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Branch Wernigerode, Burgstr. 37, 38855 Wernigerode, Germany2; and Departments of Pediatrics and Molecular Microbiology,
Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, Missouri3

Received 19 December 2006/Accepted 6 March 2007

Escherichia coli serogroup O26 consists of enterohemorrhagic E. coli (EHEC) and atypical enteropathogenic
E. coli (aEPEC). The former produces Shiga toxins (Stx), major determinants of EHEC pathogenicity, encoded
by bacteriophages; the latter is Stx negative. We have isolated EHEC O26 from patient stools early in illness
and aEPEC O26 from stools later in illness, and vice versa. Intrapatient EHEC and aEPEC isolates had quite
similar pulsed-field gel electrophoresis (PFGE) patterns, suggesting that they might have arisen by conversion
between the EHEC and aEPEC pathotypes during infection. To test this hypothesis, we asked whether EHEC
O26 can lose stx genes and whether aEPEC O26 can be lysogenized with Stx-encoding phages from EHEC O26
in vitro. The stx2 loss associated with the loss of Stx2-encoding phages occurred in 10% to 14% of colonies
tested. Conversely, Stx2- and, to a lesser extent, Stx1-encoding bacteriophages from EHEC O26 lysogenized
aEPEC O26 isolates, converting them to EHEC strains. In the lysogens and EHEC O26 donors, Stx2-
converting bacteriophages integrated in yecE or wrbA. The loss and gain of Stx-converting bacteriophages
diversifies PFGE patterns; this parallels findings of similar but not identical PFGE patterns in the intrapatient
EHEC and aEPEC O26 isolates. EHEC O26 and aEPEC O26 thus exist as a dynamic system whose members
undergo ephemeral interconversions via loss and gain of Stx-encoding phages to yield different pathotypes. The
suggested occurrence of this process in the human intestine has diagnostic, clinical, epidemiological, and
evolutionary implications.

Escherichia coli serogroup O26 has members classified as
enterohemorrhagic E. coli (EHEC) or atypical enteropatho-
genic E. coli (aEPEC). EHEC O26 strains constitute the most
common non-O157 EHEC group associated with diarrhea and
hemolytic uremic syndrome (HUS) in Europe (16, 18, 19, 25,
48, 51). EHEC O26 is also the most common non-O157 EHEC
serogroup in the United States, where, between 1983 and 2002,
it accounted for 22% of non-O157 EHEC clinical isolates (10).
In a recent prospective study from Montana, half of EHEC
O26 isolates originated from patients with bloody diarrhea
(23). Moreover, EHEC O26 has spread globally (24).

EHEC O26 strains produce Shiga toxin 1 (Stx1) and Stx2,
either singly or together (10, 54). Indeed, phage H19B from a
clinical EHEC O26 isolate that carries stx1 was one of the first
Stx-converting phages described (45). Moreover, these strains
contain the intimin-encoding eae gene (6, 54), an important
characteristic of EHEC (33). EHEC O26 represents a highly
dynamic group of organisms that rapidly engender new patho-
genic clones (54). This is exemplified by emergence of a novel
EHEC O26:H11 clonal subgroup in Germany in the 1990s that
possessed stx2 as the sole stx gene, in contrast to stx1, exclusively
identified in EHEC O26 previously. The pathogenicity of this

clone was demonstrated by its strong association with HUS
(29, 54) and its ability to spread rapidly (2, 54).

aEPEC O26 strains do not harbor stx genes (9, 20, 42) but share
with EHEC the eae gene (20, 34) and the ability to produce
attaching and effacing lesions in intestinal epithelial cells via actin
rearrangement (9, 20, 42). Unlike typical EPEC strains (49),
aEPEC O26 strains lack the EPEC adherence factor plasmid (6)
encoding bundle-forming pili that mediate localized adherence
on cultured epithelial cells. The absence of the EPEC adherence
factor plasmid is a common feature of aEPEC strains, which
cause gastroenteritis in children (12, 20, 49).

