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Chromosomes in PTEN deficient cells display both numerical 
as well as structural alterations including regional amplification. 
We found that PTEN deficient cells displayed a normal DNA 
damage response (DDR) as evidenced by the ionizing radiation 
(IR)-induced phosphorylation of Ataxia Telangiectasia Mutated 
(ATM) as well as its effectors. PTEN deficient cells also had no 
defect in Rad51 expression or DNA damage repair kinetics post 
irradiation. In contrast, caffeine treatment specifically increased 
IR-induced chromosome aberrations and mitotic index only in 
cells with PTEN, and not in cells deficient for PTEN, suggesting 
that their checkpoints were defective. Furthermore, PTEN-
deficient cells were unable to maintain active spindle checkpoint 
after taxol treatment. Genomic instability in PTEN deficient 
cells could not be attributed to lack of PTEN at centromeres, 
since no interaction was detected between centromeric DNA 
and PTEN in wild type cells. These results indicate that PTEN 
deficiency alters multiple cell cycle checkpoints possibly leaving 
less time for DNA damage repair and/or chromosome segrega-
tion as evidenced by the increased structural as well as numerical 
alterations seen in PTEN deficient cells.

Introduction

The PTEN (phosphatase and tensin homolog deleted on 
chromosome 10) gene encodes a major plasma membrane lipid 
phosphatase that functions in the phosphoinositide 3-kinase 
(PI3-K) signaling cascade and is often lost in various human 
cancers. Since loss of PTEN leads to PI3-K/AKT cascade activation 
as well as stimulating cell growth and proliferation,1,2 this suggests 
loss of PTEN alters cell cycle kinetics due to cell cycle checkpoints 

failure. However, additional evidence is suggestive of other PTEN 
functions that are unrelated to PI3-K/AKT signaling.

The genomic instability observed in most cancers could be 
due to impairment of DNA damage checkpoint pathways or 
defective DNA damage repair or a combination of both. DNA 
double-strand breaks (DSBs) lead to chromosomal fragmenta-
tion and genomic rearrangements if not repaired in an accurate 
and timely manner. In mammalian cells, DSBs trigger a signaling 
response from the ATM pathway, initiating the nonhomolo-
gous end joining (NHEJ) or homologous recombination (HR) 
repair mechanisms. Cells deficient in PTEN function have been 
reported to have frequent structural as well as numerical chromo-
some alterations. Whether the chromosomal aberrations observed 
in PTEN deficient cells are due to defective pathways of DNA 
DSB repair is not clear. Previously we reported that Pten-/- mouse 
cells display a partially defective checkpoint in response to IR 
exposure due to lack of dephosphorylation of CHK1 at serine 
280.3 Primary breast carcinomas lacking PTEN expression have 
elevated AKT phosphorylation, increased cytoplasmic CHK1 and 
chromosomal aberrations.3 We also reported that loss of PTEN 
and subsequent activation of AKT impairs CHK1 through phos-
phorylation, ubiquitination and reduced nuclear localization.3 
Consistent with the genomic instability phenotype in Pten-/- cells, 
Shen and coworkers reported that cells deficient in PTEN have 
defective DNA DSB repair, possibly due to lack of or down-
regulation of Rad51 and lack of PTEN at centromeres.4 Here we 
report that PTEN deficient cells express Rad51 and have a normal 
DNA damage response. However, PTEN deficiency not only 
eliminates S or G2 checkpoints, but also eliminates the mitotic 
checkpoint response to spindle damage. We also did not observe 
an interaction between PTEN and centromeric proteins or DNA. 
Thus impairment of S and G2-phase checkpoints as well as the 
mitotic checkpoint in PTEN deficient cells is the primary cause 
of the observed chromosomal aberrations including regional 
chromosome amplification.
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Results

DNA damage response is independent of PTEN status. 
Unstressed cells contain inactive ATM in a dimer or higher-order 
multimer form.22 Several studies have suggested that chromatin 
alterations trigger rapid autophosphorylation of human ATM 
at Ser1981 (mouse Ser 1987), which causes dimer dissociation 
and initiates cellular ATM kinase activity.7,22 Recent studies have 
suggested that PTEN is associated with chromatin and that loss of 
PTEN results in decreased Rad51 expression and genomic insta-
bility. Since alterations in chromatin structure are associated with 
ATM activation, we determined whether cells with and without 
PTEN show any difference in spontaneous as well as IR-induced 
ATM autophosphorylation. No differences in spontaneous as well 
as IR-induced ATM activation was found between cells with and 
without PTEN, suggesting that PTEN does not have any effect 
on chromatin structure following irradiation that could influence 

DNA damage signaling (Fig. 1A). Although PTEN has no role in 
ATM activation, it is possible that PTEN may be important in the 
function of down stream repair proteins.

Based on the fact that PTEN deficient cells have higher 
genomic instability, it is possible that PTEN may modify chro-
matin structure and thus influence the repair of DNA DSB.4 A 
direct connection between chromatin alteration and ATM was 
made when the transcriptional corepressor Kruppel-associated box 
(KRAB)-associated protein (KAP)-1 was identified as an ATM 
substrate, being robustly phosphorylated at S824 upon DNA 
damage and causing transient chromatin relaxation.23 Since heat 
shock is known to induce chromatin alterations, a trigger to ATM 
autophosphorylation,12 we determined the influence of PTEN 
on heat shock or IR-induced KAP-1 phosphorylation. Cells were 
either heated at 43°C for different periods or irradiated or first 
heated then irradiated and examined for KAP-1 phosphoryla-
tion. No difference in heat or IR or heat + IR induced KAP-1 

