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Cell Stress Induced by the Parkinsonian Mimetic, 
6-Hydroxydopamine, is Concurrent with Oxidation of 

the Chaperone, ERp57, and Aggresome Formation

JEONG SOOK KIM-HAN and KAREN L. O’MALLEY

ABSTRACT

Parkinson’s disease (PD) involves an irreversible degeneration of the nigrostriatal pathway. As most cases of
PD are sporadic, environmental risk factors may underlie neurodegeneration in dopaminergic neurons. One
such factor is 6-hydroxydopamine (6-OHDA), which is widely used as a parkinsonian mimetic. Studies have
shown that 6-OHDA generates reactive oxygen species and induces cell stress, the unfolded protein response,
and apoptosis. Present findings show that 6-OHDA, but not hydrogen peroxide, MPP�, or rotenone, leads to
the rapid formation of high-molecular-weight species of protein disulfide isomerase–associated protein 3
(ERp57) in a dose- and time-dependent fashion. Moreover, ERp57 conjugates are blocked by N-acetylcysteine
and glutathione, suggesting that they represent oxidized forms of protein. Surprisingly, conjugates are com-
plexed with DNA, because treatment with DNase reduces their appearance. Subcellular fractionation indi-
cates that both nuclear and mitochondrial DNA are associated with the protein. Finally, toxin-treated ERp57
rapidly forms juxtanuclear aggresome-like structures in dopaminergic cells, suggesting that ERp57 plays an
early adaptive response in toxin-mediated stress. Understanding the signaling mechanisms associated with
parkinsonian mimetics, as well as their temporal induction, may aid in designing better interventions in mod-
els of PD. Antioxid. Redox Signal. 9, 2255–2264.
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INTRODUCTION

NUMEROUS STUDIES SUGGEST that cellular stress systems are
involved in a variety of neurodegenerative disorders such

as Alzheimer’s disease, Parkinson’s disease (PD), and prion-
related disorders. In particular, genetic mutations linked to PD,
such as �-synuclein, parkin, UCH-L1, and LRRK2, have high-
lighted the role of aberrant protein degradation in this disorder
(11). Accumulation of protein aggregates within the cell can
trigger stress-activated signaling pathways, particularly in the
endoplasmic reticulum (ER), which in turn activate adaptive re-
sponses such as the unfolded protein response (UPR). The UPR-
mediated recovery from ER stress uses both protein translation
and gene transcription to overcome abnormal protein alter-

ations. Prolonged cell stress, however, overwhelms these pro-
cesses, and apoptosis is initiated (43). Previous results from this
laboratory (13–15), as well as others (e.g., 36), demonstrated a
link between PD-associated genetic and environmental factors
with the discovery that the widely used parkinsonian mimetic,
6-hydroxydopamine (6-OHDA) induces the upregulation of
genes involved in the ER stress response. Mechanistically, 6-
OHDA–induced reactive oxygen species (ROS) lead to the
rapid formation of oxidized, carbonylated proteins that precede
UPR upregulation (14).

Evidence suggests that carbonylation is a common indicator
of oxidative damage in aging and in neurodegenerative disor-
ders, such as PD (32). In general, however, only subsets of pro-
teins have been shown to be carbonylated, such as chaperones,
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cytoskeletal proteins, protein disulfide isomerases (PDIs), and
various metabolic enzymes (1, 5, 7, 34). Oxidation of these
proteins, many of which are cell protective, may trigger 
downstream events such as UPR and apoptosis. Previously, 
we reported that one such carbonylation-prone protein, PDI-
associated protein 3 (ERp57; Genebank MGI:95834), was up-
regulated by 6-OHDA (13).

ERp57 (or GRP58) was first reported as a glucose-regulated
protein/chaperone along with other cell-stress proteins like
GRP78(BIP) and GRP94 (23, 26). Largely localized in the ER
lumen, ERp57 not only plays a role as a chaperone but it also
functions as a disulfide reductase, a disulfide isomerase, and a
dithiol oxidase (10). Recently, ERp57 was shown to be upreg-
ulated after prion replication in a murine scrapie model, in
which it appeared to serve a neuroprotectant role (12). As
scrapie and other transmissible spongiform encephalopathies
are characterized by the accumulation of abnormally folded
prion protein, these data suggest that ERp57 somehow plays a
role in abrogating these processes. Whether ERp57 blocks some
step in this process or helps to prevent prion aggregation in the
first place (or both) is unclear.

