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Abstract
The Par‑1 protein kinases are conserved from yeast to man and belong to a subfamily 

of kinases that includes the energy sensor and metabolic regulator, AMPK. Par‑1 is 
regulated by LKB1 and atypical PKC and has been shown in multiple organisms and cell 
types to be critical for regulation of cellular polarity. Recent studies using knockout mice 
have revealed several surprising physiological functions for Par‑1b/MARK2/EMK1. Our 
recent study shows that Par‑1b regulates metabolic rate, adiposity and insulin sensitivity. 
This is the first study to implicate these kinases in metabolic functions akin to those previ‑
ously defined for AMPK. Conversely, another series of recent publications now implicate 
AMPK in regulation of polarity. Here we discuss the metabolic phenotype seen in Par‑1b 
deficient mice and the synthesis of several findings that link Par‑1 and AMPK to a degree 
that has not been previously appreciated.

Introduction
The prototypical Par‑1 kinase was identified in a seminal study published in 1988 

designed to identify regulators of early embryonic polarity in C. elegans.1 A series of	
subsequent studies by numerous groups demonstrated that Par‑1, a serine/threonine 
protein kinase, is one of several evolutionarily conserved proteins (Par‑1, Par‑3/ASIP, 
Par‑4/LKB1, Par‑5/14‑3‑3, Par‑6 and atypical PKC/PKC‑3) required for cellular polarity 
not only in worms but also in flies, frogs and mammals.2‑16 This body of work has been 
reviewed elsewhere.17‑20 Studies done in the context of cellular polarity demonstrated that 
Par‑1 mediates at least some of its effects by phosphorylating Par‑3 and the microtubule 
associated protein Tau.21‑25 Numerous other potential Par‑1 substrates have been identified 
including Cdc25C, KSR, Pkp2, Class II HDAC, Dlg and Rab11‑FIP.26‑32 Interestingly, 
phosphorylation of several Par‑1 substrates leads to the generation of phospho‑dependent 
14‑3‑3 binding. Par‑1 substrates that fall into this category include Par‑3, Cdc25C, 
KSR, Pkp2 and Class II HDAC. Both LKB1 (also known as Par‑4) and atypical PKCl/i	
(or PKC‑3 in C. elegans) regulate Par‑1. LKB1 phosphorylates Par‑1 and the related AMP 
activated kinase AMPK on an activation loop Thr residue. This modification is required 
for Par‑1 activity.33,34 LKB1 serves as a master regulator of cellular polarity, at least in part, 
by activating the Par‑1 kinases.16 Atypical PKC (aPKC) phosphorylates Par‑1 to regulate 
its localization and kinase activity.35‑37 TAO‑1/MARKK and GSK‑3b have also been 
implicated as upstream regulators of Par‑1.38,39

Metabolic Functions of Par‑1b/MARK2/EMK
Physiological functions of the mammalian Par‑1 kinases have been revealed using 

targeted gene knockout approaches in mice. The mammalian Par‑1 family is comprised of 
four members that go by several names (Par‑1a/MARK3/C‑TAK1, Par‑1b/MARK2/EMK, 
Par‑1c/MARK1 and Par‑1d). Four studies have been published using two independently 
derived mouse lines null for Par‑1b/MARK2/EMK.40‑43 These studies implicate Par‑1b 
in a diverse set of physiological processes, including fertility, immune system homeostasis, 
learning and memory and growth and metabolism.

Our most recent study identifies a role for Par‑1b in the regulation of metabolism.43 
Par‑1b null mice are growth retarded (~20% reduced body mass relative to wild‑type) as 
early as E13.5 and this growth retardation continues throughout the lifetime of Par‑1b 
null mice.43 Our results and those of Bessone et al. (1999) showing decreased serum 
IGF‑1 levels in Par‑1b null mice, provide a reasonable explanation for the observed	
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pre- and post‑natal growth retardation. Although a growth hormone 
deficiency might explain postnatal growth differences, there is 
no evidence for a role of growth hormone (GH) in mammalian 
embryonic growth, suggesting that Par‑1b deficiency leads to 
GH‑independent growth defects. Although accurate determination 
of GH production is technically difficult, neither our study nor that 
of Bessone et al. (1999) detected altered serum GH levels in Par‑1b 
null mice.

