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The spread of multidrug-resistant microorganisms globally has created an urgent need for novel therapeutic
strategies to combat urinary tract infections (UTIs). Immunomodulatory therapy may provide benefit, as treat-
ment of mice with dexamethasone during acute UTI improved outcome by reducing the development of chronic
cystitis, which predisposes to recurrent infection. Herewe discovered soluble biomarkers engaged inmyeloid cell
development and chemotaxis that were predictive of future UTI recurrence when elevated in the sera of young
womenwith UTI. Translation of these findings revealed that temperance of the neutrophil response early during
UTI, and specifically disruption of bladder epithelial transmigration of neutrophils by inhibition of
cyclooxygenase-2, protected mice against chronic and recurrent cystitis. Further, proteomics identified bladder
epithelial remodeling consequent to chronic infection that enhances sensitivity to neutrophil damage. Thus,
cyclooxygenase-2 expression during acute UTI is a critical molecular trigger determining disease outcome and
drugs targeting cyclooxygenase-2 could prevent recurrent UTI.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).

1. Introduction

The rapid and global dissemination of antibiotic-resistant bacteria
has resulted in dwindling therapeutic options for many infectious dis-
eases, highlighting the urgent need for new therapies (Gupta and
Bhadelia, 2014). One common infection for which effective therapies
are needed is urinary tract infections (UTIs), which, as assessed in
2007 account for 10.5 million outpatient and emergency room visits
per year in the United States alone (Foxman, 2014; Schappert and

Rechtsteiner, 2011). UTI is a significant cause of morbidity in women
throughout their lifespan and in infant boys and oldermen,with serious
sequelae including frequent recurrences, pyelonephritis with sepsis and
renal damage in young children. Further, UTI has been associated with
pre-term birth, and complications of frequent antimicrobial use, includ-
ing high-level antibiotic resistance and Clostridium difficile colitis.
Uropathogenic Escherichia coli (UPEC) cause approximately 85% of
community-acquired UTI and virulent multi-drug resistant UPEC clones
have recently emerged worldwide (Gupta and Bhadelia, 2014). This in-
creases the cost and length of treatments and threatens to lead to
untreatable disease, unless strategies for new effective therapies and
treatments are developed. Although cystitis can be self-limiting, in the
absence of effective antibiotic therapy, studies have shown that up to
60% of women experience bacteriuria lasting months after initial infec-
tion often despite improvement of symptoms (Ferry et al., 2004;
Mabeck, 1972).

Murine models of UTI in young naïve mice have elucidated critical
details of acute UPEC pathogenesis, involving the invasion of UPEC
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into bladder epithelial (urothelial) cells (Hannan et al., 2012;
Brumbaugh and Mobley, 2012). Internalized UPEC are able to avoid a
TLR4-mediated exocytic process (Song et al., 2009) and escape into
the host cell cytoplasm, where they replicate into biofilm-like intracel-
lular bacterial communities (IBCs) (Justice et al., 2004; Anderson et al.,
2003). IBCs are routinely observed in urine cytology of individuals pre-
senting with UTI, supporting the validity of their importance in patho-
genesis and the ability of the mouse model to recapitulate human
disease (Rosen et al., 2007; Robino et al., 2013; Robino et al., 2014).
This process allows UPEC to establish infection and persist in the face
of a stringent population bottleneck (Hannan et al., 2012; Schwartz
et al., 2011) caused by the host's acute multi-prong defense: including
secretion of cytokines (Duell et al., 2012; Ingersoll et al., 2008;
Ragnarsdottir et al., 2011), activation and infiltration of immune cells
(Haraoka et al., 1999; Schiwon et al., 2014; Chan and St John, 2013),
and exfoliation of epithelial cells (Mulvey et al., 1998; Dhakal and
Mulvey, 2012). Exactly how these host responses act in a coordinated
fashion to clear infection, how a multitude of UPEC virulence factors
act to promote infection, and how bacterial and host factors interact to
determine disease outcome and susceptibility to recurrent UTI (rUTI)
are poorly understood.

There are two main outcomes of UPEC bladder infection in naïve
mice: i) sterilization of the urine within days of acute infection with or
without the establishment of a quiescent intracellular reservoir
(Mysorekar and Hultgren, 2006; Mulvey et al., 2001), or ii) persistent
high titer bacteriuria and chronic high titer bladder infection with
chronic bladder inflammation (chronic bacterial cystitis) that lasts for
the lifetime of the animal if not cleared by appropriate antibiotics
(Hannan et al., 2010).Which of these outcomes occurs after UPEC infec-
tion in C3H/HeN mice is determined within the first 24 h post-
inoculation (hpi) and depends on the severity of the host's acute inflam-
matory response (Hannan et al., 2010). Specifically, severe pyuria and
bladder inflammation with elevated serum interleukin-5 (IL-5) and
serum and urine IL-6, the neutrophil chemokine CXCL1, and granulo-
cyte colony-stimulating factor (G-CSF or CSF3) at 24 hpi are predictive
of chronic infection. Whether chronic cystitis in mice is analogous to
an untreated clinical chronic symptomatic UTI or an acute symptomatic
UTI that resolves into asymptomatic bacteriuria (ASB) is not clear, but in
contrast to immunodeficient mousemodels of ASB (Ragnarsdottir et al.,
2011) chronic cystitis in immunocompetent mice results from ongoing
extracellular bacterial replication on the inflamedbladdermucosa in the
face of a robust neutrophil response. This chronic bladder inflammation
manifests as both lymphonodular hyperplasia in the bladder submucosa
and urothelial hyperplasia,with a lack of uroplakin expression, amarker
for terminal differentiation, in superficial facet cells (Hannan et al.,
2010). Similar histological findings have been observed in humans suf-
fering persistent bacteriuria and recurrent UTI (Schlager et al., 2011;
Hansson et al., 1990). Significantly, chronic bladder inflammation in
mice appears to cause mucosal remodeling that renders the bladder
more susceptible to UTI upon further bacterial challenge weeks after
resolution of the primary infection with antibiotic therapy, suggesting
that this provides a clinically relevant model for rUTI (Hannan et al.,
2010).

Interestingly, transient immunosuppression of mice by a single
treatmentwith the synthetic glucocorticoid dexamethasone prior to in-
fection reduces the severity of acute inflammation and protects against
chronic infection. Based on the complexities of UTI pathogenesis, the
rapid emergence of multi-drug resistant UPEC strains, and the key role
the host response plays in the disease course and outcome, interest is
growing in the development of treatments that facilitate bacterial
clearance bymodulating the host immune system. In this study, we hy-
pothesized that a dexamethasone-sensitive host–pathogen checkpoint
exists early during the pathogenesis of UTI that determines host suscep-
tibility to chronic and recurrent infection. We identified serum bio-
markers associated with sensitivity to rUTI in clinical samples from
women with cystitis and subsequently investigated the mechanistic

basis behind these biomarkers using mouse models of severe acute,
chronic, and recurrent cystitis. These studies revealed that excessive
neutrophil infiltration of the urothelium and cyclooxygenase-2 (COX-
2) dependent inflammation are critical components of the acute host-
pathogen checkpoint that both exacerbated and prolonged infection.
These findings provide a therapeutic rationale for targeting COX-2 in
the prevention and treatment of rUTI.