Genome instability in PTEN deficient cells

Figure 1. Effect of PTEN on ATM autophophorylation and its downstream effectors. (A) Exponentially growing MEF cells with and without PTEN were 
irradiated with 2 Gy and examined for ATM 1987S-P using specific antibody by western blot analysis. (B) MEFs were either heated at 43°C or irradi-
ated with 2 Gy or heated first and then irradiated with 2 Gy and then examined at different periods of treatment for and KAP1 phosphorylation using 
specific antibody by western blot analysis. Lane 1: control; lane 2: heat shock for 30 min; lane 3: heat shock for 60 min; lane 4: heat shock for 30 min 
and recovery for 30 min at 37°C; lane 5: heat shock for 30 min and recovery for 60 min; lane 6: irradiation and recovery for 5 min; lane 7: irradiation 
followed by recovery for 30 min; lane 8: irradiation followed by recovery for 60 min; and lane 9: heat shock for 30 min followed by irradiation with 2 
Gy and then recovery for 30 min postirradiation. (C) MEFs with and without PTEN were irradiated with different doses of IR and examined for γ-H2AX 
foci after 60 min of post irradiation. (D) MEFs treated with 1 Gy and then examined for γ-H2AX foci at different periods of post irradiation. (E) MCF7 
cells with and without reduced levels of PTEN after 52 h of transfection with PTEN-siRNA were treated with 1 Gy and then examined for γ-H2AX foci at 
different periods of post irradiation. (F) MEFs treated with 1 Gy and then examined for 53BP1 foci at different periods of post irradiation.
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in PTEN-deficient cells.4 We found, however, that PTEN defi-
cient cells did not show loss of Rad51 expression (Fig. 2A and 
Suppl. Fig. 2) and had normal IR-induced Rad51 foci formation  
(Fig. 2B). We did observe, however, that western blot detection 
of Rad51 in different cell types could be antibody dependent (see 
Fig. 2A, last 2 lanes). Based on these results, we next determined 
directly whether PTEN influences homology-directed repair. 
Repair was measured by examining the reconstitution frequency 
of a GFP reporter gene (pDR-GFP) within a chromosomally inte-
grated plasmid substrate in MCF7 cells with normal or reduced 
levels of PTEN (Fig. 2C) as described previously.5 Following I-SceI 
transfection to induce the site specific DSBs, both control and 
PTEN siRNA transfected cells containing the pDR-GFP substrate 
demonstrated a comparable increase (>80-fold) in the number of 
GFP-positive cells over cells without I-SecI transfection (Fig. 2D), 
providing evidence that PTEN deficiency does not affect the HR 
pathway for DNA DSB repair.

PTEN-deficient cells were frequently observed to have small 
chromatin fragments in the form of circular chromosomes as well 
as amplified chromosomal regions with multiple centromeres 
(Fig. 3A). Similar chromosomal aberrations have been linked with 
aberrant DNA amplification, which may or may not be due to 
defective DNA repair. To determine whether PTEN deficiency 
influences sister chromatid exchanges (SCEs), which occur during 
S-phase and correlate with recombinational repair specifically, cells 
with and without PTEN were examined for the frequency of SCEs 
observed at metaphase using the conventional fluorescent plus 
giemsa technique.16 No significant difference in the frequency of 
SCEs was found between cells with and without PTEN (data not 
shown) reinforcing the notion that recombinational repair is not 
affected by loss of PTEN.

Amplification of chromosome regions in Pten null cells. Post 
DNA replication, the two telomeres at the end of a duplicated 
chromosome can recombine, which can be visualized in metaphase 
chromosomes by Chromosome Orientation Fluorescent In Situ 
Hybridization (CO-FISH) as described previously.35 Telomere 
sister chromatid exchanges are an indication of relaxed control 
of DNA repair at telomeres but also constitute a potential threat 
to telomere function because unequal exchanges will elongate 
one sister telomere at the expense of another. Since PTEN defi-
cient cells show amplified chromosome fragments with multiple 
telomere bands (Fig. 3A, part c), we first established whether 
telomere length is affected by inactivation of PTEN and found 
that there is a modest heterogeneity in telomere size in cells lacking 
PTEN (Suppl. Fig. 3). We then determined whether telomere 
amplification occurs due to chromosome region specific defec-
tive recombination. This was achieved by performing CO-FISH, 
which involves incorporation of BrdU/BrdC during one round of 
DNA replication, in order to destroy newly synthesized telomeric 
G- and C-rich strands by photolysis and exonuclease digestion. 
The parental strands were detected with differentially labeled 
probes for the C- and G-rich telomeric strands (Fig. 3A). PTEN 
deficiency did not result in telomere specific sister chromatid 
exchanges, indicating PTEN deficiency has no effect on telomere 
or global sister chromatid exchange repair processes.

phosphorylation was found between Pten+/+ and Pten-/- MEF cells, 
suggesting that Pten has a minimal role in damage induced chro-
matin modifications (Fig. 1B). We further determined whether 
the heat shock response was intact in Pten-/- cells and found no 
difference in HSP70 response irrespective of PTEN status (Suppl. 
Fig. 1).

Although PTEN deficient cells show normal IR-induced ATM 
and KAP1 phosphorylation it is possible that PTEN inactivation 
may influence other DNA damage response (DDR) components 
that could account for the higher frequency of chromosomal aber-
rations observed in PTEN null cells.3,4 One of the early events 
in the DDR is H2AX phosphorylation, which is associated with 
the formation of nuclear foci containing factors that are essen-
tial for DNA repair, replication and cell cycle regulation.24-26 
H2AX phosphorylation coincides with sites of DSBs, irrespec-
tive of their origin27-31 and is critical for protecting the genome 
from spontaneous DSBs, as well as those induced by IR or V(D)
J recombination.32,33 We examined whether PTEN deficiency 
influenced the appearance of IR-induced γ-H2AX foci. Cells with 
and without PTEN treated with increasing doses of IR displayed 
similar frequency of cells with γ-H2AX foci (Fig. 1C). As reported 
previously,4 PTEN deficient mouse cells have slightly higher base 
line γ-H2AX foci per cell as compared to control cells with PTEN 
(Fig. 1C). To determine whether there is a difference in the forma-
tion and disappearance of IR-induced γ-H2AX foci in PTEN null 
and wild type cells, exponentially growing cells were exposed to 1 
Gy of IR and monitored for γ-H2AX foci formation/disappear-
ance at various time points post irradiation (Fig. 1D). The kinetics 
of γ-H2AX foci appearance was almost identical in cells with and 
without PTEN. However, mouse as well as human PTEN defi-
cient cells did show slightly higher residual γ-H2AX foci six hr 
post-irradiation (Fig. 1D and E). There are multiple possibilities 
for having higher residual γ-H2AX foci in PTEN deficient cells, 
e.g., (1) defective DNA DSB repair and/or (2) defective cell cycle 
checkpoints.