One early step in protein aggregation is the formation of so-
called aggresomes. These clusters of aggregated proteins are
retrogradely transported on microtubules to juxtanuclear re-
gions where they can be degraded by autophagy (21). Typi-
cally, aggresomes are enriched in chaperones, 19S and 26S pro-
teasome subunits, intermediate filament proteins, and ubiquitin
(21). Although autophagic vesicles are considered a cellular de-
fense mechanism, they can lead to cell death by interfering with
normal cellular trafficking or by incomplete degradation of ag-
gregated material. The latter may overwhelm the ubiquitin–pro-
teosome system, triggering ER stress, UPR, and apoptosis. (31).
Thus, emerging studies suggest links between ER stress, pro-
tein aggregation, and autophagy (16, 29, 35). These findings,
together with the upregulation of ERp57 in dopaminergic cells
after toxin treatment, prompted us to test the hypothesis that
ERp57 plays a role in 6-OHDA–mediated UPR induction. Here
we show that toxin-treated dopaminergic cells lead to the rapid
appearance of DNA-containing high-molecular-weight conju-
gates of ERp57 as well as aggresome formation. These data
suggest that ERp57 plays an early adaptive response in 6-
OHDA–mediated toxicity.

MATERIALS AND METHODS

Materials and reagents

Rabbit anti-ERp57 antibody was kindly provided by Dr.
Thomas Wileman (Institute for Animal Health, Surrey, U.K.).
RNase A and Complete protease inhibitor mixture were pur-
chased from Roche (Mannheim, Germany). Unless otherwise
indicated, all other chemicals were from Sigma (St. Louis, MO).

Cell cultures

Murine primary mesencephalic neuronal cultures were pre-
pared as described previously (25). In brief, the ventral mes-
encephalon was dissected from embryonic day 14 CF1 murine
embryos (Charles River Laboratories, Wilmington, MA). Tis-

sues were trypsinized in the presence of 0.05% DNase and trit-
urated by using a Pasteur pipette. Dissociated cells (1.5 � 106

cells/cm2) were plated on the 0.5-mg/ml poly-D-lysine and 2.5
�g/ml laminin (BD Bioscience, San Jose, CA) precoated cul-
ture dishes. Cultures were used 7–9 days after plating.

MN9D cells, an immortalized murine mesencephalic dopamin-
ergic cell line (4), were plated on 0.1 mg/ml poly-D-lysine pre-
coated plates and maintained in Iscove’s Dulbecco’s modified
Eagle’s medium with 10% fetal bovine serum in the presence 
of 10% CO2 at 37°C. Medium was replaced with serum-free 
Iscove’s Dulbecco’s modified Eagle’s medium/F12/B27 supple-
ment 30 min before the addition of experimental agents.

Western blot analysis

After treatment, samples were washed twice with phosphate-
buffered saline (PBS), lysed in RIPA buffer (50 mM Tris-HCl,
pH 7.5; 1% NP-40; 1% deoxycholate; 0.1% SDS; 150 mM
NaCl) and Complete protease inhibitor mixture and pelleted by
centrifugation. The supernatant was collected. Protein concen-
trations were measured by the BioRad Protein Assay Kit (Her-
cules, CA) by using bovine serum albumin as a control. Equal
amounts of protein were then run on 12% polyacrylamide gels
and transferred onto PVDF membranes (BioRad). After incu-
bation in blocking buffer (20 mM Tris base, 150 mM NaCl, 5%
nonfat milk, and 0.1% Tween 20), membranes were incubated
with primary antibodies overnight at 4°C. ERp57 protein was
detected with a polyclonal rabbit anti-human ERp57 antibody
at a dilution of 1:2,000. Mouse monoclonal antibodies against
�-actin (Sigma; 1:5,000), calnexin (BD Bioscience, San Jose,
CA; 1:250), cytochrome c (BD Pharmingen, San Diego, CA;
1:500), lamin B (Zymed, South San Francisco; 1:1,000), and
STAT3 (Cell Signaling, Danvers, MA; 1:1,000) were used.

After washes in the blocking buffer, membranes were incu-
bated for 1 h with the appropriate anti-IgG secondary antibody
conjugated to horseradish peroxidase (Cell Signaling) diluted
1:3,000. After a second series of washes, bound antibody com-
plexes were visualized by using the ECL plus Western Blotting
Detection System ECL (GE Healthcare, Buckinghamshire,
U.K.) and quantitative fluoroimaging (Storm 860; Global Med-
ical Instrumentation, Inc., Ramsey, MN).

