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between cell contacts [15]. Disruption of these structures inhibits cell-to-cell transmission by the virus. 

The role of specific viral determinants that mediate the formation of these glycoprotein matrix 

structures remains to be determined.  

2. HTLV-1 Associated Diseases 

Adult T-cell leukemia/lymphoma, in its acute form, is an aggressive T-cell malignancy that 

typically occurs 20 to 30 years after infection with HTLV-1 [16]. Neoplastic disease associated with 

HTLV-1 is exhibited in a variety of clinical forms, but is characterized by a monoclonal population of 

T-cells that express CD3+/CD4+/CD8−/CD25+/HLA-DR+ cell surface markers [17–19]. Approximately 

1 to 5% of HTLV-1 infected patients eventually develop some form of ATL after a prolonged clinical 

latency period (Table 1).  

Clinically, ATL occurs in at least four different forms: (1) smoldering (2) chronic (3) lymphoma 

and (4) acute [17]. Patients afflicted with the acute form of ATL make up approximately 55 to 75% of 

all ATL cases and present with fever, malaise, skin lesions, lymphadenopathy, leukocytosis and 

hepatosplenomegaly [17]. To date, there a limited number of successful therapeutic protocols for ATL 

using standard chemotherapy treatments (reviewed in [20]). 

The prolonged and complex interactions between the host and the virus that lead to development of 

ATL have not been elucidated. HTLV-1 infected neoplastic monoclonal T-cells originate from 

polyclonal populations of infected T-cells [21]. Selective pressures such as the anti-HTLV-1 adaptive 

immune response of an infected individual promote an oligoclonal population of infected T-cells with 

survival advantages to emerge [22]. From this oligoclonal population, a neoplastic T-cell clone 

emerges typically with a variety of somatic genetic mutations [23,24]. HTLV-1’s transacting 

transcriptional activator, Tax, plays a major role in the immortalization of these infected T-cells by 

altering distinct signaling or genetic events such as cell cycle control and DNA repair genes (reviewed 

in [25]). Tax and HBZ (below) appears to be required for initial immortalization of T-cells promoting 

the subsequent development of ATL and other lymphocyte-mediated disorders. In addition, evidence is 

accumulating that implicate the antisense encoded protein, HBZ or its RNA, in T-cell proliferation and 

perhaps maintenance of transformation [25,26]. 

In 1985, Gessain et al. [27] reported that a group of HTLV-1-seropositive patients in French 

Martinique suffered from a neurodegenerative disorder called tropical spastic paraparesis (TSP)  

(Table 1). Osame et al. [28] subsequently described a similar clinical disorder in Japanese patients and 

termed it HTLV-1 associated myelopathy (HAM). The onset of HAM/TSP typically occurs in younger 

subjects infected with HTLV-1 and is more closely linked to the transfusion of HTLV-1 infected blood 

products, whereas ATL has been linked to transmission through breast milk of infected mothers [29]. 

A progressive chronic myelopathy, HAM/TSP mainly affects the thoracic spinal cord and patients 

often present with urinary incontinence, ataxia, intention tremors and limb paraparesis [30]. The 

infiltration of HTLV-1 specific CD4+ and CD8+ T lymphocytes into the spinal cord leads to severe 

inflammation from production of proinflammatory cytokines such as IL-1, IL-6, IFN-γ, and  

TNF-γ [17]. Accumulation of proinflammatory cytokines leads to demyelination and lymphocytic 

meningomyelitis. High HTLV-1 antibody titers can be detected in the CSF [31]. The detailed 

mechanism of HAM/TSP development like ATL has yet to be elucidated. However HTLV-1 proteins 



Viruses 2011, 3              

 

 

1134 

utilizing molecular mimicry or acting as autoantigens have been postulated as factors that contribute to 

the development of HAM/TSP [17,18]. Risk factors for the development of HAM/TSP such as high 

proviral loads have been linked with the development of HAM/TSP (reviewed in [30]).  

A number of other immune-mediated chronic inflammatory conditions are associated with HTLV-1 

infection (Table 1) [20,32,33]. However, it is less clear what specific role HTLV-1 infection plays in 

the initiation or development of these diseases. HTLV-1-associated arthropathy, uveitis, infective 

dermatitis, polymyositis, chronic respiratory disease, Sjogren’s syndrome, lymphadenitis, and certain 

acute myeloid leukemias have been associated with HTLV-1 infection (reviewed in [20]). It has been 

hypothesized that the dysregulation of the immune system in chronic HTLV-1 infection promotes 

diseases (reviewed in [34]). 

Table 1. Human T-lymphotrophic virus type-1 (HTLV-1) -associated diseases and syndromes. 

Disease or 

Syndrome 
Clinical Characteristics and Pathologic Outcomes 

Adult T-cell 

leukemia/ lymphoma 

(ATL) 

 Four classifications based on clinical signs include: asymptomatic, pre-

leukemic, chronic smoldering, and acute  

 Clinical symptoms may include malaise, fever, lymphadenopathy, 

hepatosplenomegaly, hypercalcemia, lytic bone lesions, elevated lactate 

dehydrogenase, increased interleukin 2 receptor in serum, lymphomatous 

skin infiltrates, jaundice, weight loss, and various opportunistic infections, 

such as Pneumocystis carinii 

 Aggressive malignancy of T-lymphocytes, characterized by multiple 

distinct cell surface markers, including 

CD3+/CD4+/CD8−/CD25+/HLA−DR+ T-cells 

 Leukocytosis may include atypical cell morphology, multilobulated 

nucleus referred to as ―flower cells‖ 

 Diagnostic criteria include HTLV-1 seropositivity, leukocytosis, increased 

serum levels of IL-2 receptor and LDH, demonstration of neoplastic  

T-cells with polylobulated nuclear morphology (―flower cells‖), and 

clonally integrated HTLV-1 genomes within the chromosomes of 

neoplastic lymphocytes 

HTLV-1-Associated 

Myelopathy/ Tropical 

Spastic Paraparesis 

(HAM/TSP) 

 Spasticity lower extremities, hypereflexia, muscle weakness, and sphincter 

disorders, including dysfunction of the urinary bladder and intestines; 

clinically may overlap with multiple sclerosis 

 Progressive chronic myelopathy, with preferential damage of the thoracic 

spinal cord  

 Early lesion development characterized by infiltrates composed 

predominantly of CD4+ T-cells, and macrophages with detectable levels 

of HTLV-1 tax RNA in lesions 

 Characterized by multiple white matter lesions in both the spinal cord and 

the brain involving perivascular demyelination and axonal degeneration; 

rarely, cerebellar syndrome with ataxia and intention tremor 

 Late lesions (>4 years) predominantly CD8+ T-cells with less tax RNA  

 Cerebrospinal fluid contain high levels of proinflammatory cytokines, 

including IFN-, TNF-, IL-1, and IL-6, as well as increased numbers of 

activated lymphocytes 
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Table 1. Cont. 