The 53BP1 protein becomes progressively, yet transiently, 
immobilized on chromatin adjacent to DSB within minutes of 
DNA damage34 and is a major component of the genome surveil-
lance network activated by DNA DSB. To test whether PTEN 
deficiency influences IR-induced 53BP1 foci formation, cells with 
and without PTEN were treated with 2 Gy and 53BP1 foci were 
detected by immunofluorescence (Fig. 1F). Again, while cells defi-
cient for PTEN had higher basal level 53BP1 foci, irradiated cells 
with and without PTEN showed similar kinetics of 53BP1 foci 
appearance and disappearance.

Rad51 levels and IR-induced Rad51 foci formation in cells with 
and without PTEN. The role of PTEN’s lipid phosphatase activity 
as a negative regulator of the cytoplasmic phosphatidylinositol-3-
kinase (PI3K)/Akt pathway is well known. Recent studies support 
its role in regulating cellular pathways in other compartments 
of the cell, specifically in maintaining genomic stability through 
transcriptional regulation of RAD51.4 It has been postulated that 
the increased genomic instability seen in PTEN-deficient cells is 
due to defective Rad51-mediated recombinational repair of DNA 
damage since Rad51 levels were shown to be markedly reduced 



www.landesbioscience.com Cell Cycle 2201

Genome instability in PTEN deficient cells

Cells with and without PTEN did not display any new arc of telo-
meric DNA as did cells used as positive control, which produced 
a new arc of telomeric DNA, whose migration was consistent with 
that of relaxed, double-stranded circles (Fig. 3B). The absence of 
arcs in cells with and without PTEN suggests that lack of PTEN 
does not alter HR repair even at the telomeric regions.

Mouse cells deficient for PTEN show frequent breaks near 
centromere regions that have been attributed to the absence of 
PTEN in the centromere regions.4 PTEN deficient cells also show 
frequent chromosome fragments with and without amplified 
centromeres. We analyzed by immunostaining whether PTEN 
colocalizes with the centromere protein CENPC using various 
PTEN antibodies available from different sources and could 
not detect nuclear PTEN in most normal cells (Fig. 4A). This 
staining was specific as signal was abolished in PTEN-deficient 
cells. However, upon DNA damage, PTEN was found to show 
some nuclear staining, however, CENPC, as expected, was always 
found in the nucleus of both primary as well as immortalized cell 

PTEN deficient cells also contained chromosome fragments 
with multiple centromeres (Fig. 3A, part c), that lacked detectable 
telomeric signals. These structures can be the result of abnormal 
DNA replication, which can result in the development of chro-
mosome fragments with either single or multiple centromeres as 
observed in PTEN deficient cells. The CO-FISH studies, however, 
did not suggest any aberrant telomere specific sister chromatid 
exchanges (Fig. 3A, parts e–i), supporting the argument that 
homology directed repair is intact in PTEN deficient cells. Since 
CO-FISH has limited sensitivity for detecting telomere specific 
sister chromatid exchanges, a biochemical assay was utilized to 
determine if there are any differences in homology directed repair 
between cells with and without PTEN.

Homologous recombination activity at the telomeres was deter-
mined by analyzing T-loop-sized circular DNAs in cells with and 
without PTEN. This was achieved by analyzing telomeric DNA 
using neutral-neutral 2D gel electrophoresis, which separates 
telomeric restriction fragments first by size and then by shape.20,21 

Figure 2. Rad51 expression and HR repair in cells with and without reduced PTEN levels. (A) Different human, MEF (Pten 1) and ES (Pten 2) cells with 
and without PTEN were examined for Rad51 expression by western blot using anti-Rad51 antibody from different sources. PTEN deficient cells have 
constitutively activated AKT as determined by the phosphorylation status using p-AKT s473 specific antibody. (B) MEFs with and without PTEN were 
irradiated with 5 Gy and examined for Rad51 foci after three hr of post irradiation. (C) Knockdown of PTEN by PTEN specific siRNA in MCF7 cells. 
(D) PTEN knockdown does not influences HR. Normal I-SceI-induced HR in PTEN-deficient MCF-7 cells was found. HR was measured by dual-color flow 
cytometric detection of GFP-positive cells. HR frequencies are shown with (+) or without (-) I-SceI induction for untreated cells, for cells treated with control 
siRNA, and for cells treated with PTEN-specific siRNA. PTEN-deficient cells did not show reductions in HR. The knockdown of BRCA1 by BRCA1 siRNA 
in MCF-7 cells has been described previously.5 The results presented are the mean and standard error from three independent experiments.
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were prelabeled with [14C] dThd, irradiated with doses from 0 to 
50 Gy, and analyzed immediately for DNA DSBs using the neutral 
DNA DSB assay. As shown in Figure 5A, Pten-/- cells showed 
similar levels of initial DNA damage to Pten+/+ cells. Similar results 
were obtained when exponentially growing Pten-/- and Pten+/+ 
MEF cells or MCF cells with reduced PTEN levels were irradiated 
with a dose of 20 Gy, and analyzed immediately for DNA DSBs 
by pulsed field gel electrophoresis (Fig. 5B and C). Thus, no effect 
of PTEN on IR-induced initial DNA damage was observed in 
multiple different assays. We further examined the influence of 
PTEN on DNA DSB repair after IR exposure. Cells were irradi-
ated with 20 Gy and, allowed to repair for 90 min or 180 min 
before unrepaired DNA DSBs were measured by PFGE (Fig. 5B 
and C). No difference in residual DNA damage was observed at 
90 min post irradiation in cells with and without PTEN. Similar 
results were observed when cells were enriched in G1-, S- or G2/M-
phases of the cell cycle by centrifugal elutriation and DNA DSB 
repair measured for up to 120 min post-irradiation, suggesting 
PTEN does not play a role in DNA DSB repair (Fig. 5D). These 

lines (Fig. 4B, data not shown). Furthermore, we analyzed the 
interaction of PTEN with centromeric DNA in human as well 
as mouse cells by chromatin immunoprecipitation and could not 
detect an interaction between centromeric DNA and PTEN (Fig. 
4C and D), whereas CENPC was always found to interact with 
centromeric DNA, suggesting PTEN may have an indirect role 
in fragmentation of chromosomes near centromeres and/or subse-
quent centromeric amplification.