It has been hypothesized (15) that aEPEC O26 is ancestral
to EHEC O26. According to this hypothesis, the acquisition of
stx1 by aEPEC O26 gave rise to globally distributed toxigenic
EHEC O26 (15). Furthermore, replacement of stx1 with stx2

has been postulated as the cause of the recent emergence of
the new stx2-harboring EHEC O26 clonal subgroup in Europe
(15, 54). A prerequisite for such an evolutionary process is that
aEPEC O26 strains undergo lysogeny by Stx-encoding bacte-
riophages. However, this has not yet been systematically inves-
tigated. Moreover, it is not clear if the sequence of events
proposed for the evolution of EHEC O26 is unidirectional,
where aEPEC O26 strains are always progenitors of EHEC
O26 strains, or bidirectional, with EHEC O26 also being con-
verted to aEPEC by loss of an stx gene. Therefore, we inves-
tigated the role of Stx-encoding bacteriophages in the postu-
lated transition between EHEC and aEPEC O26 to determine
if (i) Stx-encoding phages originating from EHEC O26 lysog-
enize aEPEC O26 under laboratory conditions, (ii) stx genes

* Corresponding author: Mailing address: Institut für Hygiene,
Universität Münster, Robert-Koch-Str. 41, 48149 Münster, Ger-
many. Phone: 49-251/980-2849. Fax: 49-251/980-2868. E-mail:
mbiela@uni-muenster.de.
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and their encoding phages are lost by EHEC O26 in vitro, (iii)
the loss and gain of Stx-encoding phages influence the genomic
architecture, (iv) there is an identifiable site where these bac-
teriophages integrate into the genomes of EHEC O26 and the
lysogens, and (v) there is bidirectional conversion between
EHEC O26 and aEPEC O26 during human infection.

MATERIALS AND METHODS

Bacterial strains. Three EHEC (stx2-positive, eae-positive, bfpA-negative) and
three aEPEC (stx-negative, eae-positive, bfpA-negative) O26:H11 strains were
isolated from initial stools (collected 5 days after the onset of diarrhea) and
follow-up stools (collected 9 days after the initial samples), respectively, of three
children (13, 16, and 17 months old) during an outbreak of HUS in Germany
(29). The other EHEC and aEPEC O26:H11 strains used in transduction exper-
iments were isolated from patients between 1971 and 1999; they were epidemi-
ologically unrelated except for EHEC strain 46 and aEPEC strain 47 (Table 1),
the latter being a spontaneous stx2-negative laboratory derivative of the former.
The donors and recipients of Stx-encoding phages were selected from our strain
collection to contain strains with related as well as dissimilar pulsed-field gel
electrophoresis (PFGE) patterns. E. coli strain C600(�H19B), which contains
Stx1-converting phage H19B from a clinical EHEC O26:H11 isolate H19 (44),
was described previously (45).

PCR techniques. PCRs were performed in an iCycler (version 1.259; Bio-Rad,
München, Germany) or a Biometra TGradient 96 cycler (Biometra GmbH,
Göttingen, Germany) (46) using reagents from PEQLAB Biotechnologie (Er-
langen, Germany) and primers synthesized by Sigma Genosys (Haverhill, United
Kingdom). stx1, stx2, eae, and bfpA (encoding the structural subunit of bundle-
forming pili) were detected using published protocols (6, 18). The chromosomal
loci that serve as integration sites for Stx-encoding phages in E. coli O157 were
interrogated using primer pairs A-B (yehV) (43), wrbA1-wrbA2 (wrbA) (47),
EC10-EC11 (yecE) (14), and sbcB1-sbcB2 (sbcB) (47). The linkage between yecE
and the integrase gene (int) of stx2-harboring bacteriophage �258320, which
integrates in yecE in E. coli O157 (7), was tested using primers Int-258320 and
EC11 (7). The linkage between wrbA and the int gene of stx2-harboring bacte-
riophage �933W, which integrates in wrbA in E. coli O157:H7 strain EDL933
(35, 37), was investigated using primers WrbA (5�-CGCCATCCACTTTGCTT
G-3�) and Int933W (5�-TATGCTACCGAGGCTTGG-3�); the PCR consisted of
30 cycles of denaturing (94°C, 30 s), annealing (55°C, 1 min), and extension
(72°C, 90 s) followed by a final extension (72°C, 5 min). The specificity of PCR
products was confirmed by analyzing the sequence of representative amplicons as
described below.