Immunocytochemistry

After treatment, cells were rinsed twice with PBS, fixed with
4% paraformaldehyde in PBS for 30 min. Cells were double-
stained with anti-ERp57 antibody (1:2,000) and cytochrome c
(Promega, Madison, WI; 1:4,000) or LAMP1 (Hybridoma
1D4B, Developmental Studies Hybridoma Bank, The Univer-
sity of Iowa, Iowa City, IA; 1:100) antibody, together with a
sheep polyclonal antibody against the dopaminergic neuronal
marker, tyrosine hydroxylase (Novus Biologicals, Littleton,
CO; 1:600). Mouse monoclonal antibodies against �-tubulin
(Sigma; 1:10,000), and 8-hydroxyguanosine (QED Bioscience,
San Diego, CA; 1:100) were used. Secondary antibodies con-
jugated with Cy3 (anti-mouse and anti-rabbit, 1:300; Jackson
ImmunoResearch Laboratories, West Grove, PA) and Alexa
488 (anti-mouse, 1:500; anti-rabbit, 1:2,000; Molecular Probes,
Eugene, OR) were used. Cells were imaged by using an Olym-
pus Fluoview confocal microscope.
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Treatment of lysates with DNase or RNase

Cell lysates were treated with 10 mg/ml DNaseI or 10 mg/ml
RNase or both in 10 mM Tris-HCl, pH 7.0, 2.5 mM MgCl2,
and 0.5 mM CaCl2 at 25°C for 1 h. Samples were subjected to
SDS-PAGE, followed by Western blot analysis.

Subcellular fractionation

Cells were rinsed and harvested in PBS and homogenized in
a sucrose buffer (0.32 M sucrose, 10 mM Tris-HCl, pH 7.2; 1
mM EDTA, pH 8.0) containing Complete protease inhibitors
by using an all-glass Dounce homogenizer. After centrifugation
at 800 g for 5 min, the supernatant was centrifuged at 10,000
g for 10 min. Pellets were collected for the mitochondrial frac-
tion (M), and the supernatant was further centrifuged at 100,000
g for 1 h to obtain microsomal membranes (ER) and cytosol
(C). All fractions were resuspended in RIPA buffer and sub-
jected to Western blot analysis.

Determination of redox state of ERp57 in vivo

The redox state of ERp57 in vivo was determined by se-
quential alkylation of free thiols with N-ethylmaleimide (NEM)
and 4-acetamido-4�-maleimidylstilbene-2,2�-disulfonic acid
(AMS), essentially as described by Jessop and Bulleid (19), but
with some minor modifications. In brief, cells were treated with
25 mM NEM for 20 min at 37°C, washed with ice-cold PBS,
and lysed in 50 mM Tris-HCl, pH 7.5, 150 mM NaCl, 2 mM
EDTA, 1� Complete protease inhibitor mixture, and 1% Tri-
ton X-100. Cell lysates were treated with 2% SDS and 50 mM
DTT, precipitated with 10% trichloroacetic acid, washed with
ice-cold 70% acetone, and resuspended in 80 mM Tris, pH 6.8,

2% SDS, and 1� Complete protease inhibitor mixture. Sam-
ples were incubated with 30 mM AMS overnight at 25°C fol-
lowed by 20 min at 37°C. Samples were separated by
7.5–12.5% gradient SDS-PAGE and Western blotted to detect
ERp57. To determine the “all-oxidized” or “all-reduced” form
of ERp57, cells were treated with 5 mM dipyridyl sulfide (DPS)
or 10 mM dithiothreitol (DTT), respectively, for 5 min before
the addition of alkylating thiols.

