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ABSTRACT

Deeper understanding of the anatomical intermedi-
aries for disease and other complex genetic traits is
essential to understanding mechanisms and devel-
oping new interventions. Existing ontology tools pro-
vide functional, curated annotations for many genes
and can be used to develop mechanistic hypothe-
ses; yet information about the spatial expression of
genes may be equally useful in interpreting results
and forming novel hypotheses for a trait. Therefore,
we developed an approach for statistically testing
the relationship between gene expression across the
body and sets of candidate genes from across the
genome. We validated this tool and tested its utility
on three applications. First, we show that the expres-
sion of genes in associated loci from GWA studies
implicates specific tissues for 57 out of 98 traits. Sec-
ond, we tested the ability of the tool to identify novel
relationships between gene expression and pheno-
types. Specifically, we experimentally confirmed an
underappreciated prediction highlighted by our tool:
that white blood cell count – a quantitative trait of
the immune system – is genetically modulated by
genes expressed in the skin. Finally, using gene lists
derived from exome sequencing data, we show that
human genes under selective constraint are dispro-
portionately expressed in nervous system tissues.

INTRODUCTION

A major goal of human genetics has been to identify loci
that are associated with diseases or quantitative traits. Us-
ing techniques such as linkage analysis, genome wide associ-
ation (GWA), and next generation sequencing, researchers
have implicated thousands of loci across diseases and traits:
there are over 3,674 phenotypes with molecular basis re-

ported in OMIM, and over 15,396 SNPs implicated in at
least one phenotype in the NHGRI GWAS catalog. Func-
tional follow-up of genes is difficult to do in human popu-
lations and must be carried out in simplified model systems,
but having some a priori information about the genes of in-
terest can direct hypotheses for functional studies as well as
impact our knowledge of the human traits. Tools such as
Gene Ontologies (1), the KEGG database, and others (2–4)
serve as a rich source of functional data, but are static re-
sources (5) that rely on manually curated information. Ap-
proaches that utilize dynamic sources of information, such
as gene expression across tissues, have shown that disease
genes are more likely to be selectively expressed in affected
tissues (6–10), and this tissue-level information can be used
to form testable hypotheses about the mechanisms by which
the genes act. Furthermore, knowledge of which genes are
more specifically expressed by a tissue, and which traits are
caused by genes that are specifically expressed in a given tis-
sue, can provide insight to the physiology of poorly under-
stood traits and diseases as well as elucidate new and in-
teresting relationships between our traits and our anatomy.
Here, we present the Tissue Specific Expression Analysis
(TSEA), a flexible statistical framework that incorporates
tissue expression across the human adult body. The frame-
work has two parts – the first is an algorithm to define sets
of genes with enriched or specific expression in each tissue,
and the second is a tool to identify and display significant
overlaps between tissue-enriched gene sets and lists of can-
didate genes from any source (e.g. disease/trait associated
genes).

The TSEA allows us to expand upon work done to test
the hypothesis that genes associated with diseases are more
likely to be highly expressed in the affected tissues (from
here on referred to as the selective expression hypothesis).
Previous work examining this hypothesis has included text-
mining strategies that show the average expression of genes
associated with a disease is higher in the tissue that is most
highly correlated to the disease compared to lower-ranked
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tissue-disease correlations (9). This strategy provides sup-
port for the selective expression hypothesis, but relies heav-
ily on well-curated and well-studied genes and disorders.
A recent tool, geneTIER (6) assumes that disease genes
are more highly expressed in an affected tissue to prioritize
genes for follow-up studies. To test their assumption, the
authors compare the distribution of gene expression of dis-
ease genes in affected and unaffected tissues and show that
gene expression in unaffected tissues is significantly lower
than in affected tissues. Similar to (9), they provide statis-
tical support for the selective expression hypothesis, but do
not quantify the number of diseases to which this hypothesis
applies, and the tool requires an assumption about the af-
fection status of tissues (6). Finally, the hypothesis has also
been assessed using mouse expression and phenotype data.
Oellrich et al. show that they are able to highlight a specific
tissue for a phenotype based on tissue specific gene expres-
sion 72–76% of the time, but provide no statistical assess-
ment of this result (8). Yet, despite the mounting evidence
that is consistent with the selective expression hypothesis,
there are examples of diseases caused by ubiquitously ex-
pressed genes. For example, Amyotrophic Lateral Sclerosis,
a disease that leads to the degeneration of motor neurons,
can be caused by mutations in SOD1, a mitochondrial gene
expressed in every cell in the body (11). In contrast muta-
tions of the HCRT gene (12), expressed only within a small
number of hypothalamic neurons in the brain, causes the
disorder narcolepsy – a phenotype that can be recapitulated
by experimentally ablating these same neurons. Thus, since
exemplars exist at both extremes, it is unclear to what ex-
tent the selective expression hypothesis might apply across
a variety of trait and gene combinations.

Building upon the prior work in this area, the framework
of the TSEA allows us to now extend testing of this hy-
pothesis to include human complex quantitative traits, pro-
vide statistical evidence, and estimate the number of phe-
notypes, to which this hypothesis might apply. The method
assigns diseases/traits to tissues by using the Fisher’s Exact
test to identify significant overlaps between genes in asso-
ciated loci for diseases/traits and tissue-specific gene sets.
First, we use our previously published pSI statistic to define
tissue-enriched gene sets using publicly available RNA-seq
data across the healthy, adult human body (13). We validate
our tissue-enriched gene sets, and the ability of Fisher’s ex-
act test to detect meaningful relationships between gene sets
and tissues, by using a set of GO-terms as positive controls.
Then, to test the selective expression hypothesis, we derive
disease/trait-associated gene lists for 98 diseases/traits from
the GWAS catalog (14) and quantify the number of the
diseases/traits demonstrating a significant relationship to a
tissue (57/98). We then test if this is greater than the number
one would expect by chance.

In addition, we show that our tool can provide biolog-
ical insights for future experiments. Our tool identified a
relationship between human skin gene expression and the
hematological trait of white blood cell count – a trait most
would assume is mediated primarily by genes expressed in
the blood. This finding suggested that skin integrity is a ma-
jor modifier of white blood cell count in humans. This hy-
pothesis is inline with previous work in mice showing skin-
specific disruption of notch signaling or stratum corneum

formation can alter lymphoblast (15) and granulocyte (16)
proliferation. We further test this hypothesis in the mouse,
where we show that white blood cell count is strongly pre-
dicted by inside-out skin barrier function across a range
of genetic mutations in distinct molecular pathways. This
functional analysis shows the utility of our method in help-
ing to rapidly identify the relevant tissues and highlight
perhaps unexpected anatomical relationships for particular
traits from human genetic data. Finally, to demonstrate that
our approach can be broadly useful for interpreting gene
lists derived from data sources beyond GWAS, we show that
human genes under purifying selection are disproportion-
ately expressed in nervous system tissues.

MATERIALS AND METHODS

GTEx dataset

The gene expression data used is the previously normal-
ized set of RNA-Seq data downloaded from the GTEx
project (GTEx Analysis 1/31/13 data release, summarized
to genes) (17). This GTEx dataset is comprised of 1,839
samples derived from 189 post-mortem subjects (18). The
1/31/13 release included samples from 45 different tissues,
with some tissues offering multiple ‘sub-tissue’ types (i.e.
multiple brain dissections). To clearly analyze the data at
the tissue level, RPKM values for the sub-tissue types were
averaged resulting in 25 ‘whole-tissue’ types (per Supple-
mental Tables S1 and S2). The average number of distinct
human samples per sub-tissue type was 36.9 samples and
the tissue-level aggregation of the data yielded an average of
66.4 samples per tissue, and all but two had n>6. Thus, the
transcripts detected as enriched in each tissue here should
be fairly representative of the population, with the possible
exceptions of the kidneys (n = 3), and fallopian tubes (n =
1), which should be regarded more tenuously. To prepare the
already normalized data for input to the pSI algorithm, bi-
ological replicates were averaged and genes were filtered to
include well-annotated protein-coding genes designated by
RefSeq (release 60) gene annotations. After filtering, 18,056
transcripts remained.

To summarize the variance of sample expression across
tissue types, the multivariate total sum of squares (TSS) was
calculated as the sum of squared Euclidian distances of in-
dividual expression profiles to the average expression across
all samples (i.e. centroid of the expression profiles). The
within group sum of squares (WSS) was calculated as the
sum of squared distances of expression profiles to the cor-
responding within group average of expressions. The within
group variance component was calculated as WSS/TSS.
The statistical significance of this measure was estimated by
permutation (Supplementary Figure S1).