PFGE and Southern hybridization. PFGE was performed using the PulseNet
protocol (22) and with XbaI-digested DNA of Salmonella enterica serovar Braen-
derup strain H9812 (22) as a standard. Restriction patterns were analyzed with
BioNumerics, version 4.0 (Applied Maths BVBA, Sint-Martens-Latem, Bel-
gium). XbaI-digested, PFGE-separated genomic DNAs were hybridized with a
digoxigenin-11-dUTP-labeled (DIG High Prime kit; Roche Molecular Biochemi-
cals, Mannheim, Germany) stxA2 probe (7).

MLST. Internal fragments of seven housekeeping genes (adk, fumC, gyrB, icd,
mdh, purA, and recA) were analyzed using a published multilocus sequence
typing (MLST) scheme for E. coli (52), except for a newly designed forward
primer for icd (5�-CCGATTATCCCTTACATTGAAG-3�), which is 79 bp down-
stream of the original primer. Because of optimized proximity to the analyzed
region of icd, the sequence trace quality was substantially higher without any
ambiguous base callings. After purifying the PCR products, we sequenced both
strands in 10 �l containing 0.5 �l premix (ABI Prism BigDye Terminator v3.1
Ready Reaction cycle sequencing kit; Applied Biosystems, Darmstadt, Ger-
many), 1.8 �l 400 mmol/liter Tris-HCl, 10 mmol/liter MgCl2, 10 pmol sequencing
primer, and 2 �l PCR product. Sequencing products were purified (Centri-Sep
spin columns; Princeton Separations, Adelphia, NJ) and analyzed with the ABI
Prism 3100 Avant genetic analyzer (Applied Biosystems) according to the man-
ufacturer’s instructions. The alleles and sequence types (ST) were assigned in
accordance with the E. coli MLST website (http://web.mpiib-berlin.mpg.de/mlst
/dbs/Ecoli).

Induction of Stx-encoding phages and transduction experiments. Stx-encod-
ing bacteriophages were induced using mitomycin C (Sigma-Aldrich, Deisen-
hofen, Germany) (41) from six wild-type EHEC O26 isolates that contained stx1

or stx2 and from strain C600(�H19B) (Table 1). To isolate stx-harboring phages,
sterile filtrates of induced bacterial cultures were subjected to a plaque assay
using E. coli C600 as an indicator (41); plaques were PCR screened for stx1 or stx2

using primer pair KS7-KS8 or LP43-LP44 (18), respectively. stx-harboring phages
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were propagated from single PCR-positive plaques (40). The resulting lysates
contained the phages at titers between 2 � 107 and 3.1 � 108 PFU/ml, as
determined by plaque assay (41). In transduction experiments, 104 PFU of each
phage was mixed with 100 �l of log-phase culture (107 CFU) of each aEPEC O26
recipient or E. coli C600 and 125 �l of 0.1 M CaCl2 solution and incubated for
2 h at 37°C without shaking. The mixtures were then transferred into 4 ml of
Luria-Bertani (LB) broth and incubated at 37°C and 180 rpm for 24 h. The
cultures (100 �l) were then streaked on LB agar, and overnight bacterial growths
that had been harvested into 1 ml of saline were PCR screened for stx1 or stx2.
Tenfold dilutions of PCR-positive cultures were tested for lysogens using an Stx
immunoblot assay (Shiga toxin [verocytotoxin] immunoblot; Sifin, Berlin, Ger-
many). To identify stable lysogens, Stx-producing colonies were subcultured
three times on LB agar, and the presence of stx genes was confirmed by PCR
after the third passage.