RESULTS

ERp57 is partially oxidized in MN9D cells

Previously we showed that 6-OHDA rapidly induces ER
stress and UPR in MN9D and primary dopaminergic neurons
in a ROS-dependent fashion (13). As ERp57 was one of 21 pro-
teins specifically upregulated by 6-OHDA (13) and because it
is readily oxidized (22), we tested the hypothesis that ERp57
is specifically oxidized by toxin treatment in MN9D cells. Cells
were treated with and without 6-OHDA for 3 h, after which cell
lysates were alkylated to determine the oxidation state of
ERp57. Although most reports describe ERp57 as primarily be-
ing reduced (20), equal amounts of oxidized and reduced forms
of ERp57 were observed in MN9D cells, even in nontreated
cells (Fig. 1A and B). Surprisingly, toxin treatment did not al-
ter these ratios (Fig. 1A and B). Co-treatment with the thiol
antioxidant, N-acetyl-L-cysteine (NAC) significantly increased
the reduced form of ERp57, irrespective of the presence of 6-
OHDA. Therefore, ERp57 is already partially oxidized in non-
treated, control MN9D cells.
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FIG. 1. 6-OHDA does not alter the ratio of
oxidized to reduced ERp57 in MN9D
cells. (A) Cells were treated as indicated be-
fore NEM alkylation and lysis. After an
overnight incubation with AMS, cell lysates
were subjected to gradient SDS-PAGE and
Western blotting with antibodies against
ERp57. Samples treated with DTT or DPS for
5 min before fixation were used to determine
the reduced and oxidized states of ERp57. (B)
Quantitation of results shown in (A). Values
represent mean � SEM, n � 3.



6-OHDA treatment results in the rapid 
formation of high-molecular-weight 
conjugates of ERp57

Although 6-OHDA did not alter the oxidation state of
ERp57 in MN9D cells, Western blot analysis revealed the un-
expected formation of high-molecular-weight (HMW) conju-
gates shortly after toxin treatment in MN9D cells (Fig. 2A).
Specifically, HMW conjugates were first visible at 1 h after
6-OHDA treatment, reaching a maximum at 3 h, and persist-
ing for at least 12 h, the longest time point tested (Figs. 2A
and 3A). The formation of HMW conjugates was dose de-
pendent (Fig. 2B) and specific for 6-OHDA, because other
compounds known to generate ROS, such as H2O2, MPP�, or
rotenone never formed HMW species at any concentration
tested (Fig. 2A and C). To identify the location of HMW con-
jugation, subcellular fractionation was performed after treat-
ment with 6-OHDA. Contrary to most reports, in MN9D cells,
ERp57 was highly expressed in the mitochondrial fraction
(Cox I positive fraction) versus ER membranes (P100; Fig.
3A) or the cytosol (S100; Fig. 3A). HMW conjugates were
enriched in the mitochondrial fractions at all times (Fig. 3A).
To determine whether the HMW conjugates represented
ERp57 covalent interactions stabilized by disulfide bridges,
lysates were treated with a reducing agent before size frac-
tionation and Western blotting. Because no change in band in-

tensity was observed in the presence of the reducing agent
(Fig. 3B), it seems unlikely that the HMW species represent
ERp57 oligomers linked by disulfide bonds. Taken together,
these data indicate that the dopaminergic toxin, 6-OHDA, in-
duces a specific change in ERp57 that leads to the rapid in-
duction of HMW conjugates of unknown function.

Toxin-induced ERp57 HMW conjugates 
contain DNA

To test whether the formation of HMW ERp57 conjugates
by 6-OHDA could be blocked by antioxidants, MN9D cells
were co-treated with NAC or glutathione in the presence of
toxin. NAC completely abolished the HMW ERp57 conju-
gates, whereas glutathione only partially blocked their ap-
pearance (Fig. 4A). To test whether the HMW ERp57 species
were complexes of known ERp57-interacting proteins, West-
ern blots were probed with antibodies directed against the tran-
scription factor, STAT3, or calnexin. No specific bands were
revealed, however, in the size range of the ERp57 HMW con-
jugates after 6-OHDA treatment (data not shown). Similarly,
treatment with deglycosylation agents such as PNGF did not
shift the size range of the HMW conjugates (Fig. 4B). Sur-
prisingly, treatment of protein lysates with DNaseI signifi-
cantly decreased the levels of 6-OHDA–generated HMW con-
jugates, whereas inclusion of RNase did not induce any
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FIG. 2. 6-OHDA induces the formation of HMW conjugates of ERp57. MN9D cells were treated as indicated, and cell
lysates were prepared for Western blotting with anti-ERp57 antibodies. Time- (A) and dose (B)-dependent appearance of ERp57
HMW conjugates induced by 6-OHDA but not 1 mM H2O2. (C) Neither MPP� nor rotenone (Rot) formed HMW conjugates 3
h after treatment, as indicated. Ctl, control.

