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Staphylococcus saprophyticus, an obligate human pathogen, is the most common Gram-positive causative
agent of urinary tract infection (UTI) in young, healthy women. Despite the clinical importance of S. sapro-
phyticus, little is known about how it causes disease in the urinary tract or how the host responds to the
infection. Here we established an in vivo model to study both host and bacterial factors contributing to S.
saprophyticus UTI. Using this model, we show that S. saprophyticus preferentially infects C3H/HeN murine
kidneys instead of the bladder, a trait observed for multiple clinical isolates. Bacterial persistence in the
kidneys was observed in C3H/HeN mice but not in C57BL/6 mice, indicating that host factors strongly
contribute to the ability of S. saprophyticus to cause UTI. Using C3H/HeN mice as a model, histologic and
immunofluorescence analyses of infected tissues revealed that S. saprophyticus induced epithelial cell shedding
in the bladder and an inflammatory response characterized by macrophage and neutrophil infiltration in the
bladder and kidneys. The inflammatory response correlated with increased production of proinflammatory
cytokines and chemokines in both the bladder and the kidneys. Finally, we observed that the putative S.
saprophyticus virulence factors Ssp and SdrI were important for persistence, but not for initial colonization, in
the murine urinary tract. Thus, we characterized both host and bacterial factors involved in progression of S.
saprophyticus UTI, and we describe a useful model system for studying factors involved in the pathogenesis of
this Gram-positive uropathogen.

Urinary tract infections (UTI) affect over 11 million women
annually in the United States (11). The primary cause of UTI
is the Gram-negative bacterium Escherichia coli. However, the
Gram-positive bacterium Staphylococcus saprophyticus can
cause up to 10 to 15% of uncomplicated UTI (33). Thus, it is
estimated that S. saprophyticus causes up to 1 million UTI each
year and is the second most common cause of UTI in sexually
active women (41). Moreover, Gram-positive bacteria, such as
S. saprophyticus, often coexist with dominant uropathogens in
the urine of infected patients, although the concentrations are
lower, and therefore tend to be overlooked by routine labora-
tory diagnostics (35). Thus, the reported estimates of the inci-
dence of this organism may be artificially low. Interestingly,
there is a seasonal pattern for S. saprophyticus UTI; such in-
fections peak during late summer and fall, a pattern similar to
that observed for sexually transmitted diseases (23). Other
Gram-positive bacteria that cause UTI include Enterococcus
faecalis and Enterococcus faecium (3). In contrast to S. sapro-
phyticus, Enterococcus spp. cause UTI in healthy young women
infrequently, but they contribute to �19% of complicated UTI
and are often nosocomially acquired (31). Despite the fact that

S. saprophyticus is the predominant cause of Gram-positive
UTI, relatively little is known about how this organism causes
disease in the urinary tract.

Only two S. saprophyticus gene products have been shown to
be virulence factors in vivo. Aas, a hemagglutinin-autolysin-
adhesin (15) that binds to fibronectin and human ureters in
vitro (8, 28), has been implicated in colonization of rat kidneys
(7). A second protein, urease, is important for efficient colo-
nization of the bladder and kidneys, for inflammation in the
bladder, and for dissemination to the spleen in a rat model of
UTI (5). Several other putative virulence factors have been
characterized in vitro, including extracellular slime; lipotei-
choic acids, which are implicated in adherence to urothelial
cells (4); a cell wall-anchored protein (UafA) that may act as
an adhesin for bladder cells (4, 22); a surface-associated lipase
(Ssp) that forms fimbria-like surface appendages (6, 37); and a
surface-associated collagen-binding protein (SdrI) that shares
sequence and structural homology with the adhesive Sdr pro-
teins of Staphylococcus aureus and Staphylococcus epidermidis
(36, 45).

A major limitation in assessing the contributions of S. sa-
prophyticus virulence factors to pathogenesis is the lack of a
well-characterized in vivo model. However, an enterococcal
UTI mouse model has been described in which E. faecalis
displays a tropism for the kidney, where it can persist for at
least 2 weeks (21, 42). Upon establishment of infection, a
Toll-like receptor 2-independent inflammatory infiltrate com-
posed primarily of monocytes, as determined by histological
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staining, is recruited to areas of E. faecalis colonization in the
kidney (21). Modest induction of the proinflammatory marker
macrophage inflammatory protein 2 (MIP-2) (a mouse ortho-
logue of human interleukin-8 [IL-8]) and suppressor of cyto-
kine signaling 3 (SOCS-3), a modulator of cytokine induction,
was observed in the kidney at 6 and 24 h postinfection (p.i.)
(21). In contrast, no studies examining the host response to S.
saprophyticus UTI have been reported.