TSEA:pSI values, tissue-enriched gene sets, and enrichment
analysis for traits

Using the pSI R package function specificity.index (19,20),
the RPKM values for each transcript were used to calcu-
late a pSI value for that transcript in each of the tissues.
pSI values were calculated for all detectably expressed (>0.3
RPKM, as per (21)) protein coding transcripts. Briefly, the
pSI is calculated as follows. First, a specificity index value SI
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is calculated for gene i in tissue t by the following equation
adapted from (22)

SIi,t =
∑m

k�=t

(
rank

(
RPK Mi,t

RPK Mi,k

))

m − 1
(1)

where k are the other tissues available and m is the total
number of tissues. RPKMi,t is the expression value of gene
i in tissue t, RPK Mi,t

RPK Mi,k
is the fold change of expression of gene

i in tissue t compared to the expression of gene i in tissue
k. This fold change is calculated for each gene and then or-
dered by descending fold change. The average rank of gene
i when comparing tissue t to all other tissues is the SI value
for gene i in tissue t (Supplementary Figure S2). The SI
value for a gene in a tissue contains information about the
magnitude of the expression of the gene in a given tissue
compared to its expression in all other tissues and normal-
izes the distribution of fold change values of genes within a
tissue. However, raw SIs are not readily comparable across
tissues, as different tissues have different total numbers of
genes with measurable expression (>0.3 RPKM). A p-value
is assigned to each SI value, resulting in a pSI, for each gene
in each tissue, allowing for a sliding window view of tissue
specificity and a readily comparable value across tissues. To
calculate pSI, for each tissue we constructed an empirical
null distribution of SI values by repeatedly shuffling RPKM
values of genes within the tissue of interest and calculating
new SI values. We then compared our observed SI value for
each gene in a tissue with the null distribution of SI values
for that tissue. To limit computations, we first find the SI
value that will produce a pSI of less than or equal to 0.1
and only calculate pSI for genes with SI values greater than
this. Thus a pSI for gene i in tissue t, is the Pr (SIi,t| Data
of tissue t). Supplemental Table S3 contains the pSI values
used in this paper.

We use the pSI values as a guide to determine which genes
are specifically enriched in a given tissue. We utilize differ-
ent threshold pSI values to generate tissue-enriched gene
sets with varying stringencies. Throughout the paper we use
thresholds (pSI <0.05, <0.01, <0.001, <0.0001). Choosing
ways to partition genes into tissue specific categories has not
been rigorously defined and requires some arbitrary defini-
tions of how to bin genes into tissues (8,10,23,24). We chose
to use the pSI values because they incorporate information
about how likely the enrichment of a gene in a tissue is, and
it is tailored for each tissue such that more unique tissues
will have a larger number of genes reaching a particular pSI
threshold. For additional discussion and empirical valida-
tion of this approach see (20,22).

As an independent method of generating tissue specific
gene lists, we calculated the Shannon entropy as described
in (23) and used the permutation method that is imple-
mented in the specificity.index function to assign p-values
to the Shannon entropy measures. Briefly, the Shannon en-
tropy is calculated by first defining the relative expression of
a gene i in tissue t. This is the proportion of expression of a
gene in a specific tissue compared to the gene’s expression
in all tissues

pi,t = RPK Mi,t∑m
t=1 RPK Mi,t

(2)

The entropy for a gene i is

Hg =
∑m

t=1
−pi,tlog2(pi,t) (3)

Hg is a measure of how broadly a gene is expressed (e.g.
a value of zero corresponds to expression in a single tissue).
To determine how specifically a gene is expressed in a tissue
we calculate Qi,t

Qi,t = Hg − log2(pi,t) (4)

Equations (2) through (4) are adapted from (23). In our
implementation of the method we restricted Q to be be-
tween zero and one as opposed to zero and positive infinity.
A Q value close to zero means that the gene is specifically
expressed (i.e. highly expressed in a few tissues including the
tissue t of interest). We ranked the Q values for each gene
within the tissues and assigned p-values in the same way for
the SI values. The SI values and entropy values for all genes
within tissues are highly correlated (average Spearman cor-
relation across tissues is 0.96)(Supplementary Figure S3).
Since low values of Q indicate specificity and high values of
SI indicate specificity, the correlation coefficients have been
multiplied by negative one.

To analyze the enrichment of a candidate gene list in tis-
sues, we calculate the significance of the overlap between
the candidate gene list and the transcripts enriched in each
tissue using the Fisher’s Exact test. P-values are further
adjusted using a Benjamini–Hochberg (B–H) correction
across tissues to account for multiple comparisons. This is
done using the fisher.iteration function in the pSI R pack-
age.

RPKM heatmaps

To evaluate the expression of genes specific to tissues
at various thresholds, the RPKM values for those genes
were visualized using the R package gplots. At each pSI
threshold (0.05, 0.01, 0.001, 0.0001), the union of all
tissue-specific genes was taken and their respective log-
transformed RPKM values were plotted as heatmaps. For
visualization, samples were hierarchically clustered at the
least stringent pSI threshold (0.05) and the resulting order
was kept for all figures. To prevent infinite values after log-
transformation, genes with RPKM values equal to zero had
a constant of 1E−5 added. Similarly, the overlap of the gene
list for each tissue at various thresholds was plotted as a
heatmap and hierarchically clustered to observe the amount
of list-wise sharing between tissue specific gene lists (Sup-
plementary Figure S2).

Validation of TSEA tool with gene ontology (GO)

For every tissue in GTEx, we identified a GO term associ-
ated with the development of that tissue. All human genes
associated with that term were downloaded and subjected
to TSEA. ‘On Target’ hits were defined as a significant en-
richment in the appropriate tissue. For comparison, random
lists of genes, consisting of the same number of genes as
those for each GO term, were also selected and analyzed
by TSEA.
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Candidate gene lists

The GWAS catalog is a curated dataset of GWA studies
with the variants and genes that were reported associated
with 940 traits and diseases (14). We only used traits that
had more than 30 associated genes; n = 98 traits passed this
filter. To avoid any bias using the author reported genes,
we also performed the TSEA analysis using genes the SNPs
mapped to based on proximity, determined by NHGRI staff
(n = 87 traits). There are n = 75 traits that had greater
than 30 genes using either the author reported genes or the
NHGRI mapped genes. When SNPs were reported as inter-
genic, we used the closest of either the up or downstream
genes. Previous modeling work indicated that >30 genes
provides sufficient power to detect enrichment in these anal-
yses (20). The exome gene lists are described previously
(25,26). The top 1003 constrained genes are described in
(25).

Testing the selective expression hypothesis

We first characterized the distribution of results from the
true candidate gene lists for each of the 98 GWAS traits to
the transcript-enriched list of each tissue from the Fisher’s
Exact test, implemented in the fisher.iteration function in
the pSI R package (20). Significant P-values after B–H cor-
rection indicate an overrepresentation of a trait’s candidate
gene list in at least one tissue’s transcript-enriched list. We
compared the number of real traits that had at least one tis-
sue identified by TSEA, to an empirically derived null dis-
tribution of the same number of ‘traits’ that had at least
one tissue identified, by using 1000 sets of random gene-lists
size-matched for each GWAS trait (98 000 iterations total).
This analysis was repeated using 87 GWAS traits and their
mapped genes provided by NHGRI.

Ethics statement

All procedures using mice were approved by the Washing-
ton University School of Medicine Animal Studies Com-
mittee and were performed in accordance with the Animal
Welfare Act and the NIH Guide for the Care and Use of
Laboratory Animals.

Skin integrity mouse model

The mice were housed in a pathogen-free barrier facility,
with a 12 h:12 h light dark cycle and ad libitim access to
standard laboratory chow and water. Msx2-Cre/+; RBP-
jf/f (RBPj cKO) (15) and Lamc2−/−(27); K14-rtTA; TetO-
LamC2+ (Lamc2 rKO) mice have been described previ-
ously and were maintained on mixed genetic backgrounds.
To generate Msx2-Cre/+; Ikk2f/f (Ikk2 cKO) mice, Msx2-
Cre/+ transgenic mice (28,29) were bred with Ikk2f/f mice
(30), and the offspring were intercrossed. Doxycycline (dox;
1 mg/ml) was provided in the drinking water of Lamc2 rKO
mice from conception until 8 weeks old, and then omitted
from their drinking water for 6 weeks prior to transepider-
mal water loss (TEWL) and white blood cell (WBC) mea-
surements. RBPj cKO and Ikk2 cKO mice were examined
at 3 weeks of age.

TEWL, a marker of epidermal skin barrier function, was
measured using a VapoMeter (Delfin Technologies) directly
on the RBPj cKO and Ikk2 cKO mice, as these mice exhibit
hair loss in the dorsal midline region. Hair was removed
from Lamc2 rKO mice using Nair depilatory cream 24 h
prior to examination. Blood samples were collected and the
WBC counts were measured using the Hemavet 950 ana-
lyzer (Drew Scientific). These studies were performed using
separate groups of mice at least three independent times.

RESULTS

Identification of transcripts enriched in each tissue

As a source of data to identify selectively expressed and en-
riched transcripts across tissues, we leveraged a publically
available analysis of the GTEx RNAseq data. The GTEx
project has assessed the expression of 18,056 protein-coding
genes across 45 tissue types. Some of these tissues are dif-
ferent dissections of a larger tissue (e.g. the substantia ni-
gra and frontal cortex are regions of the brain). Still other
tissue samples come from different anatomical branches of
a larger tissue system (e.g. both aorta and capillaries are
blood vessels). We used all available data to summarize gene
expression in each tissue to a single mean measurement
across all individuals to provide a reasonable estimate of
the normal expression of this gene in each tissue across the
population. This is justified because variation in gene ex-
pression is driven primarily by differences between tissues
rather than between individuals who donated tissue sam-
ples (Supplementary Figure S1).