Morphometric analyses of Par‑1b null mice revealed that although 
most tissues are proportionately smaller, knockout mice accumulate 
disproportionate decreases in adipose tissue (representing ~14% body 
fat in null mice versus ~23% in wild‑type mice at twelve weeks of 
age). This differential is slightly increased with age (18% body fat 
in null mice versus 35% fat in wild‑type mice at one year of age,	
n = 10 females per genotype, p = 0.002) (unpublished data). In 
addition to having reduced adiposity, Par‑1b null mice are resistant	
to weight gain when placed on a high fat diet and are at the same 
time hyperphagic, eating twice that of their wild‑type littermates. A 
likely explanation for these observations is the finding that Par‑1b 
null mice are hypermetabolic. Thus, resistance to weight gain due to 
high fat diet or increased caloric intake is due to increased metabolic 
rate. Although the molecular mechanism for these metabolic changes 
is not clear, the data indicates that loss of Par‑1b either directly 
or indirectly increases mitochondrial function in adipose tissue. 
Intriguingly, these perturbations are also accompanied by insulin 
hypersensitivity and improved glucose tolerance—possibly the result 
of compensatory changes that arise due to a chronic hypermetabolic 
state. Analysis of the relative levels of glucose uptake in muscle and 
fat indicates that adipose tissue is most dramatically affected in the 
absence of Par‑1b. White and brown fat of Par‑1b null mice exhibit 
increased glucose uptake in both basal and insulin‑stimulated states.

Another possible explanation for enhanced insulin sensitivity and 
glucose uptake in Par‑1b null adipose tissue is that Par‑1b regulates 
GLUT4‑mediated glucose uptake. Par‑3/ASIP studies in 3T3L1 
cells indicate that this protein (a downstream target of Par‑1) can 
inhibit insulin induced glucose uptake44 aPKC, a negative regulator 
of Par‑1, has been shown to regulate insulin triggered glucose uptake 
in multiple studies.44,45 It is unclear at this point how Par‑3/ASIP 
or aPKC act to regulate glucose uptake. It is conceivable that aPKC 
influences glucose uptake via regulation of Par‑1. Par‑1 has also 
been implicated in the regulation of vesicular trafficking via the 
exocyst, which in turn has been shown to play a critical role in the 
transport of insulin‑responsive Glut4 vesicles.46‑48 Regulation of 
Rab11‑mediated functions might provide a mechanistic explanation 
for this model.32,49 Thus, Par‑1 may be involved in GLUT4‑mediated 
glucose uptake via a mechanism(s) that involves Par‑3, aPKC and/or 
the exocyst.

An argument against a direct role for Par‑1b in early signaling 
events that control Glut4‑mediated glucose uptake is our finding that 
insulin receptor proximal signaling (IRS‑1 and AKT phosphoryla-
tion, phosphatidylinositol 3‑kinase recruitment) is slightly decreased 
in adipose tissue from Par‑1b null mice. Furthermore, Zhou et al.	
(2004) reported that knockdown of Par‑1a and/or Par‑1b in 
3T3L1 cells by siRNA‑treatment, has no effect on basal‑ or insulin‑	
stimulated glucose uptake.50 If knockdown was sufficient to block 
the function of both Par‑1a and Par‑1b in the 3T3L1 system and if 
there is not compensation by the other two Par‑1 family members, 
then this data provides an argument against a direct role for Par‑1 in 
Glut4‑mediated glucose uptake. Even if Par‑1 regulates the activity 
of Glut4 downstream of AKT, this function would not completely 

explain our observation of hypermetabolism and reduced adiposity 
in the Par‑1b null mice because adipose‑specific overexpression 
of Glut4 alone leads to enhanced glucose uptake in combination 
with increased adiposity (not decreased adiposity as observed in 
Par‑1b deficiency).51‑53 Future studies using tissue‑specific deletion 
of Par‑1b in adipose tissue will elucidate the contribution made by 
adipose tissue to these phenotypes.