FIG. 3. Characterization of HMW conjugates of ERp57 induced by 6-OHDA. MN9D cell lysates after treatment, as indi-
cated, were prepared for Western blotting with anti-ERp57 antibodies. (A) Subcellular fractionation of MN9D cells was per-
formed to obtain mitochondrial (M), ER, and cytoplasmic (C) fractions from untreated cells or cells treated for 3, 6, 9, or 12 h
with 75 �M 6-OHDA. Fractions were Western blotted with anti-CoxI and anti-LDH confirming compartmental designations as
well as anti-ERp57 to detect changes in localization. Results shown are representative of at least three independent experiments.
(B) HMW conjugates were not affected by the reducing agent, �-mercaptoethanol (BME). Protein samples were treated with or
without BME before SDS-PAGE. Where indicated, �-actin served as a loading control.



changes (Fig. 4C). To identify the possible source of DNA,
subcellular fractionation was performed after treatment with
6-OHDA. ERp57 HMW conjugates were enriched in both nu-
clear and mitochondrial fractions and essentially absent from
cytosolic fractions (Fig. 4D). These data suggest that ERp57
can form HMW complexes with either nuclear or mitochon-
drial DNA.

ERp57 forms juxtanuclear clusters after 6-OHDA
treatment in MN9D cells

To identify the location of ERp57 in situ before and after
toxin treatment, cells were fixed and immunostained with anti-
ERp57 antibody. The overall level of ERp57 expression did not
appear to change at 5 h, although its distribution coalesced over
time into a doughnut-shaped structure in the cytosol near the
nucleus (Fig. 5A). Toxin-induced ERp57 clusters co-localized
with cytochrome c (Fig. 5A). Because this timepoint precedes
cytochrome c release from mitochondria (14), these data sug-
gest that mitochondria were also clustering in the juxtanuclear
region. Quantification of cells with ERp57 clusters revealed sig-
nificantly higher numbers in treated versus nontreated cells 3
and 5 h after 6-OHDA treatment (Fig. 5B). With the same ex-
perimental paradigm, toxin-treated ERp57 clusters encircled the

lysosomal marker, LAMP1 [Fig. 6A (8)] but not G58 (a golgi
marker), �-actin (a cytoskeletal marker), �-tubulin (micro-
tubule-organizing center), or 8-hydroxyguanosine (DNA/RNA
oxidative damage marker; not shown). When the percentage of
the cytosolic area stained with LAMP1 is quantified, a signif-
icant drug effect is observed (Fig. 6B). These distinctive struc-
tural changes are reminiscent of aggresomes (21).

ERp57 is primarily reduced in 
dopaminergic neurons

To confirm and extend these results in primary dopaminer-
gic neurons, the redox state of ERp57 in dissociated cultures
was examined. Unlike MN9D cells, primary dopaminergic neu-
rons exhibited a significantly higher level of reduced versus ox-
idized ERp57 before toxin treatment (Fig. 7A and B). Incuba-
tion with 6-OHDA increased oxidized ERp57 monomers,
significantly altering the ratio between reduced and oxidized
ERp57 (Fig. 7B). Co-treatment with NAC prevented these
changes (Fig. 7A and B). Toxin treatment also induced the for-
mation of HMW ERp57 conjugates, albeit to a lesser extent
than those seen in MN9D cells (Fig. 8A). Neither MPP� nor
rotenone induced the formation of conjugates (Fig. 8A). There-
fore, like MN9D cells, ERp57 specifically responds to 6-OHDA

ERP57 IN DOPAMINERGIC NEURONS 2259

FIG. 4. ERp57 HMW conjugates are complexed with DNA. (A) HMW conjugates can be blocked by cotreatment of an-
tioxidants NAC (5 mM) and glutathione (1 mM). (B) HMW conjugates are not glycosylated because inclusion of peptide N-gly-
cosidase F (PNGF) did not change their mobility. (C) Treatment of protein lysates with DNase (D) but not RNase (R) before
loading the gel significantly reduces the intensity of HMW conjugates. (D) Subcellular fractionation shows that the HMW con-
jugates are present in both nuclear (N) and crude mitochondrial (M) fractions. (T, total cell lysates; C, cytosol). LaminB was
used as a marker for the nuclear fraction. Results shown are representative of at least three independent experiments.



although the cellular environment of mesencephalic neurons ap-
pears to be less oxidizing.