We next used the pSI algorithm, previously developed for
identifying transcripts enriched in particular cell types in
the brain (19) to identify transcripts enriched in each tis-
sue (Supplementary Figure S2). In brief, the expression of
a gene in a specific tissue is compared to its expression in
every other tissue, generating a ‘fold change’ of expression
of the gene for each specific comparison. The SI value for a
gene in a tissue is the average rank of that gene’s fold change
of expression across all comparisons. The SI value for a gene
in a tissue is assigned a P-value (pSI) by permutation. Cal-
culating the SI value and using the rank allows us to order
the genes from the most highly enriched in a particular tis-
sue to more ubiquitous, and by calculating pSI for genes we
can choose consistent thresholds across tissues for identi-
fying which genes to include in a tissue-specific list; using
more stringent thresholds will limit downstream analyses
to more specifically expressed genes (Supplementary Fig-
ure S2). As there is no a priori way to define the appropriate
threshold, here we varied this parameter systematically and
used four pSI thresholds (0.05, 0.01, 0.001, 0.0001). The pSI
algorithm performed as expected as more stringent thresh-
olds produced smaller yet more specific gene lists, as illus-
trated with a heatmap for counts of the genes that are shared
between each pairwise tissue comparison (Supplementary
Figure S2).

Though the pSI algorithm is relatively robust to minor
changes in the sample composition of the inputted gene
expression dataset (20) we were concerned that including
multiple sub-tissue dissections may slightly detract from
our ability to identify tissue-enriched genes more broadly.
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Therefore we focused on a ‘whole-tissue’ version of the anal-
ysis where all brain dissections (and similar sub-dissections
of other organs) were averaged to a single measure prior to
calculation of pSI. This served to slightly increase the num-
ber of genes detected as enriched in the whole-tissues at a
given pSI threshold and simplified future interpretation to
only 25 tissues for the remainder of the analyses. Consistent
with earlier reports using microarray data from a smaller
number of tissues (21) by far the most unique tissue in ei-
ther analysis was the testis, with 560 highly enriched (pSI
< 0.0001) transcripts, with the second most unique tissue
being the brain (193 transcripts at the same threshold).

At less stringent thresholds, overall there were 6,922 tran-
scripts detected as modestly enriched (pSI < 0.01) in any tis-
sue, with high expression in one tissue and some expression
in related tissues (Figure 1A). For example, the brain, the
adrenal gland, and the pituitary all release synaptic vesicles
full of chemical transmitters, and all share in their enrich-
ment for a number of transcripts related to this process (e.g.
CPLX2: brain pSI < 1E–6, adrenal gland: pSI < 0.02; pi-
tuitary: pSI < 0.002). On average, a transcript showing a
pSI < 0.01 in at least one tissue might also show a mod-
est enrichment (pSI < 0.1) in 2.6 other tissues (±1.6 SD).
Using a more stringent threshold (pSI < 0.0001) identifies
a smaller number of transcripts in all (1,301 across all tis-
sues), but much more likely to have specific expression in
a single tissue (Figure 1B and Supplementary Figure S2).
564 of these highly tissue enriched transcripts do not even
show a trend (pSI < 0.1) towards enrichment in any other
tissue. These transcripts with highly enriched expression in
one tissue include clear examples known to be essential to
the functioning of particular tissues (e.g. Figure 1C). This
result is supported by using the DAVID tool (3); the 501
genes with pSI < 0.001 in brain are massively enriched for a
large number of biological process terms related to the func-
tioning of the nervous system (e.g. Synaptic Transmission,
P-value < 2.6E−56, B–H corrected; Neurological Systems
Process, P-value < 2.4E−33), while the 1,132 genes with pSI
< 0.001 from the testis are enriched for the GO terms Sex-
ual Reproduction (P-value < 1E−64), or Spermatogenesis
(P-value < 1E−56).

We view the tissue-enriched gene sets generated here as
potentially a complementary resource to the curated gene
annotation resources such as GO. Note that relative to GO,
our analysis also provides information for poorly anno-
tated and largely unstudied transcripts (Figure 1D), which
won’t be represented in the GO databases (988 out of 18,056
genes (5.47%) do not have an associated GO term). For
these, a variation of ‘guilt-by-association’ logic (guilt-by-
expression) would suggest that they might also be impor-
tant for the particular tissue in which they are enriched. To
facilitate future investigations of these transcripts from any
tissue, we provide a matrix of pSI values for all tissues and
genes as Supplemental Table S3.

Development and validation of a tissue specific enrichment
analysis tool (TSEA)

We next developed a tool to perform an enrichment anal-
ysis using the tissue specific expression information. The
purpose of this tool is to identify whether a set of ‘candi-

date genes’ for a trait of interest are disproportionately tran-
scribed in a particular tissue. This is meant to be analogous
to existing tools for identifying overabundances of partic-
ular GO or KEGG terms in gene lists (2,3,31,32), and im-
plements a similar statistical framework: Fisher’s Exact test
(33) coupled with B–H multiple testing correction (34). A
similar hypergeometric distribution was used to detect over-
lap between gene sets and tissue specific lists in the mouse
(8). However, there are two unique properties of our TSEA
with respect to GO enrichment. First, unlike GO terms, ex-
pression data is not built upon manual curation – thus even
poorly annotated and unstudied genes, such as those in Fig-
ure 1D, have the opportunity to contribute signal to a TSEA
analysis. Second, the pSI statistic provides for a nuanced
definition of ‘tissue-specific’ or ‘tissue-enriched’ transcripts.
This is important because, while we are testing for an enrich-
ment, a priori there is no clear expectation of exactly how
uniquely disease genes ought to be expressed in the tissue of
interest. For example, mutations in the cystic fibrosis trans-
membrane conductance regulator gene CFTR, cause cystic
fibrosis, which affects many different tissues including the
lungs, pancreas, and kidney. Though not widely expressed,
setting too stringent an expression threshold might exclude
this gene from one or the other relevant tissue specific lists
(pSI kidney = 0.042, lung = 0.027, pancreas = 0.0011, colon
= 0.003). Thus, currently the tool is set up to vary pSI sys-
tematically and report Fisher’s exact test results at multiple
pSI thresholds. Graphically, these results are displayed as a
set of concentric hexagons for each tissue, with each smaller
hexagon representing a more stringent pSI threshold. The
size of the hexagon is scaled to the number of genes meet-
ing the pSI threshold, and its color indicates results of the
Fisher’s exact test (Figure 2). For example, we can query
the tool with the 14 genes annotated by GO as function-
ing in Renal Water Homeostasis (GO:0003091), or the 66
genes associated with T Cell Activation (GO:0002286), and
rapidly identify that these genes are enriched in the Kid-
ney (Figure 3A) and Blood (Figure 3B), respectively. Note
that GO Immune-related terms often map via TSEA to the
blood and the lung, both tissues in which lymphoblasts are
expected to contribute a substantial portion of the mRNA.

To more thoroughly validate both the functioning of the
tool and the pSI statistic, we conducted a systematic analy-
sis of gene lists derived from the GO resource. As GO does
not currently include expression information, or a broad
term for the genes used in the functioning of a particular tis-
sue in the adult, our best choice as a ‘positive control’ gene
list for each tissue was the set of genes annotated as being
involved in the development of that particular tissue. For ex-
ample, GO term 0060537, Muscle Development, is associ-
ated with 320 human genes. Though the GTEx data is based
on adult tissue, a large subset of these genes is clearly still
expressed after development: there are robust statistical sig-
nals by TSEA in the muscle at all pSI thresholds (B–H cor-
rected Fishers Exact test P-values of <0.0005 to 10E−21).
Across GO terms for all tissues the relevant tissue was cor-
rectly identified by TSEA in at least one pSI threshold in
20 out of 25 tissues. The remaining tissues each had fewer
than 30 genes associated with their GO terms (Supplemen-
tal Table S4). Compared to this, 0 out of 25 random lists of
genes identified any tissue by TSEA at any threshold (Fig-
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Figure 1. The pSI algorithm can be used to identify transcripts enriched in each tissue. (A) Clustering of genes modestly enriched (pSI < 0.01) in any
tissue, reveals some tissues are more unique (e.g. testis, blood, brain), though some transcripts are found across tissues with related functions. (B) Transcripts
identified as highly enriched (pSI < 0.0001) by pSI clearly show high expression in fewer tissues. (C) Examples of annotated genes identified by pSI as
highly enriched in the brain include many known neuronal genes. (D) Examples of unannotated genes that also show specificity and enrichment of brain
expression.

ure 3C). Thus, via the adult GTEx expression information
alone, the TSEA tool can accurately identify tissues from
a list of genes relevant to their development. This test vali-
dates both the functioning of the tool and the quality of the
pSI derived lists of tissue specific genes, and indicates the
overall approach (generating tissue enriched gene sets with
pSI and Fisher’s Exact testing for gene set enrichment) per-
forms well in identifying in which tissue a candidate gene
set is overrepresented based on its expression. Nonetheless,
to make sure our gene lists were robust to how we define
tissue specificity we also tested a second method, a varia-
tion of Shannon entropy (23). Overall, the SI and entropy
values for gene expression within a tissue are highly corre-
lated (Supplementary Figure S3). However, the transcript
lists determined by the Shannon entropy are smaller sub-
sets of the transcript lists produced by the pSI method at

the same threshold, so we utilized the pSI for the remaining
analyses.