Therefore, in this study, we sought to characterize the infec-
tion dynamics of and host response to S. saprophyticus in mice.
Our goal was to establish a robust model to study both bacte-
rial and host factors involved in S. saprophyticus pathogenesis.
When developing this model, we found that S. saprophyticus
has a preference for the kidneys over the bladder in the C3H/
HeN mouse strain and that the virulence factors Ssp and SdrI
are important for persistence during infection.

MATERIALS AND METHODS

Strains and growth conditions. All strains used in this study are shown in
Table 1. For infection, S. saprophyticus strains were grown statically overnight (14
to 18 h) at 37°C in brain heart infusion (BHI) medium (Difco) with antibiotics
when appropriate. Clinical strains Top58 (� SJH-732), Top6 (� SJH-726), and
Top76 (� SJH-735) were isolated from women with cystitis and were provided by
Thomas Hooton (University of Miami) and Walter Stamm (University of Wash-
ington).

Mouse infection and CFU enumeration. Bacterial cultures, grown as described
above, were collected by centrifugation at 6,000 � g for 10 min and resuspended
in phosphate-buffered saline (PBS) to a density of approximately 2 � 108 CFU/
ml; the final inoculum used was 1 � 107 CFU in 50 �l/mouse. Female wild-type
mice that were 7 to 10 weeks old were obtained from Harlan (C3H/HeN mice)
or the National Cancer Institute (C3H/HeN MTV� and C57BL/6 mice). Mice
were anesthetized by inhalation of 4% isoflurane and inoculated transurethrally
as described elsewhere (16, 29). At the time points indicated below, mice were
euthanized, and bladders and kidneys were aseptically removed. The numbers of
bacteria present in tissues were determined by homogenizing bladders or kidney
pairs in PBS and plating serial dilutions on BHI agar (Bacto agar; BD) supple-
mented with antibiotics when appropriate. Statistical analyses were performed
using the Mann-Whitney U test with GraphPad Prism software (version 4.00 for
Windows; GraphPad Software). The titers below the limit of detection of the
assay were defined as 1 for statistical analyses. All animals were housed with a
cycle consisting of 12 h of light and 12 h of darkness and had access to standard
food and water ad libitum. All animal studies were performed in accordance with
the guidelines of the Committee for Animal Studies at Washington University
School of Medicine or the Ethical Committee for Animal Experiments in Stock-
holm.

Histology and immunofluorescence microscopy. For histological analysis,
bladders and kidneys were fixed in 10% neutral buffered formalin, embedded in
paraffin, cut into 5-�m-thick sections, and stained with hematoxylin and eosin
(H&E). For immunofluorescence staining, organs were immediately embedded
in Tissue Tek OCT compound (Sakura Finetek) and frozen for sectioning.
Ten-micrometer sections were fixed in ice-cold acetone, blocked in 3% bovine
serum albumin-0.3% Triton X-100 in PBS, and stained to determine the pres-
ence of bacteria using antibodies raised against S. saprophyticus Aas (9). Hema-
topoietic cells were detected with anti-CD45 antibody (BD Pharmingen). Sec-
ondary antibodies were labeled with Alexa Fluor (Molecular Probes). Tissue was
counterstained with bis-benzimide (Sigma) to determine nuclear morphology.

All imaging was performed at the Washington University Molecular Microbiol-
ogy Imaging Facility with a Zeiss Axioskop 2 MOT Plus fluorescence microscope
operated by Axiovision software. All images were obtained using matched ac-
quisition settings and were prepared using Adobe Photoshop.

Cytokine measurement. S. saprophyticus or PBS (mock infection) was inocu-
lated into mouse bladders, and organs were homogenized in 1 ml PBS at the
times p.i. indicated below. Homogenates were spun at 14,000 rpm for 5 min, and
the supernatants were frozen at �20°C until the assay was performed. Cytokine
expression in organ supernatants was measured using a Bio-Plex multiplex cy-
tokine bead kit (Bio-Rad). In preliminary studies, 23 proinflammatory cytokines
were assessed by examining the bladders and kidneys of mice infected with either
Gram-negative uropathogenic E. coli (UPEC) strain UTI89 (30), Gram-positive
E. faecalis strain 0852 (21), or S. saprophyticus UTI strain 7108. IL-2, IL-3, IL-4,
IL-6, IL-9, IL-10, IL-13, granulocyte-macrophage colony-stimulating factor
(GM-CSF), and gamma interferon (IFN-�) were not induced significantly in
infected mice compared to mock-infected animals (data not shown). Thus, a
custom 12-plex kit was developed; this kit contained antibodies to mouse IL-6,
KC, IL-12p40, IL-12p70, tumor necrosis factor alpha (TNF-�), IL-1�, granulo-
cyte colony-stimulating factor (G-CSF), IL-17, eotaxin, monocyte chemoattrac-
tant protein 1 (MCP-1), MIP-1�, and RANTES, which were induced during
murine UTI (17). Kidney supernatants were diluted 10-fold to obtain the protein
concentration recommended by the manufacturer. Two or three organs were
pooled for each measurement, as indicated below. Statistical analyses were
performed using the one-sample Student t test (GraphPad Prism).