2. Materials and Methods

2.1. Clinical Study Population

The study was conducted at the Hall Health Primary Care Center, an
outpatient clinic at the University of Washington, Seattle, WA. Women
were eligible if they were aged 18–49 years, in good general health,
and had typical symptoms of acute cystitis (dysuria, frequency,
and urgency) for b7 days. Women were not eligible if they had
temperature ≥ 100 °F or flank pain or tenderness, nausea or vomiting,
chronic illness requiring medical supervision (e.g., diabetes mellitus),
known anatomic or functional abnormalities of the urinary tract, uri-
nary catheterization, UTI within the past month, or were pregnant or
planning pregnancy in the next 3 months or not contracepting. The
Human Subjects ReviewCommittee of theUniversity ofWashington ap-
proved the study, and all subjects gave written informed consent.

2.2. Clinical Study Procedures

Flyers, newspaper ads and discussions with local clinicians were the
main methods of recruitment, and subjects were enrolled as soon as
possible after contacting study personnel. At the study visit, subjects
underwent a history and physical examination, including a vaginal ex-
amination, and an interview using a standardized questionnaire. Sub-
jects were instructed to obtain a clean-catch midstream urine
specimen for culture and to provide a peripheral blood sample. Urine
samples for culture were refrigerated and transported to the laboratory
within 24 h of collection. Blood was collected in tubes without anti-
coagulant, allowed to clot at room temperature for 1–2 h, and serum
was isolated by centrifugation and stored at−80 °C until analysis.

Women were treated with trimethoprim–sulfamethoxazole double
strength (DS) twice daily for 3 days unless they were allergic or intoler-
ant to this agent orwere infectedwith a uropathogen known to be resis-
tant to this agent in which case they were treated with ciprofloxacin
250 mg twice daily for 3 days or nitrofurantoin (Macrobid®) 100 mg
twice daily for 7 days. Participants were asked to return to the clinic if
their symptoms did not resolve or if they recurred during the study at
which time they provided amidstreamurine specimen and then treated
using the same treatment protocol as at enrollment. Participants were
followed for 3 months.

2.3. Clinical Laboratory Procedures

Methods for collecting urine specimens and isolating, identifying,
and quantifying uropathogens have been previously described (Stamm
et al., 1982; Anon., 1999). All uropathogens (Gram-negative rods, en-
terococci, Group B streptococci and Staphylococcus saprophyticus) were
identified and quantified to 102 cfu/ml.

2.4. Sample Selection & Serum Cytokine Analysis

The presence of 48 human cytokines was analyzed in serum speci-
mens by a Luminex-based multiplex cytometric bead array platform
(Bioplex, Bio-Rad, Hercules, CA). Serum specimens for testing were
drawn from the pool of enrollment UTIs where the sole causative
uropathogen was E. coli. Forty-one women with an E. coli recurrent
UTI were identified, and a comparison group was randomly culled
from the women in whom there was no recurrent UTI within
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the three-month follow-up period. The cytokines analyzed were
interleukin-1α (IL-1α), IL-1β, IL-1ra, IL-2, IL-2Rα, IL-3, IL-4, IL-5, IL-6,
IL-7, IL-8, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-16, IL-17,
IL-18, basic fibroblast growth factor (FGF-basic), eotaxin, cutaneous T-
cell attracting chemokines (CTACK or CCL27), gamma interferon (IFN-
γ), granulocyte colony-stimulating factor (G-CSF or CSF3), granulo-
cyte–macrophage colony-stimulating factor (GM-CSF or CSF2),
growth-regulated alpha protein (GRO-α or CXCL1), hepatocyte growth
factor (HGF), IFN-α2, interferon gamma-induced protein 10 (IP-10 or
CXCL10), leukemia inhibitory factor (LIF),monocyte chemotactic protein
1 (MCP-1 or CCL2), MCP-3 (CCL7), macrophage colony-stimulating fac-
tor (M-CSF or CSF1), macrophage migration inhibitory factor (MIF),
monokine induced by gamma interferon (MIG or CXCL9), macrophage
inflammatory protein 1α (MIP-1α or CCL3), MIP-1β (CCL4), nerve
growth factor (β-NGF), platelet-derived growth factor (PDGF-BB), Regu-
lated upon Activation Normal T-cell Expressed and Secreted (RANTES or
CCL5), stem cell factor (SCF), stem cell growth factor beta (SCGF-β), stro-
mal cell-derived factor 1 alpha (SDF-1α), tumor necrosis factor α (TNF-
α), TNF-β, TNF-related apoptosis-inducing ligand (TRAIL), and vascular
endothelial growth factor (VEGF). Individual samples were run in dupli-
cate and the mean values used in all analyses.

2.5. Animal Studies Ethics Statement

All animal experimentation was conducted following the National
Institutes of Health guidelines for housing and care of laboratory ani-
mals and performed in accordance with Institutional regulations after
pertinent review and approval by the Institutional Animal Care and
Use Committee at Washington University School of Medicine.

2.6. Bacterial Strains and Cultivation

The UPEC strain primarily used in this study was a kanamycin-
resistant derivative of the human cystitis isolate, UTI89 (Schilling
et al., 2001): UTI89 attHK022::COM-GFP (UTI89 KanR) (Wright et al.,
2005). For UPEC challenge of previously infected mice, we used a
spectinomycin-resistant UTI89 derivative: attλ::PSSH10-1 (spectinomy-
cin-resistant, SpcR) (Wright et al., 2005). Bacteria were routinely cul-
tured in lysogeny broth (LB).

2.7. Mouse Infections

C3H/HeN mice were obtained from Harlan Sprague Dawley, Inc.
(Indianapolis, IN). Bacterial strains were inoculated into 20 ml of LB di-
rectly from freezer stock, grown statically at 37 °C overnight, and sub-
cultured 1:1000 into 20 ml of fresh LB and again grown statically at
37 °C for 18 h. These cultures were spun at room temperature
for 10 min at 3000 ×g, resuspended in 10 ml phosphate-
buffered saline, pH = 7.4 (PBS), and diluted to approximately
2–4 × 108 colony forming units (cfu)/ml (OD600 = 0.35). 50 μl
of this suspension (~1–2 × 107 cfu) or one concentrated 10-fold
(~1–2 × 108 cfu) was inoculated into the bladders of 7–8 week old
female mice by transurethral catheterization.