Disease or 

Syndrome 
Clinical Characteristics and Pathologic Outcomes 

HTLV-1-associated 

Dermatitis 

 Chronic eczema with refractory Staphylococcus aureus or beta-hemolytic 

streptococcus infections 

 Described in Jamaican children as ―infectious dermatitis‖  

 Patients frequently develop HAM/TSP later in life and may have episodes 

of severe anemia 

Ocular Lesions  HTLV-1 infection associated in endemic regions with uveitis, 

keratoconjunctivitis sicca, and interstitial keratitis  

 Chronic course in children may result in retinal degeneration 

Inflammatory 

Arthropathy and 

Polymyositis 

 Chronic polymyositis associated with HTLV-1 may be presented with 

neuropathy, joint swelling, chest pain, and dyspnea 

 Japanese patients in regions endemic for HTLV-1 infection may present 

with chronic inflammatory arthropathy or polymyositis 

 Similar lesions have been reproduced in transgenic mouse and rat models 

3. Replication and Organization of the HTLV-1 Genome 

HTLV-1 is a single-stranded diploid RNA virus that carries genetic information for structural 

proteins and enzymes (Gag, Env, reverse transcriptase (RT), protease, integrase (IN) (reviewed in [25]). 

The 3' end of the viral genome expresses alternatively spliced mRNAs encoding proteins from open 

reading frames (ORFs) I-IV (Figure 1). The RNA genome is in a ribonucleoprotein complex with the 

viral protein nucleocapsid (NC). Nucleocapsid along with capsid (CA) and matrix (MA) make up the 

three proteins produced from the Gag transcript. The env gene encodes for surface unit (SU) and 

transmembrane unit (TM) proteins. These proteins are responsible for binding and fusion to cellular 

membranes during viral entry. The enzymatic components of the retrovirus include integrase (IN), 

reverse transcriptase (RT) and protease (Pro). 

The genome of HTLV-1 is approximately 9032 nucleotides long and in its proviral (integrated 

form) contains two flanking long terminal repeat (LTR) sequences. The LTR’s of HTLV-1 are made 

up of 3 components, unique region 3' (U3'), repeated region (R) and unique region 5' (U5'). These  

cis-acting sequences are critical for viral gene regulation and replication including coordinating 

transcription initiation and termination, splicing and polyadenylation of mRNA and strand transfer 

during reverse transcription [35,36]. The U3 contains three imperfect 21 base pair repeats named the 

Tax response element-1 (TRE-1). The TRE-1 binds multiple transcription factors and is an active site 

of chromatin remodeling (reviewed in [25,37]). 

The pX region contains the regulatory and non-structural genes of HTLV-1. The genes in the pX 

region are alternatively spliced and made from different initial sites. Open reading frame I and II 

encode p12 (p8), p30, and p13 [38,39]. Tax, the transacting transcriptional activator and Rex, the 

transporter of unspliced and single spliced viral RNA, are encoded from ORF-IV and III, respectively 

[35]. The HBZ gene is encoded from a complementary minus stranded RNA [40]. The expression of 

viral RNA from primary cells from infected subjects and cells transfected with HTLV-1 molecular 

clones indicates a two-phased pattern with tax/rex mRNA preceding expression of other transcripts and 

differential distribution of RNA species between cytoplasmic and nuclear compartments [41]. 
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Figure 1. Human T-lymphotrophic virus type-1 (HTLV-1) genome, mRNA, and proteins. 

The HTLV-1 genome appears on top, the mRNA in the middle, and the protein species on 

the bottom. The numbers represent nucleotide positions of each exon splice acceptor and 

donor site. 

 

4. Structural Proteins of HTLV-1 and Their Influence on Viral Particle Assembly and 

Transmission 

HTLV-1 Gag (group specific antigen) or p55 is produced as a single precursor polyprotein. The 

polyprotein is myristylated, post-translationally, and targeted for the inner lipid plasma membrane of 

the cell. At the inner membrane of the plasma membrane Gag is cleaved by viral proteases into its 

functional units: CA (p24), NC (p15) and MA (p19). Capsid interacts with itself to form the inner core 

of the virion. Nucleocapsid interacts with the genomic RNA inside the inner core of the virion. The 

proper spatial and temporal events of viral assembly and budding play a critical role in the ability of 

HTLV-1 to be transmitted from one cell to another (Figure 2).  

In contrast to HIV-1 Gag, the interaction of HTLV-1 MA appears to be independent of plasma 

membrane phospholipid, phosphatidylinositol-(4,5)-bisphosphate [PI(4,5)P(2)] used by HIV-1 in 

particle assembly [42]. HTLV-1 MA contains a PPPY domain that assists in virus budding by targeting 

cellular proteins Nedd4.1 and Tsg101 [43–45]. In addition to assisting in virus budding and assembly, 

MA appears to have a role in cell-to-cell transmission of the virus [46,47]. Utilizing an infectious 

molecular clone of HTLV-1 (ACH) [48], serine 105 of MA has been shown to be a target of the kinase 

ERK-2 influencing budding efficiency and viral particle release [47]. Thus, like other retroviruses, the 
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phosphorylation of HTLV-1 L-domain proteins appears to be important in regulation of viral budding 

and thus cell-to-cell transmission.  

Figure 2. HTLV-1 assembly and incorporation of viral components (left) and fully 

developed mature virion following budding from cell membrane (right). 