Flow cytometry. For flow cytometric analysis, bisected bladders or quartered
kidneys were incubated for 1 h at 37°C with 1 mg/ml collagenase D (Sigma) and
100 �g/ml DNase (Sigma) and then manually passed through a 100-�m cell
strainer to obtain a single-cell suspension. Cell suspensions were treated with red
blood cell lysing buffer (Sigma) to lyse red blood cells, washed in PBS, and fixed
in 1% paraformaldehyde. Samples were stained with anti-F4/80-fluorescein iso-
thiocyanate (FITC) (eBiosciences, San Diego, CA) and anti-Gr1-allophycocya-
nin (APC) or anti-CD45-phycoerythrin (PE) antibodies (BD Pharmingen, San
Jose, CA). A BD FACScan cytometer (BD Biosciences) was used to acquire flow
cytometric data, and data were analyzed using FlowJo software (Treestar). Sta-
tistical analyses were performed using the Student t test (GraphPad Prism).

RESULTS

S. saprophyticus is rapidly cleared from the bladder but
persists in the kidneys of C3H/HeN mice. To establish a com-
prehensive in vivo model of S. saprophyticus pathogenesis, we
first characterized the infection kinetics of strain 7108, which
was isolated from a patient with an acute UTI (7) (Table 1).
The murine model for uropathogenic E. coli (UPEC) UTI
utilizes a 50-�l inoculum (16), whereas the model for E. fae-
calis UTI required a 200-�l inoculum to obtain reproducible
infection (21). We empirically determined that 107 CFU of S.
saprophyticus in a 50-�l inoculum was the lowest dose that
established consistent infection in 100% of the animals when it
was transurethrally instilled into the bladders of C3H/HeN
female mice (data not shown). Therefore, C3H/HeN mice
were infected with 107 CFU in 50 �l, and the numbers of
bacterial CFU in the urinary tract were assessed over a 2-week
time course.

In the bladder (Fig. 1A), the majority of the inoculum was
cleared by 6 h postinfection (p.i.), at which time the geometric
mean level of recovered bacteria was 3.8 � 102 CFU/bladder.
The bacterial titers in the bladder at 1 h and 3 h p.i. were 3.6 �
102 and 5.1 � 102 CFU/bladder, respectively, for C3H/HeN
mice (see Fig. 3A), indicating that S. saprophyticus clearance is
very rapid. The bacterial titers in the bladder decreased over
time and were below the level of detection by 14 days p.i. In
contrast, the level of S. saprophyticus in the kidneys was 4.3 �
104 CFU/mouse at 6 h p.i. (Fig. 1B). The bacterial titers in the
kidneys decreased gradually but persisted at �103 CFU/mouse
at 14 days p.i. At every time point examined, the number of S.

TABLE 1. S. saprophyticus strains used in this study

Strain Resistance Isolation source Reference

7108 None Urine of patient with UTI 7
7108 	ssp Ermr 37
7108 	sdrI Ermr 36
Top 58 None Urine of patient with cystitis This study
Top 6 None Urine of patient with cystitis This study
Top 76 None Urine of patient with cystitis This study

1944 KLINE ET AL. INFECT. IMMUN.
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saprophyticus bacteria recovered from the kidneys was signifi-
cantly higher than the number recovered from the bladder
(P 
 0.005), indicating that there was preferential colonization
of and/or persistence in the kidneys compared to the bladder.
Preferential colonization of the kidneys likely did not result
from a retrograde reflux induced by the 50-�l inoculum, since
inoculation with a total of 107 CFU in five separate 10-�l
instillments over the course of 5 h resulted in equivalent blad-
der and kidney titers at 48 h p.i. (data not shown).