6-OHDA also leads to ERp57 juxtanuclear
clustering in primary mesencephalic neurons

To determine whether ERp57 formed toxin-induced aggre-
gates, cultures were treated with and without 6-OHDA and 
examined for the appearance of clusters. Confocal microscopy
revealed toxin-induced ERp57 juxtanuclear clustering in dop-
aminergic neurons 6 h after treatment (Fig. 8B). At this time,
many UPR markers have been upregulated as well as showing
early signs of apoptosis (13–15, 25). Thus, the apparent shrink-
age of neurons and nuclei (Neu N staining) after toxin treat-
ment was consistent with our previous findings that 6-OHDA–
mediated cell death proceeds via UPR upregulation and down-
stream apoptosis.

DISCUSSION

A growing body of evidence suggests that ER stress-triggered
UPR is an important component of many neurodegenerative

disorders. Previous results from this laboratory and others have
shown that the parkinsonian mimetic, 6-OHDA, induces UPR
and subsequently apoptosis in the dopaminergic cell line,
MN9D, as well as in primary dopaminergic neurons. Here we
show that one such induced UPR marker, ERp57, rapidly forms
toxin-specific HMW conjugates with DNA as well as juxtanu-
clear clusters of protein. As both structures form before the in-
duction of apoptosis in these cells (14), these data suggest that
they represent adaptive responses to toxin-mediated UPR.

Although 6-OHDA has been used as a model of PD for over
30 years, its mechanisms of action are still unclear. Readily
autooxidized, 6-OHDA produces many types of ROS, includ-
ing hydrogen peroxide, superoxide, and quinone derivatives,
which are responsible for its toxicity. Previously we showed
that, before the appearance of UPR markers, 6-OHDA–gener-
ated ROS can be rapidly detected in MN9D cells (14) as well
as primary dopaminergic neurons (25). Because ROS forma-
tion was quickly followed by the appearance of oxidized pro-
teins and UPR but not release of cytochrome c, these data sug-
gested that death induced by parkinsonian toxins first initiated
ER stress mechanisms and then the mitochondrial apoptotic ma-
chinery (14). Surprisingly, obvious oxidation sensors, such as
the ASK1/MAP kinase signaling pathway associated with the
UPR gatekeeper, IRE1 (39), or the mitochondrial permeability
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FIG. 5. ERp57 forms juxtanuclear clusters after toxin treatment of MN9D cells. (A) ERp57 immunostaining of control
cells reveals a punctuated intracellular distribution that, in most cases, does not overlap with cytochrome c (Cyt c; mitochondria).
After 6-OHDA (75 �M) treatment, ERp57 coalesces into doughnut-shaped structures (arrowheads) near the nucleus (N), which
overlap with cytochrome c. (B) Changes in ERp57 distribution were quantified as described in Methods. *p � 0.05 by one-way
ANOVA with post hoc Tukey’s test.

FIG. 6. ERp57 coalesces around LAMP1 after toxin treatment of MN9D cells. (A) ERp57 immunostaining of control cells
is largely independent of LAMP1 (lysosomes). LAMP1 redistributes to the center of the doughnut-shaped structure (arrows). N,
nucleus. (B) When the percentage of the cytosolic area is quantified for LAMP1, a significant drug effect is observed (*p � 0.001
by Student’s t test).



pore, or disruption of ER calcium homeostasis, were not asso-
ciated with 6-OHDA–mediated cell death [(14), and JSKH, un-
published data). Instead, protein oxidation is one of the first
events after 6-OHDA–generated ROS, in particular, changes in
the protein disulfide isomerase, ERp57, appear early in this pro-
cess (see Fig. 2). Because ERp57 has been shown to be neuro-
protective in models of prion-related disorders (12), its oxida-
tion may trigger downstream sequelae such as UPR and
apoptosis. Whether knockdown or loss of ERp57 accelerates 6-
OHDA–mediated cell death or its enforced expression blocks
toxin effects remains to be tested in this system.