DNA DSB repair kinetics in cells with and without PTEN. 
The results described above do not support the idea that PTEN 
deficient cells have defective recombinational repair of DNA 
damage, however, the increased genomic instability seen in PTEN 
null cells could result from defective DNA end ligation. Most 
cells with DNA repair factor defects demonstrate slow repair 
kinetics and/or a higher level of residual DNA DSBs at 120 min 
post irradiation.36,37 Therefore, we directly determined whether 
PTEN deficient cells exhibit increased levels of initial DNA DSBs 
compared to normal cells since this might be an important factor 
in determining cellular sensitivity.38,39 Exponentially growing cells 

Figure 3. PTEN deficient MEF cells have normal recombination at the telomeres. (A) Telomere strand specific orientation analysis at metaphase. Cells 
with (Part a) and without (Part b) PTEN showing strand specific telomere FISH performed as described in the material and methods. PTEN deficient have 
amplified chromosome regions as indicated by the arrow (Part c) and chromosome fragments (Part d). The opposite orientation of the telomere strands 
FISH of the large chromosomes of cells with (Part e) and without PTEN (Part f), however opposite to this orientation (Part g) was observed in cells with 
and without PTEN. Small chromosomes also showed similar orientation of telomere stands in cells with (Part h) and without (Part i) PTEN as detected 
at high magnification. (B) Pten-deficiency does not induce telomeric circles. Genomic DNA from Pten+/+ or Pten-/- MEFs was separated by size (1D) 
and then shape (2D), blotted, and probed for telomeric DNA. Circular telomeric DNA was not detected in these cells. U2OS cells (ALT cells) were as a 
positive control. The 2D gels showed the elevated levels of circular telomeric DNA from U2OS cells.
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dicentrics. To determine G1-type chromosome damage, cells were 
treated with 3 Gy and replated 18 h after irradiation, and aber-
rations were scored at metaphase as previously described.5,6 No 
difference in residual IR-induced G1 chromosomal aberrations 
was seen in metaphase Pten-/- and Pten+/+ cells (Fig. 6A, part a). To 
determine S-phase-specific chromosome aberrations, we first deter-
mined the time needed for S-phase cells to reach metaphase after 
IR exposure. Exponentially growing cells were labeled with BrdU 
for 30 min as previously described5 and then irradiated with 2 Gy. 
Anti-BrdU immunostaining was performed to determine when 
metaphase chromosomes contained BrdU. In these experiments, 
BrdU-labeled metaphases appeared approximately 3 h post-irradi-
ation (data not shown). The IR dose for analyzing S-phase specific 
aberrations was selected to produce a level similar to the G1-type of 
chromosomal aberration induced by IR. Thus, Pten-/- and Pten+/+ 
cells were treated with 2 Gy of IR and metaphases were collected 
4 to 5 h post-irradiation. Pten-/- cells thus treated displayed higher 
frequencies of metaphases with chromatid and chromosomal aber-
rations after IR exposure compared to Pten+/+ cells (Fig. 6B, part a). 

results do not support the model that the increased chromosomal 
aberrations observed in PTEN-deficient cells are due to a defective 
DNA DSB repair process. Although PTEN deficient cells did not 
display any difference in the repair kinetics or levels of residual 
DNA DSB, they did have a modest increase in post irradiation cell 
survival (Suppl. Fig. 4).

We next considered the possibility that the higher levels of chro-
mosome aberrations observed in PTEN deficient cells at metaphase 
might be due to the loss of cell cycle checkpoints. One way to test 
this notion is to compare cell cycle stage-specific chromosomal 
aberrations in Pten+/+ and Pten-/- cells. Cell cycle phase-specific 
chromosome aberrations were ascertained based on the frequency 
of chromosomal and chromatid-type aberrations observed at meta-
phase as described previously.5 G1-specific aberrations detected at 
metaphase are mostly of the chromosomal type (dicentric with 
acentric fragment), with a few involving chromatids. S-type aber-
rations detected at metaphase are both chromosome as well as 
chromatid type and G2-type aberrations detected at metaphase 
are predominantly the chromatid type with the least number of 

Figure 4. Localization and interaction of PTEN centromeric DNA. (A) PTEN and CENPC immunostaining in three different cell types (Parts A–C). (B) Cells 
were treated with hydrogen peroxide and examined for the PTEN and CENPC: (Part A) control, (Parts B and C) treated and examined for PTEN and 
CENPC after 1 h (Part B) and 6 h (Part C). (C and D) DNA coimmunoprecipitated by different antibodies (anti-TRF1, anti-CENPC and anti-PTEN) after in 
vivo cross-linking in human cells. Proteins were treated with formaldehyde [(C) represents immunoprecipitated DNA from mouse cells and (D) represents 
immunoprecipitated DNA from human MCF cell line]. Chromatin was isolated and subjected to immunoprecipitation by using an anti-TRF1 or anti-CENPC 
or PTEN antibody. Deproteinized DNA isolated from the precipitates was denatured and spotted onto a membrane. The following probes were used for 
hybridization: Total human genomic DNA (total DNA), centromeric DNA probe, or a DNA fragment containing telomeric DNA (CCCTAA). The same 
blot is shown after consecutive rehybridizations with the different probes. The results are representative of three independent experiments.
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with caffeine, a pharmacological inhibitor of ATM/ATR and 
then analyzed IR-induced chromosome aberrations at metaphase 
at different time points post irradiation. Caffeine treatment 
or treatment with the ATM inhibitor (KU55933) did increase 
IR-induced G1-type chromosome aberrations in both Pten-/- and 
Pten+/+ cells (Fig. 6A, part b, and data not shown). However, 
caffeine or KU-55933 treatment only increased IR-induced S- and 
G2-phase chromosome aberrations, as well as the mitotic index, in 
Pten+/+ cells, whereas the Pten-/- cell response was unaltered (Fig. 
6B, part b; C, part b; D, parts a and b; and data not shown). In 
addition, pharmacological inhibition of CHK1 (with Go6976) 
increased chromosomal aberrations only in Pten+/+ cells (data 
not shown). Based on the fact that pharmacological inhibition 