Multiple S. saprophyticus clinical isolates preferentially col-
onize the kidneys of C3H/HeN mice. To ascertain whether the
kidney tropism observed during S. saprophyticus strain 7108
infection was specific for this strain or a trait of all S. sapro-
phyticus strains, we assessed three additional low-passage S.
saprophyticus clinical isolates (Table 1) in this newly estab-
lished mouse model. In each infection, the bacterial titers in
the bladder were �101 to 102 CFU/mouse and the bacterial
titers in the kidneys were �104 CFU/mouse (Fig. 2) at 48 h p.i.
Thus, all of the S. saprophyticus clinical strains tested had a
statistically significant (P 
 0.005) preference for infection of
the murine kidneys.

Host factors determine the efficiency of S. saprophyticus
clearance from the kidneys. To test whether kidney tropism is
host or bacterium driven, we examined S. saprophyticus infec-
tion in a second mouse strain, C57BL/6, which responds to

UPEC infection with kinetics different than those of C3H/HeN
mice (16, 34, 38). C3H/HeN or C57BL/6 mice were infected
with 107 CFU of S. saprophyticus, and the bacterial titers in the
bladder and kidneys were measured over time. The initial low
levels of colonization of the bladder at 1 h p.i. were similar for
the two strains (Fig. 3A). In contrast to the results for S.
saprophyticus infection of C3H/HeN mice, little or no bacterial
colonization of C57BL/6 kidneys was observed by 3 h p.i. (Fig.
3B). Furthermore, by 48 h p.i., the bladders and kidneys of all
C57BL/6 mice were sterile, indicating that S. saprophyticus was
not able to colonize the kidneys of C57BL/6 mice. No increases
in cytokine production were observed in the kidneys of S.
saprophyticus-infected C57BL/6 mice compared to the cytokine
production in the kidneys of C3H/HeN mice (data not shown),
suggesting that the lack of recoverable bacteria in C57BL/6
mice was not the result of a more robust host inflammatory
response in this strain. In the remainder of this study we used
the C3H/HeN mouse model to assess the host response to
infection; however, these results suggest that host factors may
play a large role in governing bacterial colonization, persis-
tence, and/or clearance during S. saprophyticus UTI.

S. saprophyticus induces more inflammation in the kidneys
than in the bladders of C3H/HeN mice. Both UPEC infection
and E. faecalis infection induce inflammation in the bladders
and kidneys of C3H/HeN mice, as assessed by H&E staining,

FIG. 1. S. saprophyticus strain 7108 is rapidly cleared from the bladder but persists in the kidneys of C3H/HeN mice. S. saprophyticus was
instilled into the bladders of C3H/HeN mice (12 mice/time point). Bladders (A) and kidneys (B) were removed and homogenized, and 10-fold
serial dilutions were plated to determine the number of CFU/organ. Each circle indicates the data for one mouse, and the horizontal lines indicate
the geometric means. The data are composite data for two experiments. An asterisk indicates that the kidney titer was significantly higher than
the bladder titer at a time point (P 
 0.005, Mann-Whitney U test).

FIG. 2. S. saprophyticus strains preferentially colonize the kidney. Clinical isolates (indicated on the x axis) (Table 1) were inoculated into the
bladders of C3H/HeN mice (10 mice/group) using 50 �l containing 107 CFU. Bladders and kidneys were removed and homogenized, and 10-fold
dilutions were plated to determine the number of CFU/organ at 48 h postinfection. Each circle indicates the data for one mouse, and the horizontal
lines indicate the geometric means. The data are composite data for two experiments. An asterisk indicates that the kidney titer was significantly
higher than the bladder titer at a time point (P 
 0.005, Mann-Whitney U test).
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immunofluorescence staining for neutrophils or macrophages
in infected tissues, and induction of proinflammatory cytokines
(21, 39). Therefore, we expected that S. saprophyticus would
also induce inflammation in the C3H/HeN strain. Light micro-
scopic assessment of H&E-stained tissue sections, obtained
48 h after infection with S. saprophyticus strain 7108 or Top58,
showed that there was focal epithelial exfoliation in the blad-
der, characterized by the absence of large binucleate superfi-
cial umbrella cells in the bladder lumen; little or no inflamma-
tory infiltrate was observed (Fig. 4B and C). In the kidney, a
focal inflammatory cellular infiltrate adjacent to the renal pel-
vis was observed (Fig. 4E and F). No epithelial exfoliation or
inflammation was observed in the bladders or kidneys of PBS
mock-infected mice (Fig. 4A and D). Consistent with these
histological findings, immunofluorescence microscopy showed
that S. saprophyticus was closely associated with superficial
umbrella cells in the bladder lumen and predominantly local-
ized in the renal pelvis (see Fig. 6I to L; data not shown) in the
kidneys. Colonization was observed less frequently in the renal
pyramid and renal cortex in the kidney (data not shown). Thus,
the increase in the immune cell infiltrate in the kidneys is
consistent with the preferential colonization of the kidneys by
S. saprophyticus.