Test of the selective expression hypothesis

To test the selective expression hypothesis on traits influ-
enced by common variants, we applied TSEA to every trait
in the publicly available GWAS catalog with a reasonable
number of genes reported by the authors of the study (>30
genes). Using these 98 ‘candidate gene’ lists, the results from
the TSEA are consistent with the known biology for many
of the complex and disease associated traits (Figures 4 and
5). Genes associated with metabolic traits map to their tis-
sues of origin. For example, urate-level (35–43) associated
genes map to the kidney and bilirubin, a blood metabolite
indicative of liver function, maps to the liver (Figure 4A
and B). Similarly physical traits, such as heart rate (44–50),
map to the responsible tissue (Figure 4C). Furthermore, in
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Figure 2. Interpretation of TSEA plots. (A) The dendrogram skeleton depicts an approximation of a hierarchical clustering of the tissues based on gene
expression. (B) The outer white hexagon’s size is proportional to the number of transcripts enriched in a particular tissue at the least stringent threshold of
pSI <0.05. (C) The size of the gray concentric hexagons is proportional to the number of transcripts enriched in a particular tissue at the more stringent
threshold (0.001, 0.001, 0.0001 from outermost to innermost). (D) A heatmap color scheme is added ot the appropriate hexagon to depict the significance
of the Fisher’s Exact test. Note, any significance in the outermost hexagon is hashed to reflect that the transcript lists at this threshold are less specific. The
results shown here highlight the enriched expression of the 69 genes associated with the GO term ‘Glycogen Metabolic Process’ in multiple relevant tissues.

agreement with the recent observation that obesity genes in-
clude many genes with high transcription in the brain (51),
we see clear enrichment of expression in the brain for genes
controlling BMI (52,53) (Figure 4D). This relationship be-
tween the brain and BMI is also seen in the mouse (8). Most
autoimmune diseases, such as inflammatory bowel disease
(54–59), and rheumatoid arthritis (60–72) map strongly to
tissues containing a high proportion of immune cells (blood
and lungs, Figure 5A and B), with some occasional signal
in the tissue targeted by auto-immune attack. Chronic kid-

ney disease shows signal in the kidney as well as the thyroid,
liver, and prostate, highlighting the affected tissue as well as
possibly deranged tissues affecting the pathogenesis of the
disease (Figure 5C). Finally, genes associated with cogni-
tive decline in Alzheimer’s disease (73) are disproportion-
ately expressed in the brain (Figure 5D), as are other genes
associated with psychiatric disease and cognitive function
(Movie S1). TSEA results for any significant trait across the
98 candidate gene lists are shown sequentially in Movie S1.
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Figure 3. Tissue-specific expression analysis (TSEA) correctly identifies tissues related to known biological processes. (A) TSEA using the Gene Ontology
(GO) term ‘Renal Water Homeostasis’ as the candidate list indicates that these transcripts have enriched expression in the kidney. (B) TSEA for GO term
‘T cell activation involved in immune response’ reveals enrichment for these transcripts in the blood and the lungs, tissues with a substantial proportion of
lymphoblasts. (C) Across TSEA for GO terms for the development of each tissue, 20/25 GO term gene lists were correctly ascribed to the relevant tissue by
TSEA (orange dots, P-values in –log10 scale), while 0/25 same-sized random lists of genes identified any tissue by TSEA at any pSI threshold (blue dots).
Horizontal dotted line represents –log10(0.05).

Overall, our analyses identified significant overlap be-
tween candidate gene lists and transcript-enriched lists for
a tissue for 57 out of the 98 traits, providing general sup-
port for the selective expression hypothesis across a large
number of traits. Out of the 57 traits that were able to be
mapped to a tissue, 36 were mapped to more than one tis-
sue. The tissues that were found significant for each trait are
often consistent with the known biology of the trait

To determine if the TSEA method is detecting a larger
number of tissue specific relationships than expected by
chance (a prediction of the selective expression hypothe-
sis), we repeated the TSEA analysis on 98 more ‘traits’ with
randomly constructed candidate gene lists and repeated the
process 1,000 times. The distribution in Figure 6A shows

the number of randomly constructed ‘traits’ with a signif-
icant overlap with at least one tissue. The maximum num-
ber of significant hits from the thousand random trials is 21
out of 98 traits for the whole-tissue dataset (median: 8/98).
Therefore the ‘true’ set of 57/98 GWAS traits are mapping
to specific tissues far more than expected by chance (P-value
< 0.001). Furthermore, we compared the distribution of
the –log10(P-values) from the randomly constructed ‘traits’
and the true GWAS traits (Figure 6B). The –log10(P-values)
generated by the random gene lists have a small range (min
= 1.30, max = 5.55, median = 1.58) and tend toward lesser
significance. In contrast, the GWAS candidate gene lists
produce -log10(p-values) that have a wider range (min =
1, max = 27.07, median = 2.57) and a longer tail towards
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Figure 4. Tissue specific expression analysis identifies tissues associated with human complex traits. (A) Genes associated with urate acid levels are dispro-
portionately transcribed in the kidney, with signal in the liver as well. (B) Genes associated with Bilirubin levels are disproportionately enriched in the liver.
(C) Genes regulating heart rate are disproportionately enriched in the heart. (D) Genes regulating body mass index are disproportionately transcribed in
the brain, with some suggestive signal in the pituitary.

greater significance. A Wilcoxon Rank Sum test supports
that the two distributions are different (P < 2.2E–16). Sim-
ilar results are seen when using the sub-tissue dataset (data
not shown). These results are consistent with the hypothesis,
across a diverse range of phenotypes, that trait-associated
genes have enriched expression in particular tissues.

To confirm this key result was not a consequence of the
manner in which we summarized either the expression data
or the GWAS results, we tested the robustness of our anal-
ysis to different input parameters. First, we were concerned
that when a region containing multiple genes was impli-
cated, it is possible that the authors may have been biased
in reporting the genes that seemed most plausible to them
(i.e. known to be expressed in the relevant tissue). Thus, to
avoid this bias we repeated the analysis using the gene-to-
SNP mapping reported by the NHGRI staff. These mapped
genes include the gene in which the SNP is located. If a
SNP is intergenic the upstream and downstream genes are

reported; the closer gene was used in the analysis. We re-
peated the analysis with the 87 traits with >30 genes when
using the genes reported by the NHGRI opposed to the au-
thor reported genes. Using theses candidate gene lists, we
found that there was significant overlap between the can-
didate gene list and a tissue for 54/87 traits, again a result
highly unlikely by chance (Supplementary Figure S4). Over-
all, there were 75 traits in common between the 87 traits
that have >30 genes when using the NGHRI-mapped genes
and the 98 traits that have >30 genes when using the au-
thor reported genes. Out of these 75, 64 traits (84%) were
mapped to the same tissue regardless of how the candidate
gene lists was defined, either author-mapped or NHGRI-
mapped. The 11 remaining traits typically showed enrich-
ment in a tissue using one mapping strategy but no evidence
of overlap with the other mapping strategy, suggesting that
the discrepancies were mostly due to false-negatives. Fur-
thermore, out of the 23 traits that only have greater than
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Figure 5. Tissue-specific expression analysis identifies tissues associated with human disease traits. (A) Autoimmune diseases, such as IBD, show enrichment
for transcripts found in blood and lung. There is also suggestive signal in stomach. (B) Rheumatoid arthritis shows an overrepresentation of transcripts
expressed in the blood and lung. (C) Genes associated with chronic kidney disease show signal in the kidney, thryoid, prostate, and liver. (D) Genes
associated with cognitive decline in Alzheimer’s are disproportionately transcribed in the brain.

30 reported genes when using one mapping strategy but
less than 30 in the other, we still see 74% concordance sug-
gesting smaller gene lists can also yield consistent signals.
Neither mapping was systematically more sensitive than the
other, suggesting author bias contributed little to the signal
in the first analysis. Second, we confirmed that our results
were not strongly biased by the choice of descriptive statis-
tic used for summarizing the expression data. Thus, we also
used the median RPKM value of biological replicates as op-
posed to the mean to make sure that outliers were not ar-
tificially inflating expression values of genes, making some
genes seem more specifically expressed. When the median is
used, 82 out of the 98 (83%) traits highlight similar tissues,
and only three were discordant. The remaining 13 showed
signal with either one summary statistic, or the other, as
above suggesting neither approach was systematically more
sensitive. Finally, we repeated the analysis also using the sub
tissue data to confirm that we were not limiting our abil-

ity to detect overlaps by averaging across anatomically sim-
ilar tissues. The results were again highly concordant (71%).
Overall, all analyses supported the primary conclusion that
trait-associated genes have enriched expression in particu-
lar tissues, but also suggested that different ways of sum-
marizing data and defining candidate gene lists can cap-
ture slightly different relationships, just as running the same
gene list through slightly different implementations of GO-
based analyses usually highlights similar, but not identical,
pathways across tools.