Loss of stx in vitro. A single colony of an stx2-positive EHEC O26 strain was
suspended in 50 �l of sterile saline, and 2.5 �l was used to confirm the presence
of stx2 by PCR. Another 5 �l was inoculated into 5 ml of Trypticase soy broth and
incubated overnight at 37°C. Tenfold dilutions of the liquid culture were then
inoculated onto sorbitol MacConkey agar, and after overnight incubation, 30 to
60 colonies from plates with 150 to 200 well-separated colonies were PCR
screened for stx2. The frequency of stx2 loss was expressed as the percent stx2-
negative colonies among the total number of colonies tested.

Stx production. Stx1 and Stx2 production was determined using a commercial
latex agglutination assay (verotoxin-producing E. coli reverse passive latex ag-
glutination; Denka Seiken Co., Tokyo, Japan). Stx cytotoxicity titers were as-
sessed by the Vero cell assay (26).

RESULTS

EHEC and aEPEC O26:H11 strains in consecutive stools
collected from patients. During an outbreak of HUS in Ger-
many in 1999, stools from three infected children contained
EHEC O26:H11 (stx2 positive, eae positive, bfpA negative) in
their initial samples and aEPEC O26:H11 (stx negative, eae
positive, bfpA negative) in follow-up samples. All six isolates
belonged to ST 29 and had similar but not identical PFGE
patterns (Fig. 1, lanes 1 to 6). Specifically, EHEC and aEPEC
isolates from consecutive stools of individual patients differed
by two to five bands; one of these variant bands was always a
550-kb XbaI fragment that contains stx2 in all EHEC isolates
(Fig. 1, lanes 1, 3, and 5) but which is absent from all aEPEC
isolates (Fig. 1, lanes 2, 4, and 6). The similarities in the PFGE
patterns of the consecutive EHEC and aEPEC isolates from
each patient, and the fact that one of the differences was the
presence or absence of the genomic fragment containing stx2,
suggested that aEPEC strains were derived from the EHEC
strains by the loss of stx2 in these patients.

Loss of stx2 in vitro. To test this hypothesis, two EHEC O26
outbreak isolates (strain 50 from patient A and strain 140 from
patient B) were tested for the stability of stx2 in vitro. Both lost
stx2 in each of three independent experiments, with the fre-
quency of the loss ranging from 10 to 14% of colonies tested on
first subculture. The ease with which these EHEC strains lost
stx2 in vitro makes it plausible that stx2 loss might have also
occurred during infection in the human host, giving rise to the
aEPEC O26 strains isolated from the follow-up stools.

Transduction of aEPEC O26 with Stx1- and Stx2-encoding
phages from EHEC O26. To determine if conversion between
EHEC and aEPEC O26 is bidirectional, we investigated the
ability of Stx-encoding phages from EHEC O26 to lysogenize
aEPEC O26. High-titer phage lysates from three EHEC O26:
H11 strains harboring stx2 only, three EHEC O26:H11 strains
harboring stx1 only, and stx1-harboring E. coli strain C600(�H19B)
were used to infect six aEPEC O26:H11 strains and E. coli

C600. Stable lysogens were identified based on their ability to
retain stx genes after three passages on LB agar (Table 1).
Three of the four Stx1-encoding phages lysogenized E. coli
C600, but only phage �H19B formed lysogens with one of the
aEPEC O26 strains. In contrast, each of the three Stx2-encod-
ing phages from EHEC O26 lysogenized, in addition to E. coli
C600, at least two of the six aEPEC O26 recipients. Each of the
aEPEC O26 recipients could be lysogenized with at least one
of the Stx2-encoding phages (Table 1). These phages lysog-
enized aEPEC recipients with PFGE patterns related to those
of the phage donors as well as aEPEC recipients with distant
PFGE patterns. Notably, aEPEC strain 40, from the follow-up
stool specimen of patient A, was lysogenized with an Stx2-
encoding phage from EHEC strain 50, which was isolated from
the initial stool of this patient [lysogen 40(�50)] (Table 1).
Similarly, aEPEC strain 47, an stx-negative laboratory deriva-
tive of EHEC strain 46, could be lysogenized with the Stx2-
encoding phage originating in the parental EHEC O26 strain
46 [lysogen 47(�46)] (Table 1). The rates of transduction of
aEPEC strains with the three different stx2-harboring phages
ranged from 1 � 10�7 to 6 � 10�6 per recipient cell; E. coli
C600 was transduced with each respective phage at a rate that
was approximately 10-fold greater (Table 1). Phage �H19B
transduced aEPEC strain 10 and E. coli C600 at a rate similar
to that of stx2-harboring phages (Table 1).