S. saprophyticus induces inflammatory cytokine secretion
more strongly in the kidneys. Our current understanding of the
host response to Gram-positive UTI is limited to the presence
of a primarily monocytic infiltrate observed in E. faecalis-in-
fected murine kidneys and modest concomitant induction of
MIP-2 and SOCS-3 in kidney tissues (21). IL-8 can be detected
in the urine of patients infected with many uropathogens, in-
cluding E. faecalis and other Gram-positive cocci (32). In vitro,
human mononuclear cells secrete IL-1� and IL-6 in response
to S. saprophyticus (27). To gain greater insight into the host
response to S. saprophyticus UTI, we examined soluble factors
induced in vivo during infection.

We simultaneously examined the levels of 12 cytokines and
chemokines (TNF-�, MCP-1, MIP-1�, IL-1�, IL-6, IL-12p70,
IL-12p40, IL-17, G-CSF, KC, RANTES, and eotaxin [see Ma-
terials and Methods]) in organ homogenate supernatants from
S. saprophyticus-infected and PBS mock-infected mice over
time. The levels of TNF-�, MIP-1�, IL-1�, IL-6, IL-12p70,
IL-17, and G-CSF in S. saprophyticus-infected C3H/HeN blad-
der homogenate supernatants increased in a time-dependent
manner, peaking between 48 h and 7 days p.i.; the levels of
MCP-1 and KC peaked at 6 h p.i. (Fig. 5A). In the kidneys,
higher levels of all of the cytokines examined except eotaxin
were produced during the course of infection in S. saprophyti-
cus-infected mice than in mock-infected mice, and the levels
peaked at 48 h p.i (Fig. 5B). In S. saprophyticus-infected kid-
neys, TNF-�, IL-1�, IL-6, IL-17, G-CSF, and RANTES were
the most highly induced molecules; the levels were 100-fold
higher than the levels in mock-infected animals and generally
were more than 10-fold higher than the levels in the bladder.
The more robust immune response in the kidneys may partially
reflect the higher bacterial titers recovered from for these
organs.

Neutrophils infiltrate into the bladder and kidneys during
S. saprophyticus infection. Bladder and kidney epithelial cells
readily produce IL-6 and IL-8 in response to S. saprophyticus
infection (13). Macrophages secrete the proinflammatory cy-
tokines TNF-�, IL-12, and IL-6 in addition to the chemokine
MIP-1� (24, 25). MIP-1� is chemotactic for monocytes/mac-
rophages and other proinflammatory cells, such as neutrophils
(25). In addition, MIP-1�, KC, and G-CSF are important for
neutrophil recruitment and activation. The increased levels of
macrophage-secreted and -recruiting cytokines, as well as neu-
trophil-associated cytokines, suggested that these cells may be
recruited to the sites of infection during S. saprophyticus UTI.

To assess whether monocytes/macrophages or neutrophils
are recruited to the urinary tract upon S. saprophyticus infec-
tion, we dissociated whole bladders and kidneys and stained
them with anti-CD45 antibody to identify immune cell popu-
lations; with anti-Gr1 antibody, which recognizes an epitope in
the surface proteins Ly6G and Ly6C present on polymorpho-
nuclear cells (PMN) and monocytes, respectively (2); and with
anti-F4/80 antibody, which recognizes a monocyte- and mac-
rophage-specific marker (1, 10). Using flow cytometry, we
counted F4/80� cells (monocytes/macrophages) and Gr1� F4/
80� cells (PMN) and expressed the results as percentages of
the total CD45� cell populations in the bladder and the kid-
neys (Fig. 6A to D). We found that the percentage of mono-
cytes/macrophages in the S. saprophyticus-infected bladders
was modestly higher at 6 h p.i. and then decreased over time