2.8. Treatments

Drugs and antibodies were administered as described in the main
text. Indomethacin, SC-236 and SC-560 were purchased from Sigma
(St. Louis, MO), solvated in 1% Tween 80 in PBS, and 100 μl of each
drug suspension or buffer alone per 20 mg body weight was adminis-
tered by oral gavage. Clodronate and PBS liposomesweremanufactured
as previously described (Seiler et al., 1997; Zeisberger et al., 2006). Rat
anti-C-C chemokine receptor type 2 (CCR2) (cloneMC-21)was generat-
ed as previously described (Mack et al., 2001; Bruhl et al., 2007). Rat
anti-lymphocyte antigen 6G (Ly6G) (clone 1AG) and rat IgG2a and
IgG2b isotype controls were purchased from Bio X Cell (West

Lebanon, NH). All antibodies were diluted in tissue culture grade sterile
Dulbecco's PBS and 200 μl of each antibody solutionwere injected intra-
peritoneally as indicated.

2.9. Urine Collection, Bacterial Titering, and Urine Sediment Analysis

Urines were collected at 1, 3, 7, 10, and 14 dpi, and then weekly
thereafter by applying suprapubic pressure with proper restraint and
collecting the urine stream in sterile 1.5 ml Eppendorf tubes. Urines
were then serially diluted in PBS and 10 μl total of each dilution was
spotted onto LB and LB with 25 μg/ml kanamycin (LB/Kan25) agar
plates. Urine sediments were obtained by cytocentrifuging 80 μl of a
1:10 dilution of the collected urine onto poly-L-lysine-coated glass
slides and stained as described (Rosen et al., 2007). Stained urine sedi-
ments were examined by light microscopy on an Olympus BX51 light
microscope (Olympus America), and the average number of polymor-
phonuclear leukocytes (PMN) per 400×magnification field (hpf) calcu-
lated from counting 5 fields. A semi-quantitative scoring system of 0–5
was modified from an earlier study to facilitate analysis: 0, less than 1
PMN/hpf; 1, 1–5 PMN/hpf; 2, 6–10 PMN/hpf; 3, 11–20 PMN/hpf, 4,
21–40 PMN/hpf, and 5, N40 PMN/hpf (Hannan et al., 2010).

2.10. Tissue Bacterial Titer Determinations

Bladders and kidneys were aseptically harvested at indicated time
points and homogenized in PBS. Homogenates were then serially
diluted and spotted as described above onto LB and LB/Kan25 agar
plates.

2.11. Flow Cytometry

Single-cell bladder suspensionsweremade fromminced bladder tis-
sues subjected to collagenase IV/DNase I digestion for 90 min at 37 °C
and then passed through a 40-μm filter, and cells were washed as de-
scribed previously (Ingersoll et al., 2008; Guiton et al., 2013). Staining
of surface markers was performed in FcR block with fluorochrome-
conjugated monoclonal antibodies (MAbs). Cells were counterstained
with propidium iodide (PI) prior to flow cytometry, and only live (PI-
low) cells were included in the analysis. To specifically characterize
the myeloid cell infiltrates, combinations of MAbs specific for the fol-
lowing surface markers were chosen as described in the results section:
CD11b, F4/80, Ly6G, Ly6C, CCR2, and CD45. All antibodies were from BD
Pharmingen, eBioscience, Miltenyi or R&D Systems. Sample data were
acquired on either a FACSCalibur or an LSRFortessa flow cytometer
(BD Biosciences), and data were analyzed using FlowJo software (ver-
sion 7.6.4). The relative proportion of cellular infiltrates in each bladder
was calculated as a percentage of live cells.

2.12. Histopathology and Immunofluorescence

Tissues were fixed in either 10% neutral buffered formalin or
methacarn (60% methanol, 30% chloroform, 10% glacial acetic acid).
Fixed tissues were embedded in paraffin, sectioned, and some slides
were stained with hematoxylin and eosin (H&E). Bladder inflammatory
scores were determined blindly on two serial H&E-stained sections of
each bladder and an average score calculated, as previously described
(Hopkins et al., 1998). For immunofluorescence microscopy, bladder
sections were deparaffinized, hydrated and blocked in 1% BSA, 0.3% Tri-
ton X-100 in PBS. After incubationwith primary and secondary antibod-
ies and associated washes, slides were stained with bis-benzimide
(Sigma). Primary antibodies used were specific for COX-1 (goat poly-
clonal, sc-1754, Santa Cruz Biotechnologies), COX-2 (mouse monoclo-
nal, 610204, BD Transduction Laboratories) and Ly6G (rat monoclonal,
127610, Biolegend). Stained tissues were examined by epifluorescence
microscopy on a ZEISS Axioskop 2 MOT Plus microscope.
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2.13. Proteomics & Pathway Analysis

Bladders were isolated from mock, resolved and sensitized mice
(n= 3) four weeks after antibiotic therapy, snap frozen in liquid nitro-
gen and stored at−80 °C. Fat and debris were removed from bladders
and the tissuewas cut open into a flat sheet. The tissuewas incubated in
0.1% ethylenediaminetetraacetic acid (EDTA), 10 mM HEPES pH 7.4 in
PBS at 37 °C for 1 h while gently shaken. Epithelial cells were released
by shaking the tissue samples for 5 min at 700 rpm using an orbital
shaker after which the remaining tissue was removed from the tube
and fixed in methacarn for analysis of isolation efficiency. Cells were
pelleted by centrifugation for 5 min at 500 rpm and directly resolved
in 500 μl 2 M NaCl, 1 mMEDTA in 10mMHEPES–NaOH pH 7.4 contain-
ing complete protease inhibitor cocktail (Roche), and homogenized by
tip probe sonication (UltraTurbax T8, IKA, Staufen, Germany) at maxi-
mum for 30 s. Membrane proteins were enriched as described (Lu
et al., 2009), with all centrifugation steps performed at 100,000 g for
20min. Pelletswere solubilized in 0.1Mdithiothreitol (DTT), 4% sodium
dodecyl sulfate (SDS), 0.5% polyethylene glycol (PEG) 20,000 in Tris/HCl
pH 7.6 and heated at 90 °C till completely resolved and clarified by cen-
trifugation for 5 min at maximum rpm (Eppendorf 5415R, Germany).
Supernatants were transferred to 30,000 kDa cut-off filters (NanoSep,
Pall) and mixed with 200 μl 8 M urea in 100 mM Tris/HCl pH 8.5. Pro-
teins were digested according to the filter-aided sample preparation
method (Wisniewski et al., 2009) using two-step digestion with
endoprotease Lys-C (Wako) followed by trypsin (Promega). Recovered
peptides were differentially isotopically labeled using dimethyl (CH3,
CHD2 and 13CD3) according to the on-column method as described
(Boersema et al., 2009). Labeled peptides were eluted from the solid
phase extraction (SPE) columns with 5 mM ammonium acetate, 0.5%
formic acid in 95% acetonitrile and the peptide concentrationwas deter-
mined based on the absorbance at 280 nm. Samples were mixed at
equal ratio and separated into 8 fractions using zwitterionic hydrophilic
interaction liquid chromatography (ZIC-HILIC) (SeQuant, Umeå,
Sweden) as described earlier (van der Post et al., 2013). Fractions
were dried under vacuum and resolved in 15 μl 0.2% TFA prior to mass
spectrometry analysis.