Stx production by the lysogens. All lysogens from aEPEC
O26 produced Stx1 or Stx2, depending on the donor. More-
over, supernatants of all lysogens were toxic to Vero cells at
dilutions between 1:256 and 1:2,048; the lysogen Stx titers were
comparable to those of the phage donors (1:512 to 1:2,048).
Thus, aEPEC O26:H11 strains can be converted to EHEC

FIG. 1. XbaI-digested genomic DNA from EHEC and aEPEC
O26:H11 strains isolated from initial and follow-up stools, respectively,
of three patients during a HUS outbreak. Lane 1, EHEC O26 (strain
50), patient A; lane 2, aEPEC O26 (strain 40), patient A; lane 3,
EHEC O26 (strain 140), patient B; lane 4, aEPEC O26 (strain 41),
patient B; lane 5, EHEC O26 (strain 141), patient C; lane 6, aEPEC
O26 (strain 42), patient C; lanes S, molecular size standards (S. enterica
serovar Braenderup strain H9812; Centers for Disease Control and
Prevention, Atlanta, GA). XbaI fragments containing stx2 as demon-
strated by hybridization with an stxA2 probe are circled.
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O26:H11 strains that produce active Stx via transduction with
Stx-encoding bacteriophages from EHEC O26:H11.

Genomic positions of stx2 genes in EHEC O26 donors and
lysogens. To compare genomic positions of stx2 genes in the
EHEC donors and lysogens, XbaI-digested, PFGE-separated
DNA was hybridized with an stxA2 probe (Fig. 2). In lysogens
derived from aEPEC strains that had PFGE patterns related to
that of the respective EHEC phage donor (Fig. 2A, lanes 1 to
5 and lanes 8 to 10), stx2 was located on the same XbaI frag-
ment as in EHEC (Fig. 2B, lanes 1, 3, and 5 and lanes 8 and
10). In a lysogen (Fig. 2A, lane 12) derived from an aEPEC
strain (Fig. 2A, lane 11) that differed in PFGE pattern from the
EHEC donor (Fig. 2A, lane 8), the stx2 genomic position (Fig.
2B, lane 12) differed from the one in the donor (Fig. 2B, lane
8). In E. coli C600 transduced with phage �46 [lysogen

C600(�46)] (Fig. 2B, lane 7) or with phage �61 [lysogen
C600(�61)] (Fig. 2B, lane 14), stx2 was on a 260-kb XbaI
fragment. In contrast, E. coli C600 transduced with phage �50
contained stx2 on a 440-kb XbaI fragment (data not shown).
Thus, stx2-harboring phages excised from their integration sites
in the genomes of EHEC O26 donors integrate into the same
locus in the aEPEC O26 transductants, and there are at least
two different integration sites for stx2-harboring phages in the
genomes of EHEC O26 and corresponding lysogens.