 

 

Using biochemical approaches and in vitro assays, HTLV-1 NC has been documented to function 

poorly as a nucleic acid chaperone and thus differs from other retroviruses such as HIV-1 [49,50]. In 

addition, HTLV-1 uses a C-terminal peptide region of NC to block the action of the host restriction 

factor ABOBEC3G [51]. Future studies using infectious molecular clones of HTLV-1 are needed to 

test the ability of specific mutations in the key NC motifs that mediate RNA binding and interactions 

with host restriction factors to understand how they influence the transmission and spread of HTLV-1 

in vivo.  

Protease is produced from ribosomal frame shifting initially as an immature form that is inactive 

until self cleavage activates the protease after viral budding [52,53]. Reverse transcriptase and IN are 

generated from proteolytic cleavage of the Gag/Pol precursor polyprotein. Reverse transcriptase is 

responsible for transcribing the RNA template and IN acts as a catalyst in the integration of the dsDNA 

viral template into the cellular genomic DNA [54].  

The HTLV-1 envelope protein (Env) is maintained among isolates and env variability ranges from 

1 to 8% [55–57]. HTLV-1 Env is a 488 amino acid protein synthesized as a polyprotein precursor 

(gp62), which is subsequently glycosylated and cleaved into two proteins, surface unit gp46 (SU) and 
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transmembrane gp21 (TM) [58,59]. SU is required for entry into the target cell by mediating specific 

attachment to cellular receptors (below), while the TM supports fusion between viral and cellular 

membranes to allow viral entry. 

HTLV-1 SU is a 312 amino acid protein. The C-terminal half of SU is highly antigenic and is 

recognized by serum antibodies from approximately 95% of HTLV-1 infected individuals [57]. A 

major target of neutralizing antibodies is focused on amino acids 187 to 196 of SU [57,60–62]. Early 

studies using site directed mutagenesis demonstrated functional domains within SU involved in 

intracellular maturation, syncytium formation, and the association between SU and TM [57,60,63,64]. 

Subsequent development of a cell transmission assay allowed for separation of fusion events from 

infectivity events [65,66].  

Through a variety of techniques, specific protein motifs of HTLV-1 Env have been defined in 

terms of their ability to interact with cellular proteins important in cell fusion events. The HTLV-1 TM 

contains YSLI amino acid sequences that represent consensus YXXP motifs, known to interact with 

cellular adaptor protein complexes, and a PDZ-binding motif (ESSL) at the C terminus of Env. 

Alterations of the YSLI motif increased Env expression on the cell surface and increased cell fusion 

activity, whereas mutations of the ESSL motif reduce Env expression in cells [67]. The human 

homologue of the Drosophila Dlg tumor suppressor (hDlg), a scaffold protein important at cell 

adhesion sites, is a binding protein with HTLV-1 Env through a PDZ domain and is co-expressed in 

specific regions of T-cell contacts [68]. RNA interference-mediated knockdown of Dlg1 reduces 

HTLV-1-mediated syncytium formation apparently by interfering with Dlg1 induced clustering of 

GLUT1, a cellular receptor for HTLV-1 [69].  

Transient transfections of HTLV-1 env plasmids with specific mutations in the ACH molecular 

clone have verified key Env determinants in context to replicating virus [70]. Specific point mutations 

in env in ACH (ACH.75, ACH.95, and ACH.195) were compared for their ability to elicit antibody 

responses and proviral loads in a rabbit model of infection [71]. These mutations were within regions 

predicted to be important for binding of SU to the viral receptor based on syncytium assays or, in the 

case of ACH.195, in a major target for neutralizing antibody responses [60,62]. These mutations while 

replication competent, elicited decreased or altered antibody responses in infected rabbits [71]. 

Mutations that affected Env at position 75 resulted in rabbits developing higher proviral loads than 

wild type ACH.1 and ACH.95 groups. These data support previous reports of the importance of these 

regions in SU (amino acids 187-196) in immunogenicity and viral spread in vivo.  

HTLV-1 SU and TM form as heterodimers at the surface of virions and are responsible for 

initiating binding, fusion with target cell and entry. The mechanism of action that facilitates cell-to-cell 

transmission of the HTLV-1 is not resolved, but recently several groups have reported data on three 

main cellular receptors: glucose transporter (GLUT-1), heparin sulfate proteoglycans and neuropilin-1 

[72–82]. Previous studies have shown GLUT-1 to be involved in envelope mediated cell-to-cell fusion 

[77]. Heparin sulfate proteoglycan binds virus particles on cell surfaces and facilitates entry [83]. In 

addition to being the main receptor, removal of heparin sulfate proteoglycan from primary 

lymphocytes significantly reduced binding of SU. Neuropilin-1 is part of the immunological synapse 

and is a binding partner of Env [80]. Ectopic expression of neuropilin-1 significantly increased  

HTLV-1 Env-dependent syncytium formation [80]. Further studies will be required to identify specific 

envelope motifs that both alter receptor binding and influence viral transmission and spread in vivo.  
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5. Regulatory Proteins of HTLV-1 

5.1. Tax 

HTLV-1 Tax (Transcriptional Activator of pX region) is a 353 amino acid, 40 kDa phosphoprotein 

translated from a doubly-spliced mRNA from the ORF IV (reviewed in [25,37,84]. Tax is 

predominantly a nuclear protein, however it can translocate to the cytoplasm through use of a nuclear 

export protein [36,85,86]. Tax is responsible for initiating viral transactivation from the LTR of the 

provirus by binding the GC-rich regions of the TRE-1, within the U3 region of the LTR [87–90]. From 

the TRE-1, Tax can stabilize the CREB/ATF (activator of transcriptional factors) dimers, which are 

part of the transcriptional machinery needed for viral gene expression [91,92]. Tax also can recruit and 

bind CBP/p300 to the TRE-1. Phosphorylation of CREB by PKA leads to recruitment of CBP/p300 in 

normal cells; however in HTLV-1 infected T-cells Tax can bypass PKA-mediated phosphorylation of 

CREB. The ability of Tax to recruit and stabilize CREB-CBP/p300 and other factors like P/CAF 

(CBP/p300 associated factor) allows for efficient transcription of the provirus [93,94]. 