Also, note that the challenge of attributing a SNP to a
gene is not unique to our work and presents an ongoing
problem for all common variant studies. It is a testimony
to the robustness of both our method and the finding that
the selective expression holds in spite of an unknown level
of SNP-to-gene mismapping in the NHGRI summary cat-
alog. This further suggests that our approach may be even
more robust and sensitive when applied to contexts where
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Figure 6. Randomization testing is consistent with the selective expression
hypothesis. (A) Of the 98 quantitative and disease trait associated gene lists
examined, 57 (red line), showed enrichment in at least one tissue. One thou-
sand randomizations of 98 equivalently sized random gene lists resulted in
a mean of 8.81 (±3.53 SD) gene lists showing enrichment (blue distribu-
tion). (B) Median statistical enrichment of those random gene lists showing
signal was P-value = 0.026 (1.58 as plotted in –log10 scale, blue distribu-
tion, range: 0.05 to 2.83E–6), while those from disease and trait associated
lists was P-value = 0.0027 (2.57, pink distribution, range: 0.05 to 8.50E–
28).

the causative gene is more clear – e.g. exome sequencing
studies of de novo mutation or sets of genes discovered from
mendelian disorders. Indeed, TSEA results for several traits
using highly penetrant genes identified using these rare vari-
ant methods (Supplementary Figure S5) identified clear sig-
nal in the relevant tissue: genes that had multiple de novo
mutations identified in children with autism or epilepsy have
signal in the brain (26,74). Thus, our approach is readily
applicable to results from rare variant analyses as well. To
further show that our method is agnostic to how the candi-
date gene sets are determined we make use of a list of 1003
genes that have been identified as highly constrained (25).
These genes are constrained in the sense that they harbor
fewer nonsynonymous mutations than expected. The TSEA
highlights that there is an overrepresentation of genes that
are expressed in the brain, nerves, and the pituitary (Figure
7). A result that is consistent with (10).

Figure 7. Constrained genes are expressed in the brain, nerve and pitu-
itary. The top 1003 constrained genes as identified by (23) show an over
representation of genes expressed in the brain, pituitary and nerve.

TSEA indicates skin-expressed loci are key regulators of
white blood cell count

We next sought to test whether this now-established rela-
tionship between anatomical expression and disease risk
might be used to provide insight into the tissues that actu-
ally mediate complex traits. One initially unexpected TSEA
result was that genes associated with the quantitative trait
white blood cell count (WBC) are enriched in the set of tran-
scripts that are found highly expressed in the skin, rather
than transcripts from the blood, where the WBC are them-
selves most abundant (Figure 8A, Table 1). This human
finding joins others from model organisms suggesting that
there may be an important pleiotropic relationship between
the genetic factors contributing to skin integrity and the reg-
ulation of this hemopoeitic trait. The first evidence for this
relationship was reported in mice with an allelic series of
skin specific knockouts in the Notch pathway or the fatty
acid transporter gene Slc27a4/Fatp4 (15), which led the au-
thors to suggest that a barrier defect resulted in increased
thymic stromal lymphopoietin (TSLP) protein, which drove
WBC. The increase in TSLP and WBC was proportional to
the macroscopic assessment of the severity of the skin le-
sions produced by the different loss of function (LOF) al-
leles. However, a direct measurement of barrier function,
such as transepidermal water loss (TEWL), and its corre-
lation to WBC has not been reported. This leaves open the
possibility that the previous WBC increase seen in Notch
mutants was caused directly by failed skin differentiation,
rather than barrier dysfunction specifically.

We set out to distinguish these possibilities by measuring
TEWL, a quantitative measure of skin integrity. In addi-
tion, the candidate gene list for human WBC we culled from
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Figure 8. TSEA can identify novel relationships between candidate genes and tissues. (A) Genes found to be associated with white blood cell count are
disproportionately transcribed in the skin. (B) Wild type control mouse, Ikk2 cKO mouse, and Rbpj cKO mouse (from left to right). (C) White blood cell
count (103cells/ml) as a function of TEWL (g/m2 h) in control mice (n = 26), Rbpj cKO mice (n = 20), Ikk2 cKO mice (n = 14), and double cKO Rbpj/Ikk2
mice (n = 3). (D) Wild type control mouse, Lamc2 rKO mouse on Dox, and Lamc2 rKO mouse off dox. (E) White blood cell count as a function of TEWL
in control mice (n = 8), Lamc2 rKO mice on dox (n = 9), Lamc2 rKO mice off dox (n = 7).
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Table 1. Genes associated with ‘White blood cell count’ as listed in the GWAS catalog. Bold and underlined genes have pSI < 0.05 in the skin

PUBMEDID Region Reported genes* Mapped genesa

20139978 1q23.2 DARC DARC
20139978 1q23.2 DARC DARC
20139978 7q21.2 CDK6 CDK6
20139978 NR CDSN, PSORS1C1 CDSN; PSORS1C1
20139978 6q23.3 HBS1L, MYB HBS1L - MYB
21738479 6p21.33 MUC21, HCG22, C6orf15, CDSN, PSORS1C1, PSORS1C2,

CCHCR1
HCG22 - C6orf15

21738479 17q21.1 GSDMA, PSMD3, CSF3, MED24 PSMD3
21738480 3q21.3 LOC90246, C3orf27, RPN1 C3orf27 - RPN1
21738480 6p21.33 PSORS1C3, HCG27, HLA-C, HLA-B HCG27 - USP8P1
21738480 19p13.11 C19orf44, EPS15L1, CALR3 EPS15L1
21738480 8q24.21 MLZE, FAM49B MIR3686 - GSDMC
21738480 9q31.3 EDG2, OR2K2 RNY4P18 - MIR7702
21738480 17q21.1 GSDMB, ORMDL3, GSDMA, PSMD3, CSF3, MED24,

SNORD124, THRA, NR1D1
PSMD3 - CSF3

21738480 17q21.1 CSF3, PSMD3, GSDM1, MED24, GSDMB, ORMDL3,
GSDMA, SNORD124, THRA, NR1D1

PSMD3 - CSF3

21738480 4q13.3 CXCL2 CXCL2 - MTHFD2L
21738480 12q15 RAP1B, NUP107, SLC35E3 RPSAP12 - RPL10P12
21738480 7q21.2 CDK6 CDK6
22037903 17q21.1 GSDMA GSDMA
22037903 2q31.3 ITGA4, CERKL MIR4437 - ITGA4
22037903 3q21.3 GATA2, LOC90246, C3orf27, RPN1 C3orf27 - RPN1

*Genes identified more than once were only counted once.
aMapped genes as reported by NHGRI. If SNP is intergenic the upstream and downstream genes are separated by a hyphen. The closer gene was considered
in the analysis.
NR indicates ‘not reported’.

the GWAS catalog did not include the Notch gene family
nor TSLP gene, and the TSEA analysis suggested that the
relationship between skin expressed genes and WBC exists
across many different molecular genetic pathways impact-
ing the skin barrier. Thus, we tested three lines of mutant
mice with genetic lesions including two in distinct, Notch-
independent pathways. These included conditional knock-
outs of the gene Rbpj (75), a signal mediator in the Notch
pathway previously included in our morphological study
(15), and Ikk2, a regulator of NF-�B signaling (28). Be-
cause these pathways are unrelated, we could separate their
common impact on the barrier from their specific pathway-
related biology. For each of these genes, we used a Cre-Lox
deletion strategy to remove the gene only in keratinocytes
located along the dorsal and ventral midline (Msx2-Cre
(15)), leaving the genes intact within all other tissues includ-
ing the immune system. As reported, these mutant mice dis-
play clear dermatological abnormalities with the Rbpj cKOs
having a more severe phenotype than the Ikk2 cKOs (Fig-
ure 8B). In all mice we quantitatively evaluated the integrity
of the skin barrier by taking TEWL measurements (inside-
out barrier function). In parallel we collected blood and de-
termined the WBC count. In all mice we observed a strong
correlation between WBC and the integrity of the inside-out
skin barrier (Figure 8C, r2 = 0.9006). In addition, as Ikk2
mutants are thought to have impaired sensing of outside-
in barrier function, the results with these mice suggest that
pathogen infiltration (outside-in) barrier function may not
be necessary to trigger elevated WBC.

We also tested the quantitative relationship between bar-
rier integrity and WBC using a milder model of skin disrup-
tion. Junctional epidermolysis bullosa (JEB) is a skin blis-
tering disease, most often caused by mutations in one of the

three chains of laminin (Lm)-332, the �3, �3 or �2 chains
(29,76–81). Mice that lack expression of Lm-332 die shortly
after birth with blistering of the skin and oral mucosa (82–
84). We have rescued the laminin �2-deficient (Lamc2−/−)
mice by expressing a doxycycline (dox)-controllable human
laminin �2 transgene under the keratinocyte-specific K14
promoter (Lamc2 rKO)(27). In the absence of doxycycline
in their drinking water, these mice gradually develop phe-
notypes similar to that observed in JEB. Unlike the models
above, these mice do not develop severe lesions upon their
backs, and undergo normal skin differentiation. Rather,
upon withdrawal of doxycycline the mice evidence a macro-
scopic slight reddening of all skin and the presence of blis-
tering on the paws (Figure 8D), along with additional mi-
croscopic evidence of JEB. TEWL and WBC measures were
collected from age-matched animals either maintained or
withdrawn from doxycycline. Here, we show again that as
the skin barrier loses integrity, WBC increases (Figure 8E,
r2 = 0.8956). These manipulations clearly provide quanti-
tative validation of previous Notch analyses and show that
genetic modifiers with a range of molecular mechanisms for
decreasing skin integrity consistently increase WBC. This
supports the suggestion that polymorphism which regulates
skin genes in humans may also contribute to phenotypic
variation in human WBC.