Furthermore, when cells were treated with 1 Gy of gamma rays 
and analyzed 1 h after to determine G2-phase-specific chromatid 
aberrations, Pten-/- cells showed increased aberrations (Fig. 6C, 
part a). These observations suggest that PTEN inactivation results 
in a higher frequency of S- and G2-specific chromosomal aberra-
tions. Ectopic expression of PTEN in Pten-/- cells decreased the 
frequency of higher chromosome aberrations to levels similar to 
that of Pten+/+ cells (Suppl. Fig. 5).

Defective cell cycle checkpoints in PTEN null cells increases 
chromosomal aberrations. To determine whether the increased 
cell cycle phase specific IR-induced chromosome aberrations in 
PTEN deficient cells are due to a cell cycle defect, we abrogated 
DNA damage induced cell cycle checkpoints by treating cells 

Figure 5. DNA DSB repair analysis. (A) Initial levels of DNA DSBs (relative elution) as a function of dose in MEFs with and without PTEN. (B and C) Initial 
DNA DSB and residual DSB examined by pulse field gel electrophoresis. MEFs with and without PTEN (B) and HeLa (C) cells with PTEN knockdown with 
specific siRNA (Part a) were irradiated with 20 Gy and incubated at 37°C for different periods post irradiation for repair and examined for residual 
DNA DSB. (D) The unrepaired DNA breaks after 20 Gy exposure were measured by neutral filter elution in MEFs with and without PTEN. Mouse cell 
without ATM or with knockdown of Ligase IV were used at positive control. (Part a) Asynchronous cells; (Part b) Enriched G1-phase cells; (Part c) enriched 
S-phase cells and; (Part d) enriched G2/M phase cells. The data represent the means of three independent experiments.
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PTEN-deficient cells bypass Taxol-induced mitotic arrest. 
Cells deficient for PTEN also exhibit numerical chromosomal 
alterations (polyploidy as well as aneuploidy; Suppl. Fig. 6). 
These alterations have not been attributed to defective S- or 
G2-checkpoints but rather to a defective mitotic checkpoint,40 
suggesting that PTEN has a role in regulating mitotic control. 
To examine this possibility, Pten+/+ and Pten-/- cells were treated 
with Taxol (100 nM), a drug that leads to mitotic arrest. Live 
cell-imaging time lapse experiments were performed to determine 
the time spent in mitosis (Fig. 7A). Pten-/- cells treated with taxol 
stayed in mitotic phase for less time (~50% or shorter) than Pten+/+ 
cells, suggesting that Pten-/- cells bypass the mitotic checkpoint 
(Fig. 7A and B).

As a complementary approach, PTEN siRNA was used to 
deplete PTEN in HeLa cells (Fig. 5A). We treated control and 
PTEN-depleted cells with 100 nM Taxol to arrest cells in mitosis. 
Control cells exhibited a strong H3S10P signal after 24 hrs of 
Taxol treatment, indicating efficient arrest (Fig. 7C). The histone 
H3 serine 10P (H3S10P) signal decreased significantly after 36 
hr of Taxol treatment, indicating that the HeLa cells eventually 
bypassed the mitotic checkpoint. In contrast, PTEN-depleted cells 

of ATM and ATR or CHK1 did not enhance S- and G2-phase 
IR-induced chromosome aberration in Pten-/- cells, this suggests 
that such cells have abrogated S- as well as G2-checkpoints. 
Next we determined whether a defect in IR-induced activation 
of the ATM/ATR pathway was responsible for defective S- and 
G2-checkpoints in Pten-/- cells. Our results indicated that this 
was unlikely since ATM activation and activity as assessed by Ser 
1981 autophosphorylation and phosphorylation of ATM targets, 
including KAP1 and SMC1, was unaltered (Fig. 1, Suppl. Fig. 
7). In addition, the IR-induced recruitment of ATR and RPA to 
DSBs in S and G2 cells, a measure of ATR activation and activity, 
was normal (data not shown). In contrast, damage-induced 
CHK1 phosphorylation on Ser317 was significantly impaired in 
Pten-/- cells, which is in line with a previous report that elevated 
AKT mediated phosphorylation of CHK1 on S280 antagonizes 
DNA damage-induced phosphorylation of CHK1 (Suppl. Fig. 
7, reviewed in ref. 3). Overall these results do not support the 
notion that PTEN acts at the level of ATM and ATR to regu-
late genomic stability but rather confirm that the PTEN-AKT 
pathway regulates the CHK1 dependent checkpoint response and 
genomic stability.