Tax can also bind TRE-2 in the LTR, which is located central and proximal to TRE-1. Tax recruits 

transcriptional co-activators like the aforementioned P/CAF and p300 (via KIX domain), Ets family 

transcription factors (Ets-1, -2, Elf-1, Tif-1) and c-Myb transcription factors to the TRE-2 region [95]. 

Tax can also bind the basic region of cellular basic leucine zipper transcription factors (bZIP), which 

aid in DNA binding. The presence of TRE-1 and -2 allows for Tax to mediate a number of processes 

and facilitate viral transcription bypassing cellular signals.  

Tax can activate expression of cellular genes including: (1) CREB/ATF, (2) NF-κB, (3) AP-1 and 

(4) SRF that influence cellular signaling pathways. These signaling pathways are responsible for the 

expression of multiple cytokines including: IL-1, -2, -2Rα, -3, -4, -6, -8, GM-CSF, and TNF α and β 

[96]. Transcription factors like c-Myc, c-Fos, c-Sis, Erg-1, c-Rel, and Lck are also influenced by 

expression of Tax [97]. Apoptosis and DNA repair genes like Bcl-XL, Bax and PCNA (proliferating 

cell nuclear antigen) respectively are also affected by Tax expression [98–100]. The transforming 

ability of Tax is most likely attributable to its influence over the expression of these important cellular 

genes. The development of ATL serves as a model of how an oncogenic viral protein can indirectly 

lead to immortalization (IL-2 dependent proliferation) and transformation (IL-2 independent clonal 

expansion) of T-cells. 

The molecular mechanisms that lead to development of ATL have not been completely elucidated 

to date, however it is clear that Tax plays a pivotal role. Tax facilitates the translocation of NFκB into 

the nucleus and is responsible for activating transcription of genes that favor cellular proliferation and 

T-cell survival. Tax can bind p50, p52, p65, and c-Rel NFκB family members [101,102]. Most 

notably, Tax can bind IκBα, an inhibitor of NFκB nuclear translocation. The association of Tax and 

IκBα destabilizes the IκBα/β/γ-NFκB complex and allows for NFκB translocation [103]. The IκK 

complex is phosphorylated and subsequently ubiquinated and degraded by the proteosome. NFκB can 

then activate prosurvival and anti-apoptotic genes that promote cell survival and replication despite 

cellular signals that might favor apoptosis. The promotion of cellular replication in spite of 

accumulation of genetic defects and apoptotic signals in the cell contributes to the transformation of 

lymphocytes and the development of ATL. 
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While the role of Tax in cell gene expression, proliferation, and transformation have been 

extensively studied, the role of Tax in viral transmission is less clear. Presumably, HTLV-1 would not 

be able to accomplish viral replication and spread without Tax function, but specific Tax determinants 

in viral transmission and spread are problematic to study. Infectious clones of the virus that have Tax 

mutations would fail to enhance needed viral gene expression during early stages of cell-to-cell 

transmission. Interestingly, prostaglandins enhance viral expression via the HTLV-1 LTR through the 

protein kinase A signaling and Tax transactivates a promoter for cyclooxygenase 2, a prostaglandin 

synthetase, and induces PGE(2) expression in peripheral and cord blood mononuclear cells [104]. This 

reciprocal interaction has been postulated to promote viral transmission in vivo.  

Tax involvement in promoting cell adhesion and thereby cell-to-cell transmission has been reported. 

Significant correlation exists in cell lines comparing expression of HTLV-1 Tax and CCL22, a CCR4 

ligand in HTLV-1-infected T-cells, suggesting an active role of Tax in selective CD4+ T-cell viral 

transmission [105]. This conclusion is supported by transient Tax expression in an HTLV-1-negative 

T-cell line that induced CCL22 promoting CCR4 redistributed to cell contact points during in vitro 

transmission, and chemotaxis assays. Thus, HTLV-1-infected T-cells may selectively attract 

CCR4+CD4+ T-cells [105]. Similarly, Tax induced enhancement of ICAM-1 on the surface of T-cells 

has been shown to facilitate the formation of viral synapses and therefore may contribute to T-cell 

tropism and viral transmission [106]. Interestingly the unique cellular microenvironment during 

HTLV-1 milk-borne transmission may favor virus expression. Lactoferrin, a major milk protein, 

appears to enhance HTLV-1 replication by enhancing HTLV-1 LTR promoter activity (presumably in 

context to Tax transactivation). Conversely, the viral infection may enhance the expression of 

lactoferrin in the mammary gland environment [107].  

The detailed mechanisms of how specific Tax induced alterations of the host influence viral 

transmission and spread wait specific testing of tax mutations in context to full length and infectious 

viral clones.  

5.2. Rex 

Rex is a 27 kDa phosphoprotein encoded by ORF III of the pX region [108,109]. Rex contains 

multiple functional domains including a RNA binding domain, nuclear localization sequence (NLS), 

nuclear export sequence (NES) and a multimerization domain [110]. 

Unlike Tax, Rex regulates viral gene expression only post-transcriptionally and is responsible for 

regulating expression of viral RNA. Rex facilitates nuclear transport of unspliced and singly spliced 

mRNAs (Gag, Env, Pol) into the cytoplasm [111]. The presence of the Rex response element (RxRE) 

in the U3/R 3’ LTR allows for Rex to bind all viral encoded RNAs [112]. Rex, like HIV-1 Rev, 

appears to utilize the CRM1/exportin pathway [113,114]. In addition, a 21 kDa Rex-like protein is 

produced in HTLV-1 infected cells, but lacks a nuclear localizing sequence (NLS) in the N terminus 

and when expressed in cells inhibit RNA shuttling [115]. The role of the 21 kDa form in the natural 

infection remains unclear.  

The essential role of Rex for viral infectivity has been confirmed using molecular clones with 

selectively mutations in the rabbit model [116]. A Rex-deficient HTLV-1 full length viral clone 

(HTLVRex-) was used to provide the first direct evidence that functional Rex expression is not 
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required for in vitro immortalization by HTLV-1, but was critical for optimal viral transmission in vivo 

[116]. These results suggest that defects in the ability of Rex to promote unspliced and single spliced 

RNA to traffic are important for optimal viral spread. Construction of reciprocal recombinant 

infectious molecular clones of HTLV-1 (ACH) and HTLV-2 (pH6neo) indicated that tax and rex genes 

do not contribute to transformation tropisms preferences [117]. A more refined study of Rex using 

point or specific motif deletions in context to infectious clones will be required to understand the 

detailed mechanism of how Rex influences viral transmission.  