DISCUSSION

To build a foundational resource for expression based
‘pathway-like’ analyses, we have systematically defined sets
of genes with enriched expression across a range of tis-
sues, and tested the utility of this resource for several ap-
plications. First, we have formally tested the long-held as-
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sumption that diseases genes overall should be enriched in
their expression in the tissues afflicted by the disease. Sec-
ond, we defined the tissues implicated by this assumption
for every trait available in the NHGRI catalog (Movie S1).
Third, we conducted mice experiments based on observa-
tions from this approach, demonstrating a quantitative re-
lationship between the genetics of skin integrity and the
immunological trait of white blood cell count. Finally, we
show that our resource and approach have applications to
gene sets derived from data sources beyond GWAS. It is also
worth noting that the TSEA method is not limited to disease
gene lists and can be used to highlight tissues related to gene
lists from any analysis. We have shown this utility by ana-
lyzing data from exome sequencing studies (25,26) as well
as a list of genes under purifying selection (25) (Figure 7).
This last finding is noteworthy because it suggests that much
of the evolutionary pressures of human selection might be
occurring on genes mediating behavior, rather than other
physiological traits.

Note that our conclusions regarding the selective expres-
sion hypothesis do not state that every disease gene will
follow this pattern, as there are well known examples of
broadly expressed genes that still disrupt very specific cell
types or tissues (e.g. mutations in the mitochondrial pro-
tein SOD1, expressed in every cell, can lead to the specific
destruction of motor neurons in Amyotrophic Lateral Scle-
rosis) (11). Rather, the conclusion is that across a large num-
ber of genes for a given diseases, there will be a relative over-
abundance of those with enriched expression in the relevant
tissue.

Overall, we found 57/98 traits had a relationship to par-
ticular tissues. This is a remarkably high proportion, espe-
cially given that many of these studies utilized a fairly simple
method (genomic proximity) of attributing SNPs to genes,
and thus there was likely some added noise in the analysis.
We do not believe this noise influences our main conclu-
sions because previous modeling adding spurious genes ac-
tually decreased our power to detect tissue-specific enrich-
ment (20), and thus would contribute only to false negatives
rather than false positives. Nonetheless, false negatives here
should be interpreted with caution until future analyses in-
corporating new data better integrating gene expression and
genomic polymorphisms are included. These, along with re-
sults from exome sequencing studies, will likely improve our
ability to ascribe genetic risk to particular genes and thus
improve the sensitivity of the method.

We have demonstrated the utility of the TSEA method
by providing support for the selective expression hypothesis.
Presented here are at least three clear practical future appli-
cations of the TSEA. (i) In situations where the genetic anal-
yses are robust but the biological mechanisms are not well
understood, TSEA may be used to identify the relevant tis-
sues. For example, GWAS signals for uric acid levels clearly
identify the kidney as the source of the metabolite (Figure
4). For future disease biomarkers of unknown tissue source,
GWAS in conjunction with TSEA may provide some bio-
logical insight. (ii) Systematic use of expression data has the
potential to help prioritize variants discovered in GWAS or
exome studies. Furthermore, in studies where the relevant
tissue is known, TSEA could provide biological prior infor-
mation for GWA analysis, which could increase the power

of studies to detect disease loci, or help to determine which
SNPs or genes within large LD blocks might be the most rel-
evant. This is an area that will be pursued in the future. (iii)
Even when the relevant tissue is thought to be well under-
stood, TSEA may provide novel insights into the data. For
example, we were initially surprised to see data indicating
that BMI is regulated by genes expressed in the brain, but
in the last three years this has become accepted by human
geneticists studying obesity with the tentative explanation
that genes regulating appetite probably contribute substan-
tially to weight (51). Here, we have provided a hypothesis
driven experiment that was designed from the observed re-
sults of the TSEA. The TSEA suggests that disruptions of
genes expressed in the skin can alter the WBC. Using three
different mouse models of skin disorders and a quantitative
measure of skin integrity, we show that there is a relation-
ship between the skin’s function as a barrier and WBC. The
genes highlighted by the TSEA were not directly tested, but
MYB plays a role in the Notch-mediated HES/HEY net-
work as well as RPBJ (85). The TSEA has provided a list
of genes that can be experimentally manipulated in a model
system to further characterize the relationship between skin
and white blood cell count (Table 1).

Thus, to facilitate hypothesis generation and other anal-
yses by the scientific community, we have implemented a
simple TSEA tool on our website (http://genetics.wustl.
edu/jdlab/tsea/). More importantly, we have provided an R
package to calculate pSI values (pSI), and provided pre-
calculated pSI values for each tissue type (Supplemental
Table S3) to permit other researchers to apply these ap-
proaches to their own data, as well as to facilitate the propa-
gation of these sets of tissue enriched genes into other tools
for gene set enrichment analysis (2,3,31,32).

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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21. Ramsköld,D., Wang,E.T., Burge,C.B. and Sandberg,R. (2009) An
abundance of ubiquitously expressed genes revealed by tissue
transcriptome sequence data. PLoS Comput. Biol., 5, e1000598.

22. Dougherty,J.D., Schmidt,E.F., Nakajima,M. and Heintz,N. (2010)
Analytical approaches to RNA profiling data for the identification of
genes enriched in specific cells. Nucleic Acids Res., 38, 4218–4230.

23. Schug,J., Schuller,W.P., Kappen,C., Salbaum,J.M., Bucan,M. and
Stoeckert,C.J. Jr (2005) Promoter features related to tissue specificity
as measured by Shannon entropy. Genome Biol., 6, R33.

24. Lercher,M.J., Urrutia,A.O. and Hurst,L.D. (2002) Clustering of
housekeeping genes provides a unified model of gene order in the
human genome. Nat. Genet., 31, 180–183.

25. Samocha,K.E., Robinson,E.B., Sanders,S.J., Stevens,C., Sabo,A.,
McGrath,L.M., Kosmicki,J.A., Rehnstrom,K., Mallick,S., Kirby,A.
et al. (2014) A framework for the interpretation of de novo mutation
in human disease. Nat. Genet., 46, 944–950.

26. EuroEPINOMICS-RES Consortium., Epilepsy Phenome/Genome
Project., Epi4K Consortium. (2014) De novo mutations in synaptic
transmission genes including DNM1 cause epileptic
encephalopathies. Am. J. Hum. Genet., 95, 360–370.

27. Adair-Kirk,T.L., Griffin,G.L., Meyer,M.J., Kelley,D.G., Miner,J.H.,
Keene,D.R., Marinkovich,M.P., Ruppert,J.M., Uitto,J. and
Senior,R.M. (2012) Keratinocyte-targeted expression of human
laminin gamma2 rescues skin blistering and early lethality of laminin
gamma2 deficient mice. PLoS One, 7, e45546.

28. Nenci,A., Becker,C., Wullaert,A., Gareus,R., van Loo,G., Danese,S.,
Huth,M., Nikolaev,A., Neufert,C., Madison,B. et al. (2007)
Epithelial NEMO links innate immunity to chronic intestinal
inflammation. Nature, 446, 557–561.

29. Li,Q., Lu,Q., Hwang,J.Y., Buscher,D., Lee,K.F.,
Izpisua-Belmonte,J.C. and Verma,I.M. (1999) IKK1-deficient mice
exhibit abnormal development of skin and skeleton. Genes Dev., 13,
1322–1328.

30. Pasparakis,M., Courtois,G., Hafner,M., Schmidt-Supprian,M.,
Nenci,A., Toksoy,A., Krampert,M., Goebeler,M., Gillitzer,R.,
Israel,A. et al. (2002) TNF-mediated inflammatory skin disease in
mice with epidermis-specific deletion of IKK2. Nature, 417, 861–866.

31. Maere,S., Heymans,K. and Kuiper,M. (2005) BiNGO: a Cytoscape
plugin to assess overrepresentation of gene ontology categories in
biological networks. Bioinformatics, 21, 3448–3449.

32. Shi,J. and Walker,M.G. (2007) Gene set enrichment analysis (GSEA)
for interpreting gene expression profiles. Curr. Bioinform., 2, 133–137.

33. Fisher,R.A. (1922) On the interpretation of � 2 from contingency
tables, and the calculation of P. J. Roy. Stat. Soc. B Met., 85, 87–94.

34. Benjamini,Y. and Hochberg,Y. (1995) Controlling the false discovery
rate – a practical and powerful approach to multiple testing. J. Roy.
Stat. Soc. B Met., 57, 289–300.