Integration sites of Stx2-encoding phages in EHEC O26:
H11. In EHEC O26 strains 46 and 61, yecE was occupied by
foreign DNA (Fig. 3, lanes 4 and 5), but this locus was intact in
an stx2-negative laboratory derivative of strain 46, strain 47
(Fig. 3, lane 8). Moreover, strains 46 and 61 produced an
amplicon of 425 bp in PCR linking yecE with the int gene of

FIG. 2. PFGE (A) and stxA2 hybridization (B) of XbaI-digested genomic DNA from EHEC O26 phage donors, aEPEC O26 recipients, and
lysogens transduced with stx2-harboring bacteriophages from EHEC O26. Lanes 1, EHEC O26 strain 46 (donor of phage �46); lanes 2, aEPEC
O26 strain 47; lanes 3, lysogen 47(�46); lanes 4, aEPEC O26 strain 32; lanes 5, lysogen 32(�46); lanes 6, E. coli strain C600; lanes 7, lysogen
C600(�46); lanes 8, EHEC O26 strain 50 (donor of phage �50); lanes 9, aEPEC O26 strain 40; lanes 10, lysogen 40(�50); lanes 11, aEPEC O26
strain 22; lanes 12, lysogen 22(�50); lanes 13, EHEC O26 strain 61 (donor of phage �61); lanes 14, lysogen C600(�61); lanes S, molecular size
standards (S. enterica serovar Braenderup strain H9812; Centers for Disease Control and Prevention, Atlanta, GA). The XbaI fragments that
hybridized with the stxA2 probe are circled in panel A, and their sizes are given in panel B.

FIG. 3. PCR analyses of phage integration sites in EHEC O26, aEPEC O26, and lysogens. Strains tested, loci examined, and lengths of resulting
amplicons are listed across the top and to the left and right of the rows of amplicons, respectively. stx2-negative laboratory derivatives (LD) 47 and
50-1 fit the definition of aEPEC. Strains EDL933 (stx1- and stx2-harboring phages integrated in yehV and wrbA, respectively) (35, 37), 258/98
(stx2-harboring phage �258320 integrated in yecE) (7), and E. coli K-12 C600 (all the genes investigated as putative phage integration sites intact)
(8) were used as controls. In PCRs targeting yehV, wrbA, yecE, and sbcB, the presence of an amplicon indicates that the locus is intact, whereas
the absence of an amplicon (or a very weak amplicon) indicates that the locus is occupied by foreign DNA. In PCRs connecting yecE with the int
gene of phage �258320 and wrbA with the int gene of phage �933W (rows 6 and 7, respectively), the presence of an amplicon indicates that a phage
with a homologous int gene is integrated in the respective locus; the absence of an amplicon indicates the absence of such a phage.
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�258320 (Fig. 3, lanes 4 and 5), which integrates in yecE (7),
demonstrating that the Stx2-encoding phages in these strains
are integrated in yecE. In contrast, in EHEC strain 50, the
wrbA insertion site was occupied (Fig. 3, lane 6), but wrbA was
intact in its stx2-negative laboratory derivative, strain 50-1 (Fig.
3, lane 7). Strain 50 (Fig. 3, lane 6), but not strain 50-1 (Fig. 3,
lane 7), produced an amplicon of 1,045 bp in PCR linking wrbA
with the int gene of �933W, which integrates in wrbA (35, 37).
The Stx2-encoding phage in EHEC strain 50 is thus integrated
in wrbA.

Integration sites of Stx2-converting phages in lysogens. yecE
and wrbA were intact in all aEPEC strains (Fig. 3, lanes 8 to 13)
and a control E. coli C600 strain (Fig. 3, lane 3). The acquisi-
tion of phage �46 or �61 resulted in occupation of yecE and a
positive signal in PCR linking yecE with int of �258320 in
lysogens arising from aEPEC (Fig. 3, lanes 14 and 15) and
from E. coli C600 (Fig. 3, lanes 16 and 17). In contrast, phage
�50 integrated in wrbA in the aEPEC and E. coli C600 lysogens
(Fig. 3, lanes 18 to 20). Thus, Stx2-encoding phages integrate in
EHEC O26 in more than one locus, including yecE and wrbA.
These loci are intact in aEPEC O26 and represent hot spots for
the integration of such phages into the genomes and the con-
version of aEPEC O26 to EHEC O26.

Impact of loss and gain of Stx-converting bacteriophages on
PFGE patterns. As demonstrated in Fig. 2A, loss and gain of
Stx2-converting phages diversifies PFGE patterns, even in or-
ganisms that are epidemiologically related or are derivatives of
the same isolate.