6. Nonstructural Proteins of HTLV-1: Essential Role in Viral Spread and Transmission 

The pX region of the HTLV-1 genome also contain ORF I and II, which encode four nonstructural 

proteins (Figure 1). Alternative splicing of ORF I and II yields p27, p12, p30 and p13 [38,118,119] All 

of these spliced mRNA’s share a common 1st exon nucleotide (nt.) 1-119 in the R region of the  

5' LTR. Doubly spliced mRNAs encode 2nd exons that start at either nucleotide 4641 or 4658 and end 

at nucleotide 4831. There are numerous splice acceptor sites for the alternatively spliced mRNAs of 

ORFs I and II. The 3rd exons for doubly spliced mRNAs such as p27 and p30 have splice acceptor 

sites at nt. 6383 and 6478, respectively. The second exons for singly spliced mRNAs such as p12 and 

p13 have splice acceptor sites at nt. 6383 and 6875, respectively. 

Initial studies examining the importance of the nonstructural genes suggested they were dispensable 

in vitro [120], however recent studies have supported the role of these nonstructural genes in the 

transmission and spread of the virus in vivo [14,116,121–126]. The nonstructural genes encoded from 

ORFs I and II are vital for viral infectivity, maintenance of the virus life cycle and proviral loads in vivo, 

as well as host cell activation and regulation of viral gene transcription [121–123,127–132]. The genes 

from ORF I and II can be detected in HTLV-1 positive cell lines and in patients (asymptomatic, ATL 

and HAM/TSP patients) [118,133]. Even though detecting the actual proteins has been difficult, 

mRNA has been detected by RT-PCR and QC-PCR [119]. Patients also possess antibodies and 

cytotoxic T-cells (CTLs) directed against these proteins [134,135]. ORF I genes appear to be expressed 

100–1000 times less than ORF III and IV genes and ORF II genes are expressed 500–2500 times less 

than ORF III and IV genes [136]. The huge discrepancy in expression might explain why these 

proteins are difficult to detect and suggest that they might be regulated differently than Tax and Rex. 

6.1. p12 and p8 

HTLV-1 p12 is a 99 amino acid hydrophobic rich protein, rich in leucine (32%) and proline (17%) 

[119]. p12 has several predicted amino acid regions or motifs which are responsible for a number of its 

important functions in the cell. p12 contains two putative transmembrane domains (amino acids 12 to 

30; 48 to 67) and two leucine zipper motifs [137]. The predicted leucine zipper motifs form α helices 

in the protein. Together the putative transmembrane domains and the leucine zipper motifs contribute 

to the ER localization and dimerization of p12 [138,139]. In addition to the aforementioned motifs p12 

contains four putative SH3 binding (PXXP) motifs and one conserved PSLP(I/L)T motif [140]. The 

proline rich Src homology-3 (SH3) motifs are predicted to be responsible for binding cellular signaling 

proteins. The first (amino acids 8 to 11) and third (amino acids 70 to 74) SH3 binding motifs are 

highly conserved among different HTLV-1 strains. The conserved PSLP(I/L)T motif is homologous to 
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the calcineurin binding PxIxIT motif present in Nuclear Factor of Activated T-cells (NFAT) [141]. 

This sequence has the capacity for calcineurin binding in the cell. Calcineurin and NFAT represent a 

few of the many Ca
2+

 signaling proteins, transcription factors, and ER/cis-Golgi associated proteins in 

the cytoplasm that p12 interacts with to influence gene expression infected T lymphocytes. 

In addition to calcineurin and NFAT, calreticulum and calnexin bind p12 and mediate Ca
2+

 

regulated pathways in the cell. These ER associated proteins are involved in regulating Ca
2+

 storage 

and regulating Ca
2+

 signaling, respectively. Calreticulum is a chaperone protein responsible for 

retaining the MHC class 1 molecule folded in the ER along its maturation pathway. Calnexin assists in 

proper protein folding of glycoproteins that enter the secretory pathway. The modulation of NFAT 

activation and thus T-cell signaling is accomplished through interactions between Ras/MAP kinase by 

p12. When stimulated by phorbol ester and PMA, p12 can activate NFAT [128]. p12 accomplishes this 

through releasing intracellular Ca
2+

 from ER storage and by increasing Ca
2+

 entry into the cell [142]. 

HTLV-1 p12 has numerous effects on cell signaling when expressed exogenously. Exogenously 

expressed p12 can affect T-cell signaling as well. p12 expressed exogenously can bind IL-2R β and γ 

subunits [143]. IL-2 expression is increased via NFAT activation in a Ca
2+

 dependent manner in Jurkat 

and primary T lymphocytes. In turn, this leads to a reduced dependency on IL-2 for T-cell activation in 

the presence of p12 [144]. In addition to Ca
2+

 signaling related proteins, p12 can also bind vacuolar 

H+-ATPase and immature peptides of MHC class I, which leads to their proteosomal degradation 

[145,146]. The proteosomal degradation of MHC class I molecules is predicted to lead to a lower 

percentage of viral peptides being expressed on the surface of infected cells in the context of an MHC 

class I molecule [147]. With decreased presentation of viral peptides on MHC class I molecules, 

infected cells may avoid detection from the HTLV-1 specific adaptive immune response. To test the 

influence of ORF1 expressed proteins in cell transmission, an established T-cell line immortalized with 

an HTLV-1 molecular clone, which does not express ORF 1 mRNA, was transduced with a lentivirus 

vector expressing p12 [148]. In this study, p12 expression conferred a selective growth advantage  

in vitro and increased the colony formation of human T-cells in soft-agar assays. IL-2 stimulation and 

p12 expression significantly increased the rate of syncytium formation, suggesting a novel role for  

IL-2 signaling and Jak activation in HTLV-1 virus transmission [148].  