FIG. 3. S. saprophyticus is rapidly cleared from the C57BL/6 mu-
rine urinary tract. Female C3H/HeN or C57BL/6 mice (5 mice/time
point) were infected with 107 CFU of S. saprophyticus strain 7108.
Bladders and kidneys were homogenized at 1, 3, 6, 25, and 48 h
postinfection, and serial dilutions of organ homogenates were plated
to determine the number of CFU/organ. Each circle indicates the data
for one mouse; the filled circles indicate the data for C3H/HeN mice,
and the open circles indicate the data for C57BL/6 mice. The horizon-
tal lines indicate the geometric means. The data are representative of
the data obtained in two separate experiments performed with 5 mice/
experiment/mouse strain/time point.
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compared to the findings for PBS mock-infected animals (Fig.
6G). There was no difference between the percentages of kid-
ney-infiltrating F4/80� cells in S. saprophyticus-infected and
PBS mock-infected mice (Fig. 6H). In contrast, a small in-
crease in the percentage of bladder-associated neutrophils
(Fig. 6E) and a significant neutrophil infiltrate in the kidneys
(Fig. 6F) were observed by 48 h p.i., when cytokine induction
was also maximal (Fig. 5). After peaking at 48 h p.i., the
number of neutrophils gradually decreased over time. The
majority of the cellular immune infiltrate observed in the blad-
ders and kidneys occurred focally in close proximity to S. sa-
prophyticus bacterial cells (Fig. 6I to L and data not shown).
Together, these data indicate that, like the response in UPEC
UTI, PMN also predominate in the response to S. saprophyti-
cus infection (40).

S. saprophyticus mutants are defective in colonization in vivo.
To examine the versatility of the S. saprophyticus murine model
characterized here, we tested putative virulence factors that
were previously characterized in vitro. Mice were infected with
equal numbers of wild-type bacteria or strains with mutations
in the ssp (Ssp�) or sdrI (SdrI�) gene. Both mutants colonized
the mouse urinary tract as well as the wild type at 6 h p.i. (Fig.
7A), whereas by 48 h p.i. significantly fewer bacteria were
recovered from the bladders and kidneys of mice infected with
the Ssp� and SdrI� strains than from the bladders and kidneys
of mice infected with wild-type bacteria (Fig. 7B). The viru-
lence defect of both the Ssp� and SdrI� mutants in the kidneys

was still observed at day 7, when significantly fewer mutant
bacteria than wild-type bacteria were recovered. The in vitro
phenotypes of 	ssp and 	sdrI mutants, including their lipase
activity and collagen binding, respectively, are complemented
when a copy of the wild-type gene is supplied on a plasmid (36,
37). Infection of mice with the 	ssp or 	sdrI mutant strain
harboring the complementing plasmid resulted in loss of the
plasmid by 48 h p.i. (data not shown); thus, complementation
in vivo could not be assessed. Together, these data indicate that
Ssp and SdrI are not required for initial S. saprophyticus colo-
nization of the urinary tract but are necessary for persistence in
both the bladder and kidneys.

DISCUSSION

Urinary tract infection is one of the most common infectious
diseases afflicting women in the developed world (46). It en-
compasses a number of disease states ranging from acute to
recurrent infection, manifests in the bladder and/or kidneys,
and includes symptoms that range from mild to painful and
debilitating. Importantly, all of these disease states can be
caused by a number of uropathogens, including both Gram-
negative and Gram-positive bacteria. Most studies examining
the pathogenic mechanisms that contribute to UTI have been
performed in the context of Gram-negative uropathogenic E.
coli (UPEC) infections. In light of recent studies that revealed
significant differences in pathogenic mechanisms between

FIG. 4. S. saprophyticus strain 7108 induces inflammatory infiltration in the kidney. Mice were inoculated with either PBS (A and D), S.
saprophyticus 7108 (B, C, and E), or S. saprophyticus Top58 (F). Bladders (A to C) and kidneys (D to F) were harvested and prepared for
hematoxylin and eosin staining as described in the text. An inflammatory infiltrate was observed in S. saprophyticus-infected kidneys at 48 h p.i.
(panels E and F, arrows). Conversely, no infiltrate was observed in the bladder at the same time point (B and C), but areas of epithelial exfoliation
were observed (arrowheads). (A) The bladder epithelium from PBS mock-infected mice was intact, and no inflammatory infiltrate was observed
in the bladders or kidneys of mock-infected animals (A and D). The area showing epithelial exfoliation in a box in panel B (magnification, �10)
is shown at a higher magnification (�40) in panel C. The magnification of all other images is �10. L, bladder lumen; Pe, renal pelvis; Py, pyramid;
C, cortex.
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UPEC and Enterococcus in the urinary tract (20, 21), we sought
to establish a model with which to study the most common
Gram-positive uropathogen, S. saprophyticus.