Figure 6. Effect of caffeine on the IR-induced G1, S and G2 chromosomal aberrations in cells with and without PTEN. Chromosomal aberrations after IR, 
or caffeine and IR treatment in mouse embryonic stem cells with and without Pten. (A) Cells were either irradiated with 3 Gy (Part a) or first treated with 
caffeine (Part b) and then irradiated, incubated for 14 h postirradiation, and then subcultured, and metaphases were collected. G1-type aberrations were 
examined at metaphase. Categories of asymmetric chromosome aberrations scored included dicentrics, centric rings, interstitial deletions-acentric rings, 
and terminal deletions. (B) Cells were either irradiated with 2 Gy (Part a) or first treated with caffeine and then irradiation with 2 Gy. Metaphases were 
harvested after 3–4 h following irradiation and examined for chromosomal aberrations. (C) Cells were either irradiated with 1 Gy (Part a) or first treated 
with caffeine followed by irradiation with 1 Gy (Part b). Metaphases were harvested after 1 h following irradiation and examined for chromosomal 
aberrations. (D) Cells were treated with either with 1 Gy of γ rays (a) or first treated with caffeine followed by irradiation (b). Cells were harvested 30, 
60 and 90 min later and examined for mitoses.
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were acquired every 10 min for 16 hr to determine the percentage 
of cells that remained arrested in mitosis or bypassed the mitotic 
arrest to become micronucleated with interphase morphology (Fig. 
7D). We considered cells that contained numerous micronuclei 
and a flattened morphology to have undergone mitotic bypass 
(Fig. 7D and Inset a and d). While the majority of control siRNA 
transfected cells (>90%) remained arrested in mitosis after 16 hrs 
in Taxol, a significantly increased proportion of PTEN depleted 
cells exhibited mitosis bypass (Fig. 7E).

To further our understanding of where PTEN functions in 
the spindle assembly checkpoint pathway we analyzed Mad2 
protein expression, which ensures proper checkpoint execution by  

displayed significantly reduced levels of H3S10P at 24 hrs of Taxol 
 treatment, suggesting that the cells bypassed the mitotic check-
points more quickly than drug treated control siRNA transfected 
cells (Fig. 7C and E). PTEN depletion did not affect overall levels 
of H3 protein itself (Fig. 7C).

To more thoroughly characterize the response of PTEN-deficient 
cells to taxol, we employed a HeLa cell-line stably expressing 
GFP-tagged-histone H2B (GFP-H2B), a line commonly used for 
analysis of mitotic progression. GFP-H2B-HeLa cells transfected 
with control or PTEN specific siRNA were synchronized at the G1/S 
boundary using a double thymidine block. Four hours after release 
from the block, taxol was added, and immunofluorescence images 

Figure 7. Response of Taxol treatment in cells with and without PTEN. (A) Asynchronous Pten+/+ and Pten-/- MEFs were left untreated or treated with 
100 nM taxol and analysed by live cell imaging. Examples of representative cells are shown. Arrows indicate the cells being followed. Where there 
are two arrows in the same plane this indicates that the cells have successfully divided. Scale bar represents 25 μm. (B) Histogram showing the effect of 
Taxol on the time in mitosis in cells with and without PTEN. (C) Effect of Taxol on phosphorylation of histone H3 at Ser 10 in HeLa cells with and without 
knockdown of PTEN. (D) HeLa cell-line stably expressing a GFP-tagged-histone H2B (GFP-H2B), transfected with control or PTEN specific siRNA were 
synchronized at the G1/S boundary using double thymidine block and 4 hr following release from the block, taxol was added, and immunofluorescence 
images were acquired every 10 min for 16 hr and analysed for the percentage of cells that remained arrested in mitosis compared with cells that had 
bypassed mitotic arrest and become micronucleated with interphase morphology. Magnified inset shown as (Parts a and b). (E) Histogram showing 
percent of cells in mitosis and bypass checkpoint after PTEN knockdown and treatment with taxol.
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foci formation, suggesting that PTEN is involved in NHEJ as well 
as HR mediated repair. However, perusal of the literature reveals 
that cells defective in NHEJ and HR are usually highly sensitive, 
not resistant, to IR-induced cell killing.

Ionizing radiation induced γ-H2AX foci are a surrogate marker 
for DNA DSBs, however a systematically analysis of IR-induced 
γ-H2AX foci appearance and disappearance in cells with and 
without PTEN indicated no differences (Fig. 1C–E). The 53BP1 
DNA damage response protein also did not show any difference in 
IR-induced foci formation between cells with and without PTEN. 
Likewise loss of PTEN had no effect on Rad51 protein levels or 
IR-induced Rad51 foci formation, the key feature of DNA strand 
invasion during homologous recombination (Fig. 1F). Thus the 
initial steps of DNA damage sensing and chromatin modification 
associated with DNA DSBs are similar in cells with and without 
PTEN, suggesting defective repair is not the cause for the higher 
genomic instability observed in PTEN deficient cells.

DNA double-strand breaks lead to chromosomal structural 
alterations if not repaired in an accurate and timely manner. 
However, neither the induction of DNA DSBs post irradiation, 
the kinetics of DNA DSB repair nor the level of residual DNA 
damage (90 min or 120 min of post irradiation) was altered by 
the loss of PTEN (Fig. 5). Furthermore, cell cycle phase specific 
DNA DSB repair was identical between cells with and without 
PTEN (Fig. 5). Such results further argue against a role for PTEN 
in DNA DSB repair.

Loss of PTEN function, either by mutation or epigenetic 
modification, results in constitutive activation of Akt and its 
downstream substrates.51,52 Since the PTEN-PI3K-Akt pathway 
has become a critical target for inhibition in cancer therapeutics, it 
is important to understand the basis of genomic instability in cells 
deficient for PTEN as these cells are modestly resistant to DNA 
damaging agents like IR. Examination of multiple PTEN deficient 
cell lines did not identify any displaying loss of Rad51, whereas 
all such cell lines contained the phosphorylated form of AKT 
(Fig. 2A and Suppl. Fig. 2D), which is consistent with the PTEN 
function, that cells overexpressing PTEN are radiosensitive.50,53 
Biochemical assays also revealed that PTEN deficiency neither 
abrogates DDR nor the DNA ligation process. In a comparison 
of IR-induced chromosome aberrations at different stages of the 
cell cycle, PTEN deficient cells were found to have increased S- 
and G2-phase specific chromosome aberrations. Repair by HR 
predominates in cells in these cell cycle phases due to the presence 
of sister chromatids that function as templates for repair. However, 
PTEN deficient cells did not show any deficiency in IR induced 
Rad51 foci formation nor a reduced frequency of HR dependent 
I-Sec1 induced DSB repair as pDR-GFP cells treated with PTEN 
siRNA had no reduction in the number of GFP positive cells 
in comparison to control transfected cells. This provides strong 
evidence that PTEN deficiency does not affect the HR pathway 
for DNA DSB repair. Furthermore PTEN deficient cells have a 
similar frequency of sister chromatid exchanges as well as telomere 
recombination as observed in cells with PTEN, also suggesting 
that HR is intact in PTEN deficient cells.