HTLV-1 p12 has been demonstrated to be proteolytically cleaved to create a smaller protein, p8. 

This protein apparently serves a different role and acts to increase T-cell contact through LFA-1 

clustering thereby enhancing the cellular contacts among T-cells to enhance viral transmission, while 

anergizing T-cell signaling [14]. The ability of p8 to decrease T-cell activation is likely mediated 

through inhibiting proximal T-cell receptor signaling at the immunological synapse where it decreases 

phosphorylation of key signaling proteins in a LAT-dependent mechanism [14,149].  

The ability of p12 to induce LFA clustering on infected T lymphocytes was previously 

demonstrated and hypothesized to increase the efficiency of cell-to-cell spread of the virus [127]. The 

processing of p12 into p8 may account for the influence of the ORF1 encoded proteins on LFA-1 

clustering on the cell surface and the formation of cellular conduits [14]. Equally as plausible is the 

ability of p12 to induce calcium-mediated LFA-1 clustering on the surface of T-cells, a known 

mechanism of LFA-1 functional activation [150–152].  

The first evidence that pX ORF1 was important for viral transmission was demonstrated in the 

rabbit model using a splice acceptor site mutant of the ACH infectious molecular clone [121]. Ablation 
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of the acceptor splice site through the deletion of four nucleotides was associated with a reduction of 

viral infectivity in vivo [121] and in vitro in non-stimulated T-cells [123]. The deletion of this p12 

acceptor splice site would also introduce a frame shift in the HBZ antisense ORF, resulting in the 

deletion of the last 24 amino acids of HBZ [153]. However the replication capacity of subsequent 

specific HBZ mutants in context of molecular clones did not result in complete reduction of infectivity 

as observed in ORF1 splice mutants [154]. Thus, the rabbit model was able to detect selected HBZ 

mutations and demonstrated that these were different in viral spread compared to ORF 1 mutants. The 

alteration of ORF I splice sites did not disrupt the expression of Tax, Rex, and structural proteins such 

as Env in expression in ACH.p12 [128]. A recent study tested a variety of HTLV-1 mutant molecular 

clones for their ability to replicate in dendritic cells and in vivo in rabbits and macaques [126]. In this 

study, mutations to ablate p12, p30, and HBZ were introduced in the ClaI/SalI cassette from the 

HTLV-1 molecular clone pBST that encompasses the orf-I and the orf-II. The molecular clone pACH 

was cleaved at the ClaI/SalI to generate the backbone for the construction of all viral mutants. Rabbits 

inoculated intravenously with these mutant clones had reduced viral loads at 16 weeks post inoculation 

before recovering to ―wild type‖ control level. Dendritic cell cultures from macaques infected with 

these mutant clones had reduced viral replication parameters suggesting the importance of this cell 

type in early viral transmission [126]. Small groups of macaques inoculated with these same mutant 

molecular clones also exhibited limited viral expression [126] confirming the importance of p12/p8 

and p30 expression for viral transmission. 

6.2. p13 

HTLV-1 pX ORFII encodes for p13 from a singly spliced mRNA [155]. The viral protein is 

predominantly localized in the nucleus and mitochondria of transfected cells [133,139,156,157]. 

Ectopic expression of p13 affects structure and disrupts the inner membrane potential of mitochondria 

[158,159]. The mitochondrial targeting signal (MTS) of p13, which allows the viral protein to target 

the mitochondria, is a predicted α-helix that is arginine rich and amphiphatic [157,158]. The 

incorporation of p13 into the inner mitochondrial membrane causes morphological changes such as 

swelling and a loss of inner membrane potential () [158]. These alterations of the inner 

mitochondrial membrane change energy production, redox status and induce apoptosis in cells [158]. 

p13 influence on cell proliferation in vitro is dependent on the stage of cell transformation. The  

viral protein suppresses Ras-dependent tumor explants in mice likely through modulation of cellular 

metabolism [160]. The ectopic expression of p13 causes Jurkat T-cells to be sensitive to caspase-

dependent, ceramide- and FasL-induced apoptosis. A farnesyl transferase inhibitor that prevents  

post-translational modification of Ras blocks this suppressive effect of p13 [161]. Importantly, an 

infectious molecular clone of a HTLV-1 with a selective mutation that prevents the translation of p13, 

without affecting RNA splicing, failed to establish viral infection in a rabbit model [162]. Interestingly, 

primary T-cells that express p13 are activated, while causing transformed cells to be sensitive to 

reactive oxygen species [163]. Collectively these studies indicated that p13 has the ability to modulate 

cell survival via Ras-mediated cell signaling and has an essential role early virus transmission and in 

virus persistence. p13 interacts with farnesyl pyrophosphate synthase (FPPS), which is involved with 

synthesis of FPP substrate and is required for prenylation of Ras and subsequent activation of  
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Ras [164]. This interestingly resembles the action of a protein in bovine leukemia virus, G4  

(a nonstructural protein) which acts in a similar fashion as p13 in the mitochondria [165]. 

6.3. p30 

HTLV-1 p30 is expressed predominantly in the cell nucleus and found primarily in the nucleolus 

[139]. In the nucleolus, p30 interacts with the large ribosomal subunit L18a which modulates internal 

initiation of translation [166]. The bipartite NLS of p30 is contained between amino acids 71-98 [156]. 