35. Kottgen,A., Albrecht,E., Teumer,A., Vitart,V., Krumsiek,J.,
Hundertmark,C., Pistis,G., Ruggiero,D., O’Seaghdha,C.M., Haller,T.
et al. (2013) Genome-wide association analyses identify 18 new loci
associated with serum urate concentrations. Nat. Genet., 45, 145–154.

36. Tin,A., Woodward,O.M., Kao,W.H.L., Liu,C.T., Lu,X.N.,
Nalls,M.A., Shriner,D., Semmo,M., Akylbekova,E.L., Wyatt,S.B.
et al. (2011) Genome-wide association study for serum urate
concentrations and gout among African Americans identifies
genomic risk loci and a novel URAT1 loss-of-function allele. Hum.
Mol. Genet., 20, 4056–4068.

37. Yang,Q.O., Kottgen,A., Dehghan,A., Smith,A.V., Glazer,N.L.,
Chen,M.H., Chasman,D.I., Aspelund,T., Eiriksdottir,G., Harris,T.B.
et al. (2010) Multiple genetic loci influence serum urate levels and
their relationship with gout and cardiovascular disease risk factors.
Circ-Cardiovasc. Gene, 3, 523–530.

38. Kamatani,Y., Matsuda,K., Okada,Y., Kubo,M., Hosono,N.,
Daigo,Y., Nakamura,Y. and Kamatani,N. (2010) Genome-wide
association study of hematological and biochemical traits in a
Japanese population. Nat. Genet., 42, U210–U225.

39. Dehghan,A., Kottgen,A., Yang,Q., Hwang,S.J., Kao,W.H.L.,
Rivadeneira,F., Boerwinkle,E., Levy,D., Hofman,A., Astor,B.C.
et al. (2008) Association of three genetic loci with uric acid
concentration and risk of gout: a genome-wide association study.
Lancet, 372, 1953–1961.

40. Doring,A., Gieger,C., Mehta,D., Gohlke,H., Prokisch,H.,
Coassin,S., Fischer,G., Henke,K., Klopp,N., Kronenberg,F. et al.
(2008) SLC2A9 influences uric acid concentrations with pronounced
sex-specific effects. Nat. Genet., 40, 430–436.

41. Vitart,V., Rudan,I., Hayward,C., Gray,N.K., Floyd,J., Palmer,C.N.,
Knott,S.A., Kolcic,I., Polasek,O., Graessler,J. et al. (2008) SLC2A9 is

 at W
ashington U

niversity, L
aw

 School L
ibrary on D

ecem
ber 8, 2015

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


16 Nucleic Acids Research, 2015

a newly identified urate transporter influencing serum urate
concentration, urate excretion and gout. Nat. Genet., 40, 437–442.

42. Wallace,C., Newhouse,S.J., Braund,P., Zhang,F., Tobin,M.,
Falchi,M., Ahmadi,K., Dobson,R.J., Marcano,A.C., Hajat,C. et al.
(2008) Genome-wide association study identifies genes for biomarkers
of cardiovascular disease: serum urate and dyslipidemia. Am. J. Hum.
Genet., 82, 139–149.

43. Li,S., Sanna,S., Maschio,A., Busonero,F., Usala,G., Mulas,A., Lai,S.,
Dei,M., Orru,M., Albai,G. et al. (2007) The GLUT9 gene is
associated with serum uric acid levels in Sardinia and chianti cohorts.
PLoS Genet., 3, 2156–2162.

44. den Hoed,M., Eijgelsheim,M., Esko,T., Brundel,B.J.J.M., Peal,D.S.,
Evans,D.M., Nolte,I.M., Segre,A.V., Holm,H., Handsaker,R.E. et al.
(2013) Identification of heart rate-associated loci and their effects on
cardiac conduction and rhythm disorders. Nat. Genet., 45, 621.

45. Jeff,J.M., Ritchie,M.D., Denny,J.C., Kho,A.N., Ramirez,A.H.,
Crosslin,D., Armstrong,L., Basford,M.A., Wolf,W.A., Pacheco,J.A.
et al. (2013) Generalization of Variants Identified by Genome-Wide
Association Studies for Electrocardiographic Traits in African
Americans. Ann. Hum. Genet., 77, 321–332.

46. Deo,R., Nalls,M.A., Avery,C.L., Smith,J.G., Evans,D.S., Keller,M.F.,
Butler,A.M., Buxbaum,S.G., Li,G., Miguel Quibrera,P. et al. (2013)
Common genetic variation near the connexin-43 gene is associated
with resting heart rate in African Americans: a genome-wide
association study of 13,372 participants. Heart Rhythm, 10, 401–408.

47. Rankinen,T., Sung,Y.J., Sarzynski,M.A., Rice,T.K., Rao,D.C. and
Bouchard,C. (2012) Heritability of submaximal exercise heart rate
response to exercise training is accounted for by nine SNPs. J. Appl.
Physiol., 112, 892–897.

48. Eijgelsheim,M., Newton-Cheh,C., Sotoodehnia,N., de Bakker,P.I.,
Muller,M., Morrison,A.C., Smith,A.V., Isaacs,A., Sanna,S., Dorr,M.
et al. (2010) Genome-wide association analysis identifies multiple loci
related to resting heart rate. Hum. Mol. Genet., 19, 3885–3894.

49. Marroni,F., Pfeufer,A., Aulchenko,Y.S., Franklin,C.S., Isaacs,A.,
Pichler,I., Wild,S.H., Oostra,B.A., Wright,A.F., Campbell,H. et al.
(2009) A genome-wide association scan of RR and QT interval
duration in 3 European genetically isolated populations: the
EUROSPAN project. Circ. Cardiovasc. Genet., 2, 322–328.

50. Newton-Cheh,C., Guo,C.Y., Wang,T.J., O’Donnell,C.J., Levy,D. and
Larson,M.G. (2007) Genome-wide association study of
electrocardiographic and heart rate variability traits: the Framingham
Heart Study. BMC Med. Genet., 8(Suppl. 1), S7.

51. Berndt,S.I., Gustafsson,S., Magi,R., Ganna,A., Wheeler,E.,
Feitosa,M.F., Justice,A.E., Monda,K.L., Croteau-Chonka,D.C.,
Day,F.R. et al. (2013) Genome-wide meta-analysis identifies 11 new
loci for anthropometric traits and provides insights into genetic
architecture. Nat. Genet., 45, U501–U569.

52. Manning,A.K., Hivert,M.F., Scott,R.A., Grimsby,J.L.,
Bouatia-Naji,N., Chen,H., Rybin,D., Liu,C.T., Bielak,L.F.,
Prokopenko,I. et al. (2012) A genome-wide approach accounting for
body mass index identifies genetic variants influencing fasting
glycemic traits and insulin resistance. Nat. Genet., 44, 659–669.

53. Fox,C.S., Liu,Y., White,C.C., Feitosa,M., Smith,A.V.,
Heard-Costa,N., Lohman,K., Consortium,G., Consortium,M.,
Consortium,G. et al. (2012) Genome-wide association for abdominal
subcutaneous and visceral adipose reveals a novel locus for visceral
fat in women. PLoS Genet., 8, e1002695.

54. Jostins,L., Ripke,S., Weersma,R.K., Duerr,R.H., McGovern,D.P.,
Hui,K.Y., Lee,J.C., Schumm,L.P., Sharma,Y., Anderson,C.A. et al.
(2012) Host-microbe interactions have shaped the genetic architecture
of inflammatory bowel disease. Nature, 491, 119–124.

55. Okada,Y., Yamazaki,K., Umeno,J., Takahashi,A., Kumasaka,N.,
Ashikawa,K., Aoi,T., Takazoe,M., Matsui,T., Hirano,A. et al. (2011)
HLA-Cw*1202-B*5201-DRB1*1502 haplotype increases risk for
ulcerative colitis but reduces risk for Crohn’s disease.
Gastroenterology, 141, 864–871.

56. Dubinsky,M.C., Mei,L., Friedman,M., Dhere,T., Haritunians,T.,
Hakonarson,H., Kim,C., Glessner,J., Targan,S.R., McGovern,D.P.
et al. (2010) Genome wide association (GWA) predictors of
anti-TNFalpha therapeutic responsiveness in pediatric inflammatory
bowel disease. Inflamm. Bowel Dis., 16, 1357–1366.

57. Imielinski,M., Baldassano,R.N., Griffiths,A., Russell,R.K.,
Annese,V., Dubinsky,M., Kugathasan,S., Bradfield,J.P., Walters,T.D.,
Sleiman,P. et al. (2009) Common variants at five new loci associated

with early-onset inflammatory bowel disease. Nat. Genet., 41,
U1335–U1107.

58. Kugathasan,S., Baldassano,R.N., Bradfield,J.P., Sleiman,P.M.,
Imielinski,M., Guthery,S.L., Cucchiara,S., Kim,C.E.,
Frackelton,E.C., Annaiah,K. et al. (2008) Loci on 20q13 and 21q22
are associated with pediatric-onset inflammatory bowel disease. Nat.
Genet., 40, 1211–1215.