There is also a significant body of literature describing a role for 
Par‑1 in neuronal cell polarity.31,54‑56 Several interesting possibilities, 
including regulation of the hypothalamic‑pituitary‑adrenergic axis of 
the neuronal system by Par‑1b, might explain the observed metabolic	
changes in Par‑1b null mice.57 Again, tissue‑specific deletion of 
Par‑1b in the nervous system should clarify how this compartment 
contributes to the observed phenotypes.

AMPK and PAR‑1: Partners in Polarity and Metabolism?
Based on sequence similarities (50% identity across their 

kinase domains), AMPK and Par‑1 are closely related members 
of a subfamily that also includes BRSK1/2, QIK and SIK.58 
Conservation of the kinase domains of these proteins suggests similar	
phosphorylation‑site preferences. Alignment of several known 
substrates indicates that Par‑1 and AMPK prefer to phoshorylate a 
serine residue when Leu/Ile/Met, Arg/Lys, and Leu are present in the 
‑5, ‑3 and +4 positions, respectively (Fig. 1). In addition to sharing 
a common consensus phosphorylation motif, both AMPK and Par‑1 
family members are activated by LKB1.34 Interestingly, recent studies 
indicate that Par‑1b and AMPK have overlapping functions in vivo. 
As mentioned above, Par‑1 has historically been associated with	
regulating polarity, while AMPK has been studied for many years 
in the context of energy sensing and metabolism. The metabolic 

Figure 1. Par‑1 and AMPK substrates share a common phosphorylation 
consensus sequence. Sequences inclusive of and surrounding the phosphory‑
lation site of several Par‑1 and AMPK substrates are aligned. Phosphorylated 
serine residues are highlighted in blue and preferred residues in the ‑5, ‑3 
and +4 positions are highlighted in yellow. h, human; d, Drosophila; KSR, 
kinase suppressor of Ras; PKP2, Plakophilin, ACC1, acetyl CoA carboxylase; 
TORC2, transducer of regulated cAMP response element‑binding protein 
(CREB); PFK2, phospho‑fructo‑kinase; TSC2, tuberous sclerosis; GS, glycogen 
synthase; NOS, nitric oxide synthase; HMG‑CoA, 3‑hydroxy‑3‑methylglutaryl‑ 
coenzyme A reductase.
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functions of AMPK have been well‑reviewed elsewhere.59,60 These 
functions include inhibition of fatty acid, glycogen and protein 
synthesis and activation of glucose uptake (in skeletal muscle) and 
glycolysis in response to cellular energy stress (increased AMP levels). 
Our study now elucidates a role for Par‑1b in metabolic regulation, 
potentially via an adipose- and/or a neuronal‑specific mechanism(s). 
At the same time, four recent studies have uncovered a role for AMPK 
in the regulation of polarity.61‑64 It is therefore tempting to speculate 
that Par‑1 and AMPK share either a common and/or complementary 
set of substrates that act to regulate similar biological processes.

Concluding Remarks
Recent studies using Par‑1b null mice demonstrate that mammalian	

Par‑1b/MARK2 is required for multiple physiological processes that 
could not have been predicted from previous studies conducted 
in vitro. Our recent work indicates that Par‑1b is important for 
metabolic regulation, and in particular, adiposity. Perhaps not 
surprising, a combination of studies has now drawn several parallels 
between substrate specificities, upstream regulators and physiological	
functions of Par‑1 and AMPK. Although their kinase domains are 
clearly related in sequence, the notion that the functions of Par‑1 
and AMPK in polarity and metabolism, respectively, might be over-
lapping, was not predicted. Many exciting questions remain to be 
answered, including the identification of downstream substrates and 
upstream regulators of Par‑1 and AMPK with respect to their newly 
defined functions as well as the identification of tissues that are 
relevant to the observed metabolic defects in Par‑1b null mice.
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