In addition to this bipartite NLS, p30 contains a localization/retention domain at amino acids 73-78 

and 91-98 [166]. p30 also contains serine and threonine rich domains that share partial homology to 

the POU transcription family members activation domains such as OCT-I/II, Pit-1, and POU-1 [133].  

p30 decreases reporter gene activity of HTLV-1 LTR and CRE driven reporter genes [132]. The 

transcriptional activity of p30 may be in part determined through its ability to compete with CBP/p300 

with Tax via the KIK domain [130]. Competition between Tax and p30 for CBP/p300 complex on the 

TRE determines if there is Tax mediated viral gene activation or p30 mediated viral gene repression 

[130]. p30 also alters viral gene expression post-transcriptionally via its ability to bind Tax/Rex  

mRNA in the nucleus and prevent its exit into the cytoplasm for translation [167,168]. This  

post-transcriptional effect of p30 is likely mediated via a ternary ribonucleoprotein complex on select 

viral transcripts [169]. p30 appears to bind specifically to Tax/Rex mRNAs expressed from molecular 

clones and not cDNA [167,170]. Jurkat T-cells transduced with a lentiviral vector expressing p30 

caused a delay at the G2-M phase of the cell cycle [171]. These data suggest that p30 acts in a 

prosurvival role in the face of genotypic mutations induced by HTLV-1 replication and Tax expression 

[171]. Ectopically expressed p30 binds to cellular ataxia-telangiectasia mutated (ATM) and REGγ  

(a nuclear 20S proteasome activator) [172]. In conditions of genotoxic stress p30 expression was 

associated with reduced levels of ATM and increased cell survival. These data suggest that HTLV-1 

p30 interacts with ATM and REGγ to increase viral spread by facilitating cell survival. In addition, 

interaction of p30 with Myc-Tip60 complex modifies Tip60 mediated transcription and may  

promote cellular transformation [173]. HTLV-1 p30 has been recently demonstrated to inhibit 

conservative homologous DNA repair by targeting the MRN complex, which would favor error  

prone non-homologous end joining DNA repair pathway and perhaps increase the risk of cell 

transformation [174]. 

Early studies which examined molecular clones that failed to express ORF-II mRNA or produced 

truncated forms of p30 indicated that ORF II was not required for virus replication in cell culture or  

in vitro T-cell transformation [175]. In contrast, our lab has demonstrated that HTLV-1  

molecular clones that lack p30 expression do not establish infection in a rabbit model of HTLV-1 

infection [124]. In conclusion, p30 is a multifunctional protein important in multiple transcriptional 

and post-transcriptional phases of HTLV-1 replication and appears to be required for the virus to 

establish a productive infection in the host. 

6.4. HBZ 

HTLV-1 expresses two mRNA products from the 3' LTR of the complementary strand of the virus 

genome of 2.6 kb and 2.9 kb in length [176]. The protein produced from these anti-sense transcripts 
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has been named HTLV-1 bZIP factor or HBZ. HBZ is composed of 209 amino acids and contains  

a NLS, amino terminal transcriptional activation domain and a carboxyl terminal leucine zipper  

motif [177,178].  

Recent in vitro and in vivo studies have elucidated the function of HBZ in the virus life cycle.  

In vitro studies demonstrated that the carboxyl terminal truncations of HBZ did not affect virus 

replication and immortalization. Deletion of HBZ expression, however, from infectious molecular 

clones of HTLV-1 resulted in decreased in proviral load and antibody responses in the rabbit model 

[154] and knock down of HBZ expression reduces tumor growth in a mouse model of ATL [179]. The 

inability of HTLV-1 to persistently infect rabbits without HBZ expression is most likely attributed to 

the lost of interactions between HBZ and important viral and cellular proteins. HBZ has been shown to 

interfere with Tax mediated viral transactivation of the LTR in a TRE dependant manner [177]. HBZ 

can form heterodimers with CREB-2, which prevents recruitment to the TRE and CRE transcriptional 

regions [177]. This implies that HBZ might be a negative regulator of viral transcription. 

In addition to CREB-2, HBZ can form dimers with other proteins, which are important for 

transcription. HBZ interacts with JunD, JunB and c-Jun [153,180]. Dimerization between HBZ and 

JunD or JunB increases transcriptional activity of both transcription factors [153,180]. However, 

dimerization between c-Jun and HBZ results in a decrease in c-Jun transcriptional activity [153]. 

Studies have also shown HBZ can impair the DNA binding of AP-1, another important transcription 

factor [181]. Mice transgenic for HBZ have increased proliferation of CD4+Foxp3+ T(reg) cells but 

have reduced ability to suppress other lymphocyte proliferation perhaps through interaction with 

Foxp3 and NFAT [182]. Collectively, these studies have elucidated potential findings of HBZ in the 

context of the HTLV-1 life cycle; however more studies are required to completely understand the role 

of HBZ in the natural infection and in the pathogenesis of HTLV-1-mediated diseases.  

7. Animal Models to Evaluate Viral Determinants of HTLV-1 Transmission and Spread 

Since the discovery of HTLV-1, a number of animal models of HTLV-1 transmission and spread 

have provided fundamental information about viral and host determinants of infection [183]. Rabbits 

[184,185], some nonhuman primates [186,187] and rats [188,189] can all be infected with HTLV-1 

and have been utilized to monitor the virus spread, determine immune responses against the infection 

and in the development of vaccines against the viral infection. These animal models of HTLV-1 

infection or disease have been recently reviewed [183]. In evaluating an appropriate animal model of 

HTLV-1 infection or disease, it is important to differentiate animal models that test individual genes of 

the virus from those that place the gene under the typical control of HTLV-1 in context of a complete 

genome. To accurately model HTLV-1 determinants of viral transmission and spread, the model 

system should: (1) be tested in context of the complete viral genome, (2) test mutant viral clones 

concurrent with positive controls that demonstrate infectivity with parameters (e.g., proviral loads) 

similar to those used to monitor humans infected with the virus, (3) reproducibly elicit persistent 

infections with widespread distribution of the virus as seen in humans infected with HTLV-1,  

and (4) ideally be economical and easily monitored e.g., animals with blood volumes that allow 

multiple serial measurements.  
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Rabbits have been used extensively as a model of HTLV-1 infection in humans because of the ease 

and consistency of transmission of the viral infection in this species (Figure 3). Infectivity of rabbits 

was first demonstrated in the mid-1980s using intravenous inoculations of the MT-2 cell line [184], a 

T-cell leukemia cell line established from a patient with ATL, and with the Ra-1 cell line [190], a 

rabbit lymphocyte cell line derived from co-cultivation of rabbit lymphocytes with MT-2 cells. These 

early studies verified routes of transmission (e.g., blood, semen, milk) for the virus infection  

[191–196]. Importantly, studies using the rabbit model of HTLV-1 have provided accurate data to 

estimate the number of cells capable of transmitting the virus infection [193] and effective means to 

prevent the transmission of the virus [62,193,197–199]. Rabbit-based studies defined the sequential 

development of antibodies against the virus infection [200]. Immunization of rabbits with synthetic 

peptides verified immunodominant epitopes of the viral envelope protein (Env) [201,202] and defined 

regions of Env important for antibody dependent cell-mediated cytotoxicity [203].  