Peptide analyses were performed by online nanoflow liquid chro-
matography tandem mass spectrometry (nLC–MS/MS) using an Easy-
nLC 1000 system (Thermo) coupled to a Q-Exactive mass spectrometer
(Thermo). Briefly, samples were loaded on to a Kasil fritted in-house
packed column (50 μm inner diameter, 200 mm length) with 1.8 μm
C18material (Reprosil-AQ Pur, Dr. Maisch) connected to a steel emitter
(Proxeon) using a zero dead volume connector. Chromatography was
performed at 200 nl/min using 0.2% formic acid in water (mobile
phase A) and 0.2% formic acid, 80% acetonitrile in water (mobile phase
B) and peptides were eluted over an 80 min gradient from 5% to 35%
B. The mass spectrometer was operated in data dependent mode
switching automatically between MS and MS/MS mode. Full scans
were obtained between 350 and 1600 m/z followed by 12 MS/MS
scans on the top multiple charged precursor ions using higher-energy
collisional dissociation (HCD) at a normalized collision energy of 30%,
which were then excluded from fragmentation for 45 s.

Spectral data were processed using MaxQuant version 1.3.0.5 (Cox
and Mann, 2008) supported by the Andromeda search engine (Cox
et al., 2011). Searches were performed against all mouse proteins
found in TrEMBL and Swiss-Prot (2013_04, 42921 entries) concatenated
with a reversed database, and the false discovery rate (FDR) was set to
N1% for both peptide and protein identification. First search precursor
mass tolerance was set to 20 ppm for recalibration, 6 ppm for the
main search and 20 ppm for MS/MS spectra. Trypsin was set as enzyme
allowing for 2 miss-cleavages except when KRwas followed by P. Fixed
modifications were set for carbamidomethyl (C) and variable for oxida-
tion (M) and acetylation (protein N-terminal). Match between run op-
tions within a 2 min time window was enabled for constitutive
fractions and only proteins identified in two out of three biological

replicates were considered. Quantification was performed using the
light dimethyl label for mock, intermediate for resolved and heavy for
sensitizedmice and ratios were calculated and expressed as log2 values.
Probabilities were calculated based on significance B (Cox and Mann,
2008) with FDR estimation using the Benjamini–Hochberg procedure.
All downstream bioinformatics analyses were done using R (www.r-
project.org). Protein–protein interaction data were retrieved from
STRING (version 8) database for the significantly (P b 0.05) regulated
proteins and further network analyzeswere performed using Cytoscape
(Shannon et al., 2003; Jensen et al., 2009). Interaction networks were
combinedwith gene ontology (GO) annotation for bothmolecular func-
tion and biological process to identify functional clusters using the
ClueGO plugin (Bindea et al., 2009).

2.14. RNA Extraction and Quantitative RT-PCR

RNAwas extracted fromUTI89 infectedmouse bladders at indicated
timepoints aswell as fromPBSmock-infectedmouse bladders using the
RNeasy Plus Mini kit (QIAGEN) and reverse-transcribedwith the iScript
Reverse Transcription Supermix (Biorad). For quantitative reverse tran-
scription polymerase chain reaction (qRT-PCR), 1 μl of 12.5 ng/μl cDNA
was used with intron-spanning primer pairs specific to mPtgs1 (F: 5′-
cctctttccaggagctcaca-3′, R: 5′-tcgatgtcaccgtacagctc-3′) and mPtgs2
(F: 5′-gatgctcttccgagctgtg-3′, R: 5′-ggattggaacagcaaggattt-3′) (designed
using the Roche Universal Probe Library Assay Design tool) and
the iQ SYBR Green supermix according to the manufacturer's instruc-
tions (Bio-Rad). Expression values were normalized to 18S (F: 5′-
cggctaccacatccaaggaa-3′, R: 5′-gctggaattaccgcggct-3′) expression levels
and the fold difference relative to mock-infected bladders was deter-
mined by the 2−ΔΔCtmethod (Pfaffl, 2001). Each samplewas run in trip-
licate and average CT values calculated.

2.15. In situ Hybridization

In situ hybridization studieswere performed as previously described
(Manieri et al., 2012). Briefly, digoxigenin-labeled antisense RNAprobes
were synthesized from a cDNA clone for Ptgs2 (clone ID: 30059181,
Thermo Fisher Scientific) with T7 RNA polymerase (New England
Biolabs, Ipswich, MA) and DIG RNA Labeling Mix (Roche, Indianapolis,
IN) and purified with NucAway Spin Columns (Life Technologies,
Carlsbad, CA). Deparaffinized and protease K-treated sections were
hybridized with RNA probes and incubated with anti-digoxigenin alka-
line phosphatase (AP)-conjugated antigen binding fragments (Fab)
(Roche). Specific signals were visualized with nitro blue tetrazolium
chloride (NBT) and 5-bromo-4-chloro-3-indolyl phosphate (BCIP)
(Roche) and sections were counterstained with methyl green.

2.16. UPEC Challenge Infections

At 28 dpi with 108 cfu of UTI89 KanR, micewith persistent high-titer
(N104 cfu/ml) bacteriuria throughout infection were treated with tri-
methoprim and sulfamethoxazole in the drinking water daily for
10 days at concentrations of 54 and 270 μg/ml, respectively (Schilling
et al., 2002). During this time, longitudinal urinalysis was continued
weekly to confirm clearance of bacteriuria. Four weeks after the initia-
tion of antibiotic therapy these sensitized mice were challenged with
108 cfu of UTI89 SpcR 30 min after drug treatment. Longitudinal urinal-
ysis was then performed as for the primary infection, except now tripli-
cate plating onto LB, LB/Kan25 and MacConkey with 50 μg/ml
spectinomycin (McC/Spc50) agar to identifymicewith persistent bacte-
riuria and the responsible strain. Mice were sacrificed 4 weeks after
challenge and tissue titers determined as above, triplicate plating onto
LB, LB/Kan25, and LB/Spc50 agar.
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2.17. Statistical Analysis

Statistical analyses were performed using GraphPad Prism and
InStat (GraphPad Software) and significance was defined by attaining
P values b 0.05, in two-tailed tests.