DISCUSSION

Several non-O157 EHEC serogroups are important causes
of human disease, and the most common of these is O26 (10,
24, 25). We demonstrate that stx2- and stx1-harboring phages
from EHEC O26 can transduce aEPEC O26 strains, convert-
ing them to stable lysogens that produce Stx in amounts com-
parable to that produced by wild-type EHEC O26. Conversely,
EHEC O26 can lose stx genes at appreciable frequencies,
thereby reverting to being aEPEC. EHEC O26 and aEPEC
O26 represent a dynamic system in which bidirectional con-
version yields different pathotypes; Stx-encoding bacterio-
phages are the major elements facilitating this conversion.
Data from in vitro experiments correlate with observations
obtained with patients infected with E. coli O26, in whom we
observed the frequent loss (reference 28 and this study) as well
as gain (though at considerably lower frequencies) (H. Karch,
unpublished data) of stx2 genes.

EHEC O26:H11 and aEPEC O26:H11 belong to a common
phylogenetic group, EHEC 2 (15). It has been hypothesized
that aEPEC O26:H11 is ancestral to the EHEC 2 group (15).
According to this hypothesis, the acquisition by the ancestral
cell of stx genes, the EHEC plasmid, and a high-pathogenicity
island that encodes an iron uptake system gave rise to EHEC
O26:H11 (15). However, aEPEC O26:H11 already possesses a
high-pathogenicity island and the EHEC plasmid (6) and dif-
fers from EHEC O26 most notably by the absence of stx genes
(6). This observation and our data support the concept of
interconversions between aEPEC O26 and EHEC O26 involv-
ing loss as well as gain of Stx-encoding bacteriophages. Such
bidirectional conversion in nature is also evidenced by the fact

that EHEC O26 and aEPEC O26 from different sources have
closely related core genomes (3) and highly conserved house-
keeping genes (39, 52) and share multiple non-Stx virulence
and fitness genes (6). A proposed progenitor of these patho-
genic E. coli O26 strains has yet to be identified.

Loss and acquisition of stx2-harboring bacteriophages in
vitro alter the genomic architecture of E. coli O26, as reflected
by changed PFGE patterns. This observation agrees with pre-
vious findings that the loss of stx genes is associated with
variant PFGE patterns in EHEC O157:H7/NM (7, 17, 30).
These data are also in keeping with the concept that bacterio-
phages are major drivers of genome diversity in E. coli
O157:H7 (31). Therefore, we hypothesize that a diversification
of the genome of the infecting EHEC O26 HUS outbreak
strain via multiple losses and gains of Stx2-converting phages
during human infection accounts for EHEC and aEPEC O26
strains with related, but not identical, PFGE patterns in the
same individual and within the outbreak (Fig. 1). Such a pos-
sibility should be considered when PFGE is applied to epide-
miological investigations of outbreaks caused by E. coli O26. It
is noteworthy that variations in PFGE patterns caused by in-
sertions or deletions of phage-associated DNA fragments have
also been reported for Campylobacter jejuni (4).

The ability of Stx-encoding phages from clinical EHEC O26
and EHEC O157 isolates to transduce E. coli laboratory strain
K-12, commensal E. coli, and EPEC of various origins within
the gastrointestinal tract has been demonstrated in mice (1,
55), sheep (13), and house flies (Musca domestica) (36) in vivo
and in porcine ligated ileal loops (47). These findings support
the hypothesis that interconversion between aEPEC O26 and
EHEC O26 can occur in the human intestine during an infec-
tion. However, conditions favoring lysogenic conversion or loss
in vivo are poorly understood (47, 50, 55) and require further
studies.