6-OHDA-induced high-molecular-weight
conjugates of ERp57

What is the nature of the HMW conjugates involving ERp57?
As no differences were observed in band intensity when lysates
were treated with a reducing agent before size fractionation and
Western blotting (see Fig. 3B), it seems unlikely that the HMW
species represent covalent interactions stabilized by disulfide
bridges. Numerous studies, however, have shown that reactive
quinone species, such as diethylstilbesterol quinone, 4-hydroxy-
tamoxifen, and/or tocopherol quinine, form covalent quinone-
linked bonds with either free sulfhydryl groups or DNA (40,
47). As described, oxidation of 6-OHDA leads to quinone for-
mation (17, 38), as does dopamine itself (41). Inasmuch as H2O2

does not replicate the cell-death paradigms we have observed
(14; this work), we would suggest that it is 6-OHDA–generated
quinone species that are triggering ER stress, UPR, protein car-
bonylation, etc. (14). In support of this notion, recent data in-
vestigating tocopherol quinone toxicity demonstrated a direct
link with ER stress and subsequent cell death (47). These au-
thors suggested that quinone-mediated covalent bonding with
ER PDIs triggered this response (47). Taken together, our data
support a model in which 6-OHDA–generated quinone species
form covalent ERp57/DNA adducts that precede the appear-
ance of ER stress and apoptotic markers.
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FIG. 7. 6-OHDA induces ERp57 oxidation in mesencephalic
neurons. (A) Cells were treated with or without indicated
dose of 6-OHDA for 3 h before NEM alkylation and lysis. Some
samples were pretreated with 5 mM NAC. After AMS treat-
ment, cell lysates were subjected to gradient SDS-PAGE and
Western blotting with antibodies against ERp57. Samples
treated with DTT or DPS for 5 min before fixation were used
to determine the reduced and oxidized states of ERp57 in pri-
mary mesencephalic cultures. Nontreated MN9D cell lysates
were included as a reference. (B) Quantitation of results shown
in (A). Values represent mean � SEM, n � 3. *p � 0.05 by
one-way ANOVA with Tukey’s test.

FIG. 8. 6-OHDA induces HMW conjugates and juxtanuclear clustering of ERp57 in mesencephalic neurons. (A) 6-OHDA
but not MPP� or rotenone (Rot) induced HMW ERp57 conjugates in mesencephalic cultures. �-actin served as a loading con-
trol. *Longer exposure of middle panel. (B) DIV 7 mesencephalic cultures were treated with and without 20 �M 6-OHDA for 6
h before fixation. Neuronal and dopaminergic cells were identified with anti-NeuN and anti-TH antibodies, respectively. Toxin
treatment induced the redistribution of ERp57 to a juxtanuclear position. Also at this time, NeuN appears condensed within the
nucleus.



ERp57 in the nucleus and mitochondria

In general, ERp57 is largely confined to the lumen of the ER,
although detectable levels of expression have been found in the
cytosol and the nucleus (44). Within the ER, ERp57 is thought
to form a non-covalent complex with the lectin-like chaperones,
calreticulin and calnexin, to promote the correct folding of var-
ious glycoproteins (48). In the cytosol, ERp57 was identified
as a cytokine-dependent STAT3-associated protein serving as
a chaperone in the transit of STAT3 from the cell membrane
to the nucleus (30). Interestingly, in dopaminergic cells, ERp57
is not abundantly expressed in either the ER or the cytosol.
Rather, the present study demonstrates that ERp57 is highly as-
sociated with mitochondrial fractions (see Figs. 3 and 4). More
ERp57 is associated with this fraction than with any other. Fur-
ther characterization of mitochondrial fractions by using su-
crose gradients suggests that ERp57 is most highly enriched in
the mitochondria-associated membrane (MAM) fraction (data
not shown), a region in which the ER membrane is juxtaposed
to the mitochondria. The so-called MAM fraction is responsi-
ble for the transport of phospholipids from ER to mitochondria
(42). It will be of interest to test whether ERp57 plays a role
in phospholipid cycling.

In the nucleus, ERp57 catalyzes the attachment of DNA loops
to matrix proteins (6), binds specific DNA sequences associ-
ated with, among other things, scaffold/matrix-associated re-
gions (3), and is recruited when various antitumor agents such
as mitomycin C crosslink DNA (2). Mitomycin-induced DNA
damage is thought to be due to its propensity to form highly
reactive quinone derivatives that can alkylate DNA and cross
link individual strands (46). As H2O2 did not induce HMW con-
jugates of ERp57 (see Fig. 2A), conceivably these can be as-
cribed to 6-OHDA quinone formation, which has been associ-
ated with its cytotoxicity [e.g., (17)]. Therefore, it seems likely
that 6-OHDA not only oxidizes proteins (14) but also damages
DNA, potentially triggering the ERp57 response. In support of
this notion, studies have reported that 6-OHDA produces DNA
adducts and base alterations in cell lines and in vivo (9, 24). It
is unclear, however, what DNA sequences are involved in this
response and how and why mitochondrial DNA is affected as
well. Moreover, it is unclear whether ERp57 is recruited from
the cytosol or from membranous structures. Finally, DNA dam-
age will initiate other adaptive cellular responses, including ac-
tivation of DNA-repair systems, blockade of cell-cycle pro-
gression, transcriptional activation, and when all else fails,
apoptosis. Where in this cascade of events ERp57 plays a role
remains to be determined.