PTEN, with a lipid-binding domain and the absence of 
a canonical nuclear localization signal, was first reported as  

localizing to unattached, but not attached, kinetochores to prevent 
anaphase promoting complex activity. Notably, we observed a 
modest reduction in the level of Mad2 protein expression in 
PTEN-depleted human cells or Pten-/- mouse embryonic fibro-
blasts (Fig. 7C and data not shown).

Discussion

DNA damage repair and checkpoint control are the two 
major mechanisms that function to maintain genomic stability. 
Checkpoints regulate cell cycle progression post DNA damage 
and during replication to ensure sufficient time for DNA repair. 
Defects in cell cycle progression can occur at multiple points and 
lead to cells with a high frequency of structural as well as numerical 
chromosomal aberrations. A similar increase in structural as well as 
numerical chromosome aberrations has been observed in cells with 
reduced levels of PTEN. In this study, we provide direct evidence 
that genomic instability in PTEN deficient cells, both the struc-
tural as well as numerical chromosome aberrations, is not due to 
defective DNA DSB repair pathways but rather multiple defective 
checkpoints.

DNA damage response checkpoints have been identified at the 
G1/S and G2/M boundaries during S-phase and in mitosis.41 Cells 
initiate DNA damage checkpoints after replication or cell stress to 
provide sufficient time for the repair of DNA damage. Specifically, 
intra-S checkpoints prevent cells from unfaithful genome replica-
tion, the G2/M checkpoint is initiated to allow for repair of DNA 
damage prior to mitosis and the mitotic checkpoints guarantee 
faithful segregation of chromosomes. Since DNA repair and check-
point induction are closely interlinked, some gene products may 
function in both processes while others may be restricted to either 
DNA repair or checkpoint functions.37,42-46

Loss of PTEN does not alter ATM activation and, since ATM 
is upstream of activators of damage inducible checkpoint arrest,47 
this suggests that damage induced ATM effector functions are 
independent of PTEN. This is further supported by the fact that 
ATM dependent phosphorylation of KAP1, H2AX, Chk2, SMC1, 
which are involved in the process of DNA damage sensing and 
repair, is also independent of PTEN function. Specifically, KAP1 
is involved in post irradiation chromatin alterations that provide 
repair proteins access to the damaged DNA.23 Since KAP1 func-
tions independent of PTEN status, PTEN deficient cells do not 
have an altered chromatin structures that could hamper DNA 
repair. In addition, stress like heat shock has been reported to 
influence chromatin structure. Interestingly, cells with and without 
PTEN showed a similar response to the induction of HSP70 
(Suppl. Fig. 1) as well as KAP1 phosphorylation, arguing against 
a role for PTEN in chromatin modification after stress or DNA 
damage.

Several reports have indicated that reduced levels of PTEN 
are associated with radioresistance, which can be suppressed by 
ectopic PTEN expression.48,49 This recovery of radiation sensi-
tivity was attributed to the ability of PTEN to suppress DNA 
repair capacity.50 In contrast, Shen and coworkers reported that 
PTEN is important for DNA DSB repair by regulating Rad51 
expression4 and that PTEN influences γ-H2AX as well as 53BP1 
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of spindle assembly checkpoint, a well characterized pathway to 
genomic instability.

Material and Methods

Cells. Mouse embryonic fibroblasts (MEFs) and embryonic 
stem (ES) cells with and without PTEN were cultured as described 
previously,2-5 mouse kidney fibroblasts with and without ATM 
(Atm+/+ and Atm-/-), and MCF7 cells were maintained following 
published procedures.5,6 DLD1PTEN+/+, DLD1PTEN-/-, 
HCT116PTEN+/+, HCT116PTEN-/-, TIG-1, WI38, HeLa and 
U2OS cells were grown at 37°C in a 5% CO2 incubator in low 
glucose DMEM supplemented with 10% FCS, 50 U/ml penicillin 
and 5 mg/ml streptomycin. For oxidative stress, cells were treated 
with H2O2 (150 μM for 2 h). Cells were irradiated with gamma 
rays at the rate of 1 Gy per minute. Heat shock treatments were 
carried out at 43°C for 30 min and allowed to recover at 37°C for 
increasing intervals.

Antibodies and siRNA. ATM, phospho-ATM Ser1981, H2AX, 
phosphorylated H2AX, 53BP1, Chk1, phosphorylated Chk1, are 
the same described previously5,7,8 Rad51 from different sources 
(Santa Cruz, Oncogene) Abcam; KAP-1 and Phosphospecific 
KAP-1 form Bethyl Laboratories, TX; from Abcam; PTEN from 
Cell Signaling Technology, Incorporation, and gift form Dr. 
Yuxin Yin and CENP-C from Santa Cruz. Small interfering RNA 
(siRNA) for specific gene and control Luc siRNA were obtained 
from Dharmacon Research (Lafayette, CO and Santa Cruz).

Western blot analysis and immunoprecipitation. Cell lysate 
preparations, immunoblotting and detection of specific proteins 
were done according to previously described procedures.7,8 For 
immunoprecipitation, cells were lysed in lysis buffer and precleaned 
with protein A/G beads. Proteins were immunoprecipitated with 
specific antibodies and immunoprecipitants were washed with lysis 
buffer as previously described.7,8

Chromatin immunoprecipitation. Coimmunoprecipitation 
after formaldehyde-mediated in vivo cross-linking of DNA with 
proteins was performed with a different antibody as described 
previously.9,10 Immunoprecipitated DNA was spotted onto a 
membrane by using a dot blotting apparatus and then hybridized 
to 32P-labeled DNA probes. The probes used for hybridization 
were telomeric repeat DNA, centromeric repeat DNA, and total 
human. The blots were stripped and successively hybridized with 
different probes.