The ability of EHEC O26 strains to cause HUS indicates
that such organisms are more virulent than aEPEC strains
lacking the stx gene. If this is true, a change in the pathotype of
the infecting E. coli O26 strain during an infection by the loss
or acquisition of an Stx-encoding bacteriophage might have
clinical implications. For example, using the paradigm that Stx
causes HUS, the loss of an stx gene early in infection, before
Stx is produced, might prevent the development of HUS in the
infected patient. Furthermore, the stx loss by the infecting
EHEC at a later stage in the infection, after Stx has already
bound to the target organs and has injured the microvascula-
ture, could confound diagnostic schemes dependent on toxin
detection. Acquisition of an stx gene by an aEPEC O26 strain
during an infection appears to be possible (Karch, unpub-
lished) but is extremely rare. Therefore, the question of
whether such an event could trigger HUS cannot be answered
at present.

Three integration sites for Stx2-encoding bacteriophages
have been identified in EHEC O157:H7, including wrbA (5, 21,
27, 35, 37, 43), sbcB (32), and yecE (14). This last locus is also
a common integration site for Stx2-encoding phages in sorbi-
tol-fermenting EHEC O157:NM strains (7), as well as an in-
tegration site for phage �P27, which encodes Stx2e in a non-
O157 EHEC strain (38). In this study, we demonstrate for the
first time that yecE is also an integration site for Stx2-encoding
phages in EHEC O26:H11; the other is wrbA. Taken together,
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these data indicate that yecE and wrbA may be common inte-
gration sites for Stx2-encoding bacteriophages in EHEC
strains. These loci were intact in all aEPEC O26:H11 strains
we investigated and thus represent hot spots where stx2-har-
boring phages can enter the genomes of aEPEC O26, convert-
ing them to EHEC.

A remaining question is why all three Stx2-encoding phages,
but only one of four Stx1-encoding phages (phage �H19B),
lysogenized aEPEC O26. In general, the susceptibility of a
wild-type strain to lysogenization by a phage depends on the
presence of the phage receptor, the absence of a highly related
bacteriophage within the host that confers immunity against
the infecting phage, and the availability of a free integration
site for the infecting phage in the genome of the recipient. One
reason why wild-type aEPEC strains were not so easily lysog-
enized by Stx1-encoding phages might be their lack of recep-
tors for such phages or the presence of cryptic prophages that
mediate immunity (11). It is possible that such cryptic or trun-
cated bacteriophages occupy a genomic integration site(s) for
stx1-harboring phages in aEPEC O26, as has been recently
shown in EHEC O157:H7 (5, 43). Although the integration site
for stx1-harboring phages in EHEC O26 is unknown, it is note-
worthy that in two of the six aEPEC recipients we examined,
yehV, an integration site for stx1-harboring phages in EHEC
O157:H7 (5, 35, 53), was already occupied by DNA of un-
known origin. Future studies should examine the factors pro-
moting transduction of aEPEC O26 by Stx1-converting phages
from EHEC O26 and determine the nature of the phage inte-
gration site(s).
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Karch, T. Breuer, H. Tschäpe, and A. Ammon. 2002. A multistate outbreak
of Shiga toxin-producing Escherichia coli O26:H11 infections in Germany,
detected by molecular subtyping surveillance. J. Infect. Dis. 186:419–422.

52. Wirth, T., D. Falush, R. Lan, F. Colles, P. Mensa, L. H. Wieler, H. Karch,
P. R. Reeves, M. C. Maiden, H. Ochman, and M. Achtman. 2006. Sex and
virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol.
60:1136–1151.

53. Yokoyama, K., K. Makino, Y. Kubota, M. Watanabe, S. Kimura, C. H.
Yutsudo, K. Kurokawa, K. Ishii, M. Hattori, I. Tatsuno, H. Abe, M. Yoh, T.
Iida, M. Ohnishi, T. Hayashi, T. Yasunaga, T. Honda, C. Sasakawa, and H.
Shinagawa. 2000. Complete nucleotide sequence of the prophage VT1-Sakai
carrying the Shiga toxin 1 genes of the enterohemorrhagic Escherichia coli
O157:H7 strain derived from the Sakai outbreak. Gene 258:127–139.

54. Zhang, W.-L., M. Bielaszewska, A. Liesegang, H. Tschäpe, H. Schmidt, M.
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