Here, we show that S. saprophyticus colonizes the C3H/HeN
murine kidneys nearly 100-fold more efficiently than it colo-
nizes the bladder at all time points examined. This finding is
similar to the results obtained for the other major Gram-
positive uropathogen, E. faecalis (21, 42). This observation is
also consistent with an early report of murine S. saprophyticus
UTI (12), but it contrasts strikingly with the bladder tropism
displayed by some UPEC strains (19, 29). Although UTI symp-
toms consistent with cystitis reportedly are common during S.
saprophyticus infection (14), it is possible that these symptoms
actually result from infection of the kidneys. Indeed, S. sapro-
phyticus causes 13% of upper UTI (14). Another study dem-
onstrated that significantly more patients infected with S. sa-
prophyticus than patients infected with UPEC reported back
pain symptoms, a hallmark of kidney infection (18). Further,
although upper UTI symptoms are traditionally diagnostic cri-
teria for pyelonephritis, a lack of these symptoms has not
been shown to preclude the possibility of a bacterial burden
in the kidneys. Together, these data suggest that our find-
ings for this murine infection may accurately model Gram-
positive infection tropisms in human Gram-positive UTI.

Given the preference of S. saprophyticus for the kidneys, we

performed the first comprehensive assessment of soluble cyto-
kine mediators responding specifically to S. saprophyticus dur-
ing UTI. In addition to the previously reported high-level in-
duction of IL-1� and IL-6 (27), this study revealed that the
levels TNF-�, IL-17, G-CSF, and RANTES secreted in the kid-
neys were �100-fold greater than the levels secreted in the
bladder at the height of induction. Low-level induction of
MCP-1, MIP-1�, IL-12, and KC was also observed. These
results indicate that the host response to S. saprophyticus is
commensurate with the bacterial titer in the organ investi-
gated. Further, there is no evidence that there is an early and
robust immune response in the bladder, like that seen in
Gram-negative UPEC infection (17), which is consistent with
the low bacterial titers observed during murine S. saprophyticus
UTI. However, modest neutrophil influx and bladder epithelial
exfoliation in response to S. saprophyticus infection were ob-
served, possibly resulting from an innate defense to shed in-
fected cells during micturation (26). Alternatively, inflamma-
tion and/or epithelial shedding may be important for revealing
bacterial receptors that are necessary for colonization. Inter-
estingly, S. saprophyticus does not efficiently infect C57BL/6
mice, in contrast to C3H/HeN mice. The defect in colonization
is not likely a result of an enhanced inflammatory response or
faster clearance in C57BL/6 mice, since no increases in the
levels of soluble factors were observed in this host background

FIG. 5. S. saprophyticus infection induces a soluble proinflammatory innate immune response in the urinary tract of C3H/HeN mice. S.
saprophyticus strain 7108 (107 CFU) was instilled into the bladders of C3H/HeN mice (5 mice/time point). Bladders (A) and kidneys (B) were
removed at 6 h, 48 h, 7 days, and 14 days postinfection and homogenized, and supernatants were collected. The cytokine levels in organ
homogenate supernatants are expressed as fold changes compared to the levels in PBS mock-infected mice (the fold change for mock-infected mice
was defined as 1 and is indicated by a dashed line). The error bars indicate the standard deviations. Cytokine levels were measured in three separate
experiments (48 h), two separate experiments (7 days), or one experiment (6 h and 14 days). The results of one representative experiment are
shown. Cytokines significantly induced by S. saprophyticus in this experiment are indicated by carets, and cytokines significantly induced in multiple
experiments are indicated by asterisks. Statistical significance was determined using a one-sample t test (P 
 0.1). The lack of significance when
induction appears to be high is a result of a small sample size.
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FIG. 6. Immune infiltrates in the murine urinary tract in response to S. saprophyticus strain 7108. C3H/HeN mice were infected with S.
saprophyticus, and organs were removed at the time points indicated, fixed, and either dissociated for flow cytometry or sectioned for immuno-
fluorescence microscopy. (A to D) Representative dot plots resulting from cellular infiltration analysis. CD45� cells, which were �2 to 4% of the
total bladder cells (A and B) or kidney cells (C and D), were gated (A and C), and the percentages of Gr1� neutrophils and F4/80� macrophages
were determined (B and D). (E to H) Immune infiltrate as assessed by determining the percentage of CD45� immune cells in each organ which
costained with the neutrophil/monocyte marker Gr1 or the monocyte/macrophage marker F4/80. The data are composite data for two separate
experiments (2 or 3 mice/time point/experiment). The samples used for PBS mock-infected organs were pooled samples from 6 h, 48 h, and 7 days
p.i. The error bars indicate the standard deviations. Statistical significance (indicated by an asterisk) was determined by a paired t test (P 
 0.05).
(I to L) Kidney sections from mice inoculated with S. saprophyticus for 6 h (I and J) or 48 h (K and L) stained with anti-Aas (red) and anti-CD-45
antibodies (green). Tissue sections were counterstained with Hoescht dye for nuclear labeling (blue). Magnification, �40. The renal pelvis (Pe),
pyramid (Py), and cortex (C) areas are outlined with dashed lines. In negative controls for each preparation, in which the primary anti-Aas and
anti-CD-45 antibodies were not included, there was no cellular or bacterial staining (data not shown).
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(data not shown). Thus, it is possible that C57BL/6 mice lack a
receptor required for S. saprophyticus colonization.