ERp57 in aggresomes

A common thread for many neurodegenerative disorders is
the accumulation of misfolded proteins (33). In general, mis-
folded proteins are handled by the ubiquitin–proteosome sys-
tem. If overwhelmed, however, ER stress and UPR are triggered.
Similarly, autophagy is also thought to be a cellular defense sys-
tem. A conceivable point of convergence is suggested by stud-
ies showing that if autophagic degradation is not rapid enough
or is insufficient in some way, ER stress and UPR may be ini-
tiated. Aggresome formation is thought to contribute to au-
tophagy by concentrating substrates in one area for more effi-

cient disposal. Surprisingly, we have not observed aggresome
formation in previous studies in either MN9D cells or primary
dopaminergic neurons. Nor did we observe aggresomes when
the major component of Lewy bodies, �-synuclein, was over-
expressed in either its wild-type or mutant forms (18). Whether
the doughnut-shaped structures (see Fig. 5) formed by ERp57
and cytochrome c are bona fide aggresomes is unclear at pres-
ent. Several hallmarks of aggresomes are missing, such as clus-
tering around a microtubule-organizing center (data not shown).
However, LAMP1 immunoreactivity at the core of the structure
(see Fig. 6) is suggestive of early accumulation of lysosomes
near the nucleus and the formation of aggresome-like structures.

Many studies have documented the association of chaperones
with protein aggregates. Some of the most compelling evidence
comes from studies showing that HSP70 can overcome many
disease-causing aggregates such as polyglutamine aggregates
or �-synuclein aggregates (27). Whether the ERp57-forming
aggregates are derived from the cytoplasm or from recruitment
of mitochondria is unknown. However, it seems reasonable to
suggest that they represent the latter organelle, because so lit-
tle of this protein is free in the cytosol in dopaminergic cells
(see Fig. 3A). Moreover, the finding that ERp57 staining colo-
calizes with cytochrome c before its loss from mitochondria
agrees with recent data showing the presence of intact mito-
chondria in aggresomes (28, 45). Indeed, Waelter et al. (45) hy-
pothesized that mitochondria were recruited into aggresomes to
provide the energy necessary for protein degradation. Results
from this laboratory are consistent with this notion, because the
complex I inhibitor, MPP�, does not induce aggresome for-
mation in this system (not shown).

The significance of ERp57 in aggresomes remains unclear.
Although it may simply represent a passively recruited protein,
the formation of HMW conjugates of mitochondrial DNA (see
Fig. 4D) suggests a more active, adaptive response. Taken to-
gether, these data suggest that 6-OHDA–generated ROS acti-
vates UPR by oxidizing, among other proteins, ERp57. These
changes trigger adaptive cellular responses that, because of pro-
longed toxin-mediated stress, eventually lead to cell death. Un-
derstanding the signaling mechanisms associated with parkin-
sonian mimetics as well as their temporal induction may aid in
designing better interventions in models of PD.
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ABBREVIATIONS

6-OHDA, 6-hydroxydopamine; AMS, 4-acetamido-4�-
maleimidylstilbene-2,2�-disulfonic acid; DPS, dipyridyl sul-
fide; DTT, dithiothreitol; ER, endoplasmic reticulum; HMW,
high molecular weight; MAM, mitochondria-associated mem-
brane; MPP�, 1-methyl-4-phenylpyridinium; NAC, N-acetyl-
L-cysteine; NEM, N-ethylmaleimide; PBS, phosphate-buffered
saline; PD, Parkinson’s disease; PDI, protein disulfide iso-
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merases; PDIA3, protein disulfide isomerase–associated protein
3; PNGF, peptide:N-glycosidase F; ROS, reactive oxygen
species; Rot, rotenone; TH, tyrosine hydroxylase; UPR, un-
folded protein response.
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