3. Results

3.1. Identification of Candidate Serum Biomarkers of Recurrent UTI in
Women

To assess whether serum biomarkers could identify patients suscep-
tible to rUTI, we tested for the presence of 48 cytokines and growth fac-
tors in the banked enrollment (V0) sera from a clinical study of sexually
active, premenopausal women who presented with acute UTI with
UPEC and were followed for three months to determine recurrence
(Table 1). Levels of serum cytokines and growth factors involved in
monocyte and macrophage development (IL-3 and M-CSF/CSF1), che-
motaxis (MCP-1/CCL2), and differentiation (M-CSF/CSF1) and neutro-
phil development (IL-3) and chemotaxis (GROα/CXCL1 and IL-8/
CXCL8) were increased in patients who developed rUTI compared to
those that did not suffer recurrence (Table 2 and Table S1). For four of
these cytokines, this elevationwasmost pronounced in the subset of pa-
tients for whom the enrollment UTI was their first reported lifetime UTI
(Table 2). For example median levels of M-CSFwere increased two-fold
in first time UTI patients developing rUTI compared to those who did
not develop rUTI during the study (P = 0.04, Mann–Whitney U test).
These patient data suggest that higher levels of systemic inflammatory
markers during acute cystitis in previously naïve individuals is associat-
ed with rUTI, in agreement with what was previously found in mice
(Hannan et al., 2010).

3.2. Temperance of Bladder Neutrophil Recruitment Protects Against
Chronic Cystitis

Based upon the patient serum cytokine data, we investigated the
role of neutrophils, monocytes and macrophages in our animal model
of chronic cystitis. Using flow cytometry, we found that CD11b+ mye-
loid cells, and particularly neutrophils (Ly6G+ Ly6Cint F4/80−) and in-
flammatory monocytes (Ly6G− Ly6Chi F4/80int/lo), are the most
abundant innate immune cells recruited to the severely inflamed blad-
der at 24 hpi in UPEC-infected C3H/HeNmice (Fig. S1A and Fig. S1B). In

contrast, the relative abundance of resident macrophages (CD11b+

Ly6G− Ly6C− F4/80hi) did not change with infection. Furthermore, in-
creased relative abundances of both neutrophils and inflammatory
monocytes correlated significantly with increased bladder weight
(P b 0.05 for each, r2 = 0.67 and 0.60, respectively, Spearman's rank-
order correlation) (Fig. S1C). To investigate the role of these myeloid
cell populations in cystitis, we first tested whether neutrophils were re-
quired to control UPEC infection by treatingmicewith a high dose of the
neutrophil-depleting anti-Ly6GMAb (clone 1A8) (Daley et al., 2008). In
agreement with a previous study that used the anti-granulocyte differ-
entiation antigen 1 (Gr-1) (clone RB6-8C5) MAb (Haraoka et al., 1999),
whichhas since been shown to also deplete Ly6C+ inflammatorymono-
cytes, we found that neutrophil depletion resulted in all mice develop-
ing severe infection and chronic cystitis (Fig. S1D). Chronic cystitis in
mice is here defined as the development of persistent high titer bacteri-
uria (N104 cfu/ml at each timepoint over 4 weeks of infection) andhigh
titer bladder bacterial burdens (N104 cfu per bladder) at sacrifice
4 weeks post-infection (wpi).

We then depleted monocytes and tissue macrophages using
clodronate liposomes (CLP) (Seiler et al., 1997; Zeisberger et al.,
2006), to test whether these myeloid cells impact the incidence of
chronic cystitis. Compared to control PBS liposomes, CLP treatment
8 h prior to intravesical inoculationwith PBS significantly reduced blad-
der resident macrophage populations by 43% (Fig. 1A). In contrast, CLP
treatment eliminated the F4/80+ CD11blo/− red pulp macrophage pop-
ulation in the spleen (data not shown), suggesting that bladder resident
macrophages are somewhat protected from the effects of CLP treat-
ment. Upon UPEC infection, we found that CLP treatment not only elim-
inated the recruitment of inflammatory monocytes, resulting in near
background (mock-infected) levels, but also significantly reduced the
bladder resident macrophage and recruited neutrophil populations
(Fig. 1A) and significantly reduced the severity of pyuria (Fig. 1B) and
gross bladder inflammation at 24 hpi (Fig. 1C–E). Intriguingly, overall
acute bacterial burdens at this time point were similar in the bladder
and kidneys irrespective of monocyte and macrophage depletion
(Fig. 1F and G). Yet, the reduction in acute bladder inflammation and
mucosal damage observed at 24 hpi correlated with a reduction in
the incidence of chronic cystitis at 4 wpi (Fig. 1H; 72% (18/25) vs. 21%
(5/24), P b 0.001, Fisher's exact test), a protective effect that is similar
to what we previously reported with dexamethasone treatment
(Hannan et al., 2010).

It was recently suggested that Ly6C+ inflammatory monocytes re-
cruited to theurinary bladder during acuteUTI are critical for “licensing”
resident macrophages to induce bladder epithelial transmigration by
neutrophils (Schiwon et al., 2014). To test whether depletion of inflam-
matory monocytes alone was sufficient to reduce pyuria and protect
against chronic cystitis in our model we treated mice with MC-21, an
anti-CCR2monoclonal antibody that depletes inflammatory monocytes
(Mack et al., 2001; Bruhl et al., 2007). CCR2 is the receptor for monocyte
chemokines such as CCL2 and CCL7 and bone marrow egress of mono-
cytes and their recruitment to the urinary bladder has been reported
to be dependent upon CCR2 signaling (Engel et al., 2006). We found
that about half of inflammatory monocytes in the bladder retain CCR2
on their cell surface at 24 hpi (data not shown). Treatment with MC-
21 eliminated the recruitment of inflammatory monocytes (CD11b+

F4/80int Ly6C+) to the bladder, but did not affect neutrophil recruitment
or resident macrophage numbers (Fig. 2A). Unlike CLP treatment, pre-
treatment with MC-21 did not significantly affect bladder weights
(Fig. 2B) or the level of pyuria at 24 hpi compared to isotype treated
control mice (Fig. 2C). There was a trend towards a decreased incidence
of chronic cystitis in MC-21 compared to isotype control treated mice;
however, the difference was not significant (Fig. 2D, 70% (21/30) vs.
45% (13/29), P = 0.07, Fisher's exact test). The lack of effect of MC-21
compared to CLP treatment suggests that the inflammatory response
of bladder residentmacrophages is able to compensate for the loss of in-
flammatory monocyte recruitment.

Table 1
Description of women at enrollment (N = 326).