The soluble response to S. saprophyticus infection included
production of macrophage-secreted proinflammatory cyto-
kines IL-1�, IL-6, TNF-�, G-CSF, and IL-12, as well as the
monocyte/macrophage chemokines MIP-1� and MCP-1. The
preponderance of macrophage-associated cytokines and che-
mokines produced in response to S. saprophyticus infection in
the absence of a significant macrophage infiltrate in the in-
fected organs suggests that resident macrophages may be ac-
tivated during infection and play critical roles in the host re-
sponse to Gram-positive pathogens. Indeed, the kidney was
recently described to have a network of resident immune cells
that could respond rapidly to infection (44). The presence of
PMN migration and maturation signals, such as KC and G-
CSF, along with MIP-1�, IL-6, and TNF-�, which can also be
secreted by neutrophils, is consistent with our observation that
PMN are recruited to S. saprophyticus-infected bladders and
kidneys. Further, higher numbers of PMN were observed in
the urine of S. saprophyticus-infected mice than in the urine of
mock-infected animals (data now shown). However, the num-
ber of PMN was less than the number in the urine of UPEC-
infected mice, which display robust neutrophil recruitment
early in infection (17, 40). These data suggest that although the
primary innate immune cell responses in UPEC and Gram-
positive UTI may not differ in cell type, they may differ dra-
matically in magnitude. One explanation for this difference
may be a reduced invasive capacity of S. saprophyticus com-
pared to the invasive capacity of UPEC, for which urothelial
cell invasion profoundly enhances the inflammatory response
in the urinary tract (40). Furthermore, the proinflammatory
response leading to PMN infiltration during UPEC infection is
mediated in part via Toll-like receptor 4 (TLR4) signaling in
response to lipopolysaccharide (LPS) (39, 43). Gram-positive
uropathogens lack LPS, and E. faecalis pathogenesis in the
urinary tract is not altered by the absence of TLR4 or TLR2
(which recognizes Gram-positive lipoteichoic acid) (21). Thus,
examination of the in vitro interactions between S. saprophyti-
cus and macrophages or neutrophils and the signaling path-

ways involved, along with cellular depletion studies in vivo,
together should shed light on the contributions of each type of
cell and the overall innate immune response to S. saprophyticus
UTI.

This report describes a new murine model for the study of
bacterial and host factors that contribute to S. saprophyticus
pathogenesis in the urinary tract. Despite the clinical impor-
tance of this Gram-positive uropathogen, very little is known
about how it so specifically and productively infects the urinary
tract. To test the efficacy of our model, we examined the
contributions of the putative virulence factors SdrI and Ssp to
murine UTI. We found that while neither Ssp nor SdrI is
required for the initial colonization of the urinary tract, both
proteins are necessary for persistence in the bladder and kid-
ney. Similar contributions to virulence have been reported for
urease; urease mutants were associated with a �10-fold reduc-
tion in rat bladder colonization (5). Additional studies are
required to elucidate the true roles of S. saprophyticus Ssp and
SdrI in UTI pathogenesis.

Taken together, our data support the conclusion that this
new model of Gram-positive UTI is a relevant approximation
of human Gram-positive UTI. We show that S. saprophyticus,
like the other major Gram-positive uropathogen E. faecalis,
displays kidney tropism during UTI. However, the host re-
sponses to S. saprophyticus and E. faecalis are different, which
may in part explain why these uropathogens target different
host populations. Further, our studies using bacterial mutants
underscore the utility of this murine model for revealing im-
portant contributions of the bacterial factors necessary for S.
saprophyticus to cause a productive urinary tract infection. This
model should, therefore, be useful for further study of the
contributions of both S. saprophyticus virulence factors and the
virulence factors of other prevalent Gram-positive urinary
tract pathogens.
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The data are composite data for two (6 h and 7 days) and four (48 h) experiments (5 to 10 mice/time point/experiment). The horizontal lines
indicate the geometric means. Statistical significance was determined by the Mann-Whitney U test.
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