Figure 3. Rabbit model of HTLV-1 transmission demonstrates a reproducible system to 

produce persistent infections with widespread distribution of the virus similar to humans in 

an economical and easily monitored model. Example showing inoculation of HTLV-1-

transformed cell line (R49) with ACH proviral clone [204]. Determinants of viral 

transmission and spread can be measured in context of the complete viral genome with the 

ability to test mutant viral clones concurrent with positive controls that demonstrate 

infectivity with parameters (e.g., proviral loads). 
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Infectious molecular clones of HTLV-1 were first developed in the mid-1990s [48,205,206] and 

opened the door for testing viral determinants in context to the viral infection in vivo [207]. 

Subsequently, ACH clones with mutations within the open reading frames encoding the HTLV-1 

accessory proteins, p12, p13, and p30, were generated [175], and used in rabbits to demonstrate the 

necessity of these accessory proteins for establishment of infection and maintenance of proviral loads 

[121,122,124,162]. The roles of Rex and HBZ in viral transmission and spread have been tested using 

the ACH clone in rabbits [116,154]. Using ACH wild type virus immortalized rabbit T-cells in an 

intravenous infection model, HTLV-1 was found to accumulate in primary lymphoid and  

gut-associated lymphoid compartments in rabbits and was associated with an early lymphocytosis 

[204]. These data are consistent with a variety of human studies that support emerging evidence that 

HTLV-1 promotes lymphocyte proliferation preceding early viral spread in lymphoid compartments to 

establish and maintain persistent infection. Immunosuppressive treatment prior to HTLV-1 infection in 

the rabbit model (modeling case reports in human transplant patients exposed to contaminated blood 

products) reveal enhanced early viral expression compared to untreated HTLV-1-infected rabbits, and 

altered long-term viral expression parameters. However, this same treatment one week post infection 

diminished HTLV-1 expression for greater than 10 weeks, interfering with typical viral loads [208]. 

This type of study extends studies of chronically infected humans that indicate that immunologic 

control is a key determinant of viral persistence [209–211]. The rabbit model clearly demonstrates the 

sequential control during early HTLV-1 spread and offers a tractable model to test therapeutic 

strategies during mucosal transmission.  

Mouse models of ATL, which typically are focused on xenografts to test anti-cancer compounds or 

transgenic mice to test the properties of individual oncoproteins, have been recently reviewed [212]. 

As a complete genome inoculated in a cell-associate form, HTLV-1 consistently infects rabbits 

[184,185], some non-human primates [186,187], and to a lesser extent rats [188,189]. Viral transmission 

in mice has produced inconsistent infections with limited virus expression in tissues and thus do not 

provide a reliable system to test virus spread in the host [213–216]. Non-human primates have been 

infected with HTLV-1 and a number of species have natural infections with various strains of simian 

T-lymphotropic virus infection type 1 [217–219]. The squirrel monkey has been successfully infected 

with HTLV-1 and has been used for HTLV-1 vaccines [24,220–222]. In a limited study, HTLV-1 

mutant molecular clones were tested for their ability to replicate in dendritic cells and in vivo in rabbits 

and macaques [126]. Some strains of rats have been utilized as a model of HTLV-1-associated 

myelopathy/tropical spastic paraparesis (HAM/ATL), the neurologic disease associated with the viral 

infection [189,223–227]. While rats have been used to test the role of cell-mediated immunity to the 

infection [224,228], the reproducibility of the infection has been questioned [188]. Sheep infected with 

bovine leukemia virus are a reliable model of lymphoma and have provided knowledge of viral genetic 

determinants of viral spread in vivo [229–231].  

Experimental infection of F344 rats with HTLV-1 was first established in 1991 [189]. 

Subsequently, differences in the response of various rat strains to HTLV-1 infection were 

demonstrated [188,227,232]. Wistar-King-Aptekman-Hokudai (WKAH) rats develop spastic 

paraparesis with degenerative thoracic spinal cord and peripheral nerve lesions several months 

following inoculation [227,232]. The neurologic lesions of WKAH-infected rats were predominantly 

characterized by macrophage infiltrates, which differs from that seen in humans [233].  
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Experimental HTLV-1 infection has produced persistent infections in several species of  

non-human primates inoculated with MT-2 cells, Ra-1 cells, or autologous HTLV-1-infected cell lines 

[234–236]. HTLV-1 immortalized cell lines from Squirrel monkeys have been used in this species to 

document peripheral lymphocytes, spleen and lymph nodes as major reservoirs for the virus during the 

early phase of infection [221,237,238]. HTLV-1 infection in squirrel monkeys appears to be dependent 

on early reverse transcription of the virus genome, followed by clonal expansion of infected cells [24]. 

HTLV-1 inoculated rhesus macaques appear to develop a higher incidence of arthritis, uveitis, and 

polymyositis [239]. In addition, pig-tailed macaques that died naturally at 35 to 82 weeks post-inoculation 

with ACH HTLV-1 molecular clone HTLV-1 exhibited lymphopenia, arthropathy, and diarrhea [240]. 

While a promising model species, the cost of maintenance of non-human primates have limited more 

extensive use of this model to test HTLV-1 determinants of virus transmission. 

8. Conclusions 

Human T-lymphotropic virus type-1 (HTLV-1) has evolved to spread from mother to child through 

breast milk or via blood transfusion and is associated with adult T-cell leukemia/lymphoma (ATL), and 

a variety of lymphocyte-mediated disorders such as HTLV-1-associated myelopathy/tropical spastic 

paraparesis (HAM/TSP). The complex retrovirus contains typical gag, pol, and env genes, but also 

unique nonstructural proteins encoded from the pX region that are essential for viral spread  

in vivo. Infectious molecular clones of the virus have allowed testing of viral genes in the transmission 

and spread of the virus. Further studies, however, of specific functional motifs of key viral gene 

products in context to mucosal transmission are needed to determine the interplay of host defenses and 

these viral determinants in viral transmission and spread of HTLV-1. 
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