Characteristic Value

Age in years, median (range) 21 (18–45)
Never married, n (%) 272 (83)
Race, n (%)

White 218 (67)
Asian 65 (20)
African American 4 (1)
Other 39 (12)

Hispanic, n (%) 20 (6)
UTI history

UTI, ever, n (%) 248 (76)
≥3 UTIs in lifetime, n (%) 153 (47)
Pyelonephritis, ever, n (%) 32 (10)
UTI past year, n (%) 167 (51)

Sexual activity, past month
Sexually active, n (%) 315 (97)
Vaginal intercourse episodes, median (range) 8 (0–75)

UTI type (enrollment), n (%)
E. coli 249 (76)
Gram negative, not E. coli 23 (7)
Not Gram negative 28 (9)
Culture negative 26 (8)
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Table 2
Serum cytokines and growth factors associated with myeloid cell development and chemotaxis are elevated in patients that subsequently develop recurrent UTI.

Cytokine rUTI
(n = 41)

No-rUTI
(n = 45)

Ratio of medians
(rUTI/no-rUTI)

P valuea No prior history of cystitis Prior history of cystitis

rUTI
(n = 9)

No-rUTI
(n = 10)

rUTI
(n = 32)

No-rUTI
(n = 35)

M-CSF (CSF1) 33.9 25.1 1.4 0.020 46.65 23.01 31.85 26.51
IL-8 (CXCL8) 117.3 59.2 2.0 0.054 125.10 40.29 107.97 62.40
GROa (CXCL1) 156.4 115.5 1.4 0.054 199.70 125.12 146.06 113.99
IL-3 24.2 7.6 3.2 0.084 24.15 9.13 23.93 6.08
MCP-1 (CCL2) 47.1 40.2 1.2 0.098 69.68 36.13 46.55 44.16

All cytokines are reported as median pg/ml serum values.
See also Table S1.

a Statistical analysis performed using Mann–Whitney U two-tailed test.

Fig. 1. Clodronate liposome treatment reduces acute bladder inflammation and protects C3H/HeNmice from chronic cystitis. Mice were either treated with 2 mg of PBS liposomes (PBS,
closed circles) or 2 mg of clodronate liposomes (CLP, open circles) intraperitoneally 8 h prior to intravesical inoculation with 108 cfu of the UPEC strain UTI89 or PBS (mock) bladder in-
fection and tissues harvested 24 hpi for analysis unless otherwise indicated. (A) The relative abundances of the indicated cell lineages were determined by flow cytometry. (B) The abun-
dance of neutrophils in the urine sediment was determined semi-quantitatively by microscopic examination. (C) Bladder wet weights were measured. (D–E) A subset of bladders was
scored for inflammation. Images from bladders with the median inflammatory score are shown in panel E, bars approximate 50 μm. (F) Bladder and (G) kidney titers were determined.
(H) Bladder titers were determined 28 dpi. In graphs, data points shown represent actual values for each individual mouse and data are combined from 2 to 5 independent experiments;
bars indicate median values and dashed lines indicate the limit of detection; all statistics shown used the Mann–Whitney U two-tailed test; ns: not significant, * P b 0.05, **P b 0.01,
***P b 0.001, ****P b 0.0001. See also Fig. S1.
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Our monocytic cell depletion experiments demonstrated a strong
correlation between neutrophil recruitment to the bladder and subse-
quent urothelial transmigration into the lumen, as indicated by pyuria,
and susceptibility to chronic cystitis. To directly test whether robust
neutrophilic inflammation is required to develop severe acute and
chronic infection, we treated mice with a very low dose (10 μg) of the
1A8 Ly6G-specific antibody 24 h prior to infection to partially reduce
neutrophil levels (Brandes et al., 2013). This treatment reduced theme-
dian relative abundance of recruited bladder neutrophils by 75%with an
associated reduction in the levels of pyuria and bladder inflammation at
24 hpi (Fig. 3A–C), as quantified by bladder weight (edema). Interest-
ingly, partial neutrophil depletion did not alter the bladder bacterial
burden at 24 hpi (Fig. 3D), thoughUPEC titerswere increased in the kid-
ney (Fig. 3E). Strikingly, the attenuation of neutrophilic inflammation
reduced the incidence of chronic cystitis to levels similar to that ob-
served with CLP treatment (Fig. 3F, 68% (19/28) vs. 27% (8/30),
P b 0.01, Fisher's exact test). Thus,while neutrophils are required to pre-
vent overwhelming bladder infection, excessive neutrophilic inflamma-
tion leads to bladder immunopathology and chronic cystitis.

3.3. Proteomics Identifies Urothelial Remodeling in Sensitized Mice

C3H/HeN mice that develop chronic cystitis of N2 weeks duration
prior to antibiotic therapy become “sensitized” to severe recurrent
chronic cystitis upon secondary bacterial challenge, whereas cage
mates that spontaneously resolve the initial acute cystitis are resistant
to secondary challenge (Hannan et al., 2010). We hypothesized that
sensitized mice undergo remodeling changes as a consequence of
chronic infection that leave them more prone to severe neutrophilic

inflammation upon bacterial challenge. To investigate this, we obtained
membrane-enriched fractions of urothelial cells isolated from mouse
bladders 8 weeks after either PBS or UPEC inoculation and 4 weeks
after treatment of antibiotics to resolve infection and compared the rel-
ative levels of proteins from three groups of mice (n = 3 mice per
group): mock, resolved, and sensitized (as determined by longitudinal
urinalysis) (Table S2). The comparison of bladder fractions from
resolved and sensitized mice revealed differential expression of a num-
ber of proteins (Fig. 4). Proteins associated with gene ontology (GO)
terms relating to innate immunity, acute inflammation, response to
wounding, cell adhesion, and oxidative stress were particularly over-
represented. Of particular relevance to this work, we found that the rel-
ative amounts of many serpins, which are protease inhibitors that
protect the epithelium from neutrophil-associated enzymes such as
elastase and cathepsin G that can cause mucosal damage, were lower
in sensitizedmice compared tomice that spontaneously resolved infec-
tion. In addition, levels of vanin-1, a surface expressed enzyme that cat-
alyzes the conversion of coenzyme A into pantothenic acid and
cysteamine, a potent inducer of mucosal inflammation during oxidative
stress, were significantly increased in sensitized mice. Lastly, levels of
annexin VI, a known inhibitor of cytoplasmic phospholipase A2
(Cubells et al., 2008), which releases arachidonic acid (AA) from lipid
membranes, the substrate of cyclooxygenases, was also lower in sensi-
tizedmice relative to resolvedmice. The differences in levels of annexin
VI raised the hypothesis that AA-derived mediators of acute inflamma-
tion may exacerbate acute neutrophilic inflammation in sensitized
mice. This hypothesis is supported by our previous findings that the
glucocorticoid analog dexamethasone, a potent suppressor of AA
release, is protective against chronic cystitis (Hannan et al., 2010).