59. Duerr,R.H., Taylor,K.D., Brant,S.R., Rioux,J.D., Silverberg,M.S.,
Daly,M.J., Steinhart,A.H., Abraham,C., Regueiro,M., Griffiths,A.
et al. (2006) A genome-wide association study identifies IL23R as an
inflammatory bowel disease gene. Science, 314, 1461–1463.

60. Myouzen,K., Kochi,Y., Okada,Y., Terao,C., Suzuki,A., Ikari,K.,
Tsunoda,T., Takahashi,A., Kubo,M., Taniguchi,A. et al. (2012)
Functional variants in NFKBIE and RTKN2 involved in activation
of the NF-kappaB pathway are associated with rheumatoid arthritis
in Japanese. PLoS Genet., 8, e1002949.

61. Okada,Y., Terao,C., Ikari,K., Kochi,Y., Ohmura,K., Suzuki,A.,
Kawaguchi,T., Stahl,E.A., Kurreeman,F.A., Nishida,N. et al. (2012)
Meta-analysis identifies nine new loci associated with rheumatoid
arthritis in the Japanese population. Nat. Genet., 44, 511–516.

62. Hu,H.J., Jin,E.H., Yim,S.H., Yang,S.Y., Jung,S.H., Shin,S.H.,
Kim,W.U., Shim,S.C., Kim,T.G. and Chung,Y.J. (2011) Common
variants at the promoter region of the APOM confer a risk of
rheumatoid arthritis. Exp. Mol. Med., 43, 613–621.

63. Eleftherohorinou,H., Hoggart,C.J., Wright,V.J., Levin,M. and
Coin,L.J. (2011) Pathway-driven gene stability selection of two
rheumatoid arthritis GWAS identifies and validates new susceptibility
genes in receptor mediated signalling pathways. Hum. Mol. Genet.,
20, 3494–3506.

64. Terao,C., Yamada,R., Ohmura,K., Takahashi,M., Kawaguchi,T.,
Kochi,Y., Okada,Y., Nakamura,Y., Yamamoto,K., Melchers,I. et al.
(2011) The human AIRE gene at chromosome 21q22 is a genetic
determinant for the predisposition to rheumatoid arthritis in
Japanese population. Hum. Mol. Genet., 20, 2680–2685.

65. Freudenberg,J., Lee,H.S., Han,B.G., Shin,H.D., Kang,Y.M.,
Sung,Y.K., Shim,S.C., Choi,C.B., Lee,A.T., Gregersen,P.K. et al.
(2011) Genome-Wide Association Study of Rheumatoid Arthritis in
Koreans. Arthritis Rheum-Us, 63, 884–893.

66. Kochi,Y., Okada,Y., Suzuki,A., Ikari,K., Terao,C., Takahashi,A.,
Yamazaki,K., Hosono,N., Myouzen,K., Tsunoda,T. et al. (2010) A
regulatory variant in CCR6 is associated with rheumatoid arthritis
susceptibility. Nat. Genet., 42, U515–U563.

67. Gregersen,P.K., Amos,C.I., Lee,A.T., Lu,Y., Remmers,E.F.,
Kastner,D.L., Seldin,M.F., Criswell,L.A., Plenge,R.M., Holers,V.M.
et al. (2009) REL, encoding a member of the NF-kappa B family of
transcription factors, is a newly defined risk locus for rheumatoid
arthritis. Nat. Genet., 41, U820–U877.

68. Raychaudhuri,S., Remmers,E.F., Lee,A.T., Hackett,R., Guiducci,C.,
Burtt,N.P., Gianniny,L., Korman,B.D., Padyukov,L.,
Kurreeman,F.A.S. et al. (2008) Common variants at CD40 and other
loci confer risk of rheumatoid arthritis. Nat. Genet., 40, 1216–1223.

69. Julia,A., Ballina,J., Canete,J.D., Balsa,A., Tornero-Molina,J.,
Naranjo,A., Alperi-Lopez,M., Erra,A., Pascual-Salcedo,D.,
Barcelo,P. et al. (2008) Genome-wide association study of rheumatoid
arthritis in the Spanish population: KLF12 as a risk locus for
rheumatoid arthritis susceptibility. Arthritis Rheum., 58, 2275–2286.

70. Plenge,R.M., Cotsapas,C., Davies,L., Price,A.L., Bakker,P.I.W.,
Maller,J., Pe’er,I., Burtt,N.P., Blumenstiel,B., DeFelice,M. et al.
(2007) Two independent alleles at 6q23 associated with risk of
rheumatoid arthritis. Nat. Genet., 39, 1477–1482.

71. Plenge,R.M., Seielstad,M., Padyukov,L., Lee,A.T., Remmers,E.F.,
Ding,B., Liew,A., Khalili,H., Chandrasekaran,A., Davies,L.R.L.
et al. (2007) TRAF1-C5 as a risk locus for rheumatoid arthritis - A
genomewide study. N. Engl. J. Med., 357, 1199–1209.

72. Wellcome Trust Case Control Consortium. (2007) Genome-wide
association study of 14,000 cases of seven common diseases and 3,000
shared controls. Nature, 447, 661–678.

73. Sherva,R., Tripodis,Y., Bennett,D.A., Chibnik,L.B., Crane,P.K., de
Jager,P.L., Farrer,L.A., Saykin,A.J., Shulman,J.M., Naj,A. et al.
(2014) Genome-wide association study of the rate of cognitive decline
in Alzheimer’s disease. Alzheimers Dement., 10, 45–52.

74. Samocha,K.E., Robinson,E.B., Sanders,S.J., Stevens,C., Sabo,A.,
McGrath,L.M., Kosmicki,J.A., Rehnstrom,K., Mallick,S., Kirby,A.

 at W
ashington U

niversity, L
aw

 School L
ibrary on D

ecem
ber 8, 2015

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/


Nucleic Acids Research, 2015 17

et al. (2014) A framework for the interpretation of de novo mutation
in human disease. Nat. Genet., 46, 944–950.

75. Kopan,R. and Ilagan,M.X. (2009) The canonical notch signaling
pathway: unfolding the activation mechanism. Cell, 137, 216–233.

76. Laimer,M., Lanschuetzer,C.M., Diem,A. and Bauer,J.W. (2010)
Herlitz junctional epidermolysis bullosa. Dermatol. Clin., 28, 55–60.

77. Bauer,J., Schumann,H., Sonnichsen,K., Tomaske,M., Bosk,A.,
Bruckner-Tuderman,L., Rassner,G. and Garbe,C. (2002) Molecular
diagnostics facilitate distinction between lethal and non-lethal
subtypes of junctional epidermolysis bullosa: a case report and review
of the literature. Eur. J. Pediatr., 161, 672–679.

78. Meneguzzi,G., Marinkovich,M.P., Aberdam,D., Pisani,A.,
Burgeson,R. and Ortonne,J.P. (1992) Kalinin is abnormally expressed
in epithelial basement membranes of Herlitz’s junctional
epidermolysis bullosa patients. Exp. Dermatol., 1, 221–229.

79. Nakano,A., Chao,S.C., Pulkkinen,L., Murrell,D.,
Bruckner-Tuderman,L., Pfendner,E. and Uitto,J. (2002) Laminin 5
mutations in junctional epidermolysis bullosa: molecular basis of
Herlitz vs. non-Herlitz phenotypes. Hum. Genet., 110, 41–51.

80. Pulkkinen,L. and Uitto,J. (1999) Mutation analysis and molecular
genetics of epidermolysis bullosa. Matrix Biol., 18, 29–42.

81. Yancey,K.B. and Hintner,H. (2010) Non-herlitz junctional
epidermolysis bullosa. Dermatol. Clin., 28, 67–77.

82. Ryan,M.C., Lee,K., Miyashita,Y. and Carter,W.G. (1999) Targeted
disruption of the LAMA3 gene in mice reveals abnormalities in
survival and late stage differentiation of epithelial cells. J. Cell Biol.,
145, 1309–1323.

83. Meng,X., Klement,J.F., Leperi,D.A., Birk,D.E., Sasaki,T., Timpl,R.,
Uitto,J. and Pulkkinen,L. (2003) Targeted inactivation of murine
laminin gamma2-chain gene recapitulates human junctional
epidermolysis bullosa. J. Invest. Dermatol., 121, 720–731.

84. Kuster,J.E., Guarnieri,M.H., Ault,J.G., Flaherty,L. and Swiatek,P.J.
(1997) IAP insertion in the murine LamB3 gene results in junctional
epidermolysis bullosa. Mamm. Genome, 8, 673–681.

85. Ansieau,S., Strobl,L.J. and Leutz,A. (2001) Activation of the
Notch-regulated transcription factor CBF1/RBP-Jkappa through the
13SE1A oncoprotein. Genes Dev., 15, 380–385.

 at W
ashington U

niversity, L
aw

 School L
ibrary on D

ecem
ber 8, 2015

http://nar.oxfordjournals.org/
D

ow
nloaded from

 

http://nar.oxfordjournals.org/

	Washington University School of Medicine
	Digital Commons@Becker
	2015

	The anatomical distribution of genetic associations
	Alan Wells
	Nathan Kopp
	Xiaoxiao Xu
	David R. O'Brien
	Wei Yang
	See next page for additional authors
	Recommended Citation
	Authors


	tmp.1449597880.pdf.zhGDS