Immunofluorescence measurements of damage induced foci. 
Cell culture in chamber slides, fixation and immunostaining were 
done as previously described.5,11-13 Fluorescent images of foci were 
captured with a Zeiss Axioskop 2 mot epifluorescent microscope 
equipped with a charge-coupled device camera and ISIS software 
(Metasystems, Altlussheim, Germany). Optical sections through 
nuclei were captured and the images were obtained by projec-
tion of the individual sections as recently described.14 The results 
shown are from three independent experiments. Cells with bubble-
like appearance or micronuclei were not considered for γ-H2AX 
analysis.

DNA DSB analysis. Two different assays were used to measure 
DNA strand breaks after IR exposure. These were (a) pulsed field 

exclusively in the cytoplasm.54-56 However nuclear PTEN was 
noted in neuronal and breast tissues or cell lines and in primary, 
differentiated and resting cells, compared to rapidly cycling 
cancer cell lines where in many cases there is a marked reduction 
of nuclear PTEN.57-59 Interestingly PTEN has been identi-
fied in punctate forms near or on the centromeres, supporting 
the argument that the absence of PTEN results in centromere 
breakage.4 It is possible that PTEN may be involved in the 
dephosphorylation of enzymes required for centromeric DNA 
separation. In this case its absence may result in either breakage 
in the centromere and surrounding regions or complete failure 
of separation of chromatid centromeres, producing butterfly 
types of chromosome morphology. In contrast we found that 
cells deficient in PTEN do have frequent chromosome fragments 
with and without centromere, but also chromosomes fragments 
with multiple centromere and no butterfly type of chromosome 
morphology, which does not fit with the supposed function of 
PTEN on centromeres. If PTEN is a centromere binding protein 
or has a role during DNA synthesis, it should be constitutively 
present in the nucleus of dividing cells. However, the situation is 
different based on the perusal of literature as well as our present 
study in that PTEN does not show any interaction with the 
centromeric DNA or genomic DNA (Fig. 4). Besides PTEN 
deficient cells do a have high frequency of polyploidy with intact 
centromeric structure, ruling out the possibility of PTEN’s role 
in centromeric function (Suppl. Fig. 6).

The presence of chromosome fragments with multiple 
centromeres (Fig. 3A) is suggestive of abnormal DNA synthesis, 
possibly due to defective S-phase checkpoints. A higher frequency 
of chromosomal aberrations at metaphase can be due to multiple 
defective cell cycle checkpoints. The present studies revealed 
that PTEN deficient cells have an intact DNA damage induced 
G1 checkpoint as evidenced by the fact that cells treated with 
caffeine and then irradiated in G1 had increased chromosome 
aberrations as compared to cells irradiated without drug irrespec-
tive of PTEN status (Fig. 6). However, in caffeine or KU-55933 
treated cells irradiated in S- and/or G2-phase, an increased 
frequency of chromosomal aberrations was observed only in cells 
with PTEN, and not in cells lacking PTEN (Fig. 6 and data not 
shown), supporting the argument that PTEN deficient cells lack 
S- or G2-phase checkpoints, an observation consistent with our 
previous results.3 In addition, PTEN deficient cells have a higher 
mitotic index post irradiation as compared to cells with PTEN, 
suggesting that PTEN deficient cells also have a defective G2/M 
checkpoint. This was further confirmed by the fact that when cells 
were challenged with Taxol and monitored by live cell imaging 
for the time required to complete mitosis, PTEN deficient cells 
bypassed the spindle assembly checkpoint quickly as compared 
to cells with PTEN (Figs. 6D and 7). This accelerated check-
point bypass alone can account for the aneuploidy as well the 
polyploidy observed in PTEN deficient cells, since there was no 
evidence that PTEN interacts with centromeric DNA that could 
hamper the segregation of the chromosomes. The goal now is to 
provide mechanistic insights into the role of PTEN in regulation 
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Enrichment of cells population by centrifugal elutriation. 
Exponentially growing cell populations (1.3–1.5 x 108 cells) were 
resuspended in 50 ml of elutriation buffer [1x Hanks’ balanced salt 
solution containing 3.3% heat-inactivated bovine calf serum and 
5 mM 2-naphthol-6,8-disulfonic acid dipotassium salt (NDA), 
Eastman Kodak Company, Rochester, NY] pH 7. To this, 4 ml of 
0.02% (w/v) of DNase I type IV (Sigma), dissolved in RPMI 1640 
medium, was added. The cells were placed on ice, passed through 
a 23G needle and nylon mesh to remove cell aggregates, and then 
loaded into a Beckman elutriator rotor at 2,000 rpm at a pump 
rate of 13.5 ml/min at 4°C. Following a 100-ml buffer wash, 18 
fractions were elutriated by step-wise increases in pump speed from 
14 to 32 ml/min. After separation, the cell fractions were placed on 
ice to prevent cell cycle progression. The viability of the cells was 
not affected by elutriation as monitored by trypan blue exclusion. 
The cell cycle distributions of the fractionated samples were deter-
mined using flow cytometry to measure DNA content. Aliquots 
of each fraction were washed twice in phosphate-buffered saline 
(PBS), fixed in 70% ethanol: 30% PBS, incubated at 37°C with 
0.5% RNAse, and stained with propidium iodide. DNA content 
was determined by quantitative flow cytometry using a FacScan 
analyzer. The accuracy of the analyzer was checked with calibrated 
fluorescent beads and chicken erythrocytes. The G1-phase enriched 
populations contained more than 93% G1-phase cells, the S-phase 
enriched population contained 85–89% S-phase cells and G2/M 
phase enriched population contained 73–79% of G2/M cells.

Timelapse microscopy. Live cell imaging of MEFs was 
conducted using an Olympus IX81 microscope with 40x magni-
fication lens. Cells were treated with 100 nM taxol. Images were 
taken every 10 min. Image analysis was done using the analySIS 
LS Research version 2.2. Live cell imaging of HeLa H2B cells was 
done using a Deltavision Core microscope with 40x magnification 
lens. Cells were synchronized by double thymidine block. Images 
were analyzed using softWoRx version 3.6.1.
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