Fig. 2. Depletion of inflammatory monocytes does not reduce pyuria or protect against chronic cystitis. Mice were either treated with 20 μg of theMC-21 anti-CCR2monoclonal antibody
(α-CCR2, open circles) or 20 μg of isotype control antibody (Iso, closed circles) intraperitoneally 2 h prior to intravesical inoculationwith 108 cfu of the UPEC strain UTI89. (A) The relative
abundances of the indicated cell lineageswere determined byflow cytometry24hpi. (B) The abundance of neutrophils in theurine sediment at 24 hpiwasdetermined semi-quantitatively
by microscopic examination. (C) Bladder wet weights were measured 24 hpi. (D) Bladder titers were determined 28 dpi. In graphs, data points shown represent actual values for each
individual mouse and data are combined from 1 to 4 independent experiments; bars indicate median values and dashed lines indicate the limit of detection; all statistics shown used
the Mann–Whitney U two-tailed test; ns: not significant, **P b 0.01.
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Dexamethasone also specifically inhibits the inflammation-dependent
expression of cyclooxygenase-2 (COX-2), which catalyzes the rate-
limiting step in the conversion of AA to prostanoids, i.e. prostaglandins

and thromboxanes (Rhen and Cidlowski, 2005). Thus, we investigated
the role of the cyclooxygenases in the sensitization of mice to chronic
cystitis and the therapeutic value of cyclooxygenase inhibitors.

Fig. 3. Partial depletion of neutrophils is sufficient tomoderate acute bladder inflammation and protect C3H/HeNmice from chronic cystitis. Micewere treatedwith either 10 μg of the 1A8
anti-Ly6Gmonoclonal antibody (1A8, open circles) or 10 μg of isotype control antibody (Iso, closed circles) intraperitoneally 24 h prior to intravesical inoculationwith 108 cfu of the UPEC
strain UTI89. (A) The relative abundances of the indicated cell lineages were determined by flow cytometry at 24 hpi. (B) The abundance of neutrophils in the urine sediment was deter-
mined semi-quantitatively by microscopic examination at 24 hpi. (C) Bladder wet weights were determined 24 hpi. (D) Bladder and (E) kidney titers were determined at 24 hpi.
(F) Bladder titers were determined 28 dpi. In graphs, data points shown represent actual values for each individual mouse and data are combined from 2 to 6 independent experiments;
bars indicate median values and dashed lines indicate the limit of detection; all statistics shown used the Mann–Whitney U two-tailed test; ns: not significant, * P b 0.05, **P b 0.01,
***P b 0.001, ****P b 0.0001.

Fig. 4. Proteomics identifies urothelial remodeling changes in sensitizedmice that would render the bladder more susceptible to severe inflammation and neutrophil-mediated damage.
(A) Quantitative proteomics analysis of convalescent bladder epithelia identified 4008 proteins. Average protein ratios for sensitized (S) versus resolved (R) bladders show the strongest
enrichment or depletion for 27 proteins. (B) Heat map and tree of proteins with P value ≤ 0.0001 in the S/R comparison, also showing differences relative to age-matched mock
(M) infectedmice. (C) Data from a subset of proteins that are involved in inflammatory responses, showing the individual data points from eachmouse in the three pairwise comparisons.
See also Table S2.
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3.4. COX-2 is Expressed by Neutrophils and Urothelial Cells During Severe
Acute Cystitis

Cyclooxygenase (COX)-1 immunoreactivity has been detected in
basal urothelial cells and mesenchymal cells of the uninfected bladder,
but not COX-2 (de Jongh et al., 2009, 2007). However, upon UPEC infec-
tion COX-2 expression is induced in urinary particulates from patients
with UTI (Wheeler et al., 2002), in bladder carcinoma cells in vitro
(Chen et al., 2011), and in neutrophils during experimental cystitis in
C3H/HeN mice (Poljakovic et al., 2001). In vivo, we found that the
COX-2 transcript was barely detectable in uninfected mouse bladders
by qRT-PCR, being present at 1000-fold lower transcript abundance
levels than COX-1 (Fig. 5A). However, after UPEC infection, COX-2
mRNA expression was induced up to fifty-fold in the bladder by
24 hpi, whereas COX-1 expression did not change (Fig. 5B). Consistent
with this, in situ hybridization showed no detectable COX-2 transcript
at either 6 hpi or in mock-infected control bladders, whereas wide-
spread and strong COX-2 mRNA staining was present in 2 of 5 UPEC-
infected bladders at 24 hpi. COX-2 staining was confined to the
urothelial layer in nests of basal and intermediate urothelial cells, as
well as a few smaller cells with segmented nuclei, suggestive of neutro-
phils (Fig. 5C). Diffuse or scattered foci of weak urothelial COX-2 stain-
ing were observed in 2 of the remaining 3 bladders. Importantly, the
presence of strong COX-2 expression in 2 of 5 bladders perfectly corre-
lated with the presence of severe acute inflammation (indicated by
bladder histology and bladder tissue weights greater than 30 mg),
which is strongly predictive of chronic cystitis. Immunofluorescent anti-
body staining of bladder sections confirmed robust COX-2 expression by
urothelial cells in those bladders with severe inflammation at 24 hpi
(Fig. 5D and Fig. S2). In addition, non-epithelial cells both within the
urothelium and the lamina propria stained mildly positive for COX-2,
the vast majority of which were also Ly6G+, indicating that neutrophils
are the predominant immune cells that express COX-2 during UPEC in-
fection. Thus, severe bladder inflammation at 24 hpi correlates with the

influx of COX-2 positive neutrophils and strong COX-2 expression by
urothelial cells.

3.5. Inhibition of COX-2 Activity Protects Against Chronic and Recurrent
Cystitis

To determine whether COX-2 activity alters the susceptibility of
C3H/HeN mice to severe acute, chronic and recurrent cystitis, we
pretreated C3H/HeNmice orally with a non-selective COX inhibitor (in-
domethacin), a COX-2 specific inhibitor (SC-236), or a COX-1 specific in-
hibitor (SC-560). To block COX activity during the first 24 h of infection
we dosed mice again with indomethacin and SC-560 at 8 hpi, due to
their short half-lives, but not with SC-236, which has a reported half-
life of several days (Teng et al., 2003; Penning et al., 1997). COX-2 but
not COX-1 inhibition significantly reduced the severity of pyuria at
24 hpi (Fig. 6A) and reduced the incidence of chronic cystitis (Fig. 6B).
The decreased severity of infection was independent of the early acute
bacterial load, as SC-236 treatment did not change the number of IBCs
formed in the bladder at 6 hpi (Fig. S3A). However, bladder bacterial ti-
ters were significantly lower in SC-236 treatedmice at 24 hpi (Fig. S3B),
suggesting that bacterial clearancewas facilitated by blockade of COX-2.
The enhanced bacterial clearance is unlikely a consequence of direct an-
timicrobial activity against UPEC, as concentrations of SC-236 up to
200 μg/ml in broth did not affect the growth of UTI89 in vitro (data
not shown). Surprisingly, SC-236 treatment did not alter myeloid cell
recruitment to the infected bladder (Fig. 6C). Yet, gross bladder inflam-
mation was significantly reduced, as evidenced by less bladder edema
(Fig. 6D) and urothelial erosion (Fig. 6E and F) in treated bladders.
Urothelial exfoliation was not visibly altered. Finally, in our model of
rUTI, pretreatment of sensitized mice with the COX-2 specific inhibitor,
SC-236, prior to high dose (108 cfu) UPEC challenge significantly de-
creased the incidence of recurrent chronic cystitis compared to treat-
ment with vehicle or the COX-1 specific inhibitor SC-560 (Fig. 7A and
B, 31% (8/26) vs. 77% (20/26) and 86% (6/7), respectively, P b 0.05 for

Fig. 5. COX-2 is expressed by neutrophils and urothelial cells in severely infected bladders. (A–B) Urinary bladder COX-1 (Ptgs1) and COX-2 (Ptgs2) gene expression was determined by
qRT-PCR in (A) mock PBS-infected bladders and (B) 6 and 24 h after intravesical inoculation with either 107 or 108 cfu of the UPEC strain UTI89. (C) COX-2 gene expression at 24 hpi was
detected in UPEC-infected bladder tissue by in situ hybridization. (D) COX-1, COX-2, and Ly6G protein expression at 24 hpi in UPEC-infected bladders was detected by immunofluores-
cence microscopy of paraffin sections. In panels C–D, bars approximate 50 μm, L indicates bladder lumen, U indicates urothelium, LP indicates lamina propria, and dashed line denotes
the approximate location of the urothelial basement membrane. The arrow indicates the presence of an IBC in the section. See also Fig. S2.
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each, Fisher's exact test). Strikingly, the majority of the SC-236
pretreated mice had urine titers at or near the limit of detection for all
or most of the experiment (Fig. 7A) and the median urine bacterial
load at 24 h post-challenge was reduced nearly 1000-fold by COX-2 in-
hibition (Fig. 7C). Furthermore, as in naïvemice, SC-236 pretreatment of
sensitized mice resulted in a dramatic reduction in neutrophil infiltra-
tion of the urine at 24 h post-challenge (Fig. 7D). These data suggest
that inhibition of COX-2 protects against severe acute, chronic, and re-
current infection by preventing urothelial transmigration by neutro-
phils and harmful damage to the urothelial barrier, while allowing
beneficial innate responses, such as immune cell recruitment and exfo-
liation of infected superficial cells.

4. Discussion

The rapid emergence of multidrug resistant UPEC clones, including
strains that express carbapenemases, highlights the urgent need for al-
ternatives for treatment and prevention of rUTI. Here, we provide evi-
dence that high levels of neutrophil-mediated damage within the
urothelial barrier contribute to host susceptibility to rUTI. Neutrophil-
mediated mucosal damage has been demonstrated to exacerbate infec-
tion in othermodels, including both influenza and groupA streptococcal
infections of the respiratory tract (Brandes et al., 2013; Bhowmick et al.,
2013). Consistent with this, we identified increased serum levels of
chemokines and growth factors involved in myeloid cell inflammation
during an initial UTI as biomarkers for increased susceptibility to rUTI
within three months, particularly in patients for whom the initial UTI
was their first lifetime UTI. We found that inflammatory monocyte re-
cruitment to the infected bladder was not absolutely necessary for
urothelial transmigration by neutrophils in contrast to results in a re-
cent study of UTI using C57BL/6J mice (Schiwon et al., 2014). Our data
suggest that bladder resident macrophage responses and COX-2

signaling compensate for the loss of inflammatory monocyte recruit-
ment in C3H/HeN mice. Further, our proteomics study demonstrated
a global reorganization of urothelial markers in convalescent mice
with a history of chronic cystitis (“sensitized”). This apparent mucosal
remodeling is consistent with our hypothesis that upon bacterial
challenge the bladders of sensitized mice are prone to more
severe inflammation and mucosal damage from proteases secreted by
neutrophils and other immune cells. Overall, these findings set the
stage for targeted translational studies of these proteins in clinical
specimens.

Importantly, we provide mechanistic rationale for the use of non-
steroidal anti-inflammatory drugs (NSAIDs) or COX-2 inhibitors such
as celecoxib in the treatment and prevention of UTI in susceptible pa-
tients. We found that inhibition of COX-2 in mice reduced pyuria and
prevented mucosal damage, but did not disrupt known beneficial mu-
cosal responses, such as urothelial exfoliation and overall immune cell
recruitment to the bladder (Ingersoll et al., 2008; Mulvey et al., 1998).
This may explain the results of a small clinical trial that compared ibu-
profen to the fluoroquinolone antibiotic ciprofloxacin in a 3-day course
of treatment for UPEC UTI, and found similar improvement in clinical
outcome at days 4 and 7 after initiation of therapy (Bleidorn et al.,
2010). Although larger clinical trials are needed, together our studies
suggest that NSAIDs do not just mask symptoms of UTI, but also affect
the clinical outcome suggesting that these readily available and safe
therapies could replace the use of antibiotic prophylaxis in susceptible
individuals during periods of high risk, e.g. periods of sexual activity in
women with coital-associated rUTI. The COX-2 inhibitor celecoxib has
also been reported to enhance the sensitivity ofmultidrug resistant bac-
teria to antibiotics, providing a dual rationale for the use of this drug in
conjunction with antibiotic therapy (Kalle and Rizvi, 2011).

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2014.10.011.

Fig. 6. Inhibitors of COX-2 reduce the severity of acute bladder inflammation and protect against chronic cystitis in naïve mice. Mice were orally gavaged with 3.75 mg/kg of the NSAID
indomethacin (Indo), 10 mg/kg of either a COX-2 specific inhibitor, (SC-236) or a COX-1 specific inhibitor (SC-560), or vehicle alone (Mock) 30 min prior to intravesical inoculation
with 108 cfu of the UPEC strain UTI89. Indomethacin and SC-560 treatments were repeated at 8 hpi, due to their short half-lives. All panels show data from 24 hpi unless otherwise indi-
cated. (A) The abundance of neutrophils in the urine sediment was determined semi-quantitatively by microscopic examination. (B) Bladder titers were determined at 28 dpi. (C) The
relative abundances of the indicated cell lineageswere determined by flow cytometry. (D) Bladderwetweights weremeasured. (E–F) A subset of bladderswas scored for bladder inflam-
mation. Images from bladderswith themedian inflammatory score are shown in panel F, bars approximate 50 μm. In graphs, data points shown represent actual values for each individual
mouse and data are combined from2 to 6 independent experiments; bars indicatemedian values anddashed lines indicate the limit of detection; all statistics shownused theMann–Whit-
ney U two-tailed test; ns: not significant, * P b 0.05, **P b 0.01, ****P b 0.0001. See also Fig